NASA Technical Reports Server (NTRS)
Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.
1990-01-01
The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
Flow Cytometry Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture
SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...
COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...
Computer programs for axial flow compressor design
NASA Technical Reports Server (NTRS)
Carmody, R. H.; Creveling, H. F.
1969-01-01
Four computer programs examine effects of design parameters and indicate areas for research of multistage axial flow compressors. The programs provide information on velocity diagrams and stage-by-stage performance calculation, radial equilibrium of flow, radial distribution of total pressure, and off-design performance calculation.
NASA Technical Reports Server (NTRS)
Chiappetta, L. M.
1983-01-01
Described is a computer program for the analysis of the subsonic, swirling, reacting turbulent flow in an axisymmetric, bluff-body research combustor. The program features an improved finite-difference procedure designed to reduce the effects of numerical diffusion and a new algorithm for predicting the pressure distribution within the combustor. A research version of the computer program described in the report was supplied to United Technologies Research Center by Professor A. D. Gosman and his students, R. Benodeker and R. I. Issa, of Imperial College, London. The Imperial College staff also supplied much of the program documentation. Presented are a description of the mathematical model for flow within an axisymmetric bluff-body combustor, the development of the finite-difference procedure used to represent the system of equations, an outline of the algorithm for determining the static pressure distribution within the combustor, a description of the computer program including its input format, and the results for representative test cases.
SEWER SEDIMENT CONTROL: AN OVERVIEW OF THE EPA WET WEATHER FLOW (WWF) RESEARCH PROGRAM
This paper presents an overview of EPA WWF Research Program projects related to causes of sewer solids deposition and control methods that can prevent accumulation of sewer sediments. In particular, discussion will focus on the relationship of wastewater characteristics to flow ...
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
Flow Cytometry Scientist | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Scientist will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up-to-date, and appropriately adhered to Experience with sterile technique and tissue culture
Active Flow Control Activities at NASA Langley
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.
2004-01-01
NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.
Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.
2001-01-01
Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
Computer Program for Steady Transonic Flow over Thin Airfoils by Finite Elements
1975-10-01
COMPUTER PROGRAM FOR STEADY JJ TRANSONIC FLOW OVER THIN AIRFOILS BY g FINITE ELEMENTS • *q^^ r ̂ c HUNTSVILLE RESEARCH & ENGINEERING CENTER...jglMMi B Jun’ INC ORGANIMTION NAME ANO ADDRESS Lö^kfteed Missiles & Space Company, Inc. Huntsville Research & Engineering Center,^ Huntsville, Alab...This report was prepared by personnel in the Computational Mechamcs Section of the Lockheed Missiles fc Space Company, Inc.. Huntsville Research
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
Computational Fluid Dynamics Program at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1989-01-01
The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.
NASA Technical Reports Server (NTRS)
Bridges, James
2002-01-01
As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.
1974-09-24
Transonic Flows with Imbedded Shock Waves", Boeing Scientific Research Laboratories Document D1-82-1053 (1971); also as invited lecture series for AGARD...Past Thin Lifting Airfoils", Boeing Scientific Research Laboratories Document D180-2298-1, June 1971. 5. Krupp, J. A. and Ia-man, 9. M., "Computation...Aerodynamics and Marine Sciences Laboratory, Boeing Scientific Research Laboratories, June 1971. 7. Krupp, J. A., "Documentation for Program TSONIC", Technical
Control of flow separation and mixing by aerodynamic excitation
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Abbott, John M.
1990-01-01
The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Human Research Program Requirements Document. Human Research Program Revision E
NASA Technical Reports Server (NTRS)
Vargas, Paul
2011-01-01
This document defines, documents, and allocates the Human Research Program (HRP) requirements to the HRP Program Elements. It also establishes the flow of requirements from the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Health and Medical Officer (OCHMO) down to the various HRP Program Elements to ensure that human research and technology countermeasure investments support the delivery of countermeasures and technologies that satisfy HEOMD's and OCHMO's exploration mission requirements.
Research Strategy for Modeling the Complexities of Turbine Heat Transfer
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.
1996-01-01
The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.
NASA Astrophysics Data System (ADS)
Smith, Bryan J.
Current research suggests that many students do not know how to program very well at the conclusion of their introductory programming course. We believe that a reason novices have such difficulties learning programming is because engineering novices often learn through a lecture format where someone with programming knowledge lectures to novices, the novices attempt to absorb the content, and then reproduce it during exams. By primarily appealing to programming novices who prefer to understand visually, we research whether programming novices understand programming better if computer science concepts are presented using a visual programming language than if these programs are presented using a text-based programming language. This method builds upon previous research that suggests that most engineering students are visual learners, and we propose that using a flow-based visual programming language will address some of the most important and difficult topics to novices of programming. We use an existing flow-model tool, RAPTOR, to test this method, and share the program understanding results using this theory.
Hypersonic research at Stanford University
NASA Technical Reports Server (NTRS)
Candler, Graham; Maccormack, Robert
1988-01-01
The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.
