Ogino, Takamichi; Ueda, Takayuki; Ogami, Koichiro; Koike, Takashi; Sakurai, Kaoru
2017-01-01
We examined how chewing rate and the extent of reactive hyperemia affect the blood flow in denture-supporting mucosa during chewing. The left palatal mucosa was loaded under conditions of simulated chewing or simulated clenching for 30s, and the blood flow during loading was recorded. We compared the relative blood flow during loading under conditions that recreated different chewing rates by combining duration of chewing cycle (DCC) and occlusal time (OT): fast chewing group, typical chewing group, slow chewing group and clenching group. The relationship between relative blood flow during simulated chewing and the extent of reactive hyperemia was also analyzed. When comparing the different chewing rate, the relative blood flow was highest in fast chewing rate, followed by typical chewing rate and slow chewing rate. Accordingly, we suggest that fast chewing increases the blood flow more than typical chewing or slow chewing. There was a significant correlation between the amount of blood flow during simulated chewing and the extent of reactive hyperemia. Within the limitations of this study, we concluded that slow chewing induced less blood flow than typical or fast chewing in denture-supporting mucosa and that people with less reactive hyperemia had less blood flow in denture-supporting mucosa during chewing. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Albright, A. E.
1984-01-01
A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.
Mignot, E; Bonakdari, H; Knothe, P; Lipeme Kouyi, G; Bessette, A; Rivière, N; Bertrand-Krajewski, J-L
2012-01-01
Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction.
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Sun Lee; Yu Ryang Pyun
A food drying process in a tunnel dryer was modeled from Keey's drying model and experimental drying curve, and optimized in operating conditions consisting of inlet air temperature, air recycle ratio and air flow rate. Radish was chosen as a typical food material to be dried, because it has the typical drying characteristics of food and quality indexes of ascorbic acid destruction and browning during drying. Optimization results of cocurrent and counter current tunnel drying showed higher inlet air temperature, lower recycle ratio and higher air flow rate with shorter total drying time. Compared with cocurrent operation counter current dryingmore » used lower air temperature, lower recycle ratio and lower air flow rate, and appeared to be more efficient in energy usage. Most of consumed energy was shown to be used for sir heating and then escaped from the dryer in the form of exhaust air.« less
Impacts of changing hydrology on permanent gully growth: experimental results
NASA Astrophysics Data System (ADS)
Day, Stephanie S.; Gran, Karen B.; Paola, Chris
2018-06-01
Permanent gullies grow through head cut propagation in response to overland flow coupled with incision and widening in the channel bottom leading to hillslope failures. Altered hydrology can impact the rate at which permanent gullies grow by changing head cut propagation, channel incision, and channel widening rates. Using a set of small physical experiments, we tested how changing overland flow rates and flow volumes alter the total volume of erosion and resulting gully morphology. Permanent gullies were modeled as both detachment-limited and transport-limited systems, using two different substrates with varying cohesion. In both cases, the erosion rate varied linearly with water discharge, such that the volume of sediment eroded was a function not of flow rate, but of total water volume. This implies that efforts to reduce peak flow rates alone without addressing flow volumes entering gully systems may not reduce erosion. The documented response in these experiments is not typical when compared to larger preexisting channels where higher flow rates result in greater erosion through nonlinear relationships between water discharge and sediment discharge. Permanent gullies do not respond like preexisting channels because channel slope remains a free parameter and can adjust relatively quickly in response to changing flows.
Enhancement of heat transfer rate on phase change materials with thermocapillary flows
NASA Astrophysics Data System (ADS)
Madruga, Santiago; Mendoza, Carolina
2017-04-01
We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.
In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.
Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine
2011-01-01
Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro. The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals). In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively. The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.
Evaluation of Environmental Profiles for Reliability Demonstration
1975-09-01
the increase in the ram air flow rate. As a result, one cannot generalize in advance about the effect of velocity increase on air-conditioner turbine ...152 6.2.6.3 Forced Cooling Air Temperature/ Flow Schedule. 152 Sample Test Provile ....... .............. 154 6.2.8 Profiles for Multi...Profiles for Reliability Demonstration Study Flow ....... . ....... 7 2 Typical MIL-STD-781 Profile ................ 23 3 Test Cycle A - Ambient Cooled
Modeling Food Delivery Dynamics For Juvenile Salmonids Under Variable Flow Regimes
NASA Astrophysics Data System (ADS)
Harrison, L.; Utz, R.; Anderson, K.; Nisbet, R.
2010-12-01
Traditional approaches for assessing instream flow needs for salmonids have typically focused on the importance of physical habitat in determining fish habitat selection. This somewhat simplistic approach does not account for differences in food delivery rates to salmonids that arise due to spatial variability in river morphology, hydraulics and temporal variations in the flow regime. Explicitly linking how changes in the flow regime influences food delivery dynamics is an important step in advancing process-based bioenergetic models that seek to predict growth rates of salmonids across various life-stages. Here we investigate how food delivery rates for juvenile salmonids vary both spatially and with flow magnitude in a meandering reach of the Merced River, CA. We utilize a two-dimensional (2D) hydrodynamic model and discrete particle tracking algorithm to simulate invertebrate drift transport rates at baseflow and a near-bankfull discharge. Modeling results indicate that at baseflow, the maximum drift density occurs in the channel thalweg, while drift densities decrease towards the channel margins due to the process of organisms settling out of the drift. During high-flow events, typical of spring dam-releases, the invertebrate drift transport pathway follows a similar trajectory along the high velocity core and the drift concentrations are greatest in the channel centerline, though the zone of invertebrate transport occupies a greater fraction of the channel width. Based on invertebrate supply rates alone, feeding juvenile salmonids would be expected to be distributed down the channel centerline where the maximum predicted food delivery rates are located in this reach. However, flow velocities in these channel sections are beyond maximum sustainable swimming speeds for most juvenile salmonids. Our preliminary findings suggest that a lack of low velocity refuge may prevent juvenile salmonids from deriving energy from the areas with maximum drift density in this reach. Future efforts will focus on integration of food delivery and bioenergetic models to account for conflicting demands of maximizing food intake while minimizing the energetic costs of swimming.
Youn, Woong-Kyu; Kim, Chan-Soo; Hwang, Nong-Moon
2013-10-01
The generation of charged nanoparticles in the gas phase has been continually reported in many chemical vapor deposition processes. Charged silicon nanoparticles in the gas phase were measured using a differential mobility analyzer connected to an atmospheric-pressure chemical vapor deposition reactor at various nitrogen carrier gas flow rates (300-1000 standard cubic centimeter per minute) under typical conditions for silicon deposition at the reactor temperature of 900 degrees C. The carrier gas flow rate affected not only the growth behavior of nanostructures but also the number concentration and size distribution of both negatively and positively charged nanoparticles. As the carrier gas flow rate decreased, the growth behavior changed from films to nanowires, which grew without catalytic metal nanoparticles on a quartz substrate.
NASA Astrophysics Data System (ADS)
Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.
2015-08-01
A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.
Russell, G.M.; Goodwin, C.R.
1987-01-01
Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)
Geometry of tracer trajectories in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Alards, Kim; Rajaei, Hadi; Kunnen, Rudie; Toschi, Federico; Clercx, Herman
2016-11-01
In Rayleigh-Bénard convection rotation is known to cause transitions in flow structures and to change the level of anisotropy close to the horizontal plates. To analyze this effect of rotation, we collect curvature and torsion statistics of passive tracer trajectories in rotating Rayleigh-Bénard convection, using both experiments and direct numerical simulations. In previous studies, focusing on homogeneous isotropic turbulence (HIT), curvature and torsion PDFs are found to reveal pronounced power laws. In the center of the convection cell, where the flow is closest to HIT, we recover these power laws, regardless of the rotation rate. However, near the top plate, where we expect the flow to be anisotropic, the scaling of the PDFs deviates from the HIT prediction for lower rotation rates. This indicates that anisotropy clearly affects the geometry of tracer trajectories. Another effect of rotation is observed as a shift of curvature and torsion PDFs towards higher values. We expect this shift to be related to the length scale of typical flow structures. Using curvature and torsion statistics, we can characterize how these typical length scales evolve under rotation and moreover analyze the effect of rotation on more complicated flow characteristics, such as anisotropy.
Permafrost thaw in a nested groundwater-flow system
McKenzie, Jeffery M.; Voss, Clifford I.
2013-01-01
Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding
Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.
2000-08-29
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane.
Flow in a centrifugal fan impeller at off-design conditions
NASA Astrophysics Data System (ADS)
Wright, T.; Tzou, K. T. S.; Madhavan, S.
1984-06-01
A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.
Geometry of tracer trajectories in rotating turbulent flows
NASA Astrophysics Data System (ADS)
Alards, Kim M. J.; Rajaei, Hadi; Del Castello, Lorenzo; Kunnen, Rudie P. J.; Toschi, Federico; Clercx, Herman J. H.
2017-04-01
The geometry of passive tracer trajectories is studied in two different types of rotating turbulent flows; rotating Rayleigh-Bénard convection (RBC; experiments and direct numerical simulations) and rotating electromagnetically forced turbulence (EFT; experiments). This geometry is fully described by the curvature and torsion of trajectories, and from these geometrical quantities we can subtract information on the typical flow structures at different rotation rates. Previous studies, focusing on nonrotating homogeneous isotropic turbulence (HIT), show that the probability density functions (PDFs) of curvature and torsion reveal pronounced power laws. However, the set-ups studied here involve inhomogeneous turbulence, and in RBC the flow near the horizontal plates is definitely anisotropic. We investigate how the typical shapes of the curvature and torsion PDFs, including the pronounced scaling laws, are influenced by this level of anisotropy and inhomogeneity and how this effect changes with rotation. A first effect of rotation is observed as a shift of the curvature and torsion PDFs towards higher values in the case of RBC and towards lower values in the case of EFT. This shift is related to the length scale of typical vortical structures that decreases with rotation in RBC, but increases with rotation in EFT, explaining the opposite shifts of the curvature (and torsion) PDFs. A second remarkable observation is that in RBC the HIT scaling laws are always recovered, as long as the boundary layer (BL) is excluded. This suggests that these scaling laws are very robust and hold as long as we measure in the turbulent bulk. In the BL of the RBC cell, however, the scaling deviates from the HIT prediction for lower rotation rates. This scaling behavior is found to be consistent with the coupling between the boundary layer dynamics and the bulk flow, which changes under rotation. In particular, it is found that the active coupling of the Ekman-type boundary layer with the bulk flow suppresses anisotropy in the BL region for increasing rotation rates.
Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: evidence for cavity flow
Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.
2017-01-01
Pockmark flow circulation patterns were investigated through current measurements along the rim and center of two pockmarks in Belfast Bay, Maine. Observed time-varying current profiles have a complex vertical and directional structure that rotates significantly with depth and is strongly dependent on the phase of the tide. Observations of the vertical profiles of horizontal velocities in relation to relative geometric parameters of the pockmark are consistent with circulation patterns described qualitatively by cavity flow models (Ashcroft and Zhang 2005). The time-mean behavior of the shear layer is typically used to characterize cavity flow, and was estimated using vorticity thickness to quantify the growth rate of the shear layer horizontally across the pockmark. Estimated positive vorticity thickness spreading rates are consistent with cavity flow predictions, and occur at largely different rates between the two pockmarks. Previously modeled flow (Brothers et al. 2011) and laboratory measurements (Pau et al. 2014) over pockmarks of similar geometry to those examined herein are also qualitatively consistent with cavity flow circulation, suggesting that cavity flow may be a good first-order flow model for pockmarks in general.
Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...
2016-05-24
We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.
Magnetic Rayleigh-Taylor instability in radiative flows
NASA Astrophysics Data System (ADS)
Yaghoobi, Asiyeh; Shadmehri, Mohsen
2018-06-01
We present a linear analysis of the radiative Rayleigh-Taylor (RT) instability in the presence of magnetic field for both optically thin and thick regimes. When the flow is optically thin, magnetic field not only stabilizes perturbations with short wavelengths, but also growth rate of the instability at long wavelengths is reduced compared to a non-magnetized case. Then, we extend our analysis to the optically thick flows with a conserved total specific entropy, and properties of the unstable perturbations are investigated in detail. Growth rate of the instability at short wavelengths is suppressed due to the presence of the magnetic field; however, growth rate is nearly constant at long wavelengths because of the radiation field. Since the radiative bubbles around massive protostars are subject to the RT instability, we also explore implications of our results in this context. In the non-magnetized case, the growth time-scale of the instability for a typical bubble is found to be less than 1000 yr, which is very short compared to the typical star formation time-scale. Magnetic field with a reasonable strength significantly increases the growth time-scale to more than hundreds of thousand years. The instability, furthermore, is more efficient at large wavelengths, whereas in the non-magnetized case, growth rate at short wavelengths is more significant.
Flow Split Venturi, Axially-Rotated Valve
Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James
2000-02-22
The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.
Low Velocity Difference Thermal Shear Layer Mixing Rate Measurements
NASA Technical Reports Server (NTRS)
Bush, Robert H.; Culver, Harry C. M.; Weissbein, Dave; Georgiadis, Nicholas J.
2013-01-01
Current CFD modeling techniques are known to do a poor job of predicting the mixing rate and persistence of slot film flow in co-annular flowing ducts with relatively small velocity differences but large thermal gradients. A co-annular test was devised to empirically determine the mixing rate of slot film flow in a constant area circular duct (D approx. 1ft, L approx. 10ft). The axial rate of wall heat-up is a sensitive measure of the mixing rate of the two flows. The inflow conditions were varied to simulate a variety of conditions characteristic of moderate by-pass ratio engines. A series of air temperature measurements near the duct wall provided a straightforward means to measure the axial temperature distribution and thus infer the mixing rate. This data provides a characterization of the slot film mixing rates encountered in typical jet engine environments. The experimental geometry and entrance conditions, along with the sensitivity of the results as the entrance conditions vary, make this a good test for turbulence models in a regime important to modern air-breathing propulsion research and development.
Powell, Karin; Ethun, Kelly; Taylor, Douglas K
2016-09-21
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Towards metering tap water by Lorentz force velocimetry
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas
2015-11-01
In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.
Controlled-Temperature Hot-Air Gun
NASA Technical Reports Server (NTRS)
Munoz, M. C.
1986-01-01
Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.
Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model
NASA Astrophysics Data System (ADS)
De Rooij, R.; Graham, W. D.
2016-12-01
The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.
NASA Astrophysics Data System (ADS)
Dagan, Yuval; Ghoniem, Ahmed
2017-11-01
Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.
Development of a second order closure model for computation of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Varma, A. K.; Donaldson, C. D.
1974-01-01
A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.
A stochastic two-scale model for pressure-driven flow between rough surfaces
Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas
2016-01-01
Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2014 CFR
2014-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2011 CFR
2011-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2010 CFR
2010-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2013 CFR
2013-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
46 CFR 162.050-17 - Separator test rig.
Code of Federal Regulations, 2012 CFR
2012-10-01
... diagram of a typical test rig is shown in Figure 162.050-17(a). FIGURE 162.050-17(a)—SEPARATOR TEST RIG... discharge side. (c) The inlet piping of the test rig must be sized so that— (1) Influent water flows at a Reynolds Number of at least 10,000; (2) The influent flow rate is between one and three meters per second...
Study of interfacial behavior in concurrent gas-liquid flows
NASA Astrophysics Data System (ADS)
McCready, Mark J.
1989-02-01
This research is focused on acquiring an understanding of the fundamental processes which occur within the liquid layer of separated (i.e., annular or stratified) gas-liquid flows. Knowledge of this behavior is essential for interpretation of pressure drops, entrainment fraction, transport processes and possibly flow regime transitions in gas-liquid flows. We are examining the qualitative and quantitative nature of the interface, using this information to predict the behavior of the flow field within the film and also studying the effect of the flow field on interface and wall heat and mass transfer rates. Study of waves on sheared liquid layers is best broken into two limiting cases, film depth ratio to wavelength ratio (epsilon) much less than one (typical of annular flows) and epsilon is greater than or equal to 1 (typical of stratified flows). Our study of waves where epsilon = O(1) has shown that wave amplitude spectrum is determined by overtone interactions between various modes which lead to a net flux of energy from low (where it is fed in from gas shear) to high frequency waves (where it is dissipated). Interfacial shear and film depth determine the interaction rates and therefore the spectral shape. Using a balance equation for wave energy, we developed a procedure for quantitatively predicting the wave spectrum. For waves with epsilon is dominated by 1, it is appropriate to examine individual traveling wave shapes (rather than the wave spectrum). We have found that measured wavelengths and speeds of periodic waves exhibit small but significant deviations from predictions of linear stability theory.
Jeffrey J. Barry; John M. Buffington; Peter Goodwin; John .G. King; William W. Emmett
2008-01-01
Previous studies assessing the accuracy of bed-load transport equations have considered equation performance statistically based on paired observations of measured and predicted bed-load transport rates. However, transport measurements were typically taken during low flows, biasing the assessment of equation performance toward low discharges, and because equation...
Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off
NASA Technical Reports Server (NTRS)
Sass, J. P.; Frontier, C. R.
2007-01-01
The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
Frozen Chemistry Effects on Nozzle Performance Simulations
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.
2009-01-01
Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.
Volumetric flow rate in simulations of microfluidic devices+
NASA Astrophysics Data System (ADS)
Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta
2018-06-01
In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.
The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys
NASA Astrophysics Data System (ADS)
Eswar Prasad, K.; Li, B.; Dixit, N.; Shaffer, M.; Mathaudhu, S. N.; Ramesh, K. T.
2014-01-01
We review the dynamic behavior of magnesium alloys through a survey of the literature and a comparison with our own high-strain-rate experiments. We describe high-strain-rate experiments (at typical strain rates of 103 s-1) on polycrystalline pure magnesium as well as two magnesium alloys, AZ31B and ZK60. Both deformation and failure are considered. The observed behaviors are discussed in terms of the fundamental deformation and failure mechanisms in magnesium, considering the effects of grain size, strain rate, and crystallographic texture. A comparison of current results with the literature studies on these and other Mg alloys reveals that the crystallographic texture, grain size, and alloying elements continue to have a profound influence on the high-strain-rate deformation behavior. The available data set suggests that those materials loaded so as to initiate extension twinning have relatively rate-insensitive strengths up to strain rates of several thousand per second. In contrast, some rate dependence of the flow stress is observed for loading orientations in which the plastic flow is dominated by dislocation mechanisms.
NASA Astrophysics Data System (ADS)
Bunte, K.; Swingle, K. W.; Abt, S. R.; Cenderelli, D.
2012-12-01
Effective discharge (Qeff) is defined as the flow at which the product of flow frequency and bedload transport rates obtains its maximum. Qeff is often reported to correspond with bankfull flow (Qbf), where Qeff approximates the 1.5 year recurrence interval flow (Q1.5). Because it transports the majority of all bedload, Qeff is considered a design flow for stream restoration and flow management. This study investigates the relationship between Qeff and Q1.5 for gravel bedload in high elevation Rocky Mountain streams. Both the flow frequency distribution (FQ = a × Qbin-b) where Qbin is the flow class, and the bedload transport rating curve (QB = c × Qd) can be described by power functions. The product FQ × QB = (a × c × Q(-b + d)) is positive if d + -b >0, and negative if d + -b <0. FQ × QB can only attain a maximum (=Qeff) if either FQ or QB exhibit an inflection point. In snowmelt regimes, low flows prevail for much of the year, while high flows are limited to a few days, and extreme floods are rare. In log-log plotting scale, this distribution causes the longterm flow frequency function FQ to steepen in the vicinity of Q1.5. If the bedload rating curve exponent is small, e.g., = 3 as is typical of Helley-Smith bedload samples, d + -b shifts from >0 to <0, causing FQ × QB to peak, and Qeff to be around Q1.5. For measurements thought to be more representative of actual gravel transport obtained using bedload traps and similar devices, large rating curve exponents d of 6 - 16 are typical. In this case, d + -b remains >0, and FQ × QB reaches its maximum near the largest flow on record (Qeff,BT = Qmax). Expression of FQ by negative exponential functions FQ = k × e(Qbin×-m) smooths the product function FQ × QB that displays its maximum as a gentle hump rather than a sharp peak, but without drastically altering Qeff. However, a smooth function FQ × QB allows Qeff to react to small changes in rating curve exponents d. As d increases from <1 to >10, Qeff increases from Qmin to Qmax. The S-shaped relationship of Qeff vs. d shows that changes in d between about 4 and 8 exert the largest influence on Qeff. Not only FQ, but also QB may change its steepness. QB may flatten during floods as flows overtop banks. Many high elevation Rocky Mountain streams are entrenched due to floodplain buildup (overbank deposition and beaver activity) and downcutting. Preliminary flow modeling suggests that bank overtopping starts when Q1.5 >150%, and flows are fully out-of-bank past 200-250% Q1.5. A flattening of the bedload rating curve shifts Qeff from Qmax to within 150-250% Q1.5. Study results suggest that Qeff likely occurs within 150-250% Q1.5, and the often-quoted similarity of Qeff and Qbf (assuming Qbf = Q1.5) does not hold for the study streams, but is rather an artifact of using a Helley-Smith sampler that produces low rating curve exponents near 3. This finding calls into question the utility of Q1.5 or "bankfull flow" as a morphological design flow in high elevation Rocky Mountain streams.
A Low-Erosion Starting Technique for High-Performance Arcjets
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Francis M.
1994-01-01
The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.
NASA Astrophysics Data System (ADS)
Komen, E. M. J.; Camilo, L. H.; Shams, A.; Geurts, B. J.; Koren, B.
2017-09-01
LES for industrial applications with complex geometries is mostly characterised by: a) a finite volume CFD method using a non-staggered arrangement of the flow variables and second order accurate spatial and temporal discretisation schemes, b) an implicit top-hat filter, where the filter length is equal to the local computational cell size, and c) eddy-viscosity type LES models. LES based on these three main characteristics is indicated as industrial LES in this paper. It becomes increasingly clear that the numerical dissipation in CFD codes typically used in industrial applications with complex geometries may inhibit the predictive capabilities of explicit LES. Therefore, there is a need to quantify the numerical dissipation rate in such CFD codes. In this paper, we quantify the numerical dissipation rate in physical space based on an analysis of the transport equation for the mean turbulent kinetic energy. Using this method, we quantify the numerical dissipation rate in a quasi-Direct Numerical Simulation (DNS) and in under-resolved DNS of, as a basic demonstration case, fully-developed turbulent channel flow. With quasi-DNS, we indicate a DNS performed using a second order accurate finite volume method typically used in industrial applications. Furthermore, we determine and explain the trends in the performance of industrial LES for fully-developed turbulent channel flow for four different Reynolds numbers for three different LES mesh resolutions. The presented explanation of the mechanisms behind the observed trends is based on an analysis of the turbulent kinetic energy budgets. The presented quantitative analyses demonstrate that the numerical errors in the industrial LES computations of the considered turbulent channel flows result in a net numerical dissipation rate which is larger than the subgrid-scale dissipation rate. No new computational methods are presented in this paper. Instead, the main new elements in this paper are our detailed quantification method for the numerical dissipation rate, the application of this method to a quasi-DNS and under-resolved DNS of fully-developed turbulent channel flow, and the explanation of the effects of the numerical dissipation on the observed trends in the performance of industrial LES for fully-developed turbulent channel flows.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Good, Morris S.; Smith, Leon E.; Warren, Glen A.
A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less
NASA Astrophysics Data System (ADS)
Li, Binghua; Liu, Licai; Han, Li; Yang, Yong
2017-03-01
The surface flow wetland (SFW) system was located on Shunyi district, Beijing. It was built to treat industrial wastewater and domestic sewage, which were looked as its influent. Here sixteen polycyclic aromatic hydrocarbons (PAHs) and six phthalate esters (PAEs) were detected by gas chromatography-mass spectrometry (GC-MS).To determine treatment effect of SFW system, concentrations of targeted compounds in the influent were compared with those in the effluent. Results showed typical compounds of industrial wastewater were naphthalene (NAP), phenanthrene (PHE), dibutyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and their concentrations were ranged from 122.6 ng.L-1 to 760.6 ng.L-1. However typical compounds of domestic sewage were NAP, anthracene (ANT), PHE, DBP, diethyl phthalate (DEP), DEHP, and their concentrations were ranged from 280 ng.L-1 to 7998.1 ng.L-1. Typical compounds of effluent were NAP, PHE, DBP, DEHP, and their concentrations changed between 4.2 ng.L-1 and 1430.74 ng.L-1. The removal rate of those compounds were 10% ~ 99%, and nineteen compounds removal rate reached above 70%.Therefore, it can be concluded that SFW system had a strong effect on the removal of these compounds.
System and method for measuring permeability of materials
Hallman, Jr., Russell Louis; Renner, Michael John
2013-07-09
Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Determination of YAV-8B Reaction Control System bleed flow usage
NASA Technical Reports Server (NTRS)
Borchers, Paul F.; Moralez, Ernesto, III; Merrick, Vernon K.; Stortz, Michael W.; Eames, David J. H.
1992-01-01
Using a calibrated Rolls-Royce Pegasus engine, total Reaction Control System (RCS) bleed flow rates have been measured on a YAV-8B Harrier during typical short takeoff, transition, hover and vertical landing maneuvers. Using existing aircraft instrumentation and pressure taps located in the RCS ducts, bleed flow rates at each RCS valve were also measured directly during flight and ground tests. These data were compared with the calibrated engine data and with the RCS part of a YAV-8B mathematical model used in piloted simulation at NASA Ames Research Center. Areas of disagreement were small, being confined to the estimation of closed RCS valve leakages and the modeling of the RCS butterfly valve pressure losses.
Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i
Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.
1998-01-01
From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (<1??), tubes within inflated sheet flows were completely filled, typically 1-2 m high, and several tens of meters wide. Tubes develop as a flow's crust grows on the top, bottom, and sides of the tubes, restricting the size of the fluid core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.
Spontaneous oscillations in microfluidic networks
NASA Astrophysics Data System (ADS)
Case, Daniel; Angilella, Jean-Regis; Motter, Adilson
2017-11-01
Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.
NASA Astrophysics Data System (ADS)
Brown, Richard J.; Blake, S.; Bondre, N. R.; Phadnis, V. M.; Self, S.
2011-08-01
Newly identified ´áā lava flows outcrop intermittently over an area of ~110 km2 in the western Deccan Volcanic Province (DVP), India. They occur in the upper Thakurvadi Formation in the region south of Sangamner. The flows, one of which is compound, are 15-25 m thick, and exhibit well-developed basal and flow-top breccias. The lavas have microcrystalline groundmasses and are porphyritic or glomerocrystic and contain phenocrysts of olivine, clinopyroxene or plagioclase feldspar. They are chemically similar to compound pāhoehoe flows at a similar stratigraphic horizon along the Western Ghats. Petrographic and geochemical differences between ´áā flows at widely spaced outcrops at the same stratigraphic horizon suggest that they are the product of several eruptions, potentially from different sources. Their presence in the DVP could suggest relative proximity to vents. This discovery is significant because ´áā lavas are generally scarce in large continental flood basalt provinces, which typically consist of numerous inflated compound pāhoehoe lobes and sheet lobes. Their scarcity is intriguing, and may relate to either their occurrence only in poorly preserved or exposed proximal areas or to the flat plateau-like topography of flood basalt provinces that may inhibit channelization and ´áā formation, or both. In this context, the ´áā flow fields described here are inferred to be the products of eruptions that produced unusually high-effusion-rate lavas compared to typical flood basalt eruptions. Whether these phases were transitional to lower intensity, sustained eruptions that fed extensive low effusion rate pāhoehoe flow fields remains unclear.
Multimodality imaging and mathematical modelling of drug delivery to glioblastomas.
Boujelben, Ahmed; Watson, Michael; McDougall, Steven; Yen, Yi-Fen; Gerstner, Elizabeth R; Catana, Ciprian; Deisboeck, Thomas; Batchelor, Tracy T; Boas, David; Rosen, Bruce; Kalpathy-Cramer, Jayashree; Chaplain, Mark A J
2016-10-06
Patients diagnosed with glioblastoma, an aggressive brain tumour, have a poor prognosis, with a median overall survival of less than 15 months. Vasculature within these tumours is typically abnormal, with increased tortuosity, dilation and disorganization, and they typically exhibit a disrupted blood-brain barrier (BBB). Although it has been hypothesized that the 'normalization' of the vasculature resulting from anti-angiogenic therapies could improve drug delivery through improved blood flow, there is also evidence that suggests that the restoration of BBB integrity might limit the delivery of therapeutic agents and hence their effectiveness. In this paper, we apply mathematical models of blood flow, vascular permeability and diffusion within the tumour microenvironment to investigate the effect of these competing factors on drug delivery. Preliminary results from the modelling indicate that all three physiological parameters investigated-flow rate, vessel permeability and tissue diffusion coefficient-interact nonlinearly to produce the observed average drug concentration in the microenvironment.
Dorr, Paul M; Nemechek, Megan S; Scheidt, Alan B; Baynes, Ronald E; Gebreyes, Wondwossen A; Almond, Glen W
2009-08-01
To evaluate variation of drinking-water flow rates in swine finishing barns and the relationship between drinker flow rate and plasma tetracycline concentrations in pigs housed in different pens. Cross-sectional (phase 1) and cohort (phase 2) studies. 13 swine finishing farms (100 barns with 7,122 drinkers) in phase 1 and 100 finishing-stage pigs on 2 finishing farms (1 barn/farm) in phase 2. In phase 1, farms were evaluated for water-flow variation, taking into account the following variables: position of drinkers within the barn, type of drinker (swing or mounted), pig medication status, existence of designated sick pen, and existence of leakage from the waterline. In phase 2, blood samples were collected from 50 pigs/barn (40 healthy and 10 sick pigs) in 2 farms at 0, 4, 8, 24, 48, and 72 hours after initiation of water-administered tetracycline HCl (estimated dosage, 22 mg/kg [10 mg/lb]). Plasma tetracycline concentrations were measured via ultraperformance liquid chromatography. Mean farm drinker flow rates ranged from 1.44 to 2.77 L/min. Significant differences in flow rates existed according to drinker type and whether tetracycline was included in the water. Mean drinker flow rates and plasma tetracycline concentrations were significantly different between the 2 farms but were not different between healthy and sick pigs. The plasma tetracycline concentrations were typically < 0.3 microg/mL. Many factors affected drinker flow rates and therefore the amount of medication pigs might have received. Medication of pigs with tetracycline through water as performed in this study had questionable therapeutic value.
NASA Astrophysics Data System (ADS)
Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing
2018-06-01
In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.
Fast blood flow monitoring in deep tissues with real-time software correlators
Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.
2016-01-01
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588
Experimental validation of a self-calibrating cryogenic mass flowmeter
NASA Astrophysics Data System (ADS)
Janzen, A.; Boersch, M.; Burger, B.; Drache, J.; Ebersoldt, A.; Erni, P.; Feldbusch, F.; Oertig, D.; Grohmann, S.
2017-12-01
The Karlsruhe Institute of Technology (KIT) and the WEKA AG jointly develop a commercial flowmeter for application in helium cryostats. The flowmeter functions according to a new thermal measurement principle that eliminates all systematic uncertainties and enables self-calibration during real operation. Ideally, the resulting uncertainty of the measured flow rate is only dependent on signal noises, which are typically very small with regard to the measured value. Under real operating conditions, cryoplant-dependent flow rate fluctuations induce an additional uncertainty, which follows from the sensitivity of the method. This paper presents experimental results with helium at temperatures between 30 and 70 K and flow rates in the range of 4 to 12 g/s. The experiments were carried out in a control cryostat of the 2 kW helium refrigerator of the TOSKA test facility at KIT. Inside the cryostat, the new flowmeter was installed in series with a Venturi tube that was used for reference measurements. The measurement results demonstrate the self-calibration capability during real cryoplant operation. The influences of temperature and flow rate fluctuations on the self-calibration uncertainty are discussed.
Effect of flow rate and lead/copper pipe sequence on lead release from service lines.
Cartier, Clément; Arnold, Roger B; Triantafyllidou, Simoni; Prévost, Michèle; Edwards, Marc
2012-09-01
A pilot experiment examined lead leaching from four representative configurations of service lines including: (1) 100% lead (Pb), (2) 100% copper (Cu), (3) 50% Pb upstream of 50% Cu, and (4) 50% Pb-downstream of 50% Cu using a range of flow rates. The cumulative mass of lead release indicated that a typical partial replacement configuration (50% lead downstream of copper) did not provide a net reduction in lead when compared to 100% lead pipe (85 mg for 50% Pb-downstream versus 83 mg for 100%-Pb) due to galvanic and deposition corrosion. The partially replaced service line configuration also had a much greater likelihood of producing water with "spikes" of lead particulates at higher flow rates, while tending to produce lower levels of lead at very low flow rates. After the first 214 days the galvanic current between copper and lead was only reduced by 34%, proving that galvanic impacts can be highly persistent even in water with optimized corrosion control by dosing of zinc orthophosphate. Finally, this experiment raises concern about the low flow rates used during some prior home sampling events, which may underestimate exposure to lead during normal water use, especially when galvanic Pb:Cu connections are present. Copyright © 2012 Elsevier Ltd. All rights reserved.