1992-12-01
desirable. In this study, the proposed model consists of a thick-walled, highly deformable elastic tube in which the blood flow is described by linearized ...presented a mechanical model consisting of linearized Navier-Stokes and finite elasticity equations to predict blood pooling under acceleration stress... linear multielement model of the cardiovascular system which can calculate blood pressures and flows at any point in the cardio- vascular system. It
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
OVERVIEW OF WET-WEATHER RESEARCH PROGRAM
This paper presents an overview of EPA,s wet-weather flow (WWF) research program, which was expanded in October 1995 with the establishment of the Urban Watershed Management Branch at Edison, New Jersey. Research priorities for 1998-1999 are presented as well as efforts to col...
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.
1982-03-01
As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform themore » needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.« less
Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation
2016-03-17
ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time...ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation...SUBTITLE Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
NASA Technical Reports Server (NTRS)
Braslow, A. L.
1999-01-01
The paper contains the following sections: Foreword; Preface; Laminar-Flow Control Concepts and Scope of Monograph; Early Research on Suction-Type Laminar-Flow Control (Research from the 1930s through the War Years; Research from after World War II to the Mid-1960s); Post X-21 Research on Suction-Type Laminar-Flow Control; Status of Laminar-Flow Control Technology in the Mid-1990s; Glossary; Document 1-Aeronautics Panel, AACB, R&D Review, Report of the Subpanel on Aeronautic Energy Conservation/Fuels; Document 2-Report of Review Group on X-21A Laminar Flow Control Program; Document 3-Langley Research Center Announcement, Establishment of Laminar Flow Control Working Group; Document 4-Intercenter Agreement for Laminar Flow Control Leading Edge Glove Flights, LaRC and DFRC; Document 5-Flight Report NLF-144, of AFTIF-111 Aircraft with the TACT Wing Modified by a Natural Laminar Flow Glove; Document 6-Flight Record, F-16XL Supersonic Laminar Flow Control Aircraft; Index; and About the Author.
F-16XL Ship #1 in flight - used for laminar airflow studies
NASA Technical Reports Server (NTRS)
1992-01-01
One of two F-16XL prototype aircraft, on loan from the Air Force, was used by NASA's Dryden Flight Research Center, Edwards, California, in a program to investigate laminar flow technology and help improve the flow of air over an aircraft's wing at sustained supersonic speeds. A small, perforated titanium wing glove with a turbo compressor was tested on the F-16XL to determine if air suction can remove a small part of the boundary-layer air flowing over the wing and thereby achieve laminar (smooth) flow over a portion of the wing. The flight research program on ship #1 ended in 1996. It was then conducted with NASA's two-seat F-16XL, ship #2 employing a larger glove.
NASA Technical Reports Server (NTRS)
1984-01-01
Flow characteristics in the low speed Wright Brothers Wind Tunnel were studied. Calculations to check the precision of the tunnel were conducted. A program for generating computational grids around an airfoil was developed and compared with the wind tunnel model. Low Reynolds number flow phenomenon of periodic vortex shedding in a wake were also studied by applying a hot-wire anomemeter.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
OVERVIEW OF EPA'S WET-WEATHER FLOW RESEARCH PROGRAM
Surface waters receive three types of urban wet-weather flow discharges: combined-sewer overflow (CSO), stormwater, and sanitary-sewer overflow (SSO); all are principally untreated discharges that occur during storm-flow events. WWFs have proven to generate a substantial amount o...
Human Research Program Requirements Document
NASA Technical Reports Server (NTRS)
Rieger, Gabe
2007-01-01
The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD s and OCHMO's exploration mission requirements.
Investigation of chemically-reacting supersonic internal flows
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1985-01-01
This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.
NASA Astrophysics Data System (ADS)
Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre
2015-09-01
The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.
Graphical User Interface Development for Representing Air Flow Patterns
NASA Technical Reports Server (NTRS)
Chaudhary, Nilika
2004-01-01
In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in Java, a language that is portable among platforms, because it can run on different operating systems such as Windows and Unix without having to be rewritten. I had no prior experience of programming in Java at the start of my internship; I am continuously learning as I create the program. I have written the part of the program that enables a user to draw several zones, edit them, and store their locations. The next phase of my project is to allow the user to click on the side of a zone and create a boundary condition for it. A previous intern wrote a program that allows the user to input boundary conditions. I can integrate the two programs to create a larger, more usable program. After that, I will develop a way for the user to save the graph for future reference. Another eventual goal is to make the GUI capable of creating three-dimensional zones as well. Researchers such as my mentor, Dr. David Ashpis, need a quick, user-friendly
Scramjet Research with Flight-Like Inflow Conditions
2013-07-01
AFRL-RQ-WP-TR-2013-0163 SCRAMJET RESEARCH WITH FLIGHT-LIKE INFLOW CONDITIONS Mark A. Hagenmaier, John Boles, and Ryan T. Milligan...TITLE AND SUBTITLE SCRAMJET RESEARCH WITH FLIGHT-LIKE INFLOW CONDITIONS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Clearance Date: 19 Aug 2013. This report contains color. 14. ABSTRACT Studies of flow distortion on fundamental scramjet flows have been performed
2011-01-01
flow rates which were held constant from trial to trial by critical orifices, were checked with several different calibrated mass flow meters. None of...processes or products in mind”. ECBC views the ILIR program as a critical part of its efforts to ensure a high level of basic science, foster innovation in...missions. The ILIR program solicits innovative proposals from the Center’s principal investigators (PI) that correspond to ECBC’s critical core
This research program was initiated with the overall objective of gaining understanding of the flow and diffusion of pollutants in complex terrain under both neutral and stably stratified conditions. This report covers the first phase of the project; it describes the flow structu...
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul
2012-11-01
The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).
1986-04-11
NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.
1987-04-22
NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.
User's manual for three-dimensional analysis of propeller flow fields
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Kutler, P.
1983-01-01
A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.
Ames Research Center cryogenics program
NASA Technical Reports Server (NTRS)
Kittel, Peter
1987-01-01
Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.
Center of Excellence for Hypersonics Research
2012-01-25
detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure
Study of the Cost and Flows of Capital in the Guaranteed Student Loan Program. Final Report.
ERIC Educational Resources Information Center
Touche Ross and Co., Washington, DC.
The flow of capital to and through the Guaranteed Student Loan (GSL) Program and the cost of that capital to the federal government and the individual borrower were studied. A review of the research on student loan capital was conducted, and automated cost models were developed to test assumptions and project future costs. Attention was directed…
Program Translation via Abstraction and Reimplementation.
1986-12-01
fromn particular datai flow and control flow constructs. In add non , the analysis is narrow in scope. aiming onlx to gather enoiugh intoination to...NUMSIERS 545 Technology Square U) Cambridge, MA 02139 00 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Advanced Research Projects Agency December... designed which generates extremely efficient PDP-II object code for Pascal programs. Currently, work is proceeding toward the implementation of a
Experiences in using the CYBER 203 for three-dimensional transonic flow calculations
NASA Technical Reports Server (NTRS)
Melson, N. D.; Keller, J. D.
1982-01-01
In this paper, the authors report on some of their experiences modifying two three-dimensional transonic flow programs (FLO22 and FLO27) for use on the NASA Langley Research Center CYBER 203. Both of the programs discussed were originally written for use on serial machines. Several methods were attempted to optimize the execution of the two programs on the vector machine, including: (1) leaving the program in a scalar form (i.e., serial computation) with compiler software used to optimize and vectorize the program, (2) vectorizing parts of the existing algorithm in the program, and (3) incorporating a new vectorizable algorithm (ZEBRA I or ZEBRA II) in the program.
Application of slender wing benefits to military aircraft
NASA Technical Reports Server (NTRS)
Polhamus, E. C.
1983-01-01
A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.
1990-01-01
This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1995-01-01
Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Graves, R. A., Jr.
1973-01-01
A method for the rapid calculation of the inviscid shock layer about blunt axisymmetric bodies at an angle of attack of 0 deg has been developed. The procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The flow field solution procedure is programed at the Langley Research Center for the Control Data 6600 computer. The geometries specified in the program are sphores, ellipsoids, paraboloids, and hyperboloids which may conical afterbodies. The normal momentum equation is replaced with an approximate algebraic expression. This simplification significantly reduces machine computation time. Comparisons of the present results with shock shapes and surface pressure distributions obtained by the more exact methods indicate that the program provides reasonably accurate results for smooth bodies in axisymmetric flow. However, further research is required to establish the proper approximate form of the normal momentum equation for the two-dimensional case.
Staats, Janet S.; Enzor, Jennifer H.; Sanchez, Ana M.; Rountree, Wes; Chan, Cliburn; Jaimes, Maria; Chan, Ray Chun-Fai; Gaur, Amitabh; Denny, Thomas N.; Weinhold, Kent J.
2014-01-01
The External Quality Assurance Program Oversight Laboratory (EQAPOL) Flow Cytometry Program assesses the proficiency of NIH/NIAID/DAIDS-supported and potentially other interested research laboratories in performing Intracellular Cytokine Staining (ICS) assays. The goal of the EQAPOL Flow Cytometry External Quality Assurance Program (EQAP) is to provide proficiency testing and remediation for participating sites. The program is not punitive; rather, EQAPOL aims to help sites identify areas for improvement. EQAPOL utilizes a highly standardized ICS assay to minimize variability and readily identify those sites experiencing technical difficulties with their assays. Here, we report the results of External Proficiency 3 (EP3) where participating sites performed a 7-color ICS assay. On average, sites perform well in the Flow Cytometry EQAP (median score is “Good”). The most common technical issues identified by the program involve protocol adherence and data analysis; these areas have been the focus of site remediation. The EQAPOL Flow Cytometry team is now in the process of expanding the program to 8-color ICS assays. Evaluating polyfunctional ICS responses would align the program with assays currently being performed in support of HIV immune monitoring assays. PMID:24968072
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
Laminar flow control, 1976 - 1982: A selected annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Maddalon, D. V.
1982-01-01
Laminar Flow Control technology development has undergone tremendous progress in recent years as focused research efforts in materials, aerodynamics, systems, and structures have begun to pay off. A virtual explosion in the number of research papers published on this subject has occurred since interest was first stimulated by the 1976 introduction of NASA's Aircraft Energy Efficiency Laminar Flow Control Program. The purpose of this selected bibliography is to list available, unclassified laminar flow (both controlled and natural) research completed from about 1975 to mid 1982. Some earlier pertinent reports are included but listed separately in the Appendix. Reports listed herein emphasize aerodynamics and systems studies, but some structures work is also summarized. Aerodynamic work is mainly limited to the subsonic and transonic sped regimes. Because wind-tunnel flow qualities, such as free stream disturbance level, play such an important role in boundary-layer transition, much recent research has been done in this area and it is also included.