Passive flow regulators for drug delivery and hydrocephalus treatment
NASA Astrophysics Data System (ADS)
Chappel, E.; Dumont-Fillon, D.; Mefti, S.
2014-03-01
Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.
40 CFR 1065.307 - Linearity verification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... meter at different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... For linearity verification for gravimetric PM balances, use external calibration weights that that...
40 CFR 1065.307 - Linearity verification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... meter at different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or... nitrogen. Select gas divisions that you typically use. Use a selected gas division as the measured value.... For linearity verification for gravimetric PM balances, use external calibration weights that that...
NASA Technical Reports Server (NTRS)
Pittman, C. M.; Howser, L. M.
1972-01-01
The differential equations governing the transient response of the char layer of an ablating axisymmetric body, internal pyrolysis gas flow effects being considered, have been derived. These equations have been expanded into finite difference form and programed for numerical solution on a digital computer. Numerical results compare favorably with simplified exact solutions. The complete numerical analysis was used to obtain solutions for two representative body shapes subjected to a typical entry heating environment. Pronounced effects of the lateral flow of pyrolysis gases on the mass flow field within the char layer and the associated surface and pyrolysis interface recession rates are shown.
Smith, Simeon L.; Titze, Ingo R.
2016-01-01
Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001
Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W
2016-10-01
Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.
Monitoring probe for groundwater flow
Looney, Brian B.; Ballard, Sanford
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C
2006-03-15
The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.
Battista, L; Sciuto, S A; Scorza, A
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.
NASA Astrophysics Data System (ADS)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.
Improved Nitrogen Removal Effect In Continuous Flow A2/O Process Using Typical Extra Carbon Source
NASA Astrophysics Data System (ADS)
Wu, Haiyan; Gao, Junyan; Yang, Dianhai; Zhou, Qi; Cai, Bijing
2010-11-01
In order to provide a basis for optimal selection of carbon source, three typical external carbon sources (i.e. methanol, sodium acetate and leachate) were applied to examine nitrogen removal efficiency of continuous flow A2/O system with the influent from the effluent of grit chamber in the second Kunming wastewater treatment plant. The best dosage was determined, and the specific nitrogen removal rate and carbon consumption rate were calculated with regard to individual external carbon source in A2/O system. Economy and technology analysis was also conducted to select the suitable carbon source with a low operation cost. Experimental results showed that the external typical carbon source caused a remarkable enhancement of system nitrate degradation ability. In comparison with the blank test, the average TN and NH3-N removal efficiency of system with different dosing quantities of external carbon source was improved by 15.2% and 34.2%, respectively. The optimal dosage of methanol, sodium acetate and leachate was respectively up to 30 mg/L, 40 mg/L and 100 mg COD/L in terms of a high nitrogen degradation effect. The highest removal efficiency of COD, TN and NH3-N reached respectively 92.3%, 73.9% and 100% with methanol with a dosage of 30 mg/L. The kinetic analysis and calculation revealed that the greatest denitrification rate was 0.0107 mg TN/mg MLVSSṡd with sodium acetate of 60 mg/L. As to carbon consumption rate, however, the highest value occurred in the blank test with a rate of 0.1955 mg COD/mg MLVSSṡd. Also, further economic analysis proved leachate to be pragmatic external carbon source whose cost was far cheaper than methanol.
Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.
Abdula, Daner; Lerud, Ryan; Rananavare, Shankar
2017-11-07
Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz
NASA Technical Reports Server (NTRS)
Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.
2011-01-01
A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
NASA Astrophysics Data System (ADS)
Jang, Jaesung; Wereley, Steven T.
2007-02-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.
A laboratory examination of the three-equation model of ice-ocean interactions
NASA Astrophysics Data System (ADS)
McConnochie, Craig; Kerr, Ross
2017-11-01
Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. As such, models rely upon parameterizations that have not been properly validated by data. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the `three equation model'. We find a significant disagreement in the dependence of the melt rate on the fluid velocity. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering a theoretical analysis of the boundary layer next to a melting ice face we suggest a resolution to this disagreement. We show that the three-equation model assumes that the thickness of the diffusive sublayer is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. ARC DP120102772.
40 CFR 1065.307 - Linearity verification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... different flow rates. Use a gravimetric reference measurement (such as a scale, balance, or mass comparator... the gas-division system to divide the span gas with purified air or nitrogen. Select gas divisions... PM balance, m max refers to the typical mass of a PM filter. (ii) For linearity verification of...
The Oxidation of CVD Silicon Carbide in Carbon Dioxide
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Nguyen, QuynchGiao N.
1997-01-01
Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.
NASA Astrophysics Data System (ADS)
Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu
2018-02-01
In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.
Fluid-dynamic design optimization of hydraulic proportional directional valves
NASA Astrophysics Data System (ADS)
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
Anna, D H; Zellers, E T; Sulewski, R
1998-08-01
ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Heinemann, Klaus; Boyd, Iain D.; Haas, Brian L.
1993-01-01
In this grant period, the focus has been on the effects of thermo-chemical nonequilibrium in low-density gases, and on interactions between such gases and solid surfaces. Such conditions apply to hypersonic flows of re-entry vehicles, and to the expansion plumes of small rockets. Due to the nonequilibrium nature of these flows, a particle approach has been adopted. The method continues to undergo refinement and application to typical flows of interest. A number of studies have been performed for flows in thermo-chemical nonequilibrium. The effects of vibrational nonequilibrium on the rate of dissociation were studied for diatomic nitrogen. It was found that a new model reproduced the nonequilibrium behavior observed experimentally.
NASA Astrophysics Data System (ADS)
Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.
2016-10-01
The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.
New results in gravity dependent two-phase flow regime mapping
NASA Astrophysics Data System (ADS)
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206
Transition in Pulsatile Pipe Flow
NASA Astrophysics Data System (ADS)
Vlachos, Pavlos; Brindise, Melissa
2016-11-01
Transition has been observed to occur in the aorta, and stenotic vessels, where pulsatile flow exists. However, few studies have investigated the characteristics and effects of transition in oscillating or pulsatile flow and none have utilized a physiological waveform. In this work, we explore transition in pipe flow using three pulsatile waveforms which all maintain the same mean and maximum flow rates and range to zero flow, as is physiologically typical. Velocity fields were obtained using planar particle image velocimetry for each pulsatile waveform at six mean Reynolds numbers ranging between 500 and 4000. Turbulent statistics including turbulent kinetic energy (TKE) and Reynolds stresses were computed. Quadrant analysis was used to identify characteristics of the production and dissipation of turbulence. Coherent structures were identified using the λci method. We developed a wavelet-Hilbert time-frequency analysis method to identify high frequency structures and compared these to the coherent structures. The results of this study demonstrate that the different pulsatile waveforms induce different levels of TKE and high frequency structures, suggesting that the rates of acceleration and deceleration influence the onset and development of transition.
Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma
NASA Astrophysics Data System (ADS)
Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.
2017-02-01
Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10-200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.
The flow field investigations of no load conditions in axial flow fixed-blade turbine
NASA Astrophysics Data System (ADS)
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
NASA Astrophysics Data System (ADS)
Guest, John E.; Stofan, Ellen R.
2005-04-01
Slab-crusted flows on Mount Etna, Sicily are defined here as those whose crust has ridden on the flow core without significant disruption or deformation and have a high length to width ratio. They typically erupt from ephemeral boccas as late-stage products on dominantly aa flow fields, such as that of the 1983 eruption on Mount Etna. Slab-crusted flows tend to inflate mainly as they approach and after they reach the maximum length of slab-crust formation, the flow interior acting as a preferential pathway for injecting lava under a stable crust. Coalescence of vesicles under successive crusts causes separation between core and crust giving a new cooling surface within the flow, on which ropy surfaces (and occasionally aa textures) of limited areal extent may develop. Slab-crusted flows tend to form at ephemeral boccas together with other surface textural types including toes, ropy pahoehoe sheets and aa flows. This suggests that, on Etna, slab-crusted flows form from lava of the same rheological properties as both aa and pahoehoe textured flows. They do not represent a transition between aa and pahoehoe as argued for toothpaste flows in Hawaii. We conclude that slab-crusted flows on Etna owe their morphology to a relatively high critical ratio of effusion rate to advance rate, related to vent cross-sectional area and the slope over which the flow forms.
Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers.
Shankaran, H; Neelamegham, S
2001-01-01
We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies. PMID:11371440
Assessment of Reduced-Kinetics Mechanisms for Combustion of Jet Fuel in CFD Applications
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Kundu, Krihna P.; Yungster, Shaye J.
2014-01-01
A computational effort was undertaken to analyze the details of fluid flow in Lean-Direct Injection (LDI) combustors for next-generation LDI design. The National Combustor Code (NCC) was used to perform reacting flow computations on single-element LDI injector configurations. The feasibility of using a reduced chemical-kinetics approach, which optimizes the reaction rates and species to model the emissions characteristics typical of lean-burning gas-turbine combustors, was assessed. The assessments were performed with Reynolds- Averaged Navier-Stokes (RANS) and Time-Filtered Navier Stokes (TFNS) time-integration, with a Lagrangian spray model with the NCC code. The NCC predictions for EINOx and combustor exit temperature were compared with experimental data for two different single-element LDI injector configurations, with 60deg and 45deg axially swept swirler vanes. The effects of turbulence-chemistry interaction on the predicted flow in a typical LDI combustor were studied with detailed comparisons of NCC TFNS with experimental data.
Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing
2005-08-01
Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.
Ion-Acoustic Wave-Particle Energy Flow Rates
NASA Astrophysics Data System (ADS)
Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred
2017-10-01
We present an experimental characterization of the energy flow rates for ion acoustic waves. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon, inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 9 eV and B 660 kG. A 4 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the zeroth and first order ion velocity distribution functions (IVDF) is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Using these IVDFs along with Vlasov's equation the different energy rates are measured for different values of ion velocity and separation from the antenna. We would like to acknowledge DOE DE-FG02-99ER54543 for their financial support throughout this research.
Stability of exact solutions describing two-layer flows with evaporation at the interface
NASA Astrophysics Data System (ADS)
Bekezhanova, V. B.; Goncharova, O. N.
2016-12-01
A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
Electrogenerative oxidation of lower alcohols to useful products
Meshbesher, Thomas M.
1987-01-01
In the disclosed electrogenerative process for converting alcohols such as ethanol to aldehydes such as acetaldehyde, the alcohol starting material is an aqueous solution containing more than the azeotropic amount of water. Good first-pass conversions (<40% and more typically <50%) are obtained at operating cell voltages in the range of about 80 to about 350 millivolts at ordinary temperatures and pressures by using very high flow rates of alcohol to the exposed anode surface (i.e. the "gas" side of an anode whose other surface is in contact with the electrolyte). High molar flow rates of vaporized aqueous alcohol also help to keep formation of undesired byproducts at a low level.
Hydrodynamic study of an internal airlift reactor for microalgae culture.
Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis
2012-01-01
Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture.
USDA-ARS?s Scientific Manuscript database
Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...
Pump efficiency in solar-energy systems
NASA Technical Reports Server (NTRS)
1978-01-01
Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.
Microbial alignment in flow changes ocean light climate.
Marcos; Seymour, Justin R; Luhar, Mitul; Durham, William M; Mitchell, James G; Macke, Andreas; Stocker, Roman
2011-03-08
The growth of microbial cultures in the laboratory often is assessed informally with a quick flick of the wrist: dense suspensions of microorganisms produce translucent "swirls" when agitated. Here, we rationalize the mechanism behind this phenomenon and show that the same process may affect the propagation of light through the upper ocean. Analogous to the shaken test tubes, the ocean can be characterized by intense fluid motion and abundant microorganisms. We demonstrate that the swirl patterns arise when elongated microorganisms align preferentially in the direction of fluid flow and alter light scattering. Using a combination of experiments and mathematical modeling, we find that this phenomenon can be recurrent under typical marine conditions. Moderate shear rates (0.1 s(-1)) can increase optical backscattering of natural microbial assemblages by more than 20%, and even small shear rates (0.001 s(-1)) can increase backscattering from blooms of large phytoplankton by more than 30%. These results imply that fluid flow, currently neglected in models of marine optics, may exert an important control on light propagation, influencing rates of global carbon fixation and how we estimate these rates via remote sensing.
Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching
NASA Technical Reports Server (NTRS)
Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald
1997-01-01
For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the inevitably present convective (Rayleigh-Benard) instabilities, associated with hot-under-cold (flame-under-fresh-reactant) stratification of fluid in a gravitational field, have time to grow to finite amplitude during transit of the burner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-15
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.« less
Label-free in-flow detection of single DNA molecules using glass nanopipettes.
Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B
2014-01-07
With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.
Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu
2003-01-01
Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.
NASA Astrophysics Data System (ADS)
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-01
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-17
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
Correlated motion in the bulk of dense granular flows.
Staron, Lydie
2008-05-01
Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .
A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector
NASA Astrophysics Data System (ADS)
Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.
2016-09-01
In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.
High-repetition-rate short-pulse gas discharge.
Tulip, J; Seguin, H; Mace, P N
1979-09-01
A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.
Economic considerations in the use of inhaled anesthetic agents.
Golembiewski, Julie
2010-04-15
To describe the components of and factors contributing to the costs of inhaled anesthesia, basis for quantifying and comparing these costs, and practical strategies for performing pharmacoeconomic analyses and reducing the costs of inhaled anesthetic agents. Inhaled anesthesia can be costly, and some of the variable costs, including fresh gas flow rates and vaporizer settings, are potential targets for cost savings. The use of a low fresh gas flow rate maximizes rebreathing of exhaled anesthetic gas and is less costly than a high flow rate, but it provides less control of the level of anesthesia. The minimum alveolar concentration (MAC) hour is a measure that can be used to compare the cost of inhaled anesthetic agents at various fresh gas flow rates. Anesthesia records provide a sense of patterns of inhaled anesthetic agent use, but the amount of detail can be limited. Cost savings have resulted from efforts to reduce the direct costs of inhaled anesthetic agents, but reductions in indirect costs through shortened times to patient recovery and discharge following the judicious use of these agents are more difficult to demonstrate. The patient case mix, fresh gas flow rates typically used during inhaled anesthesia, availability and location of vaporizers, and anesthesia care provider preferences and practices should be taken into consideration in pharmacoeconomic evaluations and recommendations for controlling the costs of inhaled anesthesia. Understanding factors that contribute to the costs of inhaled anesthesia and considering those factors in pharmacoeconomic analyses and recommendations for use of these agents can result in cost savings.
Chai, L K; Mohd-Tahir, N; Hansen, S; Hansen, H C B
2009-01-01
Preventive treatment with insecticides at high dosing rates before planting of a new crop- soil drenching- is a common practice in some tropical intensive cropping systems, which may increase the risk of leaching, soil functioning, and pesticide uptake in the next crop. The degradation rates and migration of acephate and chlorpyrifos and their primary metabolites, methamidophos and 3,5,6-trichloropyridinol (TCP), have been studied in clayey red yellow podzolic (Typic Paleudults), alluvial (Typic Udorthents), and red yellow podzolic soils (Typic Kandiudults) of Malaysia under field conditions. The initial concentrations of acephate and chlorpyrifos in topsoils were found to strongly depend on solar radiation. Both pesticides and their metabolites were detected in subsoils at the deepest sampling depth monitored (50 cm) and with maximum concentrations up to 2.3 mg kg(-1) at soil depths of 10 to 20 cm. Extraordinary high dissipation rates for weakly sorbed acephate was in part attributed to preferential flow which was activated due to the high moisture content of the soils, high precipitation and the presence of conducting macropores running from below the A horizons to at least 1 m, as seen from a dye tracer experiment. Transport of chlorpyrifos and TCP which both sorb strongly to soil organic matter was attributed to macropore transport with soil particles. The half-lives for acephate in topsoils were 0.4 to 2.6 d while substantially longer half-lives of between 12.6 and 19.8 d were observed for chlorpyrifos. The transport through preferential flow of strongly sorbed pesticides is of concern in the tropics.
A Computer Model for Analyzing Volatile Removal Assembly
NASA Technical Reports Server (NTRS)
Guo, Boyun
2010-01-01
A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.
Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks
Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.
2014-01-01
Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145
Using Laboratory Experiments to Improve Ice-Ocean Parameterizations
NASA Astrophysics Data System (ADS)
McConnochie, C. D.; Kerr, R. C.
2017-12-01
Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. Instead, models rely upon parameterizations that have not been sufficiently validated by observations. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the three-equation model. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering an analysis of the boundary layer that forms next to a melting ice face, we suggest a resolution to this disagreement. We show that the three-equation model makes the implicit assumption that the thickness of the diffusive sublayer next to the ice is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. By incorporating such a minimum velocity into the three-equation model, predictions made by numerical simulations could be easily improved.
Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data
NASA Technical Reports Server (NTRS)
Sree, David
1992-01-01
Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.
In microfluidico: Recreating in vivo hemodynamics using miniaturized devices
Zhu, Shu; Herbig, Bradley A.; Li, Ruizhi; Colace, Thomas V.; Muthard, Ryan W.; Neeves, Keith B.; Diamond, Scott L.
2016-01-01
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s−1 to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics. PMID:26600269
Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio
2016-01-21
In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical experimental errors, but further investigation is needed to assess the effect of these differences. Flow oscillations larger than 10-20% are not typically induced in CHS; therefore, the results presented in this work indicate that a linear hemodynamic model, combined with a method to elicit controlled hemodynamic oscillations (as done for CHS), is appropriate for the quantitative assessment of cerebral microcirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proportional mechanical ventilation through PWM driven on/off solenoid valve.
Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G
2010-01-01
Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.
Reynolds number scaling of straining motions in turbulence
NASA Astrophysics Data System (ADS)
Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.
2017-11-01
Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.
A simple model for heterogeneous nucleation of isotactic polypropylene
NASA Astrophysics Data System (ADS)
Howard, Michael; Milner, Scott
2013-03-01
Flow-induced crystallization (FIC) is of interest because of its relevance to processes such as injection molding. It has been suggested that flow increases the homogeneous nucleation rate by reducing the melt state entropy. However, commercial polypropylene (iPP) exhibits quiescent nucleation rates that are much too high to be consistent with homogeneous nucleation in carefully purified samples. This suggests that heterogeneous nucleation is dominant for typical samples used in FIC experiments. We describe a simple model for heterogeneous nucleation of iPP, in terms of a cylindrical nucleus on a flat surface with the critical size and barrier set by the contact angle. Analysis of quiescent crystallization data with this model gives reasonable values for the contact angle. We have also employed atomistic simulations of iPP crystals to determine surface energies with vacuum and with Hamaker-matched substrates, and find values consistent with the contact angles inferred from heterogeneous nucleation experiments. In future work, these results combined with calculations from melt rheology of entropy reduction due to flow can be used to estimate the heterogeneous nucleation barrier reduction due to flow, and hence the increase in nucleation rate due to FIC for commecial iPP.
NASA Astrophysics Data System (ADS)
Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu
2017-08-01
In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.
Exhumation rates of high pressure metamorphic rocks in subduction channels: The effect of Rheology
NASA Astrophysics Data System (ADS)
Gerya, T. V.; Stöckhert, B.
2002-04-01
Exhumation of high-pressure metamorphic rocks can take place with typical plate velocities of cm/year. This is consistent with a model of forced flow in a subduction channel. The (micro)structural record of exhumed metamorphic rocks indicates that stresses are generally too low to drive deformation of the bulk material by dislocation creep, according to a power-law rheology. Instead deformation appears to be localized in low-strength shear zones, and is dominated by dissolution precipitation creep or fluid assisted granular flow, implying a Newtonian rheology. 1D modeling shows that the effective rheology of the material in the subduction channel has a significant influence on the rate of exhumation. When the subduction flux either equals or exceeds the return flux, the maximum exhumation rate for Newtonian behavior of the material is at least twice as high (~1/3 of the subduction burial rate) compared to that for power-law creep (~1/6 of the subduction burial rate).
NASA Technical Reports Server (NTRS)
Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.
1986-01-01
A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.
NASA Astrophysics Data System (ADS)
Cui, Y.
2015-12-01
In order to study surface water and groundwater exchange and renewal capacity of groundwater system of Qaidam Basin, inland northwest China, TOUGH2 (Transport of Unsaturated Groundwater and Heat 2) simulation software was used to establish a two-dimensional variable saturated numerical model of a typical cross-section from the Nuomuhong river to the Amunike mountain. According to previous results, evaporation is a function of soil saturation given as an upper boundary to characterize water transport near surface through iterative calculation. Parameters were calibrated with 52 groundwater observation data by trial-and-error method. Particle tracking and isotopic dating results were combined to simulate groundwater age and calibrate models. The results showed that the typical profile of Qaidam basin can be divided into three lumped groundwater flow systems: (1) The circulation depth (CD) of local groundwater flow system is about 200m, where discharge in this lumped system accounts for 74.4% of the total amount of discharge (TAD), of which spring overflow constitutes large fraction. Groundwater age is generally less than 500 years and renewal rate is 1.13% a-1; (2) The CD of middle flow system can reach 800m, where it takes up 18.5% of TAD, evaporation and river overflows is the main outlet of discharge. Groundwater age is generally less than 10ka and renewal rate is 0.094% a-1; (3) The CD of regional flow system is from 1000 to 1500m. It accounts for 7.1% of TAD, of which evaporation is the largest component. Groundwater age is from 10ka to 50ka and renewal rate of which is 0.0074% a-1. Sulingguole river is the discharge area of regional groundwater system, the age of which is greater than 30ka. The method used here can obtain the renewal capacity of groundwater system and better reflect regional circulation characteristics, which have certain significance for the urgent study of regional groundwater circulation and flow systems in areas with limited available data.
Thermal transpiration in zeolites: A mechanism for motionless gas pumps
NASA Astrophysics Data System (ADS)
Gupta, Naveen K.; Gianchandani, Yogesh B.
2008-11-01
We explore the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump. The nanopores in clinoptilolite enable the required free-molecular flow, even at atmospheric pressure. The pump utilizes a foil heater located between zeolite disks in a plastic package. A 2.3mm thick zeolite disk generates a typical gas flow rate of 6.6×10-3 cc/min-cm2 with an input power of <300mW/cm2. The performance is constrained by imperfections in clinoptilolite, which provide estimated leakage apertures of 10.2-13.5μm/cm2 of flow cross section. The transient response of the pump is studied to quantify nonidealities.
The Hawaiian Volcano Observatory's current approach to forecasting lava flow hazards (Invited)
NASA Astrophysics Data System (ADS)
Kauahikaua, J. P.
2013-12-01
Hawaiian Volcanoes are best known for their frequent basaltic eruptions, which typically start with fast-moving channelized `a`a flows fed by high eruptions rates. If the flows continue, they generally transition into pahoehoe flows, fed by lower eruption rates, after a few days to weeks. Kilauea Volcano's ongoing eruption illustrates this--since 1986, effusion at Kilauea has mostly produced pahoehoe. The current state of lava flow simulation is quite advanced, but the simplicity of the models mean that they are most appropriately used during the first, most vigorous, days to weeks of an eruption - during the effusion of `a`a flows. Colleagues at INGV in Catania have shown decisively that MAGFLOW simulations utilizing satellite-derived eruption rates can be effective at estimating hazards during the initial periods of an eruption crisis. However, the algorithms do not simulate the complexity of pahoehoe flows. Forecasts of lava flow hazards are the most common form of volcanic hazard assessments made in Hawai`i. Communications with emergency managers over the last decade have relied on simple steepest-descent line maps, coupled with empirical lava flow advance rate information, to portray the imminence of lava flow hazard to nearby communities. Lavasheds, calculated as watersheds, are used as a broader context for the future flow paths and to advise on the utility of diversion efforts, should they be contemplated. The key is to communicate the uncertainty of any approach used to formulate a forecast and, if the forecast uses simple tools, these communications can be fairly straightforward. The calculation of steepest-descent paths and lavasheds relies on the accuracy of the digital elevation model (DEM) used, so the choice of DEM is critical. In Hawai`i, the best choice is not the most recent but is a 1980s-vintage 10-m DEM--more recent LIDAR and satellite radar DEM are referenced to the ellipsoid and include vegetation effects. On low-slope terrain, steepest descent lines calculated on a geoid-based DEM may differ significantly from those calculated on an ellipsoid-based DEM. Good estimates of lava flow advance rates can be obtained from empirical compilations of historical advance rates of Hawaiian lava flows. In this way, rates appropriate for observed flow types (`a`a or pahoehoe, channelized or not) can be applied. Eruption rate is arguably the most important factor, while slope is also significant for low eruption rates. Eruption rate, however, remains the most difficult parameter to estimate during an active eruption. The simplicity of the HVO approach is its major benefit. How much better can lava-flow advance be forecast for all types of lava flows? Will the improvements outweigh the increased uncertainty propagated through the simulation calculations? HVO continues to improve and evaluate its lava flow forecasting tools to provide better hazard assessments to emergency personnel.
Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.
Geng, Tao; Zhan, Yihong; Lu, Chang
2012-01-01
Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.
Peterson, Donald W.; Tilling, Robert I.
1980-01-01
Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.
Normal Gravity Testing of a Microchannel Phase Separator for In Situ Resource Utilization
NASA Technical Reports Server (NTRS)
TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; McQuillen, John (Technical Monitor)
2001-01-01
A microchannel separator, with 2.7 millimeters as the smallest dimension, was tested, and a pore throat structure captured and removed liquid from a gas-liquid stream. The microchannel device was tested over a of gas and liquid flow rates ranging from 0.0005 up to 0. 14 volume fraction of liquid. Four liquids were tested with air. The biggest factor affecting the throughput is the capacity of liquid flow through the pore throat, which is dictated by permeability, liquid viscosity, flow area, pore throat thickness, and pressure difference across the pore throat. Typically, complete separation of gas and liquid fractions was lost when the liquid flow rate reached about 40 to 60% of the pore throat capacity. However, this could occur over a range of 10 to 90% utilization of pore throat capacity. Breakthrough occurs in the microchannel phase separator at conditions similar to the annular to plug flow transition of two-phase microgravity pipe flow implying that operating in the proper flow regime is crucial. Analysis indicates that the Bond number did not affect performance, supporting the premise that hydrodynamic, interfacial, and capillary forces are more important than gravity. However, the relative importance of gravity is better discerned through testing under reduced gravity conditions.
An efective fractal-tree closure model for simulating blood flow in large arterial networks
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em.
2014-01-01
The aim of the present work is to address the closure problem for hemodynamic simulations by developing a exible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure out flow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii 500 μm – 10 μm). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to out flow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for out flow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 minutes. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels after attaching the fractal trees), returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures. We present a novel methodology to overcome substantial cut-off radius sensitivities PMID:25510364
NASA Astrophysics Data System (ADS)
Malama, Bwalya; Kuhlman, Kristopher L.; Barrash, Warren
2008-07-01
SummaryA semi-analytical solution is presented for the problem of flow in a system consisting of unconfined and confined aquifers, separated by an aquitard. The unconfined aquifer is pumped continuously at a constant rate from a well of infinitesimal radius that partially penetrates its saturated thickness. The solution is termed semi-analytical because the exact solution obtained in double Laplace-Hankel transform space is inverted numerically. The solution presented here is more general than similar solutions obtained for confined aquifer flow as we do not adopt the assumption of unidirectional flow in the confined aquifer (typically assumed to be horizontal) and the aquitard (typically assumed to be vertical). Model predicted results show significant departure from the solution that does not take into account the effect of leakage even for cases where aquitard hydraulic conductivities are two orders of magnitude smaller than those of the aquifers. The results show low sensitivity to changes in radial hydraulic conductivities for aquitards that are two or more orders of magnitude smaller than those of the aquifers, in conformity to findings of earlier workers that radial flow in aquitards may be neglected under such conditions. Hence, for cases were aquitard hydraulic conductivities are two or more orders of magnitude smaller than aquifer conductivities, the simpler models that restrict flow to the radial direction in aquifers and to the vertical direction in aquitards may be sufficient. However, the model developed here can be used to model flow in aquifer-aquitard systems where radial flow is significant in aquitards.
Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes
NASA Astrophysics Data System (ADS)
Szalmas, L.
2014-12-01
Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
Damage Propagation Modeling for Aircraft Engine Prognostics
NASA Technical Reports Server (NTRS)
Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil
2008-01-01
This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.
Paleointensity results for 0 and 3 ka from Hawaiian lava flows: a new approach to sampling
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.
2011-12-01
Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3360 BP), including the [historical] 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Results from the 1950 and 2010 glasses accurately record the expected geomagnetic field strength. We will present results of a comprehensive data set of Hawaiian paleointensity focused on about the last 3 ka.
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan
2017-04-01
Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.
Nucleation of protein crystals under the influence of solution shear flow.
Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G
2006-09-01
Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.
2002-01-01
63 Tiltmeter Network...71 34. Map showing locations of tiltmeters used to monitor the magnitude and direction of ground tilting associated with direct well injection...during cycle 2 at Lancaster, Antelope Valley, California .............................. 72 35. Photograph showing typical tiltmeter installation for
NASA Astrophysics Data System (ADS)
Sun, Jie; Li, Zhipeng; Sun, Jian
2015-12-01
Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.
NASA Astrophysics Data System (ADS)
Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.
2015-12-01
Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows. We use a pre-eruption DEM of Sinabung provided by the Badan Informasi Geospasial (Indonesia) to identify over 20 older lava flows at Sinabung. The active flow appears to represent a typical eruption of Sinabung, with its length and area similar to previous flows.
In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test
NASA Astrophysics Data System (ADS)
Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.
2011-12-01
For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with a double packer dilution system. We performed a pumping test in the adjacent well. Different flow rates were estimated from the dilution curves for the different pumping rates in the adjacent well, showing a linear response. The obtained fracture flow rates provide important information on the flow geometry and connectivity between the two wells. Future joint interpretation of flow measurements, hydraulic head and tracer test data is expected to provide detailed insights in the flow and transport processes at the Ploemeur site. Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., Rauert, W.: Point dilution methods of investigating ground water flow by means of radioisotopes, Water. Resour. Res., 4(1), 1968. Novakowski, K., Bickerton, G., Lapcevic, P., Voralek, J., Ross, N.: Measurements of groundwater velocity in discrete rock fractures: Jour. Cont. Hydr., 82(1-2), 2006. Brouyere, S., Batlle-Aguilar, J., Goderniaux, P., Dassargues, A.: A new tracer technique for monitoring groundwater fluxes: The Finite Volume Point Dilution Method, Jour. Cont. Hydr., 95(3-4), 121-140, 2008.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, J. M.
2003-07-16
In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referredmore » to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.« less
Two-Phase flow instrumentation for nuclear accidents simulation
NASA Astrophysics Data System (ADS)
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
Efficiency of Silver Impregnated Porous Pot (SIPP) Filters for Production of Clean Potable Water
Mahlangu, Oranso; Mamba, Bhekie; Momba, Maggie
2012-01-01
The Silver Impregnated Porous Pot (SIPP) filter is a product of the Tshwane University of Technology manufactured for the production of safe drinking water at a household (home) level. Two SIPP devices were assessed for the reduction efficiency of chemical contaminants such as calcium, magnesium, iron, arsenic, fluorides and total organic carbon (TOC) as well as microbial contaminants from environmental samples. Turbidity change after filtration, together with correlation between chlorophyll a in the feed water and SIPP’s flow rates were also evaluated in order to give comprehensive guidelines on the quality of intake water that could be filtered through the filter without causing a significant decrease in flow rate. The SIPP filters removed contaminants from environmental water samples as follows: 70% to 92% iron, 36% to 68% calcium, 42% to 82% arsenic, 39% to 98% magnesium, 39% to 95% fluorides, 12% to 35% TOC and 45% to 82% turbidity. The SIPP filters had initial flow rates of 1 L/h to 4 L/h but the flow rates dropped to 0.5 L/h with an increase in cumulative volume of intake water as the filter was used. Turbidity and chemical contaminant reduction rates decreased with accumulating volume of intake water but the filter removed Ca, Fe and Mg to levels that comply with the South African National Standards (SANS 241) and the World Health Organization (WHO) guideline values. However, the SIPP filters cannot produce enough water to satisfy the daily drinking water requirement of a typical household (25 L/p·d). Chlorophyll a was associated with a decrease in the flow rate through the SIPP filters. PMID:23202668
Rate dependent fractionation of sulfur isotopes in through-flowing systems
NASA Astrophysics Data System (ADS)
Giannetta, M.; Sanford, R. A.; Druhan, J. L.
2017-12-01
The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient limited environments.
Efficiency of Silver Impregnated Porous Pot (SIPP) filters for production of clean potable water.