Experimental results for a hypersonic nozzle/afterbody flow field
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.
1995-01-01
This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.
1991-01-01
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.
Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team
NASA Technical Reports Server (NTRS)
Lamar, John E. (Editor)
2001-01-01
This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.
Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements
NASA Technical Reports Server (NTRS)
Spaid, Frank W.; Keener, Earl R.
1993-01-01
This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.
Hypersonic code efficiency and validation studies
NASA Technical Reports Server (NTRS)
Bennett, Bradford C.
1992-01-01
Renewed interest in hypersonic and supersonic flows spurred the development of the Compressible Navier-Stokes (CNS) code. Originally developed for external flows, CNS was modified to enable it to also be applied to internal high speed flows. In the initial phase of this study CNS was applied to both internal flow applications and fellow researchers were taught to run CNS. The second phase of this research was the development of surface grids over various aircraft configurations for the High Speed Research Program (HSRP). The complex nature of these configurations required the development of improved surface grid generation techniques. A significant portion of the grid generation effort was devoted to testing and recommending modifications to early versions of the S3D surface grid generation code.
Studying Turbulence Using Numerical Simulation Databases, 8. Proceedings of the 2000 Summer Program
NASA Technical Reports Server (NTRS)
2000-01-01
The eighth Summer Program of the Center for Turbulence Research took place in the four-week period, July 2 to July 27, 2000. This was the largest CTR Summer Program to date, involving forty participants from the U. S. and nine other countries. Twenty-five Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. Several new topical groups were formed, which reflects a broadening of CTR's interests from conventional studies of turbulence to the use of turbulence analysis tools in applications such as optimization, nanofluidics, biology, astrophysical and geophysical flows. CTR's main role continues to be in providing a forum for the study of turbulence and other multi-scale phenomena for engineering analysis. The impact of the summer program in facilitating intellectual exchange among leading researchers in turbulence and closely related flow physics fields is clearly reflected in the proceedings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, J.A.C.
1982-01-01
A summary is provided of the first of three years of experimental and theoretical research on free-forced convection flows in cavity-type solar receivers. New experimental and theoretical results are presented and discussed. The implication of these findings, with respect to the future thrust of the research program, is clarified as well as is possible at the present time. Following various related conclusions a summary and tentative schedule of work projected for year two of research are presented.
Lewis Research Center support of Chrysler upgraded engine program
NASA Technical Reports Server (NTRS)
Warren, E. L.
1978-01-01
Running of the upgraded engine has indicated that, although the engine is mechanically sound, it is deficient in power. Recent modifications and corrective action have improved this. Testing of the engine is being done in the test cell. This simulates an automobile installation. Located in the inlet flow ducts are two turbine flow meters to measure engine air flow.
F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Fischer, Michael C.
1999-01-01
The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.
A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
1988-01-01
Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.
F-16XL Ship #2 in hangar for Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.
F-16XL Ship #2 Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.
A real-time digital computer program for the simulation of a single rotor helicopter
NASA Technical Reports Server (NTRS)
Houck, J. A.; Gibson, L. H.; Steinmetz, G. G.
1974-01-01
A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case.
Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1992-01-01
The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism regarding what the CCDS program and the biomedical/biotechnology industry can expect to gain from a permanent manned presence in space.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre
2015-09-15
The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.
A Brush Seals Program Modeling and Developments
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Flower, Ralph; Howe, Harold
1996-01-01
Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are modeled and compare favorably to the results of Ergun.
Quality of Subjective Experience in a Summer Science Program for Academically Talented Adolescents.
ERIC Educational Resources Information Center
Tuss, Paul
This study utilized the flow theory of intrinsic motivation to evaluate the subjective experience of 78 academically talented high school sophomores participating in an 8-day summer research apprenticeship program in materials and nuclear science. The program involved morning lectures on such topics as physics of electromagnetic radiation, energy…
POLLEN FLOW IN THE ENVIRONMENT - DEVELOPMENT OF A RESEARCH PROGRAM
The USEPA Office of Research and Development seeks to provide to the agency and society the best information relating to the status of the environment and any related technology maintaining environmental quality. In this effort, a recent research workshop (Pollen Mediated Gene Fl...
NASA Astrophysics Data System (ADS)
McCreery, Glenn Ernest
An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.
Technical Evaluation Report, Part A - Vortex Flow and High Angle of Attack
NASA Technical Reports Server (NTRS)
Luckring, James M.
2003-01-01
A symposium entitled Vortex Flow and High Angle of Attack was held in Loen, Norway, from May 7 through May 11, 2001. The Applied Vehicle Technology (AVT) panel, under the auspices of the Research and Technology Organization (RTO), sponsored this symposium. Forty-eight papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results, and significant results were contributed from a broad range of countries. The principal emphasis of this symposium was on "the understanding and prediction of separation-induced vortex flows and their effects on military vehicle performance, stability, control, and structural design loads." It was further observed by the program committee that "separation- induced vortex flows are an important part of the design and off-design performance of conventional fighter aircraft and new conventional or unconventional manned or unmanned advanced vehicle designs (UAVs, manned aircraft, missiles, space planes, ground-based vehicles, and ships)." The nine sessions addressed the following topics: vortical flows on wings and bodies, experimental techniques for vortical flows, numerical simulations of vortical flows, vortex stability and breakdown, vortex flows in maritime applications, vortex interactions and control, vortex dynamics, flight testing, and vehicle design. The purpose of this paper is to provide brief reviews of these papers along with some synthesizing perspectives toward future vortex flow research opportunities. The paper includes the symposium program. (15 refs.)