Mahlangu, Oranso; Mamba, Bhekie; Momba, Maggie
2012-08-24
The Silver Impregnated Porous Pot (SIPP) filter is a product of the Tshwane University of Technology manufactured for the production of safe drinking water at a household (home) level. Two SIPP devices were assessed for the reduction efficiency of chemical contaminants such as calcium, magnesium, iron, arsenic, fluorides and total organic carbon (TOC) as well as microbial contaminants from environmental samples. Turbidity change after filtration, together with correlation between chlorophyll a in the feed water and SIPP's flow rates were also evaluated in order to give comprehensive guidelines on the quality of intake water that could be filtered through the filter without causing a significant decrease in flow rate. The SIPP filters removed contaminants from environmental water samples as follows: 70% to 92% iron, 36% to 68% calcium, 42% to 82% arsenic, 39% to 98% magnesium, 39% to 95% fluorides, 12% to 35% TOC and 45% to 82% turbidity. The SIPP filters had initial flow rates of 1 L/h to 4 L/h but the flow rates dropped to 0.5 L/h with an increase in cumulative volume of intake water as the filter was used. Turbidity and chemical contaminant reduction rates decreased with accumulating volume of intake water but the filter removed Ca, Fe and Mg to levels that comply with the South African National Standards (SANS 241) and the World Health Organization (WHO) guideline values. However, the SIPP filters cannot produce enough water to satisfy the daily drinking water requirement of a typical household (25 L/p·d). Chlorophyll a was associated with a decrease in the flow rate through the SIPP filters.
NASA Astrophysics Data System (ADS)
Cao, Xinwu; Liang, En-Wei; Yuan, Ye-Fei
2014-07-01
It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number \\mathscr{P}_m=η /ν ˜ 1. The maximal BZ jet power can be ~1053-1054 erg s-1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.
MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.
2010-01-01
NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.
Lim, Jong-Min; Bertrand, Nicolas; Valencia, Pedro M.; Rhee, Minsoung; Langer, Robert; Jon, Sangyong; Farokhzad, Omid C.; Karnik, Rohit
2014-01-01
Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13–150 nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20 nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies. PMID:23969105
Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā
NASA Astrophysics Data System (ADS)
Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.
Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization.
Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system.
Liu, Xiaodong; Wu, Shijing; Zhang, Dejin; Shen, Jinyou; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun
2018-05-01
Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor (SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the majority of pyridine was removed, while denitrification occurred at early stage of the cycle when oxygen consumption was aggravated. The effect of several key operation parameters, i.e., air flow rate, influent NH 4 + -N concentration, influent pH and pyridine concentration, on nitritation, pyridine degradation and total nitrogen (TN) removal, was systematically investigated. The results indicated that high air flow rate had a positive effect on both pyridine degradation and nitritation but a negative impact of overhigh air flow rate. With the increase of NH 4 + dosage, both nitritation and TN removal could be severely inhibited. Slightly alkaline condition, i.e., pH7.0-8.0, was beneficial for both pyridine degradation and nitritation. High pyridine dosage often resulted in the delay of both pyridine degradation and nitritation. Besides, extracellular polymeric substances production was affected by air flow rate, NH 4 + dosage, pyridine dosage and pH. In addition, high-throughput sequencing analysis demonstrated that Bdellovibrio and Paracoccus were the dominant species in the aerobic granulation system. Coexistence of pyridine degrader, nitrification related species, denitrification related species, polymeric substances producer and self-aggregation related species was also confirmed by high-throughput sequencing. Copyright © 2017. Published by Elsevier B.V.
The Sound Generated by Mid-Ocean Ridge Black Smoker Hydrothermal Vents
Crone, Timothy J.; Wilcock, William S.D.; Barclay, Andrew H.; Parsons, Jeffrey D.
2006-01-01
Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues. PMID:17205137
NASA Technical Reports Server (NTRS)
Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.
2012-01-01
Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the lobe margins. Using DGPS-derived DTMs of the topography before and after pahoehoe lobe emplacement, we observed that the lava typically concentrated within existing topographic lows, with the lobe reaching a maximum thickness of approx 1.2 m above the lowest points of the initial topography and above reverse-facing slopes. Lobe margins were typically controlled by high-standing topography, with the zone directly adjacent to the final flow margin having average relief that is approx 4 cm higher than the lava-inundated region. This suggests that irregularities approx 25% of the height of the smallest breakout elements (i.e., toes) can exert a strong control on the paths of low-discharge pahoehoe lobes, with stagnated toes forming confining margins that allow interior portions of flow to topographically invert the landscape by inflation.
Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng
2009-05-01
The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.
Rheological characterization of modified foodstuffs with food grade thickening agents
NASA Astrophysics Data System (ADS)
Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS
2017-01-01
This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.
2003-01-01
The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.
MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.
Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M
2011-02-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.
NASA Astrophysics Data System (ADS)
Shahriari, Babak; Vafaei, Reza; Mohammad Sharifi, Ehsan; Farmanesh, Khosro
2018-03-01
The hot deformation behavior of a high strength low carbon steel was investigated using hot compression test at the temperature range of 850-1100 °C and under strain rates varying from 0.001 to 1 s-1. It was found that the flow curves of the steel were typical of dynamic recrystallization at the temperature of 950 °C and above; at tested strain rates lower than 1 s-1. A very good correlation between the flow stress and Zener-Hollomon parameter was obtained using a hyperbolic sine function. The activation energy of deformation was found to be around 390 kJ mol-1. The kinetics of dynamic recrystallization of the steel was studied by comparing it with a hypothetical dynamic recovery curve, and the dynamically fraction recrystallized was modeled by the Kolmogorov-Johnson-Mehl-Avrami relation. The Avrami exponent was approximately constant around 1.8, which suggested that the type of nucleation was one of site saturation on grain boundaries and edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.
This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housingmore » cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.« less
Impact Dynamics: Theory and Experiment
1980-10-01
in the HEMP QHydrodynamic, Elastic, Magneto & Plastic ) code, employ a quadrilateral grid and may be solved in plane coordinates or with cylindrical...material constitution, strain rate. localized plastic flow, and failure are manifest at various stages of the impact process. Typically, loading and...STRENGTH; DENSITY /A DOMINANT’ PARAMETER 104 - 500-1000ms-1 VISCOUS-MATERIAL POWDER GUNS STRENGTH STILL SIGNIFICANT 10 2 50- 500 ms- PRIMARILY PLASTIC
The fluid-dynamics of bubble-bearing magmas
NASA Astrophysics Data System (ADS)
colucci, simone; papale, paolo; montagna, chiara
2014-05-01
The rheological properties of a fluid establish how the shear stress, τ, is related to the shear strain-rate, γ . The simplest constitutive equation is represented by the linear relationship τ = μγ, where the viscosity parameter, μ, is independent of strain-rate and the velocity profile is parabolic. Fluids with such a flow curve are called Newtonian. Many fluids, though, exhibit non-Newtonian rheology, typically arising in magmas from the presence of a dispersed phase of either crystals or bubbles. In this case it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extend the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D including the Non-Newtonian rheology of the bubble-bearing magma. We describe such rheology in terms of an apparent viscosity, η, which is the ratio of stress to strain-rate (η = τ/γ) and varies with strain-rate across the conduit radius. In this way we calculate a depth-dependent Non-newtonian velocity profile across the radius along with shear strain-rate and viscosity distributions. The evolution of the velocity profile can now be studied in order to investigate processes which occur close to the conduit wall, such as fragmentation. Moreover, the model can quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure).
A Note on Kinetic Energy, Dissipation and Enstrophy
NASA Technical Reports Server (NTRS)
Wu, Jie-Zhi; Zhou, Ye; Fan, Meng
1998-01-01
The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.
NASA Astrophysics Data System (ADS)
Howell, Robert R.; Radebaugh, Jani; M. C Lopes, Rosaly; Kerber, Laura; Solomonidou, Anezina; Watkins, Bryn
2017-10-01
Using remote sensing of planetary volcanism on objects such as Io to determine eruption conditions is challenging because the emitting region is typically not resolved and because exposed lava cools so quickly. A model of the cooling rate and eruption mechanism is typically used to predict the amount of surface area at different temperatures, then that areal distribution is convolved with a Planck blackbody emission curve, and the predicted spectra is compared with observation. Often the broad nature of the Planck curve makes interpretation non-unique. However different eruption mechanisms (for example cooling fire fountain droplets vs. cooling flows) have very different area vs. temperature distributions which can often be characterized by simple power laws. Furthermore different composition magmas have significantly different upper limit cutoff temperatures. In order to test these models in August 2016 and May 2017 we obtained spatially resolved observations of spreading Kilauea pahoehoe flows and fire fountains using a three-wavelength near-infrared prototype camera system. We have measured the area vs. temperature distribution for the flows and find that over a relatively broad temperature range the distribution does follow a power law matching the theoretical predictions. As one approaches the solidus temperature the observed area drops below the simple model predictions by an amount that seems to vary inversely with the vigor of the spreading rate. At these highest temperatures the simple models are probably inadequate. It appears necessary to model the visco-elastic stretching of the very thin crust which covers even the most recently formed surfaces. That deviation between observations and the simple models may be particularly important when using such remote sensing observations to determine magma eruption temperatures.
Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto
2018-02-08
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal concentrations in transport systems
Jensen, Kaare H.; Kim, Wonjung; Holbrook, N. Michele; Bush, John W. M.
2013-01-01
Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration copt in these systems. The model further suggests that the impedance at the optimum concentration μopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ0 as μopt∼2αμ0, where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow. PMID:23594815
Numerical modeling of a vortex stabilized arcjet
NASA Astrophysics Data System (ADS)
Pawlas, Gary Edward
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Satellite station-keeping is an example of a maneuvering application requiring the low thrust, high specific impulse of an arcjet. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity and swirling flow. Arcjet geometries are large area ratio converging-diverging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown a swirl or circumferential velocity component stabilizes a constricted arc. The equations are described which governs the flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is used in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and redial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split and Gauss-Seidel line relaxation is used to accelerate convergence. 'Converging diverging' nozzles with exit-to-throat area ratios up to 100:1 and annual nozzles were examined. Comparisons with experimental data and previous numerical results were in excellent agreement. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures.
Mobile flow cytometer for mHealth.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
An electrode polarization impedance based flow sensor for low water flow measurement
NASA Astrophysics Data System (ADS)
Yan, Tinghu; Sabic, Darko
2013-06-01
This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h-1 and remained sensitive at a flow rate of 25.18 l h-1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering.
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling
NASA Astrophysics Data System (ADS)
Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.
2012-04-01
Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our comprehensive data set of Hawaii paleointensity on about the last 4 ka.
NASA Astrophysics Data System (ADS)
Battista, L.; Scorza, A.; Botta, F.; Sciuto, S. A.
2016-02-01
Published standards for the performance evaluation of pulmonary ventilators are mainly directed to manufacturers rather than to end-users and often considered inadequate or not comprehensive. In order to contribute to overcome the problems above, a novel measurement system was proposed and tested with waveforms of mechanical ventilation by means of experimental trials carried out with infant ventilators typically used in neonatal intensive care units: the main quantities of mechanical ventilation in newborns are monitored, i.e. air flow rate, differential pressure and volume from infant ventilator are measured by means of two novel fiber-optic sensors (OFSs) developed and characterized by the authors, while temperature and relative humidity of air mass are obtained by two commercial transducers. The proposed fiber-optic sensors (flow sensor Q-OFS, pressure sensor P-OFS) showed measurement ranges of air flow and pressure typically encountered in neonatal mechanical ventilation, i.e. the air flow rate Q ranged from 3 l min-1 to 18 l min-1 (inspiratory) and from -3 l min-1 to -18 l min-1 (expiratory), the differential pressure ΔP ranged from -15 cmH2O to 15 cmH2O. In each experimental trial carried out with different settings of the ventilator, outputs of the OFSs are compared with data from two reference sensors (reference flow sensor RF, reference pressure sensor RP) and results are found consistent: flow rate Q showed a maximum error between Q-OFS and RF up to 13 percent, with an output ratio Q RF/Q OFS of not more than 1.06 ± 0.09 (least square estimation, 95 percent confidence level, R 2 between 0.9822 and 0.9931). On the other hand the maximum error between P-OFS and RP on differential pressure ΔP was lower than 10 percent, with an output ratio ΔP RP/ΔP OFS between 0.977 ± 0.022 and 1.0 ± 0.8 (least square estimation, 95 percent confidence level, R 2 between 0.9864 and 0.9876). Despite the possible improvements, results were encouraging and suggested the proposed measurement system can be considered suitable for performances evaluation of neonatal ventilators and useful for both end-users and manufacturers.
Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment
McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.
2012-01-01
Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.
NASA Astrophysics Data System (ADS)
Bouchet, F.; Laurie, J.; Zaboronski, O.
2012-12-01
We describe transitions between attractors with either one, two or more zonal jets in models of turbulent atmosphere dynamics. Those transitions are extremely rare, and occur over times scales of centuries or millennia. They are extremely hard to observe in direct numerical simulations, because they require on one hand an extremely good resolution in order to simulate accurately the turbulence and on the other hand simulations performed over an extremely long time. Those conditions are usually not met together in any realistic models. However many examples of transitions between turbulent attractors in geophysical flows are known to exist (paths of the Kuroshio, Earth's magnetic field reversal, atmospheric flows, and so on). Their study through numerical computations is inaccessible using conventional means. We present an alternative approach, based on instanton theory and large deviations. Instanton theory provides a way to compute (both numerically and theoretically) extremely rare transitions between turbulent attractors. This tool, developed in field theory, and justified in some cases through the large deviation theory in mathematics, can be applied to models of turbulent atmosphere dynamics. It provides both new theoretical insights and new type of numerical algorithms. Those algorithms can predict transition histories and transition rates using numerical simulations run over only hundreds of typical model dynamical time, which is several order of magnitude lower than the typical transition time. We illustrate the power of those tools in the framework of quasi-geostrophic models. We show regimes where two or more attractors coexist. Those attractors corresponds to turbulent flows dominated by either one or more zonal jets similar to midlatitude atmosphere jets. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable ones. Moreover, we also determine the transition rates, which are several of magnitude larger than a typical time determined from the jet structure. We discuss the medium-term generalization of those results to models with more complexity, like primitive equations or GCMs.
Summary of groundwater-recharge estimates for Pennsylvania
Stuart O. Reese,; Risser, Dennis W.
2010-01-01
Groundwater recharge is water that infiltrates through the subsurface to the zone of saturation beneath the water table. Because recharge is a difficult parameter to quantify, it is typically estimated from measurements of other parameters like streamflow and precipitation. This report provides a general overview of processes affecting recharge in Pennsylvania and presents estimates of recharge rates from studies at various scales.The most common method for estimating recharge in Pennsylvania has been to estimate base flow from measurements of streamflow and assume that base flow (expressed in inches over the basin) approximates recharge. Statewide estimates of mean annual groundwater recharge were developed by relating base flow to basin characteristics of HUC10 watersheds (a fifth-level classification that uses 10 digits to define unique hydrologic units) using a regression equation. The regression analysis indicated that mean annual precipitation, average daily maximum temperature, percent of sand in soil, percent of carbonate rock in the watershed, and average stream-channel slope were significant factors in the explaining the variability of groundwater recharge across the Commonwealth.Several maps are included in this report to illustrate the principal factors affecting recharge and provide additional information about the spatial distribution of recharge in Pennsylvania. The maps portray the patterns of precipitation, temperature, prevailing winds across Pennsylvania’s varied physiography; illustrate the error associated with recharge estimates; and show the spatial variability of recharge as a percent of precipitation. National, statewide, regional, and local values of recharge, based on numerous studies, are compiled to allow comparison of estimates from various sources. Together these plates provide a synopsis of groundwater-recharge estimations and factors in Pennsylvania.Areas that receive the most recharge are typically those that get the most rainfall, have favorable surface conditions for infiltration, and are less susceptible to the influences of high temperatures, and thus, evapotranspiration. Areas that have less recharge in Pennsylvania are typically those with less precipitation, less permeable soils, and higher temperatures that are conducive to greater rates of evapotranspiration.
Thermal response test data of five quadratic cross section precast pile heat exchangers.
Alberdi-Pagola, Maria
2018-06-01
This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.
Intrinsically safe moisture blending system
Hallman Jr., Russell L.; Vanatta, Paul D.
2012-09-11
A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.
Modeling of Inhomogeneous Compressible Turbulence Using a Two-Scale Statistical Theory
NASA Technical Reports Server (NTRS)
Hamba, Fujihiro
1996-01-01
Turbulence modeling plays an important role in the study of high-speed flows in engineering and aerodynamic problems; they include flows in supersonic combustion engines and over hypersonic transport aircraft. The enhancement of the kinetic energy dissipation by the dilatational terms is one of the typical compressibility effects. Zeman (1990) and Sarkar et al. (1991) proposed that the dilatation dissipation is proportional to the solenoidal dissipation and is a function of the turbulent Mach number. Sarkar (1992) also modeled the pressure-dilatation correlation using the turbulent Mach number. Zeman (1991) related the correlation to the rate of change of the pressure variance.
Summary on the depressurization from supercritical pressure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, M.; Chen, Y.; Ammirable, L.
When a fluid discharges from a high pressure and temperature system, a 'choking' or critical condition occurs, and the flow rate becomes independent of the downstream pressure. During a postulated loss of coolant accident (LOCA) of a water reactor the break flow will be subject to this condition. An accurate estimation of the critical flow rate is important for the evaluation of the reactor safety, because this flow rate controls the loss of coolant inventory and energy from the system, and thus has a significant effect on the accident consequences[1]. In the design of safety systems for a super criticalmore » water reactor (SCWR), postulated LOCA transients are particularly important due to the lower coolant inventory compared to a typical PWR for the same power output. This lower coolant inventory would result in a faster transient response of the SCWR, and hence accurate prediction of the critical discharge is mandatory. Under potential two-phase conditions critical flow is dominated by the vapor content or quality of the vapor, which is closely related with the onset of vaporization and the interfacial interaction between phases [2]. This presents a major challenge for the estimation of the flow rate due to the lack of the knowledge of those processes, especially under the conditions of interest for the SCWR. According to the limited data of supercritical fluids, the critical flows at conditions above the pseudo-critical point seem to be fairly stable and consistent with the subcritical homogeneous equilibrium model (HEM) model predictions, while having a lower flow rate than those in the two-phase region. Thus the major difficulty in the prediction of the depressurization flow rates remains in the region where two phases co-exist at the top of the vapor dome. In this region, the flow rate is strongly affected by the nozzle geometry and tends to be unstable. Various models for this region have been developed with different assumptions, e.g. the HEM and Moody model [3], and the Henry-Fauske non-equilibrium model [4], and are currently used in subcritical pressure reactor safety design[5]. It appears that some of these models could be reasonably extended to above the thermodynamic pseudo-critical point. The more stable and lower discharge flow rates observed in conditions above the pseudo-critical point suggests that even though SCWR's have a smaller coolant inventory, the safety implications of a LOCA and the subsequent depressurization may not be as severe as expected, this however needs to be confirmed by a rigorous evaluation of the particular event and further evaluation of the critical flow rate. This paper will summarize activities on critical flow models, experimental data and numerical modeling during blowdown from supercritical pressure conditions under the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on 'Heat Transfer Behaviour and Thermo-hydraulics Code testing for SCWRs'. (authors)« less
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Upward swimming of a sperm cell in shear flow.
Omori, Toshihiro; Ishikawa, Takuji
2016-03-01
Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.
Streakline flow visualization of discrete hole film cooling with holes inclined 30 deg to surface
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.; Lane, J. M.
1976-01-01
Film injection from three rows of discrete holes angled 30 deg to the surface in line with mainstream flow and spaced 5 diameters apart in a staggered array was visualized by using helium bubbles as tracer particles. Both the main stream and the film injectant were ambient air. Detailed streaklines showing the turbulent motion of the film mixing with the main stream were obtained by photographing small, neutrally buoyant helium-filled soap bubbles which followed the flow field. The ratio of boundary layer thickness to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. The results showed the behavior of the film and its interaction with the main stream for a range of blowing rates and two initial boundary layer thicknesses.
Prediction of space shuttle fluctuating pressure environments, including rocket plume effects
NASA Technical Reports Server (NTRS)
Plotkin, K. J.; Robertson, J. E.
1973-01-01
Preliminary estimates of space shuttle fluctuating pressure environments have been made based on prediction techniques developed by Wyle Laboratories. Particular emphasis has been given to the transonic speed regime during launch of a parallel-burn space shuttle configuration. A baseline configuration consisting of a lightweight orbiter and monolithic SRB, together with a typical flight trajectory, have been used as models for the predictions. Critical fluctuating pressure environments are predicted at transonic Mach numbers. Comparisons between predicted environments and wind tunnel test results, in general, showed good agreement. Predicted one-third octave band spectra for the above environments were generally one of three types: (1) attached turbulent boundary layer spectra (typically high frequencies); (2) homogeneous separated flow and shock-free interference flow spectra (typically intermediate frequencies); and (3) shock-oscillation and shock-induced interference flow spectra (typically low frequencies). Predictions of plume induced separated flow environments were made. Only the SRB plumes are important, with fluctuating levels comparable to compression-corner induced separated flow shock oscillation.
Description of a flow optimized oxygenator with integrated pulsatile pump.
Borchardt, Ralf; Schlanstein, Peter; Arens, Jutta; Graefe, Roland; Schreiber, Fabian; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2010-11-01
Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rostami, B.; Morini, G. L.
2017-11-01
In this paper the generation of non-Newtonian droplets of aqueous Xanthan gum solution (0.3, 0.5 wt%) in a silicone oil flow through a micro cross-junction is experimentally analyzed. A commercial glass cross-junction microchip with hydrophobic walls has been employed to study the droplet generation mechanism. The cross-section of the channel is stadium-shaped, the width of the junction varies between 195 to 390 μm while the height of the channel is fixed at 190 μm. Tween 20 (2 wt%), as a surfactant, has been added to the dispersed phase to avoid the coalescence of the droplets and to enhance the droplet formation. With the aim to follow the time evolution of the droplets inside the channel a specific experimental setup has been implemented. The post-processing of the recorded images has been carried out by means of an “in-house” Matlab code. The typical flow patterns obtained by imposing different flow rates at the inlets of the cross-junction have been observed. The effect of the continuous and dispersed phase flow rates as well as the concentration of Xanthan gum solution on the main droplet characteristics has been studied in detail.
NASA Astrophysics Data System (ADS)
Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.
2009-09-01
Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.
Recent results and persisting problems in modeling flow induced coalescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortelný, I., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz; Jza, J., E-mail: fortelny@imc.cas.cz, E-mail: juza@imc.cas.cz
2014-05-15
The contribution summarizes recent results of description of the flow induced coalescence in immiscible polymer blends and addresses problems that call for which solving. The theory of coalescence based on the switch between equations for matrix drainage between spherical or deformed droplets provides a good agreement with more complicated modeling and available experimental data for probability, P{sub c}, that the collision of droplets will be followed by their fusion. A new equation for description of the matrix drainage between deformed droplets, applicable to the whole range of viscosity ratios, p, of the droplets and matrixes, is proposed. The theory facilitatesmore » to consider the effect of the matrix elasticity on coalescence. P{sub c} decreases with the matrix relaxation time but this decrease is not pronounced for relaxation times typical of most commercial polymers. Modeling of the flow induced coalescence in concentrated systems is needed for prediction of the dependence of coalescence rate on volume fraction of droplets. The effect of the droplet anisometry on P{sub c} should be studied for better understanding the coalescence in flow field with high and moderate deformation rates. A reliable description of coalescence in mixing and processing devices requires proper modeling of complex flow fields.« less
NASA Astrophysics Data System (ADS)
Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav
2016-03-01
Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.
A new lumped-parameter model for flow in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.
A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less
User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Buning, Pieter G.
1996-01-01
In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.
Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach
NASA Astrophysics Data System (ADS)
Hugo, Bruce Robert
Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.
Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination
Rolka, David; Poghossian, Arshak; Schöning, Michael J.
2004-01-01
A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.
Critical care nursing: Embedded complex systems.
Trinier, Ruth; Liske, Lori; Nenadovic, Vera
2016-01-01
Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.
Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow
NASA Technical Reports Server (NTRS)
Akyuzlu, Kazim M.; Coote, David
2013-01-01
A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.
Wind accretion and formation of disk structures in symbiotic binary systems
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.
2015-05-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas; Si, Yun
2014-11-01
The typical granular motion in circular tumblers is considered steady-state since there are no features to disrupt the top surface layer dimension. In polygon tumblers, however, the flowing layer is perpetually changing length, which creates unsteady conditions with corresponding change in the flow behavior. Prior work showed the minimization of free surface energy is independent of tumbler dimension, particle size, and rotation rate. This subsequent research reports on experiments where dimensional symmetry of the free surface in triangular and square tumblers with varying fill fractions do not necessarily produce the symmetric flow behaviors. Results of the quasi-2D tumbler experiment show that other dimensions aligned with gravity and the instantaneous free surface influence the phase when extrema for angle of repose and other flow features occur. The conclusion is that 50% fill fraction may produce geometric symmetry of dimensions, but the symmetry point of flow likely occurs at a lower fill fraction.
Combustion of textile residues in a packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.
2007-08-15
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
Gas separation and bubble behavior at a woven screen
NASA Astrophysics Data System (ADS)
Conrath, Michael; Dreyer, Michael E.
Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.
Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano
NASA Astrophysics Data System (ADS)
Patrick, Matthew; Orr, Tim; Fisher, Gary; Trusdell, Frank; Kauahikaua, James
2017-02-01
Pāhoehoe lava flows are a major component of Hawaiian eruptive activity, and an important part of basaltic volcanism worldwide. In recent years, pāhoehoe lava has destroyed homes and threatened parts of Hawai'i with inundation and disruption. In this study, we use oblique helicopter-borne thermal images to create high spatial resolution ( 1 m) georeferenced thermal maps of the active pāhoehoe flow on Kīlauea Volcano's East Rift Zone. Thermal maps were created on 27 days during 2014-2016 in the course of operational monitoring, encompassing a phase of activity that threatened the town of Pāhoa. Our results illustrate and reinforce how pāhoehoe flows are multicomponent systems consisting of the vent, master tube, distributary tubes, and surface breakouts. The thermal maps accurately depict the distribution and character of pāhoehoe breakouts through time, and also delineate the subsurface lava tube. Surface breakouts were distributed widely across the pāhoehoe flow, with significant portions concurrently active well upslope of the flow front, often concentrated in clusters of activity that evolved through time. Gradual changes to surface breakout distribution and migration relate to intrinsic processes in the flow, including the slow evolution of the distributary tube system. Abrupt disruptions to this system, and the creation of new breakouts (and associated hazards), were triggered by extrinsic forcing-namely fluctuations in lava supply rate at the vent which disrupted the master lava tube. Although the total area of a pāhoehoe flow has been suggested to relate to effusion rate, our results show that changes in the proportion of expansion vs. overplating can complicate this relationship. By modifying existing techniques, we estimate time-averaged discharge rates for the flow during 2014-2016 generally in the range of 1-2 m3 s- 1 (mean: 1.3 ± 0.4 m3 s- 1)-less than half of Kīlauea's typical eruption rate on the East Rift Zone and suggestive of a weak eruptive regime during 2014-2016. We caution, however, that this discharge rate approach requires further independent corroboration. The thermal maps provide the first synoptic characterization of pāhoehoe flow activity at high spatial resolution, essential both for operational hazard assessment and fundamental understanding of pāhoehoe behavior.
NASA Astrophysics Data System (ADS)
Hernandez Moreira, R. R.; Huffman, B.; Vautin, D.; Viparelli, E.
2015-12-01
The interactions between flow hydrodynamics and bedform characteristics at the transition between upper plane-bed bedload transport regime and sheet-flow have not yet been thoroughly described and still remain poorly understood. The present study focuses on the experimental study of this transition in open channel mode. The experiments were performed in the hydraulic laboratory of the Department of Civil and Environmental Engineering of the University of South Carolina in a sediment-feed flume, 9-m long by 19-cm wide with uniform material sediment of geometric mean grain size diameter of 1.11 mm. Sediment feed rates ranged between 0.5 kg/min and 20 kg/min with two different flow rates of 20 l/s and 30 l/s. We recorded periodic measurements of water surface and bed elevation to estimate the global flow parameters, e.g. mean flow velocity and bed shear stress, and to determine when the flow and the sediment transport reached conditions of mobile bed equilibrium. We define mobile bed equilibrium as a condition in which the mean bed elevation does not change in time. At equilibrium, measurements of bed elevation fluctuations were taken with an ultrasonic transducer system at six discrete locations. In the runs with low and medium feed rates, i.e. smaller than ~12 kg/min, the long wavelength and small amplitude bedforms typical of the upper plane bed regime, which were observed in previous experimental work, formed and migrated downstream. In particular, with increasing feed rates, the amplitude of the bedforms decreases and their geometry changes, from well-defined triangular shapes, to rounded shapes to flat bed with very small amplitude, long wavelength undulations. The decrease in amplitude corresponds to a decrease in form drag and an increase in the thickness of the bedload layer. The ultrasonic measurements are analyzed to statistically describe the observed transition in terms of probability distribution functions of the bed elevation fluctuations.
High rate science data handling on Space Station Freedom
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Masline, Richard C.
1990-01-01
A study by NASA's User Information System Working Group for Space Station Freedom (SSF) has determined that the proposed onboard Data Management System, as initially configured, will be incapable of handling the data-generation rates typical of numerous scientific sensor payloads; many of these generate data at rates in excess of 10 Mbps, and there are at least four cases of rates in excess of 300 Mbps. The SSF Working Group has accordingly suggested an alternative conceptual architecture based on technology expected to achieve space-qualified status by 1995. The architecture encompasses recorders with rapid data-ingest capabilities and massive storage capabilities, optical delay lines allowing the recording of only the phenomena of interest, and data flow-compressing image processors.
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
NASA Astrophysics Data System (ADS)
Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas
2018-03-01
Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.
Concrete volute pumps: technology review and improvement
NASA Astrophysics Data System (ADS)
Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.
2012-11-01
When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.
Active cooling of microvascular composites for battery packaging
NASA Astrophysics Data System (ADS)
Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.
2017-10-01
Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.
Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce
2018-05-01
Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less
NASA Astrophysics Data System (ADS)
Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu
2014-11-01
Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.
Turbulence in Internal Flows. Turbomachinery and Other Applications
1977-05-01
are things we shall look for in our sheared cellular flow. One of the things that is fairly typical for nearly homogeneous turbulent shear flow, and... One of the things that we hoped to learn from our sheared cellular flow computations was information about this particular attribute. Slide No. 5...typical temperature difference was on the order of a couple of degrees Centigrade, the lower side being the hotter. We did in fact do some checks: things
An effective fractal-tree closure model for simulating blood flow in large arterial networks.
Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em
2015-06-01
The aim of the present work is to address the closure problem for hemodynamic simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. To achieve this goal, we model blood flow in the sub-pixel vasculature by using a non-linear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime (radii [Formula: see text]). We introduce a variable vessel length-to-radius ratio for small arteries and arterioles, while also addressing non-Newtonian blood rheology and arterial wall viscoelasticity effects in small arteries and arterioles. This methodology aims to overcome substantial cut-off radius sensitivities, typically arising in structured tree and linearized impedance models. The proposed model is not sensitive to outflow boundary conditions applied at the end points of the fractal network, and thus does not require calibration of resistance/capacitance parameters typically required for outflow conditions. The proposed model convergences to a periodic state in two cardiac cycles even when started from zero-flow initial conditions. The resulting fractal-trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have scaled up a Discontinuous Galerkin solver that utilizes the MPI/OpenMP hybrid programming paradigm to thousands of computer cores, and can simulate blood flow in networks of millions of arterial segments at the rate of one cycle per 5 min. The proposed model has been extensively tested on a large and complex cranial network with 50 parent, patient-specific arteries and 21 outlets to which fractal trees where attached, resulting to a network of up to 4,392,484 vessels in total, and a detailed network of the arm with 276 parent arteries and 103 outlets (a total of 702,188 vessels after attaching the fractal trees), returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures. We present a novel methodology to overcome substantial cut-off radius sensitivities.
Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test
NASA Astrophysics Data System (ADS)
Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad
2009-12-01
The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.
Microfluidic rheology of active particle suspensions: Kinetic theory.
Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David
2016-07-01
We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.
NASA Astrophysics Data System (ADS)
Christ, John A.; Goltz, Mark N.
2004-01-01
Pump-and-treat systems that are installed to contain contaminated groundwater migration typically involve placement of extraction wells perpendicular to the regional groundwater flow direction at the down gradient edge of a contaminant plume. These wells capture contaminated water for above ground treatment and disposal, thereby preventing further migration of contaminated water down gradient. In this work, examining two-, three-, and four-well systems, we compare well configurations that are parallel and perpendicular to the regional groundwater flow direction. We show that orienting extraction wells co-linearly, parallel to regional flow, results in (1) a larger area of aquifer influenced by the wells at a given total well flow rate, (2) a center and ultimate capture zone width equal to the perpendicular configuration, and (3) more flexibility with regard to minimizing drawdown. Although not suited for some scenarios, we found orienting extraction wells parallel to regional flow along a plume centerline, when compared to a perpendicular configuration, reduces drawdown by up to 7% and minimizes the fraction of uncontaminated water captured.