NASA Technical Reports Server (NTRS)
Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.
1991-01-01
An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burge, S.W.
This report describes the theory and structure of the FORCE2 flow program. The manual describes the governing model equations, solution procedure and their implementation in the computer program. FORCE2 is an extension of an existing B&V multidimensional, two-phase flow program. FORCE2 was developed for application to fluid beds by flow implementing a gas-solids modeling technology derived, in part, during a joint government -- industry research program, ``Erosion of FBC Heat Transfer Tubes,`` coordinated by Argonne National Laboratory. The development of FORCE2 was sponsored by ASEA-Babcock, an industry participant in this program. This manual is the principal documentation for the programmore » theory and organization. Program usage and post-processing of code predictions with the FORCE2 post-processor are described in a companion report, FORCE2 -- A Multidimensional Flow Program for Fluid Beds, User`s Guide. This manual is segmented into sections to facilitate its usage. In section 2.0, the mass and momentum conservation principles, the basis for the code, are presented. In section 3.0, the constitutive relations used in modeling gas-solids hydrodynamics are given. The finite-difference model equations are derived in section 4.0 and the solution procedures described in sections 5.0 and 6.0. Finally, the implementation of the model equations and solution procedure in FORCE2 is described in section 7.0.« less
1991-12-01
results were to be generated in a form suitable for use in the Physiologically Based Pharmacokinetic Models. The literature was searched from 1979 to...body Blood flow % Cardiac 02 consumption wt(kg) weight (ml/min) output (ml/min/organ) Brain 1.4 2.0 775 15 46 Heart 0.3 0.43 175 3.3 23 Kidneys 0.3 0.43...Plasma Flow 500-800 ml/min(calculated per 24 hours) Volume, Blood 49-75m1\\kg body wt.Male 56-75m1/kg body wt.Female 2 500-400m1 /m2 Plasma 31-55m1/kg
Nicole Lautze
2015-01-01
Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.
Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poellot, Michael
The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellitemore » program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.« less
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.
Plasma and magnetospheric research
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Horwitz, J. L.
1984-01-01
Methods employed in the analysis of plasmas and the magnetosphere are examined. Computer programs which generate distribution functions are used in the analysis of charging phenomena and non maxwell plasmas in terms of density and average energy. An analytical model for spin curve analysis is presented. A program for the analysis of the differential ion flux probe on the space shuttle mission is complete. Satellite data analysis for ion heating, plasma flows in the polar cap, polar wind flow, and density and temperature profiles for several plasmasphere transits are included.
Experimental program for real gas flow code validation at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul
1989-01-01
The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.
PREFACE: The 15th International Couette-Taylor Worskhop
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Crumeyrolle, Olivier
2008-07-01
The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of Research and the University Association of Mechanics have provided some support. Innocent Mutabazi and Olivier Crumeyrolle Proceedings editors Le Havre, France 15 July 2008
A compressor designed for the energy research and development agency automotive gas turbine program
NASA Technical Reports Server (NTRS)
Galvas, M. R.
1975-01-01
A centrifugal compressor was designed for a gas turbine powered automobile as part of the Energy Research and Development Agency program to demonstrate emissions characteristics that meet 1978 standards with fuel economy and acceleration which are competitive with conventionally powered vehicles. A backswept impeller was designed for the compressor in order to attain the efficiency goal range required for the objectives of this program. Details of the design and method of flow analysis of the compressor are presented.
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Anderson, Loren A. (Editor); Beymer, Mark A. (Editor)
1990-01-01
A collection of technical reports on research conducted by the participants in this program is presented. The topics covered include: human-computer interface software, multimode fiber optic communication links, electrochemical impedance spectroscopy, rocket-triggered lightning, robotics, a flammability study of thin polymeric film materials, a vortex shedding flowmeter, modeling of flow systems, monomethyl hydrazine vapor detection, a rocket noise filter system using digital filters, computer programs, lower body negative pressure, closed ecological systems, and others. Several reports with respect to space shuttle orbiters are presented.
1994-06-27
The modified F-18 High Alpha Research Vehicle (HARV) carries out air flow studies on a flight from the Dryden Flight Research Center, Edwards, California. Using oil, researchers were able to track the air flow across the wing at different speeds and angles of attack. A thrust vectoring system had been installed on the engines' exhaust nozzles for the high angle of attack research program. The thrust vectoring system, linked to the aircraft's flight control system, moves a set of three paddles on each engine to redirect thrust for directional control and increased maneuverability at angles of attack at up to 70 degrees.
Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control
NASA Astrophysics Data System (ADS)
Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul
2017-11-01
Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.
Initial research program for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Gloss, B. B.
1984-01-01
The construction and checkout of the National Transonic Facility (NTF) have been completed, and detailed calibration is now in progress. The initial NTF research program covers a wide range of study areas falling into three major elements: (1) the assessment of Reynolds number sensitivities for a broad range of configurations and flow phenomena; (2) validation of the ability of NTF to simulate full-scale aerodynamics; and (3) the development of test techniques for improved test simulations in existing wind tunnels. This paper, therefore, is a status report on these various elements of the initial NTF research program.
Mixing of Multiple Jets With a Confined Subsonic Crossflow
NASA Technical Reports Server (NTRS)
Holdeman, James D.
1998-01-01
Results from a recently completed enhanced mixing program are summarized in the two technical papers. These studies were parts of a High Speed Research (HSR)-supported joint Government/industry/university program that involved, in addition to the NASA Lewis Research Center, researchers at United Technologies Research Center, Allison Engine Company, CFD Research Corporation, and the University of California, Irvine. The studies investigated the mixing of jets injected normal to a confined subsonic mainsteam in both rectangular and cylindrical ducts. Experimental and computational studies were performed in both nonreacting and reacting flows. The orifice geometries and flow conditions were selected as typical of the complex three-dimensional flows in the combustion chambers in low-emission gas turbine engines. The principal conclusion from both the experiments and modeling was that the momentum-flux ratio J and orifice spacing S/H were the most significant flow and geometry variables, respectively. Conserved scalar distributions were similar-independent of reaction, orifice diameter H/d, and shape-when the orifice spacing and the square root of the momentum-flux ratio were inversely proportional. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. We found that planar averages must be considered in context with the distributions. The mass-flow ratios and the orifices investigated were often very large. The jet-to-mainstream mass-flow ratio was varied from significantly less than 1 to greater than 1. The orifice-area to mainstream-cross-sectional-area was varied from approx. 0 to 0.5, and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. As an example of the results, the accompanying figure shows the effects of different rates of mass addition on the opposite walls of a rectangular duct.
Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer
NASA Astrophysics Data System (ADS)
Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo
2017-11-01
Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1993-01-01
This report contains the 1992 annual progress reports of the Research Fellows and students of the Center for Turbulence Research. Considerable effort was focused on the large eddy simulation technique for computing turbulent flows. This increased activity has been inspired by the recent predictive successes of the dynamic subgrid scale modeling procedure which was introduced during the 1990 Summer Program. Several Research Fellows and students are presently engaged in both the development of subgrid scale models and their applications to complex flows. The first group of papers in this report contain the findings of these studies. They are followed by reports grouped in the general areas of modeling, turbulence physics, and turbulent reacting flows. The last contribution in this report outlines the progress made on the development of the CTR post-processing facility.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.
2004-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
2001-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.
EVALUE : a computer program for evaluating investments in forest products industries
Peter J. Ince; Philip H. Steele
1980-01-01
EVALUE, a FORTRAN program, was developed to provide a framework for cash flow analysis of investment opportunities. EVALUE was designed to assist researchers in evaluating investment feasibility of new technology or new manufacturing processes. This report serves as user documentation for the EVALUE program. EVALUE is briefly described and notes on preparation of a...
F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win
NASA Technical Reports Server (NTRS)
1996-01-01
Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.
Microgravity Combustion Science: 1995 Program Update
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)
1995-01-01
Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.
Advanced liner-cooling techniques for gas turbine combustors
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Riddlebaugh, S. M.
1985-01-01
Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).
1990-10-01
Services No. EB687D020, 20 January 1987, as a part of the Dredging Research Program (DRP), managed by the WES Coastal Engineering Research Center (CERC...with the bottom. The bottom sediments are entrained with the ambient water, lifted hydraulically by the dredge pumps, and discharged into the hop - pers...in a hopper. Some of these are particle size, hopper capacity and opening area, settling velocity, flow velocity in the hop - per, inflow
Second Microgravity Fluid Physics Conference
NASA Technical Reports Server (NTRS)
1994-01-01
The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.
Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization
NASA Astrophysics Data System (ADS)
Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin
2018-05-01
Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, G.
1992-12-28
The following Topics were among those completed at the Air Force Faculty Research Summer Program: Experiences using Model-Based Techniques for the Development of a Large Parallel Instrumentation System; Data Reduction of Laser Induced Fluorescence in Rocket Motor Exhausts; Feasibility of Wavelet Analysis for Plume Data Study; Characterization of Seagrass Meadows in St. Andrew (Crooked Island) Sound, Northern Gulf of Mexico; A Preliminary Study of the Weathering of Jet Fuels in Soil Monitored by SFE with GC Analysis; Preliminary Numerical model of Groundwater Flow at the MADE2 Site.
DOT National Transportation Integrated Search
1995-05-14
THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...
F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.
OVERFLOW-Interaction with Industry
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; George, Michael W. (Technical Monitor)
1996-01-01
A Navier-Stokes flow solver, OVERFLOW, has been developed by researchers at NASA Ames Research Center to use overset (Chimera) grids to simulate the flow about complex aerodynamic shapes. Primary customers of the OVERFLOW flow solver and related software include McDonnell Douglas and Boeing, as well as the NASA Focused Programs for Advanced Subsonic Technology (AST) and High Speed Research (HSR). Code development has focused on customer issues, including improving code performance, ability to run on workstation clusters and the NAS SP2, and direct interaction with industry on accuracy assessment and validation. Significant interaction with NAS has produced a capability tailored to the Ames computing environment, and code contributions have come from a wide range of sources, both within and outside Ames.
Solving Partial Differential Equations in a data-driven multiprocessor environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.