Impingement of Droplets in 90 deg Elbows with Potential Flow
NASA Technical Reports Server (NTRS)
Hacker, Paul T.; Brun, Rinaldo J.; Boyd, Bemrose
1953-01-01
Trajectories were determined for droplets in air flowing through 90 deg elbows especially designed for two-dimensional potential motion with low pressure losses. The elbows were established by selecting as walls of each elbow two streamlines of the flow field produced by a complex potential function that establishes a two-dimensional flow around a 90 deg bend. An unlimited number of elbows with slightly different shapes can be established by selecting different pairs of streamlines as walls. The elbows produced by the complex potential function selected are suitable for use in aircraft air-intake ducts. The droplet impingement data derived from the trajectories are presented along with equations in such a manner that the collection efficiency, the area, the rate, and the distribution of droplet impingement can be determined for any elbow defined by any pair of streamlines within a portion of the flow field established by the complex potential function. Coordinates for some typical streamlines of the flow field and velocity components for several points along these streamlines are presented in tabular form.
Hydrological controls on chemical weathering in the typical carbonated river basin, SW China
NASA Astrophysics Data System (ADS)
LI, S. L.; Jin, L.; Zhong, J., Sr.
2016-12-01
The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars (Grant No. 41422303).
NASA Astrophysics Data System (ADS)
Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen
2007-05-01
Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.
Computational experience with a three-dimensional rotary engine combustion model
NASA Astrophysics Data System (ADS)
Raju, M. S.; Willis, E. A.
1990-04-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Computational experience with a three-dimensional rotary engine combustion model
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.
Nicholas, Joseph W; Dieker, Laura E; Sloan, E Dendy; Koh, Carolyn A
2009-03-15
Adhesive forces between cyclopentane (CyC5) hydrates and carbon steel (CS) were measured. These forces were found to be substantially lower than CyC5 hydrate-CyC5 hydrate particle measurements and were also lower than ice-CS measurements. The measured adhesive forces were used in a force balance to predict particle removal from the pipeline wall, assuming no free water was present. The force balance predicted entrained hydrate particles of 3 microns and larger diameter would be removed at typical operating flow rates in offshore oil and gas pipelines. These predictions also suggest that hydrate deposition will not occur in stabilized (cold) flow practices.
NASA Astrophysics Data System (ADS)
Hartmann, J. M.; Veillerot, M.; Prévitali, B.
2017-10-01
We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).
Estimates of Ionospheric Transport and Ion Loss at Mars
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.
2017-10-01
Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.
Ungerman, Andrew J; Heindel, Theodore J
2007-01-01
This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.
Comparative analysis between Payen and Daedalia Planum lava fields
NASA Astrophysics Data System (ADS)
Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo
The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by simple calculation of effusion rates for not inflated lava flows foreseeing for the Daedalia Planum long lava flows improbable huge rates. Consequently lower effusion rates coupled with very efficient spreading process are more likely. Nonetheless the comparison of typology vs frequency and dimension of inflation related features of Payen and Daedalia Planum field suggest that even the effusion rates responsible of inflated flows on Mars are by far higher than the one on the Earth.
[Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].
Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa
2005-07-01
Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.
Spin State Equilibria of Asteroids due to YORP Effects
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Scheeres, Daniel J.; Lipatova, Veronika
2016-05-01
Spins of small asteroids are controlled by the Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) effect. The normal version of this effect has two components: the axial component alters the rotation rate, while the obliquity component alters the obliquity. Under this model the rotation state of an asteroid can be described in a phase plane with the rotation rate along the polar radius and the obliquity as the polar angle. The YORP effect induces a phase flow in this plane, which determines the distribution of asteroid rotation rates and obliquities.We study the properties of this phase flow for several typical cases. Some phase flows have stable attractors, while in others all trajectories go to very small or large rotation rates. In the simplest case of zero thermal inertia approximate analytical solutions to dynamics equations are possible. Including thermal inertia and the Tangential YORP effect makes the possible evolutionary scenarios much more diverse. We study possible evolution paths and classify the most general trends. Also we discuss possible implications for the distribution of asteroid rotation rates and obliquities.A special emphasis is put on asteroid (25143) Itokawa, whose shape model is well determined, but who's measured YORP acceleration does not agree with the predictions of normal YORP. We show that Itokawa's rotational state can be explained by the presence of tangential YORP and that it may be in or close to a stable spin state equilibrium. The implications of such states will be discussed.
Dynamic structure of confined shocks undergoing sudden expansion
NASA Astrophysics Data System (ADS)
Abate, G.; Shyy, W.
2002-01-01
The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.
Reaction front dynamics under shear flow for arbitrary Damköhler numbers
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Méheust, Yves; Le Borgne, Tanguy
2016-04-01
Reaction fronts where two reactive fluids displace one another play an important role in a range of applications, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration, geothermal dipoles and the development of hotspots of reaction in mixing zones. The background flow induces enhanced mixing, and therefore reaction, through interfacial shear. Hence the coupling of fluid flow with chemical reactions is pivotal in understanding and quantifying effective reaction kinetics in reaction fronts. While this problem has been addressed in the limit of fast reactions (e.g. de Simoni 2005, Le Borgne 2014), in natural systems reactions can span a large range of Damköhler numbers since their characteristic reaction times vary over a large range of typical values. Here the coupling of shear flow and reversible chemical reactions is studied for a reaction front with initially separated reactants at arbitrary Damköhler numbers. Approximate analytical expressions for the global production rate are derived based on a reactive lamella approach. We observe three distinct regimes, each of them characterized by different scalings of the global production rate and width of the reactive zone. We describe the dependency of these scalings and the associated characteristic transition times as a function of Damköhler and Péclet numbers. These results are validated against 2D numerical simulations. The study is expected to shed light on the inherently complex cases of reactive mixing with varying reaction rates under the influence of an imposed flow. de Simoni et al. (2005) Water Resour. Res., 41, W11410 Le Borgne et al. (2014) GRL, 41(22), 7898
Morvannou, A; Forquet, N; Michel, S; Troesch, S; Molle, P
2015-01-01
Approximately 3,500 constructed wetlands (CWs) provide raw wastewater treatment in France for small communities (<5,000 people equivalent). Built during the past 30 years, most consist of two vertical flow constructed wetlands (VFCWs) in series (stages). Many configurations exist, with systems associated with horizontal flow filters or waste stabilization ponds, vertical flow with recirculation, partially saturated systems, etc. A database analyzed 10 years earlier on the classical French system summarized the global performances data. This paper provides a similar analysis of performance data from 415 full-scale two-stage VFCWs from an improved database expanded by monitoring data available from Irstea and the French technical department. Trends presented in the first study are confirmed, exhibiting high chemical oxygen demand (COD), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN) removal rates (87%, 93% and 84%, respectively). Typical concentrations at the second-stage outlet are 74 mgCOD L(-1), 17 mgTSS L(-1) and 11 mgTKN L(-1). Pollutant removal performances are summarized in relation to the loads applied at the first treatment stage. While COD and TSS removal rates remain stable over the range of applied loads, the spreading of TKN removal rates increases as applied loads increase.
Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel
NASA Astrophysics Data System (ADS)
Bordás, Róbert; Hagemeier, Thomas; Wunderlich, Bernd; Thévenin, Dominique
2011-08-01
Experiments in wind tunnels concerning meteorological issues are not very frequent in the literature. However, such experiments might be essential, for instance for a careful investigation of droplet-droplet interactions in turbulent flows. This issue is crucial for many configurations, in particular to understand warm rain initiation. It is clearly impossible to completely reproduce cloud turbulence within a wind tunnel due to the enormous length scales involved. Nevertheless, it is not necessary to recover the whole spectrum in order to quantify droplet interactions. It is sufficient for this purpose to account correctly for the relevant properties only. In the present paper, these properties and a methodology for setting those in a two-phase wind tunnel are first described. In particular, droplet size and number density, velocities, turbulent kinetic energy, k, and its dissipation rate, ɛ, are suitably reproduced, as demonstrated by non-intrusive measurement techniques. A complete experimental characterization of the air and droplet properties is freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem. Finally, quantifications of droplet collision rates and comparisons with theoretical predictions are presented, showing that measured collision rates are higher, typically by a factor of 2 to 5. These results demonstrate that model modifications are needed to estimate correctly droplet collision probabilities in turbulent flows
Effect of flow rate and insulin priming on the recovery of insulin from microbore infusion tubing.
Fuloria, M; Friedberg, M A; DuRant, R H; Aschner, J L
1998-12-01
A retrospective medical record review of 13 consecutive, hyperglycemic, extremely low birth weight (ELBW) infants treated with continuous insulin infusions revealed a 14- to 24-hour delay (mean, 19 hours) in blood glucose normalization despite stepwise increases in insulin infusion rates. This in vitro study examined the effects of flow rate and insulin priming on insulin recovery from polyvinyl chloride (PVC) tubing and polyethylene (PE)-lined PVC tubing infused with a standard insulin stock solution. Stock insulin solution (0.2 U/mL) was infused through microbore PVC or PE-lined tubing at flow rates of 0.05 and 0.2 mL/h. To determine if saturation of nonspecific binding sites would alter effluent insulin concentration, we compared insulin recovery from tubing previously flushed with the stock solution and tubing primed with 5 U/mL of insulin for 20 minutes. Effluent samples, which were collected at baseline and at six time points during a 24-hour period, were immediately frozen at -20 degreesC. Insulin concentration was measured by IMx immunoassay. Data were analyzed using general linear modeling with repeated measures. At 0.05 mL/h flow rate, insulin recovery from unprimed PVC tubing at 1, 2, 4, and 8 hours was 17%, 11%, 27%, and 55%, respectively, with 100% recovery at 24 hours. From insulin-primed tubing, insulin recovery was approximately 70% at 1, 2, and 4 hours, and close to 100% at 8 hours. At a faster flow rate of 0.2 mL/h, insulin recovery at 1, 2, 4, and 8 hours was 22%, 38%, 67%, and 75% vs 42%, 85%, 91% and 95% from unprimed and insulin-primed PVC tubing, respectively. Similar results were obtained from unprimed and insulin-primed PE-lined tubing at 0.2 mL/h flow rate. Priming of microbore tubing with 5 U/mL of insulin solution for 20 minutes to block nonspecific binding sites enhances delivery of a standard insulin stock at infusion rates typically used to treat hyperglycemic ELBW infants. We conclude that priming the tubing with a higher concentration of insulin before initiation of standard insulin infusion therapy should accelerate achievement of steady-state insulin delivery and correction of hyperglycemia in ELBW infants.
The use of x-ray radiography for measuring mass distributions of Rocket Injectors
2013-06-01
successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, Daniel J.; Tfaily, Malak M.; Moore, Ronald J.
To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, lowmore » pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.« less
Hydrodynamic clustering of droplets in turbulence
NASA Astrophysics Data System (ADS)
Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman
2017-11-01
Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.
Financing maneuvers. Two opportunities to boost a hospital's working capital.
Ferconio, S; Lane, M R
1991-10-01
Two receivables financing approaches, factoring and asset-backed securitization, offer an initial cash flow boost and a predictable source for continual cash flow. In a typical receivables factoring program, a healthcare organization receives advance funding from its receivables and reduces collection and follow-up efforts required of its staff. In exchange, the organization: Sells receivables at a discount between 5 percent and 10 percent off face value; and Pays a factoring fee of up to 20 percent of sold receivables. In a typical asset-backed securitization: Proceeds generated from the sale of A1-rated commercial paper are used to purchase receivables from a hospital; Accounts receivable eligible for sale are advance-funded at a level between 80 and 90 percent, with the unfunded portion remaining an asset of the hospital; The hospital is responsible for collection and follow-up activities; and An asset manager maintains cash collections to retire commercial paper notes and pay administrative costs. A healthcare organization interested in receivables financing should review each option's structure and benefits to assess advance funding provided, costs, a seller's level of control, and program eligibility requirements.
Coupled Multi-physics analysis of Caprock Integrity and Fault Reactivation during CO2 Sequestration*
NASA Astrophysics Data System (ADS)
Newell, P.; Martinez, M. J.; Bishop, J.
2012-12-01
Structural/stratigraphic trapping beneath a low-permeable caprock layer is the primary trapping mechanism for long-term subsurface sequestration of CO2. Pre-existing fracture networks, injection induced fractures, and faults are of concern for possible CO2 leakage both during and after injection. In this work we model the effects of both caprock jointing and a fault on the caprock sealing integrity during various injection scenarios. The modeling effort uses a three-dimensional finite-element based coupled multiphase flow and geomechanics simulator. The joints within the caprock are idealized as equally spaced and parallel. Both the mechanical and flow behavior of the joint network are treated within an effective continuum formulation. The mechanical behavior of the joint network is linear elastic in shear and nonlinear elastic in the normal direction. The flow behavior of the joint network is treated using the classical cubic-law relating flow rate and aperture. The flow behavior is then upscaled to obtain an effective permeability. The fault is modeled as a finite-thickness layer with multiple joint sets. The joint sets within the fault region are modeled following the same mechanical and flow formulation as the joints within the caprock. Various injection schedules as well as fault and caprock jointing configurations within a proto-typical sequestration site have been investigated. The resulting leakage rates through the caprock and fault are compared to those assuming intact material. The predicted leakage rates are a strong nonlinear function of the injection rate. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Kabinejadian, Foad; McElroy, Michael; Ruiz-Soler, Andres; Leo, Hwa Liang; Slevin, Mark A.; Badimon, Lina
2016-01-01
In the present work, numerical simulations were conducted for a typical end-to-side distal graft anastomosis to assess the effects of inducing secondary flow, which is believed to remove unfavourable flow environment. Simulations were carried out for four models, generated based on two main features of 'out-of-plane helicity' and 'spiral ridge' in the grafts as well as their combination. Following a qualitative comparison against in vitro data, various mean flow and hemodynamic parameters were compared and the results showed that helicity is significantly more effective in inducing swirling flow in comparison to a spiral ridge, while their combination could be even more effective. In addition, the induced swirling flow was generally found to be increasing the wall shear stress and reducing the flow stagnation and particle residence time within the anastomotic region and the host artery, which may be beneficial to the graft longevity and patency rates. Finally, a parametric study on the spiral ridge geometrical features was conducted, which showed that the ridge height and the number of spiral ridges have significant effects on inducing swirling flow, and revealed the potential of improving the efficiency of such designs. PMID:27861485
The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?
NASA Astrophysics Data System (ADS)
Truffer, M.
2017-12-01
The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.
The Thermal Regime Around Buried Submarine High-Voltage Cables
NASA Astrophysics Data System (ADS)
Emeana, C. J.; Dix, J.; Henstock, T.; Gernon, T.; Thompson, C.; Pilgrim, J.
2015-12-01
The expansion of offshore renewable energy infrastructure and the desire for "trans-continental shelf" power transmission, all require the use of submarine High Voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70oC and are typically buried at depths of 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the thermal properties of near surface shelf sediments are poorly understood and this increases the uncertainty in determining the required cable current ratings, cable reliability and the potential effects on the sedimentary environments. We present temperature measurements from a 2D laboratory experiment, designed to represent a buried, submarine HV cable. We used a large (2.5 m-high) tank, filled with water-saturated ballotini and instrumented with 120 thermocouples, which measured the time-dependent 2D temperature distributions around the heat source. The experiments use a buried heat source to represent a series of realistic cable surface temperatures with the aim for identifying the thermal regimes generated within typical non-cohesive shelf sediments: coarse silt, fine sand and very coarse sand. The steady state heat flow regimes, and normalised and radial temperature distributions were assessed. Our results show that at temperatures up to 60°C above ambient, the thermal regimes are conductive for the coarse silt sediments and convective for the very coarse sand sediments even at 7°C above ambient. However, the heat flow pattern through the fine sand sediment shows a transition from conductive to convective heat flow at a temperature of approximately 20°C above ambient. These findings offer an important new understanding of the thermal regimes associated with submarine HV cables buried in different substrates and has huge impacts on cable ratings as the IEC 60287 standard only considers conductive heat flow as well as other potential near surface impacts.
NASA Astrophysics Data System (ADS)
Munir, Adnan; Zhao, Ming; Wu, Helen; Lu, Lin; Ning, Dezhi
2018-05-01
The vortex-induced vibration (VIV) of an elastically mounted rotating circular cylinder vibrating in a uniform flow is studied numerically. The cylinder is allowed to vibrate only in the cross-flow direction. In the numerical simulations, the Reynolds number, the mass ratio, and the damping ratio are kept constants to 500, 11.5, and 0, respectively. Simulations are performed for rotation rates of α = 0, 0.5, and 1 and a range of reduced velocities from 1 to 13, which covers the entire lock-in regime. It is found that the lock-in regime of a rotating cylinder is wider than that of a non-rotating cylinder for α = 0, 0.5, and 1. The vortex shedding pattern of a rotating cylinder is found to be similar to that of a non-rotating cylinder. Next, simulations are performed for three typical reduced velocities inside the lock-in regime and a range of higher rotation rates from α = 1.5 to 3.5 to investigate the effect of the rotation rate on the suppression of VIV. It is found that the VIV is suppressed when the rotation rate exceeds a critical value, which is dependent on the reduced velocity. For a constant reduced velocity, the amplitude of the vibration is found to increase with increasing rotation rate until the latter reaches its critical value for VIV suppression, beyond which the vibration amplitude becomes extremely small. If the rotation rate is greater than its critical value, vortex shedding ceases and hairpin vortices are observed due to the rotation of the cylinder.
Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows
NASA Astrophysics Data System (ADS)
Yang, Xiang; Urzay, Javier; Moin, Parviz
2017-11-01
Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
NASA Astrophysics Data System (ADS)
Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.
2014-12-01
The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.
Amplified crossflow disturbances in the laminar boundary layer on swept wings with suction
NASA Technical Reports Server (NTRS)
Dagenhart, J. R.
1981-01-01
Solution charts of the Orr-Sommerfeld equation for stationary crossflow disturbances are presented for 10 typical velocity profiles on a swept laminar flow control wing. The critical crossflow Reynolds number is shown to be a function of a boundary layer shape factor. Amplification rates for crossflow disturbances are shown to be proportional to the maximum crossflow velocity. A computer stability program called MARIA, employing the amplification rate data for the 10 crossflow velocity profiles, is constructed. This code is shown to adequately approximate more involved computer stability codes using less than two percent as much computer time while retaining the essential physical disturbance growth model.
Novel silicon microchannels device for use in red blood cell deformability studies
NASA Astrophysics Data System (ADS)
Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian
2001-10-01
Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.
Two-phase Hele-Shaw flow with a moving contact line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, S.J.; Ungar, L.H.; Dussan, E.B.
1988-01-01
An asymptotic analysis is presented for Hele-Shaw viscous fingering with a moving contact line at flow rates. As in problems where a thin film is present instead of a contact line, the narrow gap limit is nonuniform, and interfacial boundary conditions valid for the Hele-Shaw equations must be determined in order to predict the flow field and interface shape. Many well-posed boundary-value problems can be identified, each corresponding to a different flow regime characterized by the relative sizes of the capillary number (dimensionless velocity) and the dimensionless gap width. These problems incorporate terms corresponding to the gapwise component of themore » interfacial curvature (the curvature in the cross-sectional view of the Hele-Shaw cell) and spanwise curvature (seen in the top view of the cell) in different ways. Nonunique interface solutions typically arise as in the analogous thin film problems. The relationships between the curvature terms, the spectra of allowable solutions, and the implications for stability are discussed.« less
Baker, E.T.; Buszka, P.M.
1993-01-01
Water-chemistry data, hydrochemical facies, and isotopic data also indicate that water from Oak Spring originates principally from precipitation onto the land surface of the Oak Spring area. Tritium data indicate that Oak Spring water is "modern," with an average age of recharge less than 14 years. The flow rates recorded almost continuously at Oak Spring beginning in December 1986 show a close relation between precipitation and discharge. The highest recorded spring flow of 167 gallons per minute in December 1986 is attributed to record high precipitation in the area during 1986. The lowest recorded flow of 22.4 gallons per minute, in December 1989, followed a period of 20 out of 26 months of below-normal precipitation. Flow at Oak Spring typically lags behind precipitation by about 1 month. This fairly rapid response indicates the spring is fed by a shallow aquifer having good permeability and effective recharge areas with the ability to absorb precipitation rapidly.
Multisensor data fusion across time and space
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Reed, Robert A.
2014-06-01
Field measurement campaigns typically deploy numerous sensors having different sampling characteristics for spatial, temporal, and spectral domains. Data analysis and exploitation is made more difficult and time consuming as the sample data grids between sensors do not align. This report summarizes our recent effort to demonstrate feasibility of a processing chain capable of "fusing" image data from multiple independent and asynchronous sensors into a form amenable to analysis and exploitation using commercially-available tools. Two important technical issues were addressed in this work: 1) Image spatial registration onto a common pixel grid, 2) Image temporal interpolation onto a common time base. The first step leverages existing image matching and registration algorithms. The second step relies upon a new and innovative use of optical flow algorithms to perform accurate temporal upsampling of slower frame rate imagery. Optical flow field vectors were first derived from high-frame rate, high-resolution imagery, and then finally used as a basis for temporal upsampling of the slower frame rate sensor's imagery. Optical flow field values are computed using a multi-scale image pyramid, thus allowing for more extreme object motion. This involves preprocessing imagery to varying resolution scales and initializing new vector flow estimates using that from the previous coarser-resolution image. Overall performance of this processing chain is demonstrated using sample data involving complex too motion observed by multiple sensors mounted to the same base. Multiple sensors were included, including a high-speed visible camera, up to a coarser resolution LWIR camera.
Kirsch, L E; Nguyen, L; Moeckly, C S
1997-01-01
The development of mass spectrometry-based leak detection for pharmaceutical container integrity was undertaken to provide an alternative to microbial challenge testing. Standard 10-mL vials were modified to contain pinholes (0.5 to 10 microns) by affixing micropipettes with epoxy into 2-mm vial side wall holes. The absolute leak rate was determined using vials that were sealed in a tracer (helium) environment with butyl rubber stoppers and crimps. Alternatively leak rates were determined using vials that were sealed in room air and exposed to tracer under pressure (charging or bombing). Tracer leak rates were measured with mass spectrometry leak rate detectors. The absolute leak rate was correlated the squared nominal leak radius which suggested that the mode of gas flow through the glass pipette leaks was more turbulent than viscous even at low leak rates typically associated with viscous flow. The minimum observed absolute leak rate was about 10(-6.6) std cc/sec and was likely due to helium permeation through the rubber stoppers. Heat-stressed rubber stoppers did not affect the baseline absolute leak rate. Adsorption of helium tracer to the test unit surfaces was found to confound baseline leak rate measurement reliability but was eliminated as a source of variation by exposing the test units to ambient air for > or = 12 hours. The absolute leak rate and the leak rate measured after charging were related in a mathematically predictable way.
High-order shock-fitted detonation propagation in high explosives
NASA Astrophysics Data System (ADS)
Romick, Christopher M.; Aslam, Tariq D.
2017-03-01
A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting strategy, in conjunction with a nonlinear optimizer, a new set of reaction rate parameters improves the correlation of the model to experimental results. Finally, this new model is tested against two dimensional slabs as a validation test.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
McMillan, Hilary; Westerberg, Ida
2015-04-01
Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.
Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter
NASA Astrophysics Data System (ADS)
Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi
2018-03-01
To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
Rheosensing by impulsive cells at intermediate Reynolds numbers
NASA Astrophysics Data System (ADS)
Mathijssen, Arnold; Bhamla, Saad; Prakash, Manu
2017-11-01
For aquatic organisms, mechanical signals are often carried by the surrounding liquid, through viscous and inertial forces. Here we consider a unicellular yet millimetric ciliate, Spirostomum ambiguum, as a model organism to study hydrodynamic sensing. This protist typically swims at moderate Reynolds numbers, Re < 0.5, but upon stimulation it surges to Re > 100 during impulsive contractions where its elongated body recoils within milliseconds. First, using high-speed PIV and an electrophysiology setup, we deliver controlled voltage pulses to induce these rapid contractions and visualise the vortex flows generated thereby. By comparing these measurements with CFD simulations the range of these hydrodynamic ``signals'' is characterized. Second, we probe the mechano-sensing of the organism with externally applied flows and find a critical shear rate necessary to trigger a contraction. The combination of high Re flow generation and rheosensing could facilitate intercellular communication over large distances. Please also see our other talk ``Collective hydrodynamic communication through ultra-fast contractions''.
Pirozzi, D; Halling, P J
2001-01-20
A very small-scale continuous flow reactor has been designed for use with enzymes in organic media, particularly for operational stability studies. It is constructed from fairly inexpensive components, and typically uses 5 mg of catalyst and flow rates of 1 to 5 mL/h, so only small quantities of feedstock need to be handled. The design allows control of the thermodynamic water activity of the feed, and works with temperatures up to at least 80 degrees C. The reactor has been operated with both nonpolar (octane) and polar (4-methyl-pentan-2-one) solvents, and with the more viscous solvent-free reactant mixture. It has been applied to studies of the operational stability of lipases from Chromobacterium viscosum (lyophilized powder or polypropylene-adsorbed) and Rhizomucor miehei (Lipozyme) in different experimental conditions. Transesterification of geraniol and ethylcaproate has been adopted as a model transformation.
A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.
We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements.more » The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.« less
Effluent characterization from a conical pressurized fluid bed
NASA Technical Reports Server (NTRS)
Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.
1977-01-01
To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.
NASA Astrophysics Data System (ADS)
Soldati, A.; Beem, J. R.; Gomez, F.; Huntley, J. W.; Robertson, T.; Whittington, A. G.
2017-12-01
We present a rheological and morphological study of a Holocene lava flow emitted by a monogenetic cinder cone in the Cima Volcanic Field, eastern California. By combining field observations and experimental results, we reconstructed the few weeks-long emplacement timeline of the Cima flow. Sample textural analyses revealed that the near-vent portion of the flow is significantly more crystalline (fxtal=0.95±0.04) than the main flow body (fxtal=0.66±0.11), which reveals a multi-stage emplacement history. Airborne photogrammetry data were used to generate a digital elevation model, which allowed us to estimate the flow volume. The rheology of Cima lavas was determined experimentally by concentric cylinder viscometry between 1550 °C and 1160 °C, including the first subliquidus rheology measurements for a continental intraplate trachybasaltic lava. The experimentally determined effective viscosity increases from 54 Pa·s to 1,361 Pa·s during cooling from the liquidus ( 1230 ˚C) to 1160 ˚C, where crystal fraction is 0.11. Flow curves fitted to measurements at different strain rates indicate a Herschel-Bulkley rheological behavior, combining shear-thinning with a yield strength negligible at the higher measured temperatures but increasing up to 357±41 Pa at 1160˚C. The lava viscosity over this range is still lower than most basaltic melts, due to the high alkali content of Cima lavas ( 6 wt% Na2O+K2O). We determined that the morphological pahoehoe to `a'ā transition of this trachybasalt occurs at a temperature of 1160±10 ˚C, similar to that observed for Hawaiian tholeiitic lavas, but at higher apparent viscosity values. Monogenetic volcanism in the Western United States is typically characterized by low effusion rates and eruption on sub-horizontal desert plains. Under these low strain-rate conditions, the pahoehoe to `a'ā transition is likely to occur abruptly upon minimal cooling, i.e. very close to the vent, but lava tubes may transport fluid lava to flow fronts rapidly, allowing breakouts to extend the flow length, as we infer happened for the Cima flow.
Aschoff, A; Kremer, P; Benesch, C; Fruh, K; Klank, A; Kunze, S
1995-04-01
When vertical body position is simulated, conventional differential pressure valves show an absolutely unphysiological flow, which is 2-170 times the normal liquor production rate. Although this is compensated in part by the resistance of the silicon tubes, which may produce up to 94% of the resistance of the complete shunt system, a negative intracranial pressure (ICP) of up to 30-44 cmH2O is an unavoidable consequence, which can be followed by subdural hematomas, slit ventricles, and other well-known complications. Modern shunt technology offers programmable, hydrostatic, and "flow-controlled" valves and anti-siphon devices; we have tested 13 different designs from 7 manufacturers (56 specimens), using the "Heidelberg Valve Test Inventory" with 16 subtests. "Programmable" valves reduce, but cannot exclude, unphysiological flow rates: even in the highest position and in combination with a standard catheter typical programmable Medos-Hakim valves allow a flow of 93-232 ml/h, Sophy SU-8-valves 86-168 ml/h with 30 cmH2O. The effect of hydrostatic valves (Hakim-Lumbar, Chhabra) can be inactivated by movements of daily life. The weight of the metal balls in most valves was too low for adequate flow reduction. Antisiphon devices are highly dependent on external, i.e. subcutaneous, pressure which has unpredictable influences on shunt function, and clinically is sometimes followed by shunt insufficiency. Two new Orbis-Sigma valves showed relatively physiological flow rates even when the vertical position (30 cmH2O) was simulated. One showed an insufficient flow (5.7 ml/h), and one was primarily obstructed. These have by far the smallest outlet of all valves. Additionally, the ruby pin tends to stick. Therefore, a high susceptibility to obliterations and blockade is unavoidable. Encouraging results obtained in pediatric patients contrast with disappointing experiences in some German and Swedish hospitals, which suggests that our laboratory findings are confirmed by clinical results. The concept of strict flow limitation seems to be inadaequate for adult patients, who need a relatively high flow during (nocturnal) ICP crises. The problem of shunt overdrainage remains unsolved.
Effect of steam addition on cycle performance of simple and recuperated gas turbines
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1979-01-01
Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.
Interhemispheric Asymmetry of the Sunward Plasma Flows for Strongly Dominant IMF BZ > 0
NASA Astrophysics Data System (ADS)
Yakymenko, K. N.; Koustov, A. V.; Fiori, R. A. D.
2018-01-01
Super Dual Auroral Radar Network (SuperDARN) convection maps obtained simultaneously in both hemispheres are averaged to infer polar cap ionospheric flow patterns under strongly dominant positive interplanetary magnetic field (IMF)
Sources of uncertainty in flood inundation maps
Bales, J.D.; Wagner, C.R.
2009-01-01
Flood inundation maps typically have been used to depict inundated areas for floods having specific exceedance levels. The uncertainty associated with the inundation boundaries is seldom quantified, in part, because all of the sources of uncertainty are not recognized and because data available to quantify uncertainty seldom are available. Sources of uncertainty discussed in this paper include hydrologic data used for hydraulic model development and validation, topographic data, and the hydraulic model. The assumption of steady flow, which typically is made to produce inundation maps, has less of an effect on predicted inundation at lower flows than for higher flows because more time typically is required to inundate areas at high flows than at low flows. Difficulties with establishing reasonable cross sections that do not intersect and that represent water-surface slopes in tributaries contribute additional uncertainties in the hydraulic modelling. As a result, uncertainty in the flood inundation polygons simulated with a one-dimensional model increases with distance from the main channel.
Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J
2008-06-01
Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.
NASA Astrophysics Data System (ADS)
Gurer, M.; Sullivan, S.; Masteller, C.
2016-12-01
Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This new result suggests that the low flow reorientation of grains perpendicular to downstream flow drives observed differences in bedload transport during high flows. We conclude that low flow periods are important for the creation of bed structure and the stabilization of gravel river channels.
Modeling dynamic accumulation of gas hydrates in Shenhu area, northern South China Sea
NASA Astrophysics Data System (ADS)
Su, Z.; Cao, Y.; Wu, N.
2013-12-01
The accumulation of the hydrates in Shenhu area on northern continental slope of the South China Sea (SCS) could not be well quantified by the numerical models. The formation mechanism of the hydrate deposits remains an open question. Here, a conceptual model was applied for illustrating the formation pattern of hydrate accumulation in Shenhu area based on the studies of sedimentary and tectonic geologies. Our results indicated that the present hydrate deposits were a development of 'ancient hydrates' in the faulted sediment. The dynamic accumulation of the hydrates was further quantified by using a numerical model with two controlling parameters of seafloor sedimentation rate and water flow rate. The model results were testified with the hydrate saturations derived from the chloride abnormalities at site SH2 in Shenhu area. It suggested that the hydrate accumulation in Shenhu area had experienced two typical stages. In the first stage, the gas hydrates grew in the fractured sediment ~1.5 Ma. High permeability of the fractured sediment permitted rapid water flow that carrying methane gas toward the seafloor. Massive gas transformed to gas hydrate in the gas hydrate stability zone (GHSZ) at water flow rate of 50m/kyr within 40kyrs. The 'ancient hydrate' filled 20% volume of the sediment pores in the stage. The second stage was initiated after ending of the last faulting activity. The water flow rate dropped to 0.7m/kyr due to quick burial of fine-grained sediments. Inadequate gas supply could merely sustain hydrate growth slowly at the base of GHSZ, and ultimately yielded the current hydrate deposits in Shenhu area after a subsequent evolution of 1.5 Myrs.