1988-12-31
Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.
1992-01-01
The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.
Sounding rocket research Aries/Firewheel, series 22, issue 15
NASA Technical Reports Server (NTRS)
Mozer, F. S.
1981-01-01
Rocket experiments in ionospheric particle and field research flow in seven programs during the last decade are summarized. Experimental techniques were developed and are discussed including the double-probe field technique. The auroral zone, polar cap, and equatorial spread F were studied.
Clinical Investigation Program. Annual Progress Report. Volume 1
1994-01-20
Suport Labs Resch Chemist 13 0644 GS Salata, KF Allergy Microbiologist 12 0403 CS Billups, L Flow Cytom Microbiologist 12 0403 GS Dobek, AS Inf Disease 5...continued to increase laboratory research support to principal investigators throughout the medical center. The DCI Flow Cytometry Laboratory provided...Kalman PhD. Mitogen-Inducible T Suppressor Cell 12 Assay by Flow Cytometry (12/89) * Reference is to page number(s) in Volume II. 30 PROTOCOL NUMBER
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
A survey of computational aerodynamics in the United States
NASA Technical Reports Server (NTRS)
Gessow, A.; Morris, D. J.
1977-01-01
Programs in theoretical and computational aerodynamics in the United States are described. Those aspects of programs that relate to aeronautics are detailed. The role of analysis at various levels of sophistication is discussed as well as the inverse solution techniques that are of primary importance in design methodology. The research is divided into the broad categories of application for boundary layer flow, Navier-Stokes turbulence modeling, internal flows, two-dimensional configurations, subsonic and supersonic aircraft, transonic aircraft, and the space shuttle. A survey of representative work in each area is presented.
Advanced Turboprop Model in the 8- by 6-Foot Supersonic Wind Tunnel
1979-08-21
NASA Lewis Research Center researcher, John S. Sarafini, uses a laser doppler velocimeter to analyze a Hamilton Standard SR-2 turboprop design in the 8- by 6-Foot foot Supersonic Wind Tunnel. Lewis researchers were analyzing a series of eight-bladed propellers in their wind tunnels to determine their operating characteristics at speeds up to Mach 0.8. The program, which became the Advanced Turboprop (ATP), was part of a NASA-wide Aircraft Energy Efficiency Program undertaken to reduce aircraft fuel costs by 50 percent. The ATP concept was different from the turboprops in use in the 1950s. The modern versions had at least eight blades and were swept back for better performance. Bell Laboratories developed the laser doppler velocimeter technology in the 1960s to measure velocity of transparent fluid flows or vibration motion on reflective surfaces. Lewis researchers modified the device to measure the flow field of turboprop configurations in the transonic speed region. The modifications were necessary to overcome the turboprop’s vibration and noise levels. The laser beam was split into two beams which were crossed at a specific point. This permits researchers to measure two velocity components simultaneously. This data measures speeds both ahead and behind the propeller blades. Researchers could use this information as they sought to advance flow fields and to verify computer modeling codes.
NASA Technical Reports Server (NTRS)
1998-01-01
Ratcom, Inc., has joined NASA Johnson Space Center in an active program to develop cytometry capabilities for space station freedom. This agreement results from a cooperative program that NASA entered into with the American Cancer Society to aid in cancer prevention, diagnosis, and treatment. The flow cytometer is used by cancer researchers to make cellular measurements.
Development of a Brush Seals Program Leading to Ceramic Brush Seals
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Flower, Ralph; Howe, Harold
1994-01-01
Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are given, and the results of testing metallic brushes in cryogenic nitrogen are discussed.
Theoretical studies of solar lasers and converters
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
1990-01-01
The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.
An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation
NASA Technical Reports Server (NTRS)
Miley, S. J.
1977-01-01
A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Goldburg, Walter I.
2002-01-01
A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.
Roadmap for the Hypersonics Programs of the Department of Defense
2008-02-01
development and integration of a 1MW e-bean system to provide the necessary energy into the wind tunnel flow field to enable longer duration experiments at...acquired. Finally, “Test and Evaluation” (T&E) is defined as tests and experiments in support of research development and acquisition of systems...Research Experimentation (HIFiRE) project, the DARPA/AF Falcon program, and the DoD Next Generation Launch planning activities. 13 Joint
Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Systems
2005-04-01
flow at Sandia, that was supported by the Laboratory Directed Research and Devel- opment program, and by the Dept. of Energy , Office of Basic Energy ...finite energy . 6 θ is used to denote the random nature of the corresponding quantity. Being symmetrical and positive definite, REE has all its...Laboratory Directed Research and Development Program at Sandia National Laboratories, funded by the U.S. Department of Energy . Support was also provided
1996 Coolant Flow Management Workshop
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A. (Editor)
1997-01-01
The following compilation of documents includes a list of the 66 attendees, a copy of the viewgraphs presented, and a summary of the discussions held after each session at the 1996 Coolant Flow Management Workshop held at the Ohio Aerospace Institute, adjacent to the NASA Lewis Research Center, Cleveland, Ohio on December 12-13, 1996. The workshop was organized by H. Joseph Gladden and Steven A. Hippensteele of NASA Lewis Research Center. Participants in this workshop included Coolant Flow Management team members from NASA Lewis, their support service contractors, the turbine engine companies, and the universities. The participants were involved with research projects, contracts and grants relating to: (1) details of turbine internal passages, (2) computational film cooling capabilities, and (3) the effects of heat transfer on both sides. The purpose of the workshop was to assemble the team members, along with others who work in gas turbine cooling research, to discuss needed research and recommend approaches that can be incorporated into the Center's Coolant Flow Management program. The workshop was divided into three sessions: (1) Internal Coolant Passage Presentations, (2) Film Cooling Presentations, and (3) Coolant Flow Integration and Optimization. Following each session there was a group discussion period.