Santi, P.; Cannon, S.; DeGraff, J.
2013-01-01
Wildfire is a worldwide phenomenon that is expected to increase in extent and severity in the future, due to fuel accumulations, shifting land management practices, and climate change. It immediately affects the landscape by removing vegetation, depositing ash, influencing water-repellent soil formation, and physically weathering boulders and bedrock. These changes typically lead to increased erosion through sheetwash, rilling, dry ravel, and increased mass movement in the form of floods, debris flow, rockfall, and landslides. These process changes bring about landform changes as hillslopes are lowered and stream channels aggrade or incise at increased rates. Furthermore, development of alluvial fans, debris fans, and talus cones are enhanced. The window of disturbance to the landscape caused by wildfire is typically on the order of three to four years, with some effects persisting up to 30 years.
Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, Jianying; Liu, Chongxuan; Wang, Zheming
2014-02-15
Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
The reduction of HNO3 by volatile organic compounds emitted by motor vehicles
NASA Astrophysics Data System (ADS)
Rutter, A. P.; Malloy, Q. G. J.; Leong, Y. J.; Gutierrez, C. V.; Calzada, M.; Scheuer, E.; Dibb, J. E.; Griffin, R. J.
2014-04-01
Nitric acid (HNO3) was reduced in a flow tube by volatile organic carbon compounds (VOCs) generated from engine oil vapor. The primary reaction product was believed to be HONO. The reaction was not enhanced when Teflon® Raschig rings were added to the flow tube to increase surface area, thereby showing the reaction to be homogeneous under the conditions studied. The HONO formation observed ranged between 0.1 and 0.6 ppb h-1, with a mean of 0.3 ± 0.1 ppb h-1, for typical HNO3 concentrations of 4-5 ppb and estimated concentrations of the reactive components in the engine oil vapor between 200 and 300 ppt. The observations in this study compare well to a recently published field study conducted in Houston that observed average formation rates of 0.6 ± 0.3 ppb h-1. Water vapor was found to decrease the HONO formation rate by ˜0.1 ppb h-1 for every 1% increase in the water mixing ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunziker, R.; Gyarmathy, G.
1994-04-01
A centrifugal compressor was tested with three different diffusers with circular-arc vanes. The vane inlet angle was varied from 15 to 30 deg. Detailed static wall pressure measurements show that the pressure field in the diffuser inlet is very sensitive to flow rate. The stability limit regularly occurred at the flow rate giving the maximum pressure rise for the overall stage. Mild surge arises as a dynamic instability of the compression system. The analysis of the pressure rise characteristic of each individual subcomponent (impeller, diffuser inlet, diffuser channel,...) reveals their contribution to the overall pressure rise. The diffuser channels playmore » an inherently destabilizing role while the impeller and the diffuser inlet are typically stabilizing. The stability limit was mainly determined by a change in the characteristic of the diffuser inlet. Further, the stability limit was found to be independent of the development of inducer-tip recirculation.« less
Respiratory symptoms among glass bottle workers--cough and airways irritancy syndrome?
Gordon, S B; Curran, A D; Fishwick, D; Morice, A H; Howard, P
1998-10-01
Glass bottle workers have been shown to experience an excess of respiratory symptoms. This work describes in detail the symptoms reported by a cohort of 69 symptomatic glass bottle workers. Symptoms, employment history and clinical investigations including radiology, spirometry and serial peak expiratory flow rate records were retrospectively analyzed from clinical records. The results showed a consistent syndrome of work-related eye, nose and throat irritation followed after a variable period by shortness of breath. The latent interval between starting work and first developing symptoms was typically 4 years (median = 4 yrs; range = 0-28). The interval preceding the development of dysponea was longer and much more variable (median = 16 yrs; range = 3-40). Spirometry was not markedly abnormal in the group but 57% of workers had abnormal serial peak expiratory flow rate charts. Workers in this industry experience upper and lower respiratory tract symptoms consistent with irritant exposure. The long-term functional significance of these symptoms should be formally investigated.
A Lagrangian Approach for Calculating Microsphere Deposition in a One-Dimensional Lung-Airway Model.
Vaish, Mayank; Kleinstreuer, Clement
2015-09-01
Using the open-source software openfoam as the solver, a novel approach to calculate microsphere transport and deposition in a 1D human lung-equivalent trumpet model (TM) is presented. Specifically, for particle deposition in a nonlinear trumpetlike configuration a new radial force has been developed which, along with the regular drag force, generates particle trajectories toward the wall. The new semi-empirical force is a function of any given inlet volumetric flow rate, micron-particle diameter, and lung volume. Particle-deposition fractions (DFs) in the size range from 2 μm to 10 μm are in agreement with experimental datasets for different laminar and turbulent inhalation flow rates as well as total volumes. Typical run times on a single processor workstation to obtain actual total deposition results at comparable accuracy are 200 times less than that for an idealized whole-lung geometry (i.e., a 3D-1D model with airways up to 23rd generation in single-path only).
Zhang, Zhaoyan
2015-01-01
Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022
NASA Astrophysics Data System (ADS)
Li, Weichen; Tsou, Chingfu
2015-10-01
This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.
NASA Technical Reports Server (NTRS)
Bullard, Brad
1998-01-01
During mainstage testing of the 60,000 lbf thrust Fastrac thrust chamber at MSFC's Test Stand 116 (TS 116), sustained, large amplitude oscillations near 530 Hz were observed in the pressure data. These oscillations were detected both in the RP-1 feedline, downstream of the cavitating venturi, and in the combustion chamber. The driver of the instability is believed to be feedline excitation driven by either periodic cavity collapse at the exit of the cavitating venturi or combustion instability. In covitating venturi, static pressure drops as the flow passes through a constriction resembling a converging-diverging nozzle until the vapor pressure is reached. At the venturi throat, the flow is essentially choked, which is why these devices are typically used for mass flow rate control and disturbance isolation. Typically, a total pressure drop of 15% or more across the venturi is required for cavitation. For much larger pressure differentials, unstable cavities can form and subsequently collapse downstream of the throat. Although the disturbances generated by cavitating venturis is generally considered to be broad-band, this type of phenomena could generate periodic behavior capable of exciting the feedline. An excitation brought about by combustion instability would result from the coupling of a combustion chamber acoustic mode and a feedline resonance frequency. This type of coupling is referred to as "buzz" and is not uncommon for engines in this thrust range.
Viscoelastic properties of the small intestinal and caecal contents of the chicken.
Takahashi, T; Goto, M; Sakata, T
2004-06-01
We measured the coefficients of viscosity, shear rates and shear stresses of chicken small intestinal and caecal contents, including solid particles, using a tube-flow viscometer. The coefficients of viscosity of chicken small intestinal and caecal contents were correlated negatively with their shear rates, a characteristic typical of non-Newtonian fluids. The coefficient of viscosity of the small intestinal contents was lower than that of the caecal contents at a shear rate of 1 s(-1). Chicken caecal contents were more viscous than pig caecal contents. The exponential relationship between shear stress and shear rate showed that chicken small intestinal and caecal contents had an apparent Herschel-Bulkley fluid nature. These results indicate that solid particles, including uric acid crystals, are mainly responsible for the viscosity of the digesta in the chicken.
NASA Technical Reports Server (NTRS)
Guillermo, P.
1975-01-01
A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.
Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler
Stewart, Justin; Sleeth, Darrah K.; Handy, Rod G.; Pahler, Leon F.; Anthony, T. Renee; Volckens, John
2017-01-01
A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler’s performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times. PMID:27676440
Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.
Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John
2017-03-01
A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.
Effect of Detonation through a Turbine Stage
NASA Technical Reports Server (NTRS)
Ellis, Matthew T.
2004-01-01
Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.
Toward an asymptotic behaviour of the ABC dynamo
NASA Astrophysics Data System (ADS)
Bouya, Ismaël; Dormy, Emmanuel
2015-04-01
The ABC flow was originally introduced by Arnol'd to investigate Lagrangian chaos. It soon became the prototype example to illustrate magnetic-field amplification via fast dynamo action, i.e. dynamo action exhibiting magnetic-field amplification on a typical timescale independent of the electrical resistivity of the medium. Even though this flow is the most classical example for this important class of dynamos (with application to large-scale astrophysical objects), it was recently pointed out (Bouya Ismaël and Dormy Emmanuel, Phys. Fluids, 25 (2013) 037103) that the fast dynamo nature of this flow was unclear, as the growth rate still depended on the magnetic Reynolds number at the largest values available so far (\\text{Rm} = 25000) . Using state-of-the-art high-performance computing, we present high-resolution simulations (up to 40963) and extend the value of \\text{Rm} up to 5\\cdot105 . Interestingly, even at these huge values, the growth rate of the leading eigenmode still depends on the controlling parameter and an asymptotic regime is not reached yet. We show that the maximum growth rate is a decreasing function of \\text{Rm} for the largest values of \\text{Rm} we could achieve (as anticipated in the above-mentioned paper). Slowly damped oscillations might indicate either a new mode crossing or that the system is approaching the limit of an essential spectrum.
Parsons, Neal; Levin, Deborah A; van Duin, Adri C T; Zhu, Tong
2014-12-21
The Direct Simulation Monte Carlo (DSMC) method typically used for simulating hypersonic Earth re-entry flows requires accurate total collision cross sections and reaction probabilities. However, total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, so their reliability is unknown for the high temperatures observed in hypersonic flows. Existing DSMC reaction models accurately reproduce experimental equilibrium reaction rates, but the applicability of these rates to the strong thermal nonequilibrium observed in hypersonic shocks is unknown. For hypersonic flows, these modeling issues are particularly relevant for nitrogen, the dominant species of air. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method is used to accurately compute collision and reaction cross sections for the N2(Σg+1)-N2(Σg+1) collision pair for conditions expected in hypersonic shocks using a new potential energy surface developed using a ReaxFF fit to recent advanced ab initio calculations. The MD/QCT-computed reaction probabilities were found to exhibit better physical behavior and predict less dissociation than the baseline total collision energy reaction model for strong nonequilibrium conditions expected in a shock. The MD/QCT reaction model compared well with computed equilibrium reaction rates and shock-tube data. In addition, the MD/QCT-computed total cross sections were found to agree well with established variable hard sphere total cross sections.
Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray
2016-04-15
Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Michael S; Yang, Tae; Adams, George L; Mustapha, Jihad; Das, Tony
2014-08-01
Patients with renal disease typically have severely calcified peripheral arterial disease. As a result, this population may have worse clinical outcomes following endovascular intervention compared to patients without renal insufficiency. Clinical trials typically exclude this patient population. Analysis of the CONFIRM I-III registries revealed 1105 patients with renal disease (1777 lesions) and 1969 patients without renal disease (2907 lesions) who underwent orbital atherectomy. This subanalysis compared the composite procedural complication rate including dissection, perforation, slow flow, vessel closure, spasm, embolism, and thrombus formation in patients with and without renal disease. Patients with renal disease had a higher prevalence of diabetes (P<.001), hypertension (P<.001), hyperlipidemia (P<.001), and coronary artery disease (P<.001), Rutherford 5 or 6 lesions (P<.001), as well as more lesions treated (P<.001), more vessels treated (P<.001), and more below-the-knee lesions (P<.001). The renal disease and non-renal disease groups had similar composite procedural complication rates (21.3% vs. 22.4%; P=.46), dissection (11.1% vs. 11.5%; P=.83), perforation (0.6% vs. 0.8%; P=.55), slow flow (5.0% vs. 4.2%; P=.19), spasm (6.7% vs. 6.2%; P=.40), embolism (1.7% vs. 2.6%; P=.12), and thrombus formation (1.4% vs. 1.0%; P=.56). The renal disease group had a trend toward decreased vessel closure (1.1% vs. 1.6%; P=.08). Plaque modification with orbital atherectomy resulted in similar low rates of procedural complications in the renal disease group compared with the non-renal disease group despite more unfavorable baseline clinical and lesion characteristics in the renal disease group.
Dynamics of driven flow with exclusion in graphenelike structures
NASA Astrophysics Data System (ADS)
Stinchcombe, R. B.; de Queiroz, S. L. A.
2015-05-01
We present a mean-field theory for the dynamics of driven flow with exclusion in graphenelike structures, and numerically check its predictions. We treat first a specific combination of bond transmissivity rates, where mean field predicts, and numerics to a large extent confirms, that the sublattice structure characteristic of honeycomb networks becomes irrelevant. Dynamics, in the various regions of the phase diagram set by open boundary injection and ejection rates, is then in general identical to that of one-dimensional systems, although some discrepancies remain between mean-field theory and numerical results, in similar ways for both geometries. However, at the critical point for which the characteristic exponent is z =3 /2 in one dimension, the mean-field value z =2 is approached for very large systems with constant (finite) aspect ratio. We also treat a second combination of bond (and boundary) rates where, more typically, sublattice distinction persists. For the two rate combinations, in continuum or late-time limits, respectively, the coupled sets of mean-field dynamical equations become tractable with various techniques and give a two-band spectrum, gapless in the critical phase. While for the second rate combination quantitative discrepancies between mean-field theory and simulations increase for most properties and boundary rates investigated, theory still is qualitatively correct in general, and gives a fairly good quantitative account of features such as the late-time evolution of density profile differences from their steady-state values.
Barlow, P.M.
1994-01-01
Steady-state, two-and three-dimensional, ground-water flow models coupled with a particle- tracking program were evaluated to determine their effectiveness in delineating contributing areas of existing and hypothetical public-supply wells pumping from two contrasting stratified-drift aquifers of Cape Cod, Mass. Several of the contri- buting areas delineated by use of the three- dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of a two-dimensional analytical and numerical modeling techniques, include dis- continuous areas of the water table, and do not surround the wells. Because two-dimensional areal models do not account for vertical flow, they cannot adequately represent many of the hydro- geologic and well-design variables that were shown to complicate the delineation of contributing areas in these flow systems, including the presence of discrete lenses of 1ow hydraulic conductivity, large ratios of horizontal to ver- tical hydraulic conductivity, shallow streams, partially penetrating supply wells, and 1ow pumping rates (less than 0.1 million gallons per day). Nevertheless, contributing areas delineated for two wells in the simpler of the two flow systems--a thin (less than 100 feet), single- layer, uniform aquifer with near-ideal boundary conditions--were not significantly different for the two- or three-dimensional models of the natural system, for a pumping rate of 0.5 million gallons per day. Use of particle tracking helped identify the source of water to simulated wells, which included precipitation recharge, wastewater return flow, and pond water. Pond water and wastewater return flow accounted for as much as 73 and 40 percent, respectively, of the water captured by simulated wells.
Arteriovenous oscillations of the redox potential: Is the redox state influencing blood flow?
Poznanski, Jaroslaw; Szczesny, Pawel; Pawlinski, Bartosz; Mazurek, Tomasz; Zielenkiewicz, Piotr; Gajewski, Zdzislaw; Paczek, Leszek
2017-09-01
Studies on the regulation of human blood flow revealed several modes of oscillations with frequencies ranging from 0.005 to 1 Hz. Several mechanisms were proposed that might influence these oscillations, such as the activity of vascular endothelium, the neurogenic activity of vessel wall, the intrinsic activity of vascular smooth muscle, respiration, and heartbeat. These studies relied typically on non-invasive techniques, for example, laser Doppler flowmetry. Oscillations of biochemical markers were rarely coupled to blood flow. The redox potential difference between the artery and the vein was measured by platinum electrodes placed in the parallel homonymous femoral artery and the femoral vein of ventilated anesthetized pigs. Continuous measurement at 5 Hz sampling rate using a digital nanovoltmeter revealed fluctuating signals with three basic modes of oscillations: ∼ 1, ∼ 0.1 and ∼ 0.01 Hz. These signals clearly overlap with reported modes of oscillations in blood flow, suggesting coupling of the redox potential and blood flow. The amplitude of the oscillations associated with heart action was significantly smaller than for the other two modes, despite the fact that heart action has the greatest influence on blood flow. This finding suggests that redox potential in blood might be not a derivative but either a mediator or an effector of the blood flow control system.
Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.
Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J
2014-03-01
Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.
Incorporation of a Chemical Equilibrium Equation of State into LOCI-Chem
NASA Technical Reports Server (NTRS)
Cox, Carey F.
2005-01-01
Renewed interest in development of advanced high-speed transport, reentry vehicles and propulsion systems has led to a resurgence of research into high speed aerodynamics. As this flow regime is typically dominated by hot reacting gaseous flow, efficient models for the characteristic chemical activity are necessary for accurate and cost effective analysis and design of aerodynamic vehicles that transit this regime. The LOCI-Chem code recently developed by Ed Luke at Mississippi State University for NASA/MSFC and used by NASA/MSFC and SSC represents an important step in providing an accurate, efficient computational tool for the simulation of reacting flows through the use of finite-rate kinetics [3]. Finite rate chemistry however, requires the solution of an additional N-1 species mass conservation equations with source terms involving reaction kinetics that are not fully understood. In the equilibrium limit, where the reaction rates approach infinity, these equations become very stiff. Through the use of the assumption of local chemical equilibrium the set of governing equations is reduced back to the usual gas dynamic equations, and thus requires less computation, while still allowing for the inclusion of reacting flow phenomenology. The incorporation of a chemical equilibrium equation of state module into the LOCI-Chem code was the primary objective of the current research. The major goals of the project were: (1) the development of a chemical equilibrium composition solver, and (2) the incorporation of chemical equilibrium solver into LOCI-Chem. Due to time and resource constraints, code optimization was not considered unless it was important to the proper functioning of the code.
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2013-09-01
Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.
NASA Astrophysics Data System (ADS)
Tinkler, Keith J.; Parish, John
Cooksville Creek (33 km2) is based in weak Georgian Bay Formation shale and thin limestone and has been gradually urbanized by the City of Mississauga within the last thirty years. These conditions, together with a mean thalweg gradient of about 0.77%, have produced enhanced rates of channel bed erosion along much of the channel (the order of 2 centimetres per year), as revealed by installed engineering works, such as armour stone blocks and gabion baskets. Erosion rates below drop structures are up to an order of magnitude faster. A year-long monitoring program revealed that weathering of the shale bed by wetting and drying cycles was primarily responsible for fragmenting the shale to a size (a few centimetres on the long axis) which could be removed by frequent and moderate high flows with a magnitude much less than the Mean Annual Flood. Channel bed quarrying of shale and limestone slabs, and the transport of larger clasts and meter dimension armour stones toppled from channel structures, require flood flows with a recurrence interval of about the Mean Annual Flood. Such flows are characterized by critical or supercritical flow conditions along the thalweg, and with velocities typically in the range 4 to 6 meters per second, they are well able to quarry the bed, and transport clasts up to metre dimension in size.
Bottleneck effects on the bidirectional crowd dynamics
NASA Astrophysics Data System (ADS)
Yang, Xiao-Xia; Dong, Hai-Rong; Yao, Xiu-Ming; Sun, Xu-Bin
2016-12-01
The bottleneck effect on bidirectional crowd dynamics is of great theoretical and practical significance, especially for the designing of corridors in public places, such as subway stations or airports. Based on the famous social force model, this paper investigates the bottleneck effects on the free flow dynamics and breakdown phenomenon under different scenarios, in which different corridor shapes and inflow ratios are considered simultaneously. Numerical simulation finds an interesting self-organization phenomenon in the bidirectional flow, a typical characteristic of such a phenomenon is called lane formation, and the existence of which is independent of the corridor’s shape and inflow rate. However, the pattern of the lane formed by pedestrian flow is related to the corridor’s shape, and the free flow efficiency has close relationship with the inflow rate. Specifically, breakdown phenomenon occurs when inflows from both sides of the corridor are large enough, which mostly originates from the bottleneck and then gradually spreads to the other regions. Simulation results further indicate that the leaving efficiency becomes low as breakdown occurs, and the degree of congestion is proportional to the magnitude of inflow. The findings presented in this paper match well with some of our daily observations, hence it is possible to use them to provide us with theoretical suggestions in design of infrastructures. Project supported jointly by the National Natural Science Foundation of China (Grant Nos. 61322307 and 2016YJS023).
Grubbs, J.W.; Pittman, J.R.
1997-01-01
Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2008-01-01
Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.
Simplified Modeling of Oxidation of Hydrocarbons
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2008-01-01
A method of simplified computational modeling of oxidation of hydrocarbons is undergoing development. This is one of several developments needed to enable accurate computational simulation of turbulent, chemically reacting flows. At present, accurate computational simulation of such flows is difficult or impossible in most cases because (1) the numbers of grid points needed for adequate spatial resolution of turbulent flows in realistically complex geometries are beyond the capabilities of typical supercomputers now in use and (2) the combustion of typical hydrocarbons proceeds through decomposition into hundreds of molecular species interacting through thousands of reactions. Hence, the combination of detailed reaction- rate models with the fundamental flow equations yields flow models that are computationally prohibitive. Hence, further, a reduction of at least an order of magnitude in the dimension of reaction kinetics is one of the prerequisites for feasibility of computational simulation of turbulent, chemically reacting flows. In the present method of simplified modeling, all molecular species involved in the oxidation of hydrocarbons are classified as either light or heavy; heavy molecules are those having 3 or more carbon atoms. The light molecules are not subject to meaningful decomposition, and the heavy molecules are considered to decompose into only 13 specified constituent radicals, a few of which are listed in the table. One constructs a reduced-order model, suitable for use in estimating the release of heat and the evolution of temperature in combustion, from a base comprising the 13 constituent radicals plus a total of 26 other species that include the light molecules and related light free radicals. Then rather than following all possible species through their reaction coordinates, one follows only the reduced set of reaction coordinates of the base. The behavior of the base was examined in test computational simulations of the combustion of heptane in a stirred reactor at various initial pressures ranging from 0.1 to 6 MPa. Most of the simulations were performed for stoichiometric mixtures; some were performed for fuel/oxygen mole ratios of 1/2 and 2.
NASA Astrophysics Data System (ADS)
Ings, Steven; Albertz, Markus
2014-05-01
Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in autochthonous salt basins and thick packages of pure halite in allochthonous salt sheets.
Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare
NASA Astrophysics Data System (ADS)
Unverferth, John; Longcope, Dana
2018-06-01
Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.
Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEligot, Donald M.; Chu, Xu; Skifton, Richard S.
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis formore » laminar thermal boundary layers. Furthermore, the present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.« less
Internal convective heat transfer to gases in the low-Reynolds-number “turbulent” range
McEligot, Donald M.; Chu, Xu; Skifton, Richard S.; ...
2018-03-07
For internal vertical gas flow in tubes with strong heating rates at low turbulent Reynolds numbers, a typical experimental observation is that the local Nusselt number varies roughly as the square of the decreasing local Reynolds number. An aim of the present note is to examine this situation. This examination leads to the hypothesis that the behavior results from the evolution of the thermal boundary layer developing within the primarily molecular transport layer which is also growing from the wall. Comparisons to direct numerical simulations demonstrate that reasonable predictions are provided by an extension of the Leveque similarity analysis formore » laminar thermal boundary layers. Furthermore, the present observations modify and improve our fundamental understanding of the process called “relaminarization” in these flows.« less
ISM stripping from cluster galaxies and inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1990-01-01
Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.
Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows
NASA Technical Reports Server (NTRS)
Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.
1992-01-01
The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.
Role of large wood (LW) in rivers affected by the 2008 Chaitén volcano explosive eruption
NASA Astrophysics Data System (ADS)
Iroume, A.; Andreoli, A.; Ulloa, H.; Merino, A.; da Canal, M.; Iroume, A., Jr.
2010-12-01
In January 2010 we begun a research to study LW quantity, spatial distribution and transport rate, sediment and discharge quantification and channel morphology in different rivers affected by 2008 Chaitén volcano eruption. This document presents some insights from a first survey on LW characterization and its effect on river channel morphology. We monitored the following streams in the Chaiten area: Rio Chaitén (Rio Blanco) heavily impacted by pyroclastic flow, lahars flow and seasonal floods, the Rio Negro affected by ash deposits and seasonal flows and the Rio Rayas impacted by lahars flow and glacial melting. In this document we concentrated on Rio Chaitén. We are characterizing longitudinal distribution, volume and structures of LW (wood elements of more than 10 cm of diameter and 1 m of longitude) through field sampling and photogrammetric interpretation and studying LW mobilization using active (RFID) and passive tags. We select representative cross-sections for repeated measurements. Future surveys will include seasonal suspended and bedload sampling, LW spatial distribution and influence on channel morphology and bank erosion and LW mobilization linked with floods and channel geometry changes. During the first field survey we found huge LW input rate due to eruption influence (killed trees and pyroclastic flows and floods), erosion of different terraces generated from intense debris-flow sedimentations caused by Chaitén Volcano explosion, typical on stream LW structures (log-steps, jams) contributing to streambed stability and channel avulsion caused by log-dams. Also, LW deposited parallel to stream indicates high mobilization and LW deposited on external curve contribute to bank stabilization. We measured high sediment transport rate also in low-flow conditions due to huge availability of fine volcanic sediments. Associated risks to LW are: dam break processes, more channel avulsion caused by log accumulations, flow resistance increase favoring channel divagation (especially important for town segment) and logs floating downstream can obstruct/damage bridges and culverts. Funding for this research has been provided by Chile's National Research Foundation through FONDECYT Projects N 1080249 and 1090774. The authors thank USGS and SERNAGEOMIN for their cooperation.
NASA Astrophysics Data System (ADS)
Li, L.; Brunet, J. P. L.; Karpyn, Z.; Huerta, N. J.
2016-12-01
During geological carbon sequestration (GCS) large quantities of CO2 are injected in underground formations. Cement fractures represent preferential leakage pathways in abandoned wells upon exposure to CO2-rich fluid. Contrasting self- healing and fracture opening behavior have been observed while a unifying framework is still missing. The modelling of this process is challenging as it involves complex chemical, mechanical and transport interactions. We developed a process-based reactive transport model that explicitly simulates flow and multi-component reactive transport in fractured cement by reproducing experimental observations of sharp flow rate reduction during exposure to carbonated water. Mechanical interactions have not been included. The simulation shows a similar reaction network as in diffusion-controlled systems without flow. That is, CO2-rich water induced portlandite dissolution, releasing calcium that further reacted with carbonate to form calcite. This created localized changes in porosity and permeability inducing large differences in the long term response of the system through a complex positive feedback loop (e.g., a decrease in local permeability induces a decrease in flow that in turn amplifies the precipitation of calcite through a reduced acidic brine flow). The calibrated model was used to generate 250 numerical experiments of CO2-flooding in cement fractures with varying initial hydraulic apertures (b) and residence times (τ) defined as the ratio of fracture volume over flow rate. A long τ leads to slow replenishment of carbonated water, calcite precipitation, and self-sealing. The opposite occurs when τ is small with short fractures and fast flow rates. Simulation results indicate that a critical residence time τc - the minimum τ required for self-sealing -divides the conditions that trigger the diverging opening and self-sealing behavior. The τc value depends on the initial aperture size (see figure). Among the 250 simulated fracture cases, significant changes in effective permeability - self-healing or opening - typically occurs within hours to a day, thus providing a supporting argument for the extrapolation of short-term laboratory observations (hours to months) to long-term predictions at relevant GCS time scales (years to hundreds of years).
Groundwater dynamics in a two-dimensional aquifer
NASA Astrophysics Data System (ADS)
Jules, Valentin; Devauchelle, Olivier; Lajeunesse, Eric
2017-11-01
During a rain event, water infiltrates into the ground where it flows slowly towards a river. The time scale and the geometry of this flow control the chemical composition and the discharge of the river. We use a tank filled with glass beads to simulate this process in a simplified laboratory experiment. A sprinkler pipe generates rain, which infiltrates into the porous material. Groundwater exits this laboratory aquifer through a side of the tank. Guérin et al. (2014) investigated the case of a quasi-horizontal flow. In nature, however, groundwater often follows non-horizontal flowlines. To create a vertical flow, we place the outlet of our experiment high above its bottom. We find that, during rainfall, the discharge Q increases as the rainfall rate R times the square root of time t (Q Rt 1 / 2). This laboratory aquifer thus responds linearly to the forcing. However, long after the rain has stopped, the discharge decreases as the inverse square of time (Q t-2), although linear systems of finite size typically relax exponentially. We investigate this surprising behavior using a combination of complex analysis and numerical methods.
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Lamination and mixing in laminar flows driven by Lorentz body forces
NASA Astrophysics Data System (ADS)
Rossi, L.; Doorly, D.; Kustrin, D.
2012-01-01
We present a new approach to the design of mixers. This approach relies on a sequence of tailored flows coupled with a new procedure to quantify the local degree of striation, called lamination. Lamination translates to the distance over which the molecular diffusion needs to act to finalise mixing. A novel in situ mixing is achieved by the tailored sequence of flows. This sequence is shown with the property that material lines and lamination grow exponentially, according to processes akin to the well-known baker's map. The degree of mixing (stirring coefficient) likewise shows exponential growth before the saturation of the stirring rate. Such saturation happens when the typical striations' thickness is smaller than the diffusion's length scale. Moreover, without molecular diffusion, the predicted striations' thickness would be smaller than the size of an atom of hydrogen within 40 flow turnover times. In fact, we conclude that about 3 minutes, i.e. 15 turnover times, are sufficient to mix species with very low diffusivities, e.g. suspensions of virus, bacteria, human cells, and DNA.
Chemically generated convective transport in microfluidic system
NASA Astrophysics Data System (ADS)
Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman
High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.
de Souza, José Roberto Bispo; do Rosário Zucchi, Maria; Costa, Alexandre Barreto; de Azevedo, Antonio Expedito Gomes; Spano, Saulo
2017-06-30
Natural stable isotopes, such as carbon (C) and nitrogen (N), are modern tools to assess geochemical processes. C and N in organic matter can carry fingerprints of their hydrologic flows and sedimentary processes, including any anthropogenic modification on the natural system. This study focuses on the determination of aliphatic and polycyclic aromatic hydrocarbons and isotopic ratio in the sediment of Todos os Santos Bay (TSB). The isotopic results of the total organic matter indicate varied contribution marine and terrigenous. Typical rates of PAHs mainly indicate a pyrogenic source and mixture between pyrogenic and petrogenic sources. Typical ratios for the n-alkanes indicate the presence of petroleum hydrocarbons. The isotopic composition of n-alkanes suggests a mixture of sources, with the possible contribution of petrogenic. Copyright © 2017. Published by Elsevier Ltd.
Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude
2015-06-01
It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
The effects of air leaks on solar air heating systems
NASA Technical Reports Server (NTRS)
Elkin, R.; Cash, M.
1979-01-01
This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
A heuristic treatment of blood flow in the heart and the aorta together with some of the main branches considers the effects of fluid viscosity and vessel elasticity as well as pressure distribution in the typical pulsating flow.
High regression rate hybrid rocket fuel grains with helical port structures
NASA Astrophysics Data System (ADS)
Walker, Sean D.
Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.
A simplified computational fluid-dynamic approach to the oxidizer injector design in hybrid rockets
NASA Astrophysics Data System (ADS)
Di Martino, Giuseppe D.; Malgieri, Paolo; Carmicino, Carmine; Savino, Raffaele
2016-12-01
Fuel regression rate in hybrid rockets is non-negligibly affected by the oxidizer injection pattern. In this paper a simplified computational approach developed in an attempt to optimize the oxidizer injector design is discussed. Numerical simulations of the thermo-fluid-dynamic field in a hybrid rocket are carried out, with a commercial solver, to investigate into several injection configurations with the aim of increasing the fuel regression rate and minimizing the consumption unevenness, but still favoring the establishment of flow recirculation at the motor head end, which is generated with an axial nozzle injector and has been demonstrated to promote combustion stability, and both larger efficiency and regression rate. All the computations have been performed on the configuration of a lab-scale hybrid rocket motor available at the propulsion laboratory of the University of Naples with typical operating conditions. After a preliminary comparison between the two baseline limiting cases of an axial subsonic nozzle injector and a uniform injection through the prechamber, a parametric analysis has been carried out by varying the oxidizer jet flow divergence angle, as well as the grain port diameter and the oxidizer mass flux to study the effect of the flow divergence on heat transfer distribution over the fuel surface. Some experimental firing test data are presented, and, under the hypothesis that fuel regression rate and surface heat flux are proportional, the measured fuel consumption axial profiles are compared with the predicted surface heat flux showing fairly good agreement, which allowed validating the employed design approach. Finally an optimized injector design is proposed.
The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement
NASA Technical Reports Server (NTRS)
Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo; Greeley, Ronald
2001-01-01
Galileo data and numerical modeling were used to investigate the summer 1997 eruption at Pillan Patera on Io. This event, now defined as 'Pillanian' eruption style, included a high-temperature (greater than 1600 C), possibly ultrabasic, 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52- 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a widespread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that th.s surface may have resulted from (1) a fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement; (2) disruption of the lava flow by explosive interaction with a volatile-rich substrate: or (3) a combination of 1 and 2 with or without accumulation of pyroclastic materials on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distal part of the flow field. Shadow measurements at flow margins indicate a thickness of approx. 8-10 m. We have modeled the emplacement of putative ultrabasic flows from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50-150 km on a flat. unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 0.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2-7 x l0(exp 3) cu m/s, which is greater than those for typical Mauna Loa/Kilauea flows but comparable to those for the (1783) Laki eruption and the inferred flow rates of the Roza flows in the Columbia River flood basalts. The differences in ultrabasic eruption styles on Earth and Io appear to be controlled by the different eruption environments: Plumes at sites of ultrabasic eruptions on Io suggest strong magma-volatile: interactions on a low-gravity body lacking an atmosphere, whereas the geology at sites of komatiite eruptions on Earth suggest mostly submarine emplacement of thick flows with a pronounced lack of subaerial explosive activity.
The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement
NASA Technical Reports Server (NTRS)
Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald
2001-01-01
Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater than those for typical Mauna Loa/Kilaueaq flows but comparable to those for the (1783) Laki eruption and the inferred flow rates of the Roza flows in the Columbia River flood basalts. The differences in ultrabasic eruption styles on Earth and Io appear to be controlled by the different eruption environments; Plumes at sites of ultrabasic eruptions on Io suggest strong magma-volatile interactions on a low-gravity body lacking an atmosphere, whereas the geology at sites of komatiite eruptions on Earth suggest mostly submarine emplacement of thick flows with a pronounced lack of subaerial explosive activity.
Supersonic Injection of Aerated Liquid Jet
NASA Astrophysics Data System (ADS)
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
Numerical Experiments of Counterflowiing Jet Effects on Supersonic Slender-Body Configurations
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Mullane, Michael; Cheng, Gary C.; Chang, Chau-Lyan
2015-01-01
Previous studies have demonstrated that the use of counterflowing jets can greatly reduce the drag and heat loads on blunt-body geometries, especially when the long penetration mode jet condition can be established. Previously, the authors had done some preliminary numerical studies to determine the ability to establish long penetration mode jets on a typical Mach 1.6 slender configuration, and study its impact on the boom signature. The results indicated that a jet with a longer penetration length was required to achieve any impact on the boom signature of a typical Mach 1.6 slender configuration. This paper focuses on an in-depth parametric study, done using the space-time conservation element solution element Navier-Stokes flow solver, for investigating the effect of various counterflowing jet conditions/configurations on two supersonic slender-body models (cone-cylinder and quartic body of revolution). The study is aimed at gaining a better understanding of the relationship between the shock penetration length and reduction of drag and boom signature for these two supersonic slender-body configurations. Different jet flow rates, Mach numbers, nozzle jet exit diameters and jet-to-base diameter ratios were examined. The results show the characteristics of a short-to-long-to-short penetration-mode pattern with the increase of jet mass flow rates, observed across various counterflowing jet nozzle configurations. Though the optimal shock penetration length for potential boom-signature mitigation is tied to the long penetration mode, it often results in a very unsteady flow and leads to large oscillations of surface pressure and drag. Furthermore, depending on the geometry of the slender body, longer jet penetration did not always result in maximum drag reduction. For the quartic geometry, the maximum drag reduction corresponds well to the longest shock penetration length, while this was not the case for the cone-cylinder-as the geometry was already optimized for drag. Numerical results and assessments obtained from this parametric study along with the recommendation for future implementation of counterflowing jets as a means for drag and noise reduction are detailed in this paper.
Near-field entrainment in black smoker plumes
NASA Astrophysics Data System (ADS)
Smith, J. E.; Germanovich, L. N.; Lowell, R. P.
2013-12-01
In this work, we study the entrainment rate of the ambient fluid into a plume in the extreme conditions of hydrothermal venting at ocean floor depths that would be difficult to reproduce in the laboratory. Specifically, we investigate the flow regime in the lower parts of three black smoker plumes in the Main Endeavour Field on the Juan de Fuca Ridge discharging at temperatures of 249°C, 333°C, and 336°C and a pressure of 21 MPa. Such flow conditions are typical for ocean floor hydrothermal venting but would be difficult to reproduce in the laboratory. The centerline temperature was measured at several heights in the plume above the orifice. Using a previously developed turbine flow meter, we also measured the mean flow velocity at the orifice. Measurements were conducted during dives 4452 and 4518 on the submersible Alvin. Using these measurements, we obtained a range of 0.064 - 0.068 for values of the entrainment coefficient α, which is assumed constant near the orifice. This is half the value of α ≈ 0.12 - 0.13 that would be expected for plume flow regimes based on the existing laboratory results and field measurements in lower temperature and pressure conditions. In fact, α = 0.064 - 0.068 is even smaller than the value of α ≈ 0.075 characteristic of jet flow regimes and appears to be the lowest reported in the literature. Assuming that the mean value α = 0.066 is typical for hydrothermal venting at ocean floor depths, we then characterized the flow regimes of 63 black smoker plumes located on the Endeavor Segment of the Juan de Fuca Ridge. Work with the obtained data is ongoing, but current results indicate that approximately half of these black smokers are lazy in the sense that their plumes exhibit momentum deficits compared to the pure plume flow that develops as the plume rises. The remaining half produces forced plumes that show the momentum excess compared to the pure plumes. The lower value of the entrainment coefficient has important implications for measurements of mass and heat output at mid-oceanic ridges. For example, determining heat output based on the maximum height of plume rise has become a common method of measuring heat flux produced by hydrothermal circulation at mid-oceanic ridges. The fundamental theory for the rise and spreading of turbulent buoyant plumes suggests that the heat output in this method is proportional to α2 and is, therefore, sensitive to the value of α. The considerably different entrainment rates in lazy and forced black smoker plumes may be important for understanding larvae transport mechanism in the life cycle of macrofauna near hydrothermal vents.
Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration
NASA Technical Reports Server (NTRS)
Nerem, R. M.
1973-01-01
The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.
Lessons learned: design, start-up, and operation of cryogenic systems
NASA Astrophysics Data System (ADS)
Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.
2014-11-01
Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.
A flow reactor setup for photochemistry of biphasic gas/liquid reactions
Schachtner, Josef; Bayer, Patrick
2016-01-01
Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887
Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows
NASA Astrophysics Data System (ADS)
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.
2018-05-01
Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.
NASA Astrophysics Data System (ADS)
Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.
2016-05-01
We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min-1 for pressures up to 9.65 kPa in microfluidic channels 200 μm wide and 200 μm deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min-1 with larger microfluidic channels of up to 1 mm wide and 500 μm deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices.
Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.
Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi
2017-11-22
We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.
Topographic and Stochastic Influences on Pahoehoe Lava Lobe Emplacement
NASA Technical Reports Server (NTRS)
Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.
2013-01-01
A detailed understanding of pahoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pahoehoe lobes on Kilauea Volcano, Hawaii, were examined on 21-26 February 2006 using oblique time-series stereo-photogrammetry and differential global positioning system (DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061 +/- 0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13 +/- 0.64 minutes. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling induced strength of its margins. The pahoehoe flow advanced through a series of down slope and cross-slope breakouts, which began as approximately 0.2 m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pahoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers.
Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity
NASA Technical Reports Server (NTRS)
Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.
2002-01-01
In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were evaluated along with a companion set of tests in normal gravity. The flow rates, fluid properties and packing properties were selected to provide a range of several orders-of-magnitude for the important dimensionless parameters. Additional information is included in the original extended abstract.
Screening Models of Aquifer Heterogeneity Using the Flow Dimension
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.
2007-12-01
Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,
2003-01-01
In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.
Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
NASA Astrophysics Data System (ADS)
Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang
2016-09-01
The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2014-09-07
Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples was 91.4 cells per mL, with a 95% confidence interval of 86-97 cells per mL. These low cell concentrations and the large volume capabilities of the system may overcome the limitations of current cytometry, and are applicable to rare cell (such as circulating tumor cell) detection The simplicity and low cost of this device suggests that it may have a potential use in developing point-of-care clinical flow cytometry for resource-poor settings associated with global health.
Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank
NASA Technical Reports Server (NTRS)
2008-01-01
Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a method of relating the helium mass flow to measured air flow data was obtained. This analysis showed that the highest uncertainty in flow occurred in the vicinity of the choking pressure ratio, as would be expected. In addition, analysis of typical flow pulses showed that most of the helium flow occurred either well below or well above this uncertain area. The final result is the ability to provide postlaunch estimates of helium mass flows that are within 1.5 percent of the actual value.
Numerical Modeling of a Vortex Stabilized Arcjet. Ph.D. Thesis, 1991 Final Report
NASA Technical Reports Server (NTRS)
Pawlas, Gary E.
1992-01-01
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased. The technique was used to predict the flow through a typical arcjet thruster geometry. Results indicate swirl and viscosity play an important role in the complex geometry of an arcjet.
Development of a 5-Component Balance for Water Tunnel Applications
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.
1999-01-01
The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.
The Role of Subsurface Water in Carving Hesperian Amphitheater-Headed Valleys
NASA Astrophysics Data System (ADS)
Lapotre, M. G. A.; Lamb, M. P.
2017-12-01
Groundwater sapping may play a role in valley formation in rare cases on Earth, typically in sand or weakly cemented sandstones. Small-scale valleys resulting from groundwater seepage in loose sand typically have amphitheater-shaped canyon heads with roughly uniform widths. By analogy to terrestrial sapping valleys, Hesperian-aged amphitheater canyons on Mars have been interpreted to result from groundwater sapping, with implications for subsurface and surface water flows on ancient Mars. However, other studies suggest that martian amphitheater canyons carved in fractured rock may instead result from large overland floods, by analogy to dry cataracts in scabland terrains in the northwestern U.S. Understanding the formation of bedrock canyons is critical to our understanding of liquid water reservoirs on ancient Mars. Can groundwater sapping carve canyons in substrates other than sand? There is currently no model to predict the necessary conditions for groundwater to carve canyons in substrates ranging from loose sediment of various sizes to competent rock. To bridge this knowledge gap, we formulate a theoretical model coupling equations of groundwater flow and sediment transport that can be applied to a wide range of substrates. The model is used to infer whether groundwater sapping could have carved canyons in the absence of overland flows, and requires limited inputs that are measureable in the field or from orbital images. Model results show that sapping erosion is capable of forming canyons, but only in loose well-sorted sand. Coarser sediment is more permeable, but more difficult to transport. Finer sediment is more easily transported, but lower permeability precludes the necessary seepage discharge. Finally, fractured rock is highly permeable, but seepage discharges are far below those required to transport typical talus boulders. Using orbiter-based lithological constraints, we conclude that canyons near Echus Chasma are carved into bedrock and therefore required high-discharge overland flow during formation. These results have implications for Hesperian hydrology; while water volumes to carve sapping versus flood canyons need not be significantly different, erosion rates are orders of magnitude faster in the flood scenario, implying brief periods of abundant surface water on Hesperian Mars.
Numerical modeling of a vortex stabilized arcjet
NASA Astrophysics Data System (ADS)
Pawlas, Gary E.
1992-11-01
Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased.
Dynamics of Mass Transfer in Wide Symbiotic Systems
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Karovska, M.; Sasselov, D.
2010-01-01
We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.
Closed cycle high-repetition-rate pulsed HF laser
NASA Astrophysics Data System (ADS)
Harris, Michael R.; Morris, A. V.; Gorton, Eric K.
1997-04-01
The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.
NASA Astrophysics Data System (ADS)
Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu
2012-09-01
SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.
van der Hoop, Julie M; Byron, Margaret L; Ozolina, Karlina; Miller, David L; Johansen, Jacob L; Domenici, Paolo; Steffensen, John F
2018-06-12
Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.
2016-02-01
Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
Orozco, Raquel; Godfrey, Scott; Coffman, Jon; Amarikwa, Linus; Parker, Stephanie; Hernandez, Lindsay; Wachuku, Chinenye; Mai, Ben; Song, Brian; Hoskatti, Shashidhar; Asong, Jinkeng; Shamlou, Parviz; Bardliving, Cameron; Fiadeiro, Marcus
2017-07-01
We designed, built or 3D printed, and screened tubular reactors that minimize axial dispersion to serve as incubation chambers for continuous virus inactivation of biological products. Empirical residence time distribution data were used to derive each tubular design's volume equivalent to a theoretical plate (VETP) values at a various process flow rates. One design, the Jig in a Box (JIB), yielded the lowest VETP, indicating optimal radial mixing and minimal axial dispersion. A minimum residence time (MRT) approach was employed, where the MRT is the minimum time the product spends in the tubular reactor. This incubation time is typically 60 minutes in a batch process. We provide recommendations for combinations of flow rates and device dimensions for operation of the JIB connected in series that will meet a 60-min MRT. The results show that under a wide range of flow rates and corresponding volumes, it takes 75 ± 3 min for 99% of the product to exit the reactor while meeting the 60-min MRT criterion and fulfilling the constraint of keeping a differential pressure drop under 5 psi. Under these conditions, the VETP increases slightly from 3 to 5 mL though the number of theoretical plates stays constant at about 1326 ± 88. We also demonstrated that the final design volume was only 6% ± 1% larger than the ideal plug flow volume. Using such a device would enable continuous viral inactivation in a truly continuous process or in the effluent of a batch chromatography column. Viral inactivation studies would be required to validate such a design. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:954-965, 2017. © 2017 American Institute of Chemical Engineers.
Sources of nitrogen and phosphorous to northern San Francisco Bay
Hager, Stephen W.; Schemel, Laurence E.
1992-01-01
We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.
NASA Astrophysics Data System (ADS)
Moeck, Jonas P.; Bourgouin, Jean-François; Durox, Daniel; Schuller, Thierry; Candel, Sébastien
2013-04-01
Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.
Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector
NASA Astrophysics Data System (ADS)
Herrero Martín, R.; García, A.; Pérez-García, J.
2012-11-01
Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.
NASA Astrophysics Data System (ADS)
Crown, D. A.; Ramsey, M.; Hon, K.
2010-12-01
Pahoehoe lava flows are compound features that consist of multiple overlapping and interfingering lobes and exhibit morphologically diverse surfaces characterized by channelized zones, smooth-surfaced sheets, and numerous, small toe networks. Previous work compiled detailed planform maps of solidified pahoehoe toe networks to document their morphology, morphometry and connective relationships in order to provide constraints on lava transport models. In order to expand this research to active flow emplacement, we observed slow-moving, tube-fed pahoehoe flows on the coastal plain near Kalapana, Hawaii in May, 2010. The evolution of pahoehoe toe and toe network characteristics over their emplacement history was examined and the role of small-scale flow inflation on the advance of pahoehoe lobes evaluated. We collected both visible video footage and high-speed, high-precision thermal infrared (TIR) data using a FLIR S-40 camera. The TIR data provide surface temperature maps that can be easily used to identify formation of new toes and track their growth and surface cooling. From these maps, lobe development, connective relationships, and frontal and lateral spreading rates can be analyzed. Preliminary results suggest that regular cycles of activity characterize the development of these pahoehoe lobes: 1) emplacement of new toes in local topographic lows at the front, margin, and within the interior of an active lobe forming small interconnected networks, 2) decline and sometimes temporary cessation in the production of new pahoehoe toes, 3) inflation of the recently emplaced flow surface, either partially or en masse depending on the rate of influx of new lava, the degree of irregularity of the pre-flow surface, and/or the slope across the recently emplaced lava surface, and 4) fracturing of the recently emplaced surface crust that feeds emplacement of new toes. Inflation fractures typically cut across several previously emplaced toes and can occur at the front, along the margins, or within the active lobe, even at significant distances behind the flow front.
Numerical investigation of cavitation flow in journal bearing geometry
NASA Astrophysics Data System (ADS)
Riedel, M.; Schmidt, M.; Stücke, P.
2013-04-01
The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.
Sweeping Jet Actuator in a Quiescent Environment
NASA Technical Reports Server (NTRS)
Koklu, Mehti; Melton, Latunia P.
2013-01-01
This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).
Experiments on free and impinging supersonic microjets
NASA Astrophysics Data System (ADS)
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
2011-07-01
fluid resistivity , temperature logging, and flow metering at other sites that typically indicated only two or three active fractures in each hole...was consistent with results of conventional borehole fluid resistivity , temperature logging, and flow metering at other sites that typically indicated...following tests were performed in each boundary monitoring well: ■ Gamma Ray; ■ Spontaneous Potential (SP); ■ Single Point Resistance (SPR
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
Equilibrium and rate data for the extraction of lipids using compressed carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M.B.; Bott, T.R.; Barr, M.J.
1987-01-01
Equilibrium data are given for the solubilities in compressed CO2 of the lipid components in freshly ground rape seed and of glycerol trioleate (a typical constituent of rape oil) at pressures up to 200 bar and temperatures 25 to 75C. Continuous flow tests in which a bed of ground rape seed was contacted with a stream of liquid CO2 at 25C and varied flow conditions are also reported. The results are collated in terms of an empirical mass transfer coefficient. A sharp change took place in the lipid concentration in the extractant stream leaving the bed when about 65% ofmore » the available oil had been extracted. This, and changes in the composition of the extract, are discussed, together with the use of this type of data for design purposes.« less
Thermal analysis of a growing crystal in an aqueous solution
NASA Astrophysics Data System (ADS)
Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya
1980-10-01
The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.
Computational Thermodynamics Analysis of Vaporizing Fuel Droplets in the Human Upper Airways
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Kleinstreuer, Clement
The detailed knowledge of air flow structures as well as particle transport and deposition in the human lung for typical inhalation flow rates is an important precursor for dosimetry-and-health-effect studies of toxic particles as well as for targeted drug delivery of therapeutic aerosols. Focusing on highly toxic JP-8 fuel aerosols, 3-D airflow and fluid-particle thermodynamics in a human upper airway model starting from mouth to Generation G3 (G0 is the trachea) are simulated using a user-enhanced and experimentally validated finite-volume code. The temperature distributions and their effects on airflow structures, fuel vapor deposition and droplet motion/evaporation are discussed. The computational results show that the thermal effect on vapor deposition is minor, but it may greatly affect droplet deposition in human airways.
Azimuthal magnetorotational instability with super-rotation
NASA Astrophysics Data System (ADS)
Rüdiger, G.; Schultz, M.; Gellert, M.; Stefani, F.
2018-02-01
It is demonstrated that the azimuthal magnetorotational instability (AMRI) also works with radially increasing rotation rates contrary to the standard magnetorotational instability for axial fields which requires negative shear. The stability against non-axisymmetric perturbations of a conducting Taylor-Couette flow with positive shear under the influence of a toroidal magnetic field is considered if the background field between the cylinders is current free. For small magnetic Prandtl number the curves of neutral stability converge in the (Hartmann number,Reynolds number) plane approximating the stability curve obtained in the inductionless limit . The numerical solutions for indicate the existence of a lower limit of the shear rate. For large the curves scale with the magnetic Reynolds number of the outer cylinder but the flow is always stable for magnetic Prandtl number unity as is typical for double-diffusive instabilities. We are particularly interested to know the minimum Hartmann number for neutral stability. For models with resting or almost resting inner cylinder and with perfectly conducting cylinder material the minimum Hartmann number occurs for a radius ratio of \\text{in}=0.9$ . The corresponding critical Reynolds numbers are smaller than 4$ .
Performance of a Half-Heusler Thermoelectric Generator for Automotive Application
Szybist, James; Davis, Steven; Thomas, John; ...
2018-04-03
Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less
Performance of a Half-Heusler Thermoelectric Generator for Automotive Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James; Davis, Steven; Thomas, John
Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less
A porous media theory for characterization of membrane blood oxygenation devices
NASA Astrophysics Data System (ADS)
Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira
2013-07-01
A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.
Net retreat of Antarctic glacier grounding lines
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Shepherd, Andrew; Gilbert, Lin; Hogg, Anna E.; McMillan, Malcolm; Muir, Alan; Slater, Thomas
2018-04-01
Grounding lines are a key indicator of ice-sheet instability, because changes in their position reflect imbalance with the surrounding ocean and affect the flow of inland ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. Here, we combine satellite altimeter observations of ice-elevation change and measurements of ice geometry to track grounding-line movement around the entire continent, tripling the coverage of previous surveys. Between 2010 and 2016, 22%, 3% and 10% of surveyed grounding lines in West Antarctica, East Antarctica and at the Antarctic Peninsula retreated at rates faster than 25 m yr-1 (the typical pace since the Last Glacial Maximum) and the continent has lost 1,463 km2 ± 791 km2 of grounded-ice area. Although by far the fastest rates of retreat occurred in the Amundsen Sea sector, we show that the Pine Island Glacier grounding line has stabilized, probably as a consequence of abated ocean forcing. On average, Antarctica's fast-flowing ice streams retreat by 110 metres per metre of ice thinning.
Rapid Evaporation of Binary Mixture Injections
NASA Astrophysics Data System (ADS)
McCahan, S.; Kessler, C.
1998-11-01
When a fuel under pressure is heated above its normal boiling point and expanded through a nozzle into atmospheric conditions, rapid evaporation can occur. The resulting sprays typically exhibit increased atomization and shorter liquid penetration lengths. When heavy fuels with high specific heats are used, complete evaporation is theoretically possible. This is a continuation of work done by Sloss and McCahan (APS/DFD meeting 1996), in which dodecane, fuel oil, kerosene, and diesel oil were studied, and McCahan and Kessler (APS/DFD meeting 1997), in which preliminary results were presented on decane and tetradecane. At a pressure of 10 bar, the working fluid (decane/tetradecane mixture) is preheated to temperatures ranging from room temperature to the decane saturation temperature and then expanded through a simple converging nozzle into a chamber at 1 bar. From the photographic and mass flow rate data, the effect of degree of superheat on the spray cone angle and mass flow rate is observed. Results show that the addition of a heavier hydrocarbon has the expected damping effects on the spray characteristics.
Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.
2011-01-01
Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.
The effects of van der Waals attractions on cloud droplet growth by coalescence
NASA Technical Reports Server (NTRS)
Rogers, Jan R.; Davis, Robert H.
1990-01-01
The inclusion of van der Waals attractions in the interaction between cloud droplets has been recently shown to significantly increase the collision efficiencies of the smaller droplets. In the current work, these larger values for the collision efficiencies are used in a population dynamics model of the droplet size distribution evolution with time, in hopes of at least partially resolving the long-standing paradox in cloud microphysics that predicted rates of the onset of precipitation are generally much lower than those which are observed. Evolutions of several initial cloud droplet spectra have been tracked in time. Size evolutions are compared as predicted from the use of collision efficiencies computed using two different models to allow for droplet-droplet contact: one which considers slip flow effects only, and one which considers the combined effects of van der Waals forces and slip flow. The rate at which the droplet mass density function shifts to larger droplet sizes is increased by typically 20-25 percent, when collision efficiencies which include van der Waals forces are used.
NASA Astrophysics Data System (ADS)
Tarquini, Simone
2017-08-01
A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the "thermal proxy"). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a "real-world" view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion "lava circuit" over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the "lava circuit." Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, M.N.; Oxley, M.E.
Aquifer cleanup efforts at contaminated sites frequently involve operation of a system of extraction wells. It has been found that contaminant load discharged by extraction wells typically declines with time, asymptotically approaching a residual level. Such behavior could be due to rate-limited desorption of an organic contaminant from aquifer solids. An analytical model is presented which accounts for rate-limited desorption of an organic solute during cleanup of a contaminated site. Model equations are presented which describe transport of a sorbing contaminant in a converging radial flow field, with sorption described by (1) equilibrium, (2) first-order rate, and (3) Fickian diffusionmore » expressions. The model equations are solved in the Laplace domain and numerically inverted to simulate contaminant concentrations at an extraction well. A Laplace domain solution for the total contaminant mass remaining in the aquifer is also derived. It is shown that rate-limited sorption can have a significant impact upon aquifer remediation. Approximate equivalence among the various rate-limited models is also demonstrated.« less
Capacitively Coupled RF Plasmas for the Synthesis of Silicon Nanocrystals: Scaling and Mechanisms
NASA Astrophysics Data System (ADS)
Markosyan, Aram H.; Le Picard, Romain; Porter, David H.; Girshick, Steven L.; Kushner, Mark J.
2015-09-01
Silicon nanocrystals (SNCs) are of interest for light emitting electronics, photovoltaics, and biotechnology. SNCs are produced in low pressure capacitively coupled plasmas (CCPs) sustained in SiH4 containing mixtures. To optimize these applications, it is necessary to control the size distribution of the SNCs. Particles 3-5 nm diameter are typically tailored by flow rates and power, however the fundamental processes responsible for this size control are not well understood. We developed a 2-d computer model for RF powered CCPs to predict the synthesis of SNCs. An aerosol sectional model was incorporated into the Hybrid Plasma Equipment Model. The reactor is a quartz tube a few mm in diameter through which 100 sccm Ar and 15 sccm He/SiH4 = 95/5 at 2 Torr are flowed. The SNC residence time is 1-2 ms in the dense plasma region near the electrodes. We found that the distribution of plasma potential is important in determining the growth and size distribution of the SNCs. The SNCs having long residence times in the plasma, thereby enabling growth, are usually negatively charged. To ultimately allow these SNCs to flow out of the plasma, the distribution of the plasma potential must enable the particles to be entrained in the neutral gas flow without a significant potential barrier. We also found that agglomeration of particles of <1 nm is important in the rate of growth of SNCs. Work supported by DOE (DE-SC0001939) and NSF (CHE-124752).
Analysis of a space emergency ammonia dump using the FLOW-NET two-phase flow program
NASA Technical Reports Server (NTRS)
Navickas, J.; Rivard, W. C.
1992-01-01
Venting of cryogenic and non-cryogenic fluids to a vacuum or a very low pressure will take place in many space-based systems that are currently being designed. This may cause liquid freezing either internally within the flow circuit or on external spacecraft surfaces. Typical ammonia flow circuits were investigated to determine the effect of the geometric configuration and initial temperature, pressure, and void fraction on the freezing characteristics of the system. The analysis was conducted also to investigate the ranges of applicability of the FLOW-NET program. It was shown that a typical system can be vented to very low liquid fractions before freezing occurs. However, very small restrictions in the flow circuit can hasten the inception of freezing. The FLOW-NET program provided solutions over broad ranges of system conditions, such as venting of an ammonia tank, initially completely filled with liquid, through a series of contracting and expanding line cross sections to near-vacuum conditions.
Plasma MRI Experiments at UW-Madison
NASA Astrophysics Data System (ADS)
Flanagan, K.; Clark, M.; Desangles, V.; Siller, R.; Wallace, J.; Weisberg, D.; Forest, C. B.
2015-11-01
Experiments for driving Keplerian-like flow profiles on both the Plasma Couette Experiment Upgrade (PCX-U) and the Wisconsin Plasma Astrophysics Laboratory (WiPAL) user facility are described. Instead of driving flow at the boundaries, as is typical in many liquid metal Couette experiments, a global drive is implemented. A large radial current is drawn across a small axial field generating torque across the whole profile. This global electrically driven flow is capable of producing profiles similar to Keplerian flow. PCX-U has been purposely constructed for MRI experiments, while similar experiments on the WiPAL device show the versatility of the user facility and provide a larger plasma volume. Numerical calculations show the predicted parameter spaces for exciting the MRI in these plasmas and the equilibrium flow profiles expected. In both devices, relevant MRI parameters appear to be within reach of typical operating characteristics.
NASA Technical Reports Server (NTRS)
Swanson, T. D.; Ollendorf, S.
1979-01-01
This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.
Analysis of ripple formation in single crystal spot welds
NASA Technical Reports Server (NTRS)
Rappaz, M.; Corrigan, D.; Boatner, L. A.
1997-01-01
Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.
NASA Astrophysics Data System (ADS)
Fastook, James L.; Head, James W.; Marchant, David R.
2014-01-01
Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating ice sheet and exposure of bedrock cliffs. This scenario helps resolve many of the unusual characteristics of lobate debris aprons (LDA) and lineated valley fill (LVF). For example, the distribution of LVF is very consistent with extensive flow of glacial ice from plateau icefields, and the acquisition of a debris cover in the waning stages of retreat of the regional cover as the bedrock scarps are exposed. The typical concentric development of LDA around massifs is much more consistent with ice sheet retreat than insolation-related local accumulation and flow. We thus conclude that the retreating ice-sheet model is robust and should be investigated and tested in more detail. In addition, these results clearly show that the lobate debris aprons in the vicinity of the Dichotomy Boundary could not have attained temperatures near or above the ice melting point and retained their current shape, a finding that supports subzero temperatures for the last several hundred million years, the age of the LDA surfaces. A further implication is that the LDA ice has been preserved for at least several hundred million years, and could potentially contain the record of the climate of Mars, preserved since that time below a sublimation lag deposit.
Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling
NASA Astrophysics Data System (ADS)
Coulon, C. A.; Hsieh, P. A.; White, R.; Lowenstern, J. B.; Ingebritsen, S. E.
2017-10-01
Distal volcano-tectonic (dVT) seismicity typically precedes eruption at long-dormant volcanoes by days to years. Precursory dVT seismicity may reflect magma-induced fluid-pressure pulses that intersect critically stressed faults. We explored this hypothesis using an open-source magmatic-hydrothermal code that simulates multiphase fluid and heat transport over the temperature range 0 to 1200 °C. We calculated fluid-pressure changes caused by a small (0.04 km3) intrusion and explored the effects of flow geometry (channelized vs. radial flow), magma devolatilization rates (0-15 kg/s), and intrusion depths (5 and 7.5 km, above and below the brittle-ductile transition). Magma and host-rock permeabilities were key controlling parameters and we tested a wide range of permeability (k) and permeability anisotropies (kh/kv), including k constant, k(z), k(T), and k(z, T, P) distributions, examining a total of 1600 realizations to explore the relevant parameter space. Propagation of potentially causal pressure changes (ΔP ≥ 0.1 bars) to the mean dVT location (6 km lateral distance, 6 km depth) was favored by channelized fluid flow, high devolatilization rates, and permeabilities similar to those found in geothermal reservoirs (k 10- 16 to 10- 13 m2). For channelized flow, magma-induced thermal pressurization alone can generate cases of Δ P ≥ 0.1 bars for all permeabilities in the range 10- 16 to 10- 13 m2, whereas in radial flow regimes thermal pressurization causes Δ P < 0.1 bars for all permeabilities. Changes in distal fluid pressure occurred before proximal pressure changes given modest anisotropies (kh/kv 10-100). Invoking k(z,T,P) and high, sustained devolatilization rates caused large dynamic fluctuations in k and P in the near-magma environment but had little effect on pressure changes at the distal dVT location. Intrusion below the brittle-ductile transition damps but does not prevent pressure transmission to the dVT site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan
If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less
NASA Astrophysics Data System (ADS)
Younger, S. E.; Jackson, C. R.
2017-12-01
In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.
Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.
2012-01-01
The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.
Long, Ruyin; Li, Jinqiu; Chen, Hong; Zhang, Linling; Li, Qianwen
2018-03-01
Carbon dioxide embodied flow in international trade has become an important factor in defining global carbon emission responsibility and climate policy. We conducted an empirical analysis for China and Japan for the years 2000-2014, using a multi-region input-output model and considering the rest of the world as a comparison group. We compared the two countries' direct and complete carbon dioxide emissions intensity and bilateral economic activities such as imports and exports, production and consumption to analyze the difference between China and Japan. The results showed that the intensities of carbon emissions in all sectors of China were higher than that in Japan and that China's annual production-based emissions were greater than consumption-based emissions, the opposite of these relationships in Japan. China was a typical net carbon export country, and carbon embodied in its imports and exports continued to increase throughout the study period. In contrast, Japan's volume and growth rate of embodied carbon emissions were far less than China's and Japan was a typical net carbon import country. Finally, the conclusions of this study support recommendations for the formulation of international carbon emission responsibility allocation, domestic abatement policy as well as China's trade policy. Copyright © 2018 Elsevier Ltd. All rights reserved.
A reassessment of the role of tidal dispersion in estuaries and bays
Geyer, W. Rockwell; Signell, Richard P.
1992-01-01
The role of tidal dispersion is reassessed, based on a consideration of the relevant physical mechanisms, particularly those elucidated by numerical simulations of tide-induced dispersion. It appears that the principal influence of tidal currents on dispersion occurs at length scales of the tidal excursion and smaller; thus the effectiveness of tidal dispersion depends on the relative scale of the tidal excursion to the spacing between major bathymetric and shoreline features. In estuaries where the typical spacing of topographic features is less than the tidal excursion, tidal dispersion may contribute significantly to the overall flushing. In estuaries and embayments in which the typical spacing between major features is larger than the tidal excursion, the influence of tidal dispersion will be localized, and it will not markedly contribute to overall flushing. Tidal dispersion is most pronounced in regions of abrupt topographic changes such as headlands and inlets, where flow separation occurs. The strong strain rate in the region of flow separation tends to stretch patches of fluid into long filaments, which are subsequently rolled up and distorted by the transient eddy field. The dispersion process accomplished by the tides varies strongly as a function of position and tidal phase and thus does not lend itself to parameterization by an eddy diffusion coefficient.
Influence of bed surface changes on snow avalanche simulation
NASA Astrophysics Data System (ADS)
Fischer, Jan-Thomas; Issler, Dieter
2014-05-01
Gravitational flows, such as snow avalanches, are often modeled employing the shallowness assumption. The driving gravitational force has a first order effect on the dynamics of the flow, especially in complex terrain. Under suitable conditions, erosion and deposition during passage of the flow may change the bed surface by a similar amount as the flow depth itself. The accompanying changes of local slope angle and curvature are particularly significant at the side margins of the flow, where they may induce self-channeling and levée formation. Generally, one ought to expect visible effects wherever the flow depth and velocity are small, e.g., in deposition zones. Most current numerical models in practical use neglect this effect. In order to study the importance of these effects in typical applications, we modified the quasi-3D (depth-averaged) code MoT-Voellmy, which implements the well-known Voellmy friction law that is traditionally used in hazard mapping: The bed shear stress is given by τiz(h,u) = -ui(μgh cosθ+ ku2), ||u|| (1) with μ = O(0.1...0.5) and k = O(10-3...10-2) the dimensionless friction and drag coefficients, respectively. The leading curvature effects, i.e., extra friction due to centrifugal normal forces, are taken into account. The mass and momentum balances are solved by the (simplified) method of transport on a grid whose cells are squares when projected onto the horizontal plane. The direction of depth-averaging is everywhere perpendicular to the topographic surface. A simple erosion model is used. The erosion formula is based on the assumption that the snow cover behaves as a perfectly brittle solid with shear strength τc, above which it instantaneously fails. The erosion rate is derived from the balance of momentum across the interface between bed and flow, where there is a discontinuity of the shear stress, which is given by equation 1 just above the interface and by τc just below it according to the assumptions. This immediately leads to the formula 2 qe = μgh-cosθ+-ku- τc/ρfΘ (μgh cosθ+ ku2 - τc/ρf). ||u|| (2) We present numerical simulations with static and dynamic beds in two different cases. First, an avalanche simulation on an inclined plane allows to study the occurring effects in their most immediate form. This allows to study the influence of spatial resolution of the computational grid. Second, we back-calculate a typical mid-size avalanche that was measured and documented in 1993 at the Norwegian test site Ryggfonn. This case study serves to test the relevance of including bed surface changes under conditions typical of real-world applications.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Harris, A. J. L.
2016-12-01
Satellite observations of active vents commonly group into several broad categories: thermal analysis, deformational studies, and gas/ash detection. These observations become increasingly detailed depending on the spatial, spectral and/or temporal resolution of the sensor. Higher temporal resolution thermal infrared (TIR) data are used to determine the time-averaged discharge rate (TADR) and the potential down-slope inundation of the newly-forming flow using thermorheologic-based modelling. Whereas, increased spectral resolution leads to improved measurement of the flow's composition, crystal content, and vesicularity. Combined, these data help to improve the accuracy of cooling-based viscosity models such as FLOWGO. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. The cooling of the glassy lava surface is directly imaged by the TIR instrument to determine temperature, which is then used to calculate the model's starting conditions. Understanding the cooling, formation and dynamics of basaltic surfaces therefore helps to resolve compositional, textural, and silicate structural changes. Models, coupled with accurate knowledge of the characteristics of older, inactive flows (such as those on Mars), can be reversed to predict the vent conditions at the time of the eruption. Being able to directly connect the final flow morphology to specific eruption conditions is a critical goal to understand the last stages of volcanism on Mars and becomes an important educational tool where combined with 3D visualization. The 2012-2013 eruption of Tolbachik volcano, Russia was the largest and most thermally intense flow-forming eruption in the past 50 years, producing longer lava flows than that of a typical eruption at Kilauea or Etna. These flows have been studied using various scales of TIR data at the time of eruption and following cooling. The input parameters for the FLOWGO model are then tuned to produce the best fit of eruptive conditions to final flow morphology. The refined model can then be used to determine the TADR from the vent and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Final results are visualized and their educational potential assessed.
NASA Astrophysics Data System (ADS)
Duraiswami, Raymond A.; Gadpallu, Purva; Shaikh, Tahira N.; Cardin, Neha
2014-04-01
Unlike pahoehoe, documentation of true a‧a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737-752) as most lava flows previously considered to be a‧a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401-414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822-836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a‧a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to 'a‧a lava flow morphologies are seen on length scales of 100-1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe-a‧a transitions seen in Cenozoic long lava flows (Undara ˜160 km, Toomba ˜120 km, Kinrara ˜55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a‧a lava flow ˜51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ˜65 Ma in Peninsular India.
Harvey, J.W.; Drummond, J.D.; Martin, R.L.; McPhillips, L.E.; Packman, A.I.; Jerolmack, D.J.; Stonedahl, S.H.; Aubeneau, A.F.; Sawyer, A.H.; Larsen, L.G.; Tobias, C.R.
2012-01-01
Hyporheic flow in streams has typically been studied separately from geomorphic processes. We investigated interactions between bed mobility and dynamic hyporheic storage of solutes and fine particles in a sand-bed stream before, during, and after a flood. A conservatively transported solute tracer (bromide) and a fine particles tracer (5 μm latex particles), a surrogate for fine particulate organic matter, were co-injected during base flow. The tracers were differentially stored, with fine particles penetrating more shallowly in hyporheic flow and retained more efficiently due to the high rate of particle filtration in bed sediment compared to solute. Tracer injections lasted 3.5 h after which we released a small flood from an upstream dam one hour later. Due to shallower storage in the bed, fine particles were rapidly entrained during the rising limb of the flood hydrograph. Rather than being flushed by the flood, we observed that solutes were stored longer due to expansion of hyporheic flow paths beneath the temporarily enlarged bedforms. Three important timescales determined the fate of solutes and fine particles: (1) flood duration, (2) relaxation time of flood-enlarged bedforms back to base flow dimensions, and (3) resulting adjustments and lag times of hyporheic flow. Recurrent transitions between these timescales explain why we observed a peak accumulation of natural particulate organic matter between 2 and 4 cm deep in the bed, i.e., below the scour layer of mobile bedforms but above the maximum depth of particle filtration in hyporheic flow paths. Thus, physical interactions between bed mobility and hyporheic transport influence how organic matter is stored in the bed and how long it is retained, which affects decomposition rate and metabolism of this southeastern Coastal Plain stream. In summary we found that dynamic interactions between hyporheic flow, bed mobility, and flow variation had strong but differential influences on base flow retention and flood mobilization of solutes and fine particulates. These hydrogeomorphic relationships have implications for microbial respiration of organic matter, carbon and nutrient cycling, and fate of contaminants in streams.
Effects of wood on debris flow runout in small mountain watersheds.
Stephen T. Lancaster; Shannon K. Hayes
2003-01-01
Debris flows have typically been viewed as two-phase mixtures of sediment and water, but in forested mountain landscapes, wood can represent a sizable fraction of total flow volume. The effects of this third phase on flow behavior are poorly understood. To evaluate whether wood can have a significant effect on debris flow runout in small mountainous watersheds, we used...
Advanced flow MRI: emerging techniques and applications
Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.
2016-01-01
Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696
Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.
2012-01-01
Solid rocket motors (SRMs) typically use nozzle materials which are required to maintain their shape as well as insulate the underlying support structure during the motor operation. In addition, SRMs need internal insulation materials to protect the motor case from the harsh environment resulting from the combustion of solid propellant. In the nozzle, typical materials consist of high density graphite, carbon-carbon composites and carbon phenolic composites. Internal insulation of the motor cases is typically a composite material with carbon, asbestos, Kevlar, or silica fibers in an ablative matrix such as EPDM or NBR. For both nozzle and internal insulation materials, the charring process occurs when the hot combustion products heat the material intensely. The pyrolysis of the matrix material takes away a portion of the thermal energy near the wall surface and leaves behind a char layer. The fiber reinforcement retains the porous char layer which provides continued thermal protection from the hot combustion products. It is of great interest to characterize both the total erosion rates of the material and the char layer thickness. By better understanding of the erosion process for a particular ablative material in a specific flow environment, the required insulation material thickness can be properly selected. The recession rates of internal insulation and nozzle materials of SRMs are typically determined by testing in some sort of simulated environment; either arc-jet testing, flame torch testing, or subscale SRMs of different size. Material recession rates are deduced by comparison of pre- and post-test measurements and then averaging over the duration of the test. However, these averaging techniques cannot be used to determine the instantaneous recession rates of the material. Knowledge of the variation in recession rates in response to the instantaneous flow conditions during the motor operation is of great importance. For example, in many SRM configurations the recession of the solid propellant grain can drastically alter the flow-field and effect the recession of internal insulation and nozzle materials. Simultaneous measurement of the overall erosion rate, the development of the char layer, and the recession of the char-virgin interface during the motor operation can be rather difficult. While invasive techniques have been used with limited success, they have serious drawbacks. Break wires or make wire sensors can be installed into a sufficient number of locations in the charring material from which a time history of the charring surface can be deduced. These sensors fundamentally alter the local structure of the material in which they are imbedded. Also, the location of these sensors within the material is not known precisely without the use of an X-ray. To determine instantaneous recession rates, real-time X-ray radiography (X-ray RTR) has been utilized in several SRM experiments at PSU. The X-ray RTR system discussed in this paper consists of an X-ray source, X-ray image intensifier, and CCD camera connected to a capture computer. The system has been used to examine the ablation process of internal insulation as well as nozzle material erosion in a subscale SRM. The X-ray source is rated to 320 kV at 10 mA and has both a large (5.5 mm) and small (3.0 mm) focal spot. The lead-lined cesium iodide X-ray image intensifier produces an image which is captured by a CCD camera with a 1,000 x 1,000 pixel resolution. To produce accurate imagery of the object of interest, the alignment of the X-ray source to the X-ray image intensifier is crucial. The image sequences captured during the operation of an SRM are then processed to enhance the quality of the images. This procedure allows for computer software to extract data on the total erosion rate and the char layer thickness. Figure 1 Error! Reference source not found.shows a sequence of images captured during the operation the subscale SRM with the X-ray RTR system. The X-rayTR system, alignment procedure, uncertainty determination, and image analysis process will be discussed in detail in the full manuscript.
Maula, H; Hongisto, V; Naatula, V; Haapakangas, A; Koskela, H
2017-11-01
The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality, and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO 2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO 2 level 2260 ppm). CO 2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odor intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
How the propagation of heat-flux modulations triggers E × B flow pattern formation.
Kosuga, Y; Diamond, P H; Gürcan, O D
2013-03-08
We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.
de Fraga, Rafael; Lima, Albertina P; Magnusson, William E; Ferrão, Miquéias; Stow, Adam J
2017-07-01
Knowledge of genetic structure, geographic distance and environmental heterogeneity can be used to identify environmental features and natural history traits that influence dispersal and gene flow. Foraging mode is a trait that might predict dispersal capacity in snakes, because actively foragers typically have greater movement rates than ambush predators. Here, we test the hypothesis that 2 actively foraging snakes have higher levels of gene flow than 2 ambush predators. We evaluated these 4 co-distributed species of snakes in the Brazilian Amazon. Snakes were sampled along an 880 km transect from the central to the southwest of the Amazon basin, which covered a mosaic of vegetation types and seasonal differences in climate. We analyzed thousands of single nucleotide polymorphisms to compare patterns of neutral gene flow based on isolation by geographic distance (IBD) and environmental resistance (IBR). We show that IBD and IBR were only evident in ambush predators, implying lower levels of dispersal than the active foragers. Therefore, gene flow was high enough in the active foragers analyzed here to prevent any build-up of spatial genotypic structure with respect to geographic distance and environmental heterogeneity. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Construction dynamics of a lava channel
NASA Astrophysics Data System (ADS)
Harris, Andrew J. L.; Favalli, Massimiliano; Mazzarini, Francesco; Hamilton, Christopher W.
2009-05-01
We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel-levee structure. The levees comprise three packages. The basal package comprises an 80-150 m wide 'a'a flow in which a ˜2 m deep and ˜11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised 'a'a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May-2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal 'a'a flow thickness yields effusion rates of 35 m3 s-1 for the opening phase, with the initial flow advancing across the mapped section at ˜10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90-420 m3 s-1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ˜2 m with an effusion rate of ˜35 m3 s-1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23-54 m3 s-1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed 'a'a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ˜10 h. The complex processes involved in levee-channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
Swenson, Carolyn J; Appel, Alicia; Sheehan, Moira; Hammer, Anne; Fenner, Zita; Phibbs, Stephanie; Harbrecht, Marjie; Main, Deborah S
2012-01-01
Adult immunizations prevent morbidity and mortality yet coverage remains suboptimal, in part due to missed opportunities. Clinical decision support systems (CDSSs) can improve immunization rates when integrated into routine work flow, implemented wherever care is delivered, and used by staff who can act on the recommendation. An adult immunization improvement project was undertaken in a large integrated, safety-net health care system. A CDSS was developed to query patient records and identify patients eligible for pneumococcal, influenza, or tetanus immunization and then generate a statement that recommends immunization or indicates a previous refusal. A new agency policy authorized medical assistants and nurses in clinics, and nurses in the hospital, to use the CDSS as a standing order. Immunization delivery work flow was standardized, and staff received feedback on immunization rates. The CDSS identified more patients than a typical paper standing order and can be easily modified to incorporate changes in vaccine indications. The intervention led to a 10% improvement in immunization rates in adults 65 years of age or older and in younger adults with diabetes or chronic obstructive pulmonary disease. Overall, the improvements were sustained beyond the project period. The CDSS was expanded to encompass additional vaccines. Interdepartmental collaboration was critical to identify needs, challenges, and solutions. Implementing the standing order policy in clinics and the hospital usually allowed immunizations to be taken out of the hands of clinicians. As an on-demand tool, CDSS must be used at each patient encounter to avoid missed opportunities. Staff retraining accompanied by ongoing assessment of immunization rates, work flow, and missed opportunities to immunize patients are critical to sustain and enhance improvements.
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.
1977-01-01
The incipient spinning characteristics of general aviation airplanes were studied. Angular rates in pitch, yaw, and roll were measured through the stall during the incipient spin and throughout the recovery along with control positions, angle of attack, and angle of sideslip. The characteristic incipient spinning motion was determined from a given set of entry conditions. The sequence of recovery controls were varied at two distinct points during the incipient spin, and the effect on recovery characteristics was examined. Aerodynamic phenomena associated with flow over the aft portion of the fuselage, vertical stabilizer, and rubber are described.
Eight-cm mercury ion thruster system technology
NASA Technical Reports Server (NTRS)
1974-01-01
The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.
Digital-computer program for design analysis of salient, wound pole alternators
NASA Technical Reports Server (NTRS)
Repas, D. S.
1973-01-01
A digital computer program for analyzing the electromagnetic design of salient, wound pole alternators is presented. The program, which is written in FORTRAN 4, calculates the open-circuit saturation curve, the field-current requirements at rated voltage for various loads and losses, efficiency, reactances, time constants, and weights. The methods used to calculate some of these items are presented or appropriate references are cited. Instructions for using the program and typical program input and output for an alternator design are given, and an alphabetical list of most FORTRAN symbols and the complete program listing with flow charts are included.
Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus
2015-03-07
The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20,000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions.
Temporal compression in episodic memory for real-life events.
Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud
2018-07-01
Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.
Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe
2006-01-01
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051
Cerebral capillary velocimetry based on temporal OCT speckle contrast.
Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K
2016-12-01
We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.
A metering rotary nanopump for microfluidic systems
Darby, Scott G.; Moore, Matthew R.; Friedlander, Troy A.; Schaffer, David K.; Reiserer, Ron S.; Wikswo, John P.
2014-01-01
We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central cam shaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanoliters of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL/min to above 1.0 µL/min. At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices. PMID:20959938
Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System
NASA Technical Reports Server (NTRS)
McKay, Heather; Freeman, Rich; Cain, George; Albright, John D.; Schoenberg, Rich; Delventhal, Rex
2014-01-01
The Orion Multipurpose Crew Vehicle (MPCV) is NASA's next generation spacecraft for human exploration of deep space. Lockheed Martin is the prime contractor for the design, development, qualification and integration of the vehicle. A key component of the Orion Crew Module (CM) is the Propulsion Reaction Control System, a high-flow hydrazine system used during re-entry to orient the vehicle for landing. The system consists of a completely redundant helium (GHe) pressurization system and hydrazine fuel system with monopropellant thrusters. The propulsion system has been designed, integrated, and qualification tested in support of the Orion program's first orbital flight test, Exploration Flight Test One (EFT-1), scheduled for 2014. A subset of the development challenges and lessons learned from this first flight test campaign will be discussed in this paper for consideration when designing future spacecraft propulsion systems. The CONOPS and human rating requirements of the CM propulsion system are unique when compared with a typical satellite propulsion reaction control system. The system requires a high maximum fuel flow rate. It must operate at both vacuum and sea level atmospheric pressure conditions. In order to meet Orion's human rating requirements, multiple parts of the system must be redundant, and capable of functioning after spacecraft system fault events.
Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments
NASA Technical Reports Server (NTRS)
Young, C. T.; Tenney, D. R.; Herring, H. W.
1975-01-01
Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.
Simulation of solute transport across low-permeability barrier walls
Harte, P.T.; Konikow, Leonard F.; Hornberger, G.Z.
2006-01-01
Low-permeability, non-reactive barrier walls are often used to contain contaminants in an aquifer. Rates of solute transport through such barriers are typically many orders of magnitude slower than rates through the aquifer. Nevertheless, the success of remedial actions may be sensitive to these low rates of transport. Two numerical simulation methods for representing low-permeability barriers in a finite-difference groundwater-flow and transport model were tested. In the first method, the hydraulic properties of the barrier were represented directly on grid cells and in the second method, the intercell hydraulic-conductance values were adjusted to approximate the reduction in horizontal flow, allowing use of a coarser and computationally efficient grid. The alternative methods were tested and evaluated on the basis of hypothetical test problems and a field case involving tetrachloroethylene (PCE) contamination at a Superfund site in New Hampshire. For all cases, advective transport across the barrier was negligible, but preexisting numerical approaches to calculate dispersion yielded dispersive fluxes that were greater than expected. A transport model (MODFLOW-GWT) was modified to (1) allow different dispersive and diffusive properties to be assigned to the barrier than the adjacent aquifer and (2) more accurately calculate dispersion from concentration gradients and solute fluxes near barriers. The new approach yields reasonable and accurate concentrations for the test cases. ?? 2006.
NASA Technical Reports Server (NTRS)
Chun, K. S.; Locke, R. J.; Lee, C. M.; Ratvasky, W. J.
1994-01-01
Multiple venturi fuel injectors were used to obtain uniform fuel distributions, better atomization and vaporization in the premixing/prevaporizing section of a lean premixed/prevaporized flame tube combustor. A focused Schlieren system was used to investigate the fuel/air mixing effectiveness of various fuel injection configurations. The Schlieren system was focused to a plane within the flow field of a test section equipped with optical windows. The focused image plane was parallel to the axial direction of the flow and normal to the optical axis. Images from that focused plane, formed by refracted light due to density gradients within the flow field, were filmed with a high-speed movie camera at framing rates of 8,000 frames per second (fps). Three fuel injection concepts were investigated by taking high-speed movies of the mixture flows at various operating conditions. The inlet air temperature was varied from 600 F to 1000 F, and inlet pressures from 80 psia to 150 psia. Jet-A fuel was used typically at an equivalence ratio of 0.5. The intensity variations of the digitized Schlieren images were analytically correlated to spatial density gradients of the mixture flows. Qualitative measurements for degree of mixedness, intensity of mixing, and mixing completion time are shown. Various mixing performance patterns are presented with different configurations of fuel injection points and operating conditions.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp
2013-01-01
A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Computational effects of inlet representation on powered hypersonic, airbreathing models
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
Computational results are presented to illustrate the powered aftbody effects of representing the scramjet inlet on a generic hypersonic vehicle with a fairing, to divert the external flow, as compared to an operating flow-through scramjet inlet. This study is pertinent to the ground testing of hypersonic, airbreathing models employing scramjet exhaust flow simulation in typical small-scale hypersonic wind tunnels. The comparison of aftbody effects due to inlet representation is well-suited for computational study, since small model size typically precludes the ability to ingest flow into the inlet and perform exhaust simulation at the same time. Two-dimensional analysis indicates that, although flowfield differences exist for the two types of inlet representations, little, if any, difference in surface aftbody characteristics is caused by fairing over the inlet.
Laboratory experiments from the toy store
NASA Technical Reports Server (NTRS)
Mcclelland, H. T.
1992-01-01
The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.
Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator
NASA Astrophysics Data System (ADS)
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Evaluation of an Infiltration Model with Microchannels
NASA Astrophysics Data System (ADS)
Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.
2015-12-01
This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.
Torres-Ruiz, José M; Sperry, John S; Fernández, José E
2012-10-01
Xylem hydraulic conductivity (K) is typically defined as K = F/(P/L), where F is the flow rate through a xylem segment associated with an applied pressure gradient (P/L) along the segment. This definition assumes a linear flow-pressure relationship with a flow intercept (F(0)) of zero. While linearity is typically the case, there is often a non-zero F(0) that persists in the absence of leaks or evaporation and is caused by passive uptake of water by the sample. In this study, we determined the consequences of failing to account for non-zero F(0) for both K measurements and the use of K to estimate the vulnerability to xylem cavitation. We generated vulnerability curves for olive root samples (Olea europaea) by the centrifuge technique, measuring a maximally accurate reference K(ref) as the slope of a four-point F vs P/L relationship. The K(ref) was compared with three more rapid ways of estimating K. When F(0) was assumed to be zero, K was significantly under-estimated (average of -81.4 ± 4.7%), especially when K(ref) was low. Vulnerability curves derived from these under-estimated K values overestimated the vulnerability to cavitation. When non-zero F(0) was taken into account, whether it was measured or estimated, more accurate K values (relative to K(ref)) were obtained, and vulnerability curves indicated greater resistance to cavitation. We recommend accounting for non-zero F(0) for obtaining accurate estimates of K and cavitation resistance in hydraulic studies. Copyright © Physiologia Plantarum 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.
2012-01-01
A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary andmore » a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min-1) are very attractive. While further optimization in the source design is suggested here, it is believed that the LS-APGD ion source may present a practical alternative to inductively-coupled plasma (ICP) sources typically employed in elemental mass spectrometry.« less
Four-Spot Time-Of-Flight Laser Anemometer For Turbomachinery
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Skoch, Gary J.
1995-01-01
Two-color, four-spot time-of-flight laser anemometer designed for measuring flow velocity within narrow confines of small centrifugal compressor. Apparatus well suited for measuring fast (typical speeds 160 to 700 m/s), highly turbulent gas flows in turbomachinery. Other potential applications include measurement of gas flows in pipelines and in flows from explosions.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
NASA Astrophysics Data System (ADS)
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
The Einstein viscosity with fluid elasticity
NASA Astrophysics Data System (ADS)
Einarsson, Jonas; Yang, Mengfei; Shaqfeh, Eric S. G.
2017-11-01
We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O (Wi2) in the Weissenberg number Wi = γ . λ , where γ is the typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain `hot spots' near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O (Wi) , and find dramatic strain-rate thickening at O (Wi2) . We validate our theory with fully resolved numerical simulations.
Einstein viscosity with fluid elasticity
NASA Astrophysics Data System (ADS)
Einarsson, Jonas; Yang, Mengfei; Shaqfeh, Eric S. G.
2018-01-01
We give the first correction to the suspension viscosity due to fluid elasticity for a dilute suspension of spheres in a viscoelastic medium. Our perturbation theory is valid to O (ϕ Wi2) in the particle volume fraction ϕ and the Weissenberg number Wi =γ ˙λ , where γ ˙ is the typical magnitude of the suspension velocity gradient, and λ is the relaxation time of the viscoelastic fluid. For shear flow we find that the suspension shear-thickens due to elastic stretching in strain "hot spots" near the particle, despite the fact that the stress inside the particles decreases relative to the Newtonian case. We thus argue that it is crucial to correctly model the extensional rheology of the suspending medium to predict the shear rheology of the suspension. For uniaxial extensional flow we correct existing results at O (ϕ Wi ) , and find dramatic strain-rate thickening at O (ϕ Wi2) . We validate our theory with fully resolved numerical simulations.
NASA Technical Reports Server (NTRS)
Lahoti, G. D.; Akgerman, N.; Altan, T.
1978-01-01
Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.
Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.
Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supportedmore » cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.« less
An experimental study of the transient regime to fluidized chimney in a granular medium
NASA Astrophysics Data System (ADS)
Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer
2017-06-01
Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.
AlGaAs growth by OMCVD using an excimer laser
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.
1986-01-01
AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Saco, P. M.; Sandi, S. G.; Saintilan, N.; Riccardi, G.
2017-12-01
Even though on a large scale the sustainability and resilience of coastal wetlands to sea-level rise depends on the slope of the landscape and a balance between the rates of soil accretion and the sea-level rise, local man-made flow disturbances can have comparable effects. Coastal infrastructure controlling flow in the wetlands can pose an additional constraint on the adaptive capacity of these ecosystems, but can also present opportunities for targeted flow management to increase their resilience. Coastal wetlands in SE Australia are heavily managed and typically present infrastructure including flow control devices. How these flow control structures are operated respond to different ecological conservation objectives (i.e. bird, frog or fish habitat) that can sometimes be mutually exclusive. For example, promoting mangrove establishment to enhance fish habitat results in saltmarsh decline thus affecting bird habitat. Moreover, sea-level rise will change hydraulic conditions in wetlands and may result in some flow control structures and strategies becoming obsolete or even counterproductive. In order to address these problems and in support of future management of flows in coastal wetlands, we have developed a predictive tool for long-term wetland evolution that incorporates the effects of infrastructure and other perturbations to the tidal flow within the wetland (i.e. vegetation resistance) and determines how these flow conditions affect vegetation establishment and survival. We use the model to support management and analyse different scenarios of sea-level rise and flow control measures aimed at preserving bird habitat. Our results show that sea-level rise affects the efficiency of management measures and in some cases may completely override their effect. It also shows the potential of targeted flow management to compensate for the effects of sea-level rise.
Chen, Chun-Hung; Li, Cheng-Chang; Chou, Chuan-Yu; Chen, Shu-Hwa
2009-08-01
This project was designed to improve the low validity rate for nurses responsible to operate single door autoclave sterilizers in the operating room. By investigating the current status, we found that the nursing staff validity rate of cognition on the autoclave sterilizer was 85%, and the practice operating check validity rate was only 80%. Such was due to a lack of in-service education. Problems with operation included: 1. Unsafe behaviors - not following standard procedure, lacking relevant operating knowledge and absence of a check form; 2. Unsafe environment - the conveying steam piping was typically not covered and lacked operation marks. Recommended improvement measures included: 1. holding in-service education; 2. generating an operation procedure flow chart; 3. implementing obstacle eliminating procedures; 4. covering piping to prevent fire and burns; 5. performing regular checks to ensure all procedures are followed. Following intervention, nursing staff cognition rose from 85% to 100%, while the operation validity rate rose from 80% to 100%. These changes ensure a safer operating room environment, and helps facilities move toward a zero accident rate in the healthcare environment.
NASA Astrophysics Data System (ADS)
An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.
2017-12-01
Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiamsa-ard, Smith; Seemawute, Panida; Wongcharee, Khwanchit
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests weremore » performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)« less
Oil-flow separation patterns on an ogive forebody
NASA Technical Reports Server (NTRS)
Keener, E. R.
1981-01-01
Oil flow patterns on a symmetric tangent ogive forebody having a fineness ratio of 3.5 are presented for angles of attack up to 88 deg at a transitional Reynolds number of 8 million (based on base diameter) and a Mach number of 0.25. Results show typical surface flow separation patterns, the magnitude of surface flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wakelike flow regimes.
Bayesian analysis of stage-fall-discharge rating curves and their uncertainties
NASA Astrophysics Data System (ADS)
Mansanarez, V.; Le Coz, J.; Renard, B.; Lang, M.; Pierrefeu, G.; Vauchel, P.
2016-09-01
Stage-fall-discharge (SFD) rating curves are traditionally used to compute streamflow records at sites where the energy slope of the flow is variable due to variable backwater effects. We introduce a model with hydraulically interpretable parameters for estimating SFD rating curves and their uncertainties. Conventional power functions for channel and section controls are used. The transition to a backwater-affected channel control is computed based on a continuity condition, solved either analytically or numerically. The practical use of the method is demonstrated with two real twin-gauge stations, the Rhône River at Valence, France, and the Guthusbekken stream at station 0003ṡ0033, Norway. Those stations are typical of a channel control and a section control, respectively, when backwater-unaffected conditions apply. The performance of the method is investigated through sensitivity analysis to prior information on controls and to observations (i.e., available gaugings) for the station of Valence. These analyses suggest that precisely identifying SFD rating curves requires adapted gauging strategy and/or informative priors. The Madeira River, one of the largest tributaries of the Amazon, provides a challenging case typical of large, flat, tropical river networks where bed roughness can also be variable in addition to slope. In this case, the difference in staff gauge reference levels must be estimated as another uncertain parameter of the SFD model. The proposed Bayesian method is a valuable alternative solution to the graphical and empirical techniques still proposed in hydrometry guidance and standards.
Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions.
Gui, P; Inamori, R; Matsumura, M; Inamori, Y
2007-01-01
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.
Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA
Clayton, J.A.; Kean, J.W.
2010-01-01
Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.
Preferential particle concentration in wall-bounded turbulence with zero skin friction
NASA Astrophysics Data System (ADS)
Yang, Kun; Zhao, Lihao; Andersson, Helge I.
2017-11-01
Inertial particles dispersed in turbulence distribute themselves unevenly. Besides their tendency to segregate near walls, they also concentrate preferentially in wall-parallel planes. We explore the latter phenomenon in a tailor-made flow with the view to examine the homogeneity and anisotropy of particle clustering in the absence of mean shear as compared with conventional, i.e., sheared, wall turbulence. Inertial particles with some different Stokes numbers are suspended in a turbulent Couette-Poiseuille flow, in which one of the walls moves such that the shear rate vanishes at that wall. The anisotropies of the velocity and vorticity fluctuations are therefore qualitatively different from those at the opposite non-moving wall, along which quasi-coherent streaky structures prevail, similarly as in turbulent pipe and channel flows. Preferential particle concentration is observed near both walls. The inhomogeneity of the concentration is caused by the strain-vorticity selection mechanism, whereas the anisotropy originates from coherent flow structures. In order to analyse anisotropic clustering, a two-dimensional Shannon entropy method is developed. Streaky particle structures are observed near the stationary wall where the flow field resembles typical wall-turbulence, whereas particle clusters near the moving friction-free wall are similar to randomly oriented clusters in homogeneous isotropic turbulence, albeit with a modest streamwise inclination. In the absence of mean-shear and near-wall streaks, the observed anisotropy is ascribed to the imprint of large-scale flow structures which reside in the bulk flow and are global in nature.
Turbulence from a microorganism's perspective: Does the open ocean feel different than a coral reef?
NASA Astrophysics Data System (ADS)
Pepper, Rachel; Variano, Evan; Koehl, M. A. R.
2012-11-01
Microorganisms in the ocean live in turbulent flows. Swimming microorganisms navigate through the water (e.g. larvae land on suitable substrata, predators find patches of prey), but the mechanisms by which they do so in turbulent flow are poorly understood as are the roles of passive transport versus active behaviors. Because microorganisms are smaller than the Kolmagorov length (the smallest scale of eddies in turbulent flow), they experience turbulence as a series of linear gradients in the velocity that vary in time. While the average strength of these gradients and a timescale can be computed from some typical characteristics of the flow, such as the turbulent kinetic energy or the dissipation rate, there are indications that organisms are disproportionally affected by rare, extreme events. Understanding the frequency of such events in different environments will be critical to understanding how microorganisms respond to and navigate in turbulence. To understand the hydrodynamic cues that microorganisms experience in the ocean we must measure velocity gradients in realistic turbulent flow on the spatial and temporal scales encountered by microorganisms. We have been exploring the effect of the spatial resolution of PIV and DNS of turbulent flow on the presence of velocity gradients of different magnitudes at the scale of microorganisms. Here we present some results of PIV taken at different resolutions in turbulent flow over rough biological substrata to illustrate the challenges of quantifying the fluctuations in velocity gradients encountered by aquatic microorganisms.
Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.
Jadamec, Margarete A; Billen, Magali I
2010-05-20
The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.
CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes
NASA Astrophysics Data System (ADS)
Lu, Na; Sun, Danfeng; Zhang, Chuke; Jiang, Nan; Shang, Kefeng; Bao, Xiaoding; Li, Jie; Wu, Yan
2018-03-01
Carbon dioxide conversion at atmosphere pressure and low temperature has been studied in a cylindrical dielectric barrier discharge (DBD) reactor. Pure CO2 feed flows to the discharge zone and typical filamentary discharges were obtained in each half-cycle of the applied voltage. The gas temperature increased with discharge time and discharge power, which was found to affect the CO2 decomposition deeply. As the DBD reactor was cooled to ambient temperature, both the conversion of CO2 and the CO yield were enhanced. Especially the energy efficiencies changed slightly with the increase of discharge power and were much higher in cooling condition comparing to those without cooling. At a discharge power of 40 W, the energy efficiency under cooling condition was approximately six times more than that without cooling. Gas flow rate was observed to affect CO2 conversion and 0.1 L min-1 was obtained as optimum gas flow rate under cooling condition. In addition, the CO2 conversion rate in plasma/g-C3N4 catalyst hybrid system was twice times as that in plasma-alone system. In case of cooling, the existence of g-C3N4 catalyst contributed to a 47% increase of CO2 conversion compared to the sole plasma process. The maximum energy-efficiency with g-C3N4 was 0.26 mmol kJ-1 at 20 W, which increased by 157% compared to that without g-C3N4. The synergistic effect of DBD plasma with g-C3N4 on pure CO2 conversion was verified.
NASA Astrophysics Data System (ADS)
Singh, Anant Bir
This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.
NASA Technical Reports Server (NTRS)
Dijkstra, Henk A.
1992-01-01
Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.
NASA Astrophysics Data System (ADS)
Santos, Isaac R.; Eyre, Bradley D.; Glud, Ronnie N.
2012-11-01
Porewater flow enhances mineralization rates in organic-poor permeable sands. Here, a series of sediment column experiments were undertaken to assess the potential effect of advective porewater transport on denitrification in permeable carbonate sands collected from Heron Island (Great Barrier Reef). Experimental conditions (flow path length, advection rate, and temperature) were manipulated to represent conditions similar to near shore tropical environments. HgCl2-poisoned controls were used to assess whether reactions were microbially mediated. Overall, significant correlations were found between oxygen consumption and N2 production. The N:O2 slope of 0.114 implied that about 75% of all the nitrogen mineralized was denitrified. A 4-fold increase in sediment column length (from 10 to 40 cm) resulted in an overall increase in oxygen consumption (1.6-fold), TCO2 production (1.8-fold), and denitrification (1.9-fold). Oxic respiration increased quickly until advection reached 80 L m-2 h-1 and then plateaued at higher advection rates. Interestingly, denitrification peaked (up to 336 μmol N2 m-2 h-1) at intermediate advection rates (30-80 L m-2 h-1). We speculate that intermediate advection rates enhance the development of microniches (i.e., steep oxygen gradients) within porous carbonate sands, perhaps providing optimum conditions for denitrification. The denitrification peak fell within the broad range of advection rates (often on scales of 1-100 L m-2 h-1) typically found on continental shelves implying that carbonate sands may play a major, but as yet unquantified, role in oceanic nitrogen budgets.
ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-11-01
1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69more » rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less
Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014
Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.
2015-01-01
The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the
40 CFR 1065.545 - Validation of proportional flow control for batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate. (b) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate...
NASA Astrophysics Data System (ADS)
Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann
2016-02-01
Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the instantaneous MFR is near 0 or negative. The flow motion at the inlet is highly three dimensional as flow enters in the center of the inducer at all times, even when the instantaneous flow rate is negative, compared to the reversed flow observed in the entire inlet for surging axial compressors.
Koltun, G.F.
2014-01-01
This report presents the results of a study to assess potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data (where available) and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for Charles Mill, Clendening, and Piedmont Lakes to 74 calendar years for Pleasant Hill, Senecaville, and Wills Creek Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data were tabulated for each of the lakes. Monthly order statistics of computed withdrawals indicated that, for the three pumping capacities considered, increasing the target minimum flow-by amount tended to reduce the amount of water that can be withdrawn. The reduction was greatest in the lower percentiles of withdrawal; however, increasing the flow-by amount had no impact on potential withdrawals during high flow. In addition, for a given target minimum flow-by amount, increasing the pumping rate typically increased the total amount of water that could be withdrawn; however, that increase was less than a direct multiple of the increase in pumping rate for most flow statistics. Potential monthly withdrawals were observed to be more variable and more limited in some calendar months than others. Monthly order statistics and means of computed daily mean flow-by amounts indicated that flow-by amounts generally tended to be lowest during June–October. Increasing the target minimum flow-by amount for a given pumping rate resulted in some small increases in the magnitudes of the mean and 50th percentile and lower order statistics of computed mean flow-by, but had no effect on the magnitudes of the higher percentile statistics. Increasing the pumping rate for a given target minimum flow-by amount resulted in decreases in magnitudes of higher-percentile flow-by statistics by an amount equal to the flow equivalent of the increase in pumping rate; however, some lower percentile statistics remained unchanged.
Laboratory investigation and direct numerical simulation of wind effect on steep surface waves
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga
2015-04-01
The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the wave slope was retrieved from the DNS results. Similar to the physical experiment the wave growth rate weakly decreased with the wave steepness. The results of physical and numerical experiments were compared with the calculations within the theoretical model of a turbulent boundary layer based on the system of Reynolds equations with the first-order closing hypothesis. Within the model the wind-wave interaction is considered within the quasi-linear approximation and the mean airflow over waves within the model is treated as a non-separated. The calculations within the model represents well profiles of the mean wind velocity, turbulent stress, amplitude and phase of the main harmonics of the wave-induced velocity components and also wave-induced pressure fluctuations and wind wave growth rate obtained both in the physical experiment and DNS. Applicability of the non-separating quasi-linear theory for description of average fields in the airflow over steep and even breaking waves, when the effect of separation is manifested in the instantaneous flow images, can possibly be explained qualitatively by the strongly non-stationary character of the separation process with the typical time being much less than the wave period, and by the small scale of flow heterogeneity in the area of separation. In such a situation small-scale vortices produced within the separation bubble affect the mean flow and wind-induced disturbances as eddy viscosity. Then, the flow turbulence affects the averaged fields as a very viscous fluid, where the effective Reynolds number for the average fields determined by the eddy viscosity was small even for steep waves. It follows from this assumption that strongly nonlinear effects, such as flow separations should not be expected in the flow averaged over turbulent fluctuations, and the main harmonics of the wave-induced disturbances of the averaged flow, which determine the energy flux to surface waves, can be described in the weakly-nonlinear approximation. This paper was supported by a grant from the Government of the Russian Federation under Contract no. 11.G34.31.0048; the European Research Council Advanced Grant, FP7-IDEAS, 227915; RFBF grant 13-05-00865-а, 13-05-12093-ofi-m,15-05-91767.
Thermal models for basaltic volcanism on Io
Keszthelyil, L.; McEwen, A.
1997-01-01
We present a new model for the thermal emissions from active basaltic eruptions on Io. While our methodology shares many similarities with previous work, it is significantly different in that (1) it uses a field tested cooling model and (2) the model is more applicable to pahoehoe flows and lava lakes than fountain-fed, channelized, 'a'a flows. This model demonstrates the large effect lava porosity has on the surface cooling rate (with denser flows cooling more slowly) and provides a preliminary tool for examining some of the hot spots on Io. The model infrared signature of a basaltic eruption is largely controlled by a single parameter, ??, the average survival time for a lava surface. During an active eruption surfaces are quickly covered or otherwise destroyed and typical values of ?? for a basaltic eruption are expected to be on the order of 10 seconds to 10 minutes. Our model suggests that the Galileo SSI eclipse data are consistent with moderately active to quiescent basaltic lava lakes but are not diagnostic of such activity. Copyright 1997 by the American Geophysical Union.
Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects
NASA Technical Reports Server (NTRS)
DeKool, Martin; Begelman, Mitchell C.
1995-01-01
We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.
NASA Technical Reports Server (NTRS)
Sutton, K.
1973-01-01
A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.
Predicting the stability of a compressible periodic parallel jet flow
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
1996-01-01
It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.
Kreutzer, Joose; Ylä-Outinen, Laura; Mäki, Antti-Juhana; Ristola, Mervi; Narkilahti, Susanna; Kallio, Pasi
2017-03-15
Typically, live cell analyses are performed outside an incubator in an ambient air, where the lack of sufficient CO 2 supply results in a fast change of pH and the high evaporation causes concentration drifts in the culture medium. That limits the experiment time for tens of minutes. In many applications, e.g. in neurotoxicity studies, a prolonged measurement of extracellular activity is, however, essential. We demonstrate a simple cell culture chamber that enables stable culture conditions during prolonged extracellular recordings on a microelectrode array (MEA) outside an incubator. The proposed chamber consists of a gas permeable silicone structure that enables gas transfer into the chamber. We show that the culture chamber supports the growth of the human embryonic stem cell (hESC)-derived neurons both inside and outside an incubator. The structure provides very low evaporation, stable pH and osmolarity, and maintains strong signaling of hESC-derived neuronal networks over three-day MEA experiments. Existing systems are typically complex including continuous perfusion of medium or relatively large amount of gas to supply. The proposed chamber requires only a supply of very low flow rate (1.5ml/min) of non-humidified 5% CO 2 gas. Utilizing dry gas supply makes the proposed chamber simple to use. Using the proposed culture structure on top of MEA, we can maintain hESC-derived neural networks over three days outside an incubator. Technically, the structure requires very low flow rate of dry gas supporting, however, low evaporation and maintaining the pH of the culture. Copyright © 2017 Elsevier B.V. All rights reserved.
Measurements of erosion potential using Gust chamber in Yolo Bypass near Sacramento, California
Work, Paul A.; Schoellhamer, David H.
2018-04-27
This report describes work performed to quantify the erodibility of surface soils in the Yolo Bypass (Bypass) near Sacramento, California, for use in the California Department of Water Resources (DWR) Yolo Bypass D-MCM mercury model. The Bypass, when not serving as a floodway, is heavily utilized for agriculture. During flood events, surface water flows over the soil, resulting in the application of a shear stress to the soil. The shear stress is a function of flow speed and is often assumed to vary as the square of flow speed. Once the shear stress reaches a critical value, erosion commences, and the erosion rate typically increases with applied shear stress. The goal of the work described here was to quantify this process and how it varies throughout the major land uses found in the Yolo Bypass.Each of the major land uses found in the Bypass was targeted for sediment coring and two side-by-side cores, 10 centimeters in diameter, were extracted at each site for testing in a Gust erosion chamber. This device consists of a cylinder with a piston and cap installed to contain a sediment sample and overlying water. In most instances, coring was done with the cylinder, the piston and cap were installed, and testing commenced immediately. The cap at the top of the cylinder contains vanes to induce rotation of the flow and is driven by an electric motor, simulating the bed shear stress experienced by the soil in a flood event. Ambient water is introduced to the cylinder, passes through the device, and carries eroded sediment out of the chamber. The exiting water is tested for turbidity, and water samples obtained to relate turbidity to suspended sediment concentration are used to compute erosion rates for each of the applied shear stresses.The result for each sediment core is (1) definition of the critical shear stress required to initiate sediment erosion and (2) estimation of coefficients required to relate erosion rate to applied shear stress once this critical shear-stress threshold has been exceeded. These quantities were computed for each of the sites sampled. In total, 10 locations were sampled, representing 10 land uses ranging from wild and white rice fields to the flooded Liberty Island and the Toe Drain that receives runoff from much of the cultivated land (table 1).The Gust chamber test causes the erosion of a very small layer of sediment, typically less than a millimeter thick. The strength of the soil within this layer increases with depth, typically, and this soil strength versus depth is measured in the testing process.Results for each land use type tested are presented as the initial critical shear stress at which erosion began and the rate at which erosion increases as shear stress increases (table 2). Of the land use types sampled, irrigated pasture displayed the lowest critical shear stress, meaning that it required the smallest flow speed to initiate erosion. But in this case, the rate of increase of the subsequent erosion, given higher flow speeds, was small. The wild rice field samples exhibited a higher critical shear stress but also exhibited a much higher erosion rate once the critical shear stress was exceeded. The erosion rate for wild rice was about three times greater than that for white rice. Bear in mind that these results are based on only two cores tested per site, and variability between fields with the same crop could be significant. Approved digital data can be viewed and downloaded from ScienceBase, at https://doi.org/10.5066/F7BV7DQC. These results are being used to calculate erosion rates in the DWR Yolo Bypass D-MCM mercury model.The Toe Drain was very difficult to sample, owing to hard, consolidated sediments on the channel bed. On the first visit, two cores were obtained successfully, and testing revealed very different results. A second visit was made, but it was not possible to obtain cores suitable for testing with the coring equipment used. The available results suggest that Toe Drain soil is highly erodible (low critical shear stress and high erosion rate once initiated) despite being difficult to sample. As a collector of runoff, it also has the potential to accumulate soils eroded from adjacent areas, subsequent to storm events, as flows subside. This deposited material will typically be more erodible than the material that it lands on. The deposition and resuspension of material was not simulated in the testing described here because the applied shear stress increases monotonically during testing.The spatial distribution of mean grain size, loss on ignition, and percent fines of Yolo Bypass soils are also presented. Sediment sampling for this effort was performed by DWR; the U.S. Geological Survey (USGS) performed the sample analysis. These data should thus be considered provisional, but the remainder of the data presented here, and this report, have been through the formal U.S. Geological Survey review process.A separate effort has been made by others to develop numerical model results defining the spatially varying, time-dependent hydrodynamics in the Yolo Bypass. These model results are being used to quantify shear stress on the soil surface, which together with the Gust chamber results shown here, are used for the DWR Yolo Bypass D-MCM mercury transport model to compute erosion rates for each time step.
APPI-MS: Effects of mobile phases and VUV lamps on the detection of PAH compounds
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A.
2009-01-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of non-polar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., ≤100 μL/min), while at a higher flow, photon absorption and ion-molecule reactions become significant. Under certain circumstances, APPI signal and S/N have been observed to excel at higher flow, which may be due to a non-photoionzation mechanism. To better understand APPI at higher flow rates, we have selected three lamps (Xe, Kr and Ar) and four mobile phases typical for reverse-phase, high-pressure liquid chromatography: acetonitrile, methanol, (1:1) acetonitrile:water and (1:1) methanol:water. As test compounds, three polyaromatic hydrocarbons are studied: benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benz[a]anthracene. We find that solvent photoabsorption cross-section is not the only parameter in explaining relative signal intensity, but that solvent photo-ion chemistry can also play a significant role. Three conclusions from this investigation are: (i) Methanol photoionization leads to protonated methanol clusters that can result in chemical ionization of analyte molecule; (ii) Use of the Ar lamp often results in greater signal and S/N; (iii) Acetonitrile photoionization is less efficient and resulting clusters are too strongly bound to efficiently chemically ionize the analyte, so that analyte ion formation is dominated by direct photoionization. PMID:17188507
APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds.
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A
2007-04-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e.,
Simulation of multistage turbine flows
NASA Technical Reports Server (NTRS)
Adamczyk, John J.; Mulac, Richard A.
1987-01-01
A flow model has been developed for analyzing multistage turbomachinery flows. This model, referred to as the average passage flow model, describes the time-averaged flow field with a typical passage of a blade row embedded within a multistage configuration. Computer resource requirements, supporting empirical modeling, formulation code development, and multitasking and storage are discussed. Illustrations from simulations of the space shuttle main engine (SSME) fuel turbine performed to date are given.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-12-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-01-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination. PMID:3069052
Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology
NASA Technical Reports Server (NTRS)
Hebert, Leonard J.
2006-01-01
This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.
Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.
2012-01-01
Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of <1 degree, which is similar to the location within the 1859 flow where inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in broken lava slabs. Th e boundaries between plateaus and depressions are also typically smoo th, grooved surfaces that have been tilted to angles sometimes approaching vertical. The upper margin of these tilted surfaces displays lar ge cracks, sometimes containing squeeze-ups. The bottom boundary with smooth floored depressions typically shows embayment by younger lavas. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within prefer red regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. Our current efforts are focused on.
The Influence of Topography on the Emplacement Dynamics of Martian Lava flows
NASA Astrophysics Data System (ADS)
Tremblay, J.; Fitch, E. P.; Fagents, S. A.
2017-12-01
Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In the context of our model, the morphological changes associated with channel bends and slope breaks support our interpretation of lava crust disruption and enhanced flow cooling. We are currently working to obtain data for the additional three flow types and to further apply our lava emplacement model.
NASA Astrophysics Data System (ADS)
Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.
2011-12-01
Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.
On the tertiary instability formalism of zonal flows in magnetized plasmas
NASA Astrophysics Data System (ADS)
Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.
2018-05-01
This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF
1988-04-15
granules typically last 10-15 minutes. measure- the divergence of the flow field, and (d) the SOUP flow field muerts must be made in a time short...the magnetograms and ary. If so, the random-walk diffusion of magnetic field dii- AV . I, I68 PHOTOSPIIERIC FLOW FIELDS ON SOLAR SURFACE 967 0011 cussd
Small scale changes of geochemistry and flow field due to transient heat storage in aquifers
NASA Astrophysics Data System (ADS)
Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.
2013-12-01
Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
RWPV bioreactor mass transport: earth-based and in microgravity
NASA Technical Reports Server (NTRS)
Begley, Cynthia M.; Kleis, Stanley J.
2002-01-01
Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.
RWPV bioreactor mass transport: earth-based and in microgravity.
Begley, Cynthia M; Kleis, Stanley J
2002-11-20
Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.
2015-12-01
Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.
Rosewarne, P J; Wilson, J M; Svendsen, J C
2016-01-01
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.
Navrátil, Tomas; Norton, Stephen A; Fernandez, Ivan J; Nelson, Sarah J
2010-12-01
Mean annual concentration of SO4(-2) in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO(2). Emissions of NO(x) have not changed substantially, but deposition has declined slightly at BBWM. Base cations, NH4+, and Cl(-) concentrations were largely unchanged, with small irregular changes of <1 μeq L(-1) per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June-October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November-May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled NO3- and K(+). They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than SO4(-2), with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH(4))(2)SO(4) enhanced acidification of West Bear Brook's (WB) watershed. Despite the manipulation, NH4+ concentration remained below detection limits at WB, while leaching of NO3- increased. The seasonal pattern for NO3- concentrations in WB, however, remained similar to EB. Mean monthly concentrations of SO4(-2) have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca(2+), Mg(2+), and K(+) due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.
NASA Astrophysics Data System (ADS)
Sidle, R. C.
2013-12-01
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.
NASA Astrophysics Data System (ADS)
Muguercia, Ivan
Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.
A Novel Macroscale Acoustic Device for Blood Filtration.
Dutra, Brian; Carmen Mora, Maria; Gerhardson, Tyler I; Sporbert, Brianna; Dufresne, Alexandre; Bittner, Katharine R; Lovewell, Carolanne; Rust, Michael J; Tirabassi, Michael V; Masi, Louis; Lipkens, Bart; Kennedy, Daniel R
2018-03-01
Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates. Unlike other acoustophoretic separation systems, this ultrasound technology works at the macroscale, and is therefore able to process larger flow rates than typical micro-electromechanical system (MEMS) scale acoustophoretic separation devices. In this work, we have first demonstrated the systematic design of the acoustic device and its optimization, followed by examining the feasibility of the device to filter lipids from the system. Then, we demonstrate the effects of the acoustic waves on the shed blood; examining hemolysis using both haptoglobin formation and lactate dehydrogenase release, as well as the potential of platelet aggregation or inflammatory cascade activation. Finally, in a porcine surgical model, we determined the potential viability of acoustic trapping as a blood filtration technology, as the animal responded to redelivered blood by increasing both systemic and mean arterial blood pressure.
On radon emanation as a possible indicator of crustal deformation
King, C.-Y.
1979-01-01
Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.
NASA Astrophysics Data System (ADS)
Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng
2017-04-01
For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter
2015-09-01
Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.
NASA Astrophysics Data System (ADS)
Smith, Joshua; Hinterberger, Michael; Hable, Peter; Koehler, Juergen
2014-12-01
Extended battery system lifetime and reduced costs are essential to the success of electric vehicles. An effective thermal management strategy is one method of enhancing system lifetime increasing vehicle range. Vehicle-typical space restrictions favor the minimization of battery thermal management system (BTMS) size and weight, making their production and subsequent vehicle integration extremely difficult and complex. Due to these space requirements, a cooling plate as part of a water-glycerol cooling circuit is commonly implemented. This paper presents a computational fluid dynamics (CFD) model and multi-objective analysis technique for determining the thermal effect of coolant flow rate and inlet temperature in a cooling plate-at a range of vehicle operating conditions-on a battery system, thereby providing a dynamic input for one-dimensional models. Traditionally, one-dimensional vehicular thermal management system models assume a static heat input from components such as a battery system: as a result, the components are designed for a set coolant input (flow rate and inlet temperature). Such a design method is insufficient for dynamic thermal management models and control strategies, thereby compromising system efficiency. The presented approach allows for optimal BMTS design and integration in the vehicular coolant circuit.
Kadambala, Ravi; Powell, Jon; Singh, Karamjit; Townsend, Timothy G
2016-12-01
Vertical liquids addition systems have been used at municipal landfills as a leachate management method and to enhance biostabilization of waste. Drawbacks of these systems include a limitation on pressurized injection and the occurrence of seepage. A novel vertical well system that employed buried wells constructed below a lift of compacted waste was operated for 153 days at a landfill in Florida, USA. The system included 54 wells installed in six clusters of nine wells connected with a horizontally-oriented manifold system. A cumulative volume of 8430 m 3 of leachate was added intermittently into the well clusters over the duration of the project with no incidence of surface seeps. Achievable average flow rates ranged from 9.3 × 10 -4 m 3 s -1 to 14.2 × 10 -4 m 3 s -1 , which was similar to or greater than flow rates achieved in a previous study using traditional vertical wells at the same landfill site. The results demonstrated that pressurized liquids addition in vertical wells at municipal solid waste landfills can be achieved while avoiding typical operational and maintenance issues associated with seeps. © The Author(s) 2016.
Coolant effectiveness in dental cutting with air-turbine handpieces.
Leung, Brian T W; Dyson, John E; Darvell, Brian W
2012-03-01
To establish a strategy for evaluating coolant effectiveness and to compare typical cooling conditions used in dental cutting. A test system comprising a resistive heat source and an array of four type K thermocouples was used to compare the cooling effectiveness of air alone, water stream alone, and an air-water spray, as delivered by representative air-turbine handpieces. Mean temperature change at the four sites was recorded for a range of water flow rates in the range 10 to 90 mL min(-1), with and without air, and with and without the turbine running. The thermal resistance of the system, R, was calculated as the temperature change per watt (KW(-1)). For wet cooling (water stream and air-water spray), R was 5.1 to 11.5 KW(-1), whereas for air coolant alone the range was 18.5 to 30.7 KW(-1). R for air-water spray was lower than for water stream cooling at the same flow rate. The thermal resistivity approach is a viable means of comparative testing of cooling efficacy in simulated dental cutting. It may provide a reliable means of testing handpiece nozzle design, thus enabling the development of more efficient cooling.
Modeling of the blood rheology in steady-state shear flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress thatmore » acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.« less
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
In situ biogas stripping of ammonia from a digester using a gas mixing system.
Serna-Maza, Alba; Heaven, Sonia; Banks, Charles J
2017-12-01
Previous studies have suggested the use of digester biogas mixing systems for in situ ammonia removal from anaerobic digestates. The feasibility of this was tested at moderate and complete gas mixing rates at mesophilic and thermophilic temperatures in a 75-L digester. Experimental results showed that at gas mixing rates typical of full-scale commercial digesters the reduction in total ammonia nitrogen concentrations would be insufficient to allow stable acetoclastic methanogenesis in mesophilic conditions, or to prevent total inhibition of methanogenic activity in thermophilic food waste digestion. Simulation based on batch column stripping experiments at 55°C at gas violent flow rates of 0.032 m 3 m -2 min -1 indicated that ammonia concentrations could be reduced below inhibitory values in thermophilic food waste digestion for organic loading rates of up to 6 kg VS m -3 day -1 . These mixing rates are far in excess of those used in full-scale gas-mixed digesters and may not be operationally or commercially feasible.
Interaction of grid generated turbulence with expansion waves
NASA Astrophysics Data System (ADS)
Xanthos, Savvas Steliou
2004-11-01
The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Debris flows associated with the 2015 Gorkha Earthquake in Nepal
NASA Astrophysics Data System (ADS)
Dahlquist, M. P.; West, A. J.; Martinez, J.
2017-12-01
Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.
THE SUN’S PHOTOSPHERIC CONVECTION SPECTRUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina
2015-10-01
Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35 Mm), which is typical of supergranules. The spectrummore » levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers.« less
Keller, Johannes; Grön, Georg
2016-01-01
Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving “mood” characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals’ reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging. PMID:26508774
MICRO-SCALE CFD MODELING OF OSCILLATING FLOW IN A REGENERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheadle, M. J.; Nellis, G. F.; Klein, S. A.
2010-04-09
Regenerator models used by designers are macro-scale models that do not explicitly consider interactions between the fluid and the solid matrix. Rather, the heat transfer coefficient and pressure drop are calculated using correlations for Nusselt number and friction factor. These correlations are typically based on steady flow data. The error associated with using steady flow correlations to characterize the oscillatory flow that is actually present in the regenerator is not well understood. Oscillating flow correlations based on experimental data do exist in the literature; however, these results are often conflicting. This paper uses a micro-scale computational fluid dynamic (CFD) modelmore » of a unit-cell of a regenerator matrix to determine the conditions for which oscillating flow affects friction factor. These conditions are compared to those found in typical pulse tube regenerators to determine whether oscillatory flow is of practical importance. CFD results clearly show a transition Valensi number beyond which oscillating flow significantly increases the friction factor. This transition Valensi number increases with Reynolds number. Most practical pulse tube regenerators will operate below this Valensi transition number and therefore this study suggests that the effect of flow oscillation on pressure drop can be neglected in macro-scale regenerator models.« less
Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Altmeyer, Sebastian
2018-04-01
This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.
Origin of Pseudotachylites during slow creep experiments
NASA Astrophysics Data System (ADS)
Peč, M.; Stünitz, H.; Heilbronner, R.; Drury, M.; De Capitani, C.
2012-04-01
Pseudotachylites are interpreted as solidified friction induced melts which form exclusively during seismic or impact events and are thus accepted as 'unequivocal evidence' of paleo-earthquakes on exhumed faults. However, we found in experiments that pseudotachylites can form under clearly aseismic conditions at confining pressures and temperatures typical of mid crustal levels (Pc = 500 MPa, T = 300° C). The starting material consists of granitoid powder crushed to a size of ≤ 200 μm in diameter. This material (0.1 g), with 0.2 wt% water added, is placed between alumina forcing blocks pre-cut at 45° , weld-sealed in platinum jackets with an inner nickel foil insert and deformed in a solid medium deformation apparatus (modified Griggs rig). We applied displacement rates of (10-8 ms-1 < dotγ < 10-6 ms-1) which approximate typical tectonic plate velocities of a few cm/a. In the 0.7 mm thick layer of fault rock, this produces a bulk shear strain rate of ( 10-5s-1 < γdot < 10-3s-1). The samples reach a peak shear strength of ( 1200 MPa < τ < 1500 MPa) at bulk sample strains of (1.5 < γ < 2.3). Only at the highest displacement rates ( 10-6ms-1), the samples fail abruptly shortly after reaching peak strength, possibly due to fracturing of the forcing blocks. However, at slower displacement rates (10-7ms-1 to 10-8ms-1) the samples reach a peak strength of 1200 - 1400 MPa, then weaken slightly (by 30 MPa), and continue to deform at approximately constant stress without any abrupt stress drops. The weakening is accompanied by a transient increase of the measured displacement rate of the forcing piston by 25%. The friction coefficient, μ, on the 45° pre-cut is 0.6, which is in the range of values typical of intact rock materials. After the experiment, the fault rock consists of a S-C-C' fabric with a percolating, multiply connected layer of pseudotachylites decorating the C'- C shears. Microstructures indicative for pseudotachylites are: injection veins, flow structures, bubbles, and bubble trains following the local flow pattern, corroded clasts and amorphous glass identified by TEM. The chemical composition of the pseudotachylites varies depending on the precursor material and is in general more ferromagnesian and basic compared to the bulk rock indicating preferred melting of biotite. The calculated temperature increase due to shear heating is at the most 5°C. High stresses cause pervasive comminution: the smallest crystalline fragments within the bubbly melt have a grain diameter of 10 nm. Nanomaterials exhibit a 'melting point depression' (dependence of melting point on grain size) which allows melting well below bulk melting temperatures. Thus, it seems that melting is a continuation of the comminution once the rock has reached small enough grain size. We therefore suggest that pseudotachylites may also form as 'mechanical melts' at slow displacement rates without the necessity of reaching high temperatures.
Key technique study and application of infrared thermography in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
LI, Ming; Yang, Yan-guang; Li, Zhi-hui; Zhu, Zhi-wei; Zhou, Jia-sui
2014-11-01
The solutions to some key techniques using infrared thermographic technique in hypersonic wind tunnel, such as temperature measurement under great measurement angle, the corresponding relation between model spatial coordinates and the ones in infrared map, the measurement uncertainty analysis of the test data etc., are studied. The typical results in the hypersonic wind tunnel test are presented, including the comparison of the transfer rates on a thin skin flat plate model with a wedge measured with infrared thermography and thermocouple, the experimental study heating effect on the flat plate model impinged by plume flow and the aerodynamic heating on the lift model.
A general equilibrium model of guest-worker migration: the source-country perspective.
Djajic, S; Milbourne, R
1988-11-01
"This paper examines the problem of guest-worker migration from an economy populated by identical, utility-maximizing individuals with finite working lives. The decision to migrate, the rate of saving while abroad, as well as the length of a migrant's stay in the foreign country, are all viewed as part of a solution to an intertemporal optimization problem. In addition to studying the microeconomic aspects of temporary migration, the paper analyses the determinants of the equilibrium flow of migrants, the corresponding domestic wage, and the level of welfare enjoyed by a typical worker. Effects of an emigration tax are also investigated." excerpt
Inferring time-varying recharge from inverse analysis of long-term water levels
NASA Astrophysics Data System (ADS)
Dickinson, Jesse E.; Hanson, R. T.; Ferré, T. P. A.; Leake, S. A.
2004-07-01
Water levels in aquifers typically vary in response to time-varying rates of recharge, suggesting the possibility of inferring time-varying recharge rates on the basis of long-term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño-Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one-dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long-term water level records using southwest aquifers as the case study. Time-varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.
Inferring time‐varying recharge from inverse analysis of long‐term water levels
Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.
2004-01-01
Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.
NASA Astrophysics Data System (ADS)
Zhang, Yu-ning; Liu, Kai-hua; Li, Jin-wei; Xian, Hai-zhen; Du, Xiao-ze
2018-05-01
Reversible pump turbines are widely employed in the pumped hydro energy storage power plants. The frequent shifts among various operational modes for the reversible pump turbines pose various instability problems, e.g., the strong pressure fluctuation, the shaft swing, and the impeller damage. The instability is related to the vortices generated in the channels of the reversible pump turbines in the generating mode. In the present paper, a new omega vortex identification method is applied to the vortex analysis of the reversible pump turbines. The main advantage of the adopted algorithm is that it is physically independent of the selected values for the vortex identification in different working modes. Both weak and strong vortices can be identified by setting the same omega value in the whole passage of the reversible pump turbine. Five typical modes (turbine mode, runaway mode, turbine brake mode, zero-flow-rate mode and reverse pump mode) at several typical guide vane openings are selected for the analysis and comparisons. The differences between various modes and different guide vane openings are compared both qualitatively in terms of the vortex distributions and quantitatively in terms of the areas of the vortices in the reversible pump turbines. Our findings indicate that the new omega method could be successfully applied to the vortex identification in the reversible pump turbines.
NASA Astrophysics Data System (ADS)
Chui, T. F. M.; Yang, Y.
2017-12-01
Green infrastructures (GI) have been widely used to mitigate flood risk, improve surface water quality, and to restore predevelopment hydrologic regimes. Commonly-used GI include, bioretention system, porous pavement and green roof, etc. They are normally sized to fulfil different design criteria (e.g. providing certain storage depths, limiting peak surface flow rates) that are formulated for current climate conditions. While GI commonly have long lifespan, the sensitivity of their performance to climate change is however unclear. This study first proposes a method to formulate suitable design criteria to meet different management interests (e.g. different levels of first flush reduction and peak flow reduction). Then typical designs of GI are proposed. In addition, a high resolution stochastic design storm generator using copulas and random cascade model is developed, which is calibrated using recorded rainfall time series. Then, few climate change scenarios are generated by varying the duration and depth of design storms, and changing the parameters of the calibrated storm generator. Finally, the performance of GI with typical designs under the random synthesized design storms are then assessed using numerical modeling. The robustness of the designs is obtained by the comparing their performance in the future scenarios to the current one. This study overall examines the robustness of the current GI design criteria under uncertain future climate conditions, demonstrating whether current GI design criteria should be modified to account for climate change.