Multimillion Dollar Construction Project Completed in Glenn's Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Kevdzija, Susan L.
2001-01-01
Over the last year, the Glenn Research Center's Icing Research Tunnel (IRT) underwent a major $5.2 million rehabilitation project as part of the Construction of Facilities program. The scope of the project included redesign and replacement of the 55-yr-old heat exchanger, the addition of fan outlet guide vanes for flow conditioning downstream of the 25-ft-diameter fan, and redesign and replacement of the C and D corner-turning vanes. The purpose of the rehabilitation was to replace old portions of the infrastructure and to improve the aerodynamic flow quality in the tunnel.
Experimental and numerical modelling of the fluid flow in the continuous casting of steel
NASA Astrophysics Data System (ADS)
Timmel, K.; Miao, X.; Wondrak, T.; Stefani, F.; Lucas, D.; Eckert, S.; Gerbeth, G.
2013-03-01
This article gives an overview of recent research activities with respect to the mold flow in the continuous casting of steel in presence of DC magnetic fields. The magnetic fields appear to be an attractive tool for controlling the melt flow in a contactless way. Various kinds of magnetic systems are already in operation in industrial steel casting, but the actual impact on the melt flow has not been sufficiently verified by experimental studies. The rapid development of innovative diagnostic techniques in low-melting liquid metals over the last two decades enables new possibilities for systematic flow measurements in liquid metal model experiments. A new research program was initiated at HZDR comprising three experimental facilities providing a LIquid Metal Model for continuous CASTing of steel (LIMMCAST). The facilities operate in a temperature range from room temperature up to 400∘C using the low-melting alloys GaInSn and SnBi, respectively. The experimental program is focused on quantitative flow measurements in the mold, the submerged entry nozzle and the tundish. Local potential probes, Ultrasonic Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT) are employed to measure the melt flow. The behavior of two-phase flows in case of argon injection is investigated by means of the Mutual Inductance Tomography (MIT) and X-ray radioscopy. The experimental results provide a substantial data basis for the validation of related numerical simulations. Numerical calculations were performed with the software package ANSYS-CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. First results of the LIMMCAST program reveal important findings such as the peculiar, unexpected phenomenon that the application of a DC magnetic field may excite non-steady, non-isotropic large-scale flow oscillations in the mold. Another important result of our study is that electrical boundary conditions, namely the wall conductivity ratio, have a serious influence on the mold flow while it is exposed to an external magnetic field.
Research and educational initiatives at the Syracuse University Center for Hypersonics
NASA Technical Reports Server (NTRS)
Spina, E.; Lagraff, J.; Davidson, B.; Bogucz, E.; Dang, T.
1995-01-01
The Department of Mechanical, Aerospace, and Manufacturing Engineering and the Northeast Parallel Architectures Center of Syracuse University have been funded by NASA to establish a program to educate young engineers in the hypersonic disciplines. This goal is being achieved through a comprehensive five-year program that includes elements of undergraduate instruction, advanced graduate coursework, undergraduate research, and leading-edge hypersonics research. The research foci of the Syracuse Center for Hypersonics are three-fold; high-temperature composite materials, measurements in turbulent hypersonic flows, and the application of high-performance computing to hypersonic fluid dynamics.
NASA Technical Reports Server (NTRS)
Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.
1992-01-01
Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.
Noormahomed, Emilia Virginia; Carrilho, Carla; Ismail, Mamudo; Noormahomed, Sérgio; Nguenha, Alcido; Benson, Constance A.; Mocumbi, Ana Olga; Schooley, Robert T.
2017-01-01
ABSTRACT Background: Collaborations among researchers based in lower and middle income countries (LMICs) and high income countries (HICs) have made major discoveries related to diseases disproportionately affecting LMICs and have been vital to the development of research communities in LMICs. Such collaborations have generally been scientifically and structurally driven by HICs. Objectives: In this report we outline a paradigm shift in collaboration, exemplified by the Medical Education Partnership Initiative (MEPI), in which the formulation of priorities and administrative infrastructure reside in the LMIC. Methods: This descriptive report outlines the critical features of the MEPI partnership. Results: In the MEPI, LMIC program partners translate broad program goals and define metrics into priorities that are tailored to local conditions. Program funds flow to a LMIC-based leadership group that contracts with peers from HICs to provide technical and scientific advice and consultation in a 'reverse funds flow' model. Emphasis is also placed on strengthening administrative capacity within LMIC institutions. A rigorous monitoring and evaluation process modifies program priorities on the basis of evolving opportunities to maximize program impact. Conclusions: Vesting LMIC partners with the responsibility for program leadership, and building administrative and fiscal capacity in LMIC institutions substantially enhances program relevance, impact and sustainability. PMID:28452653
1993-01-01
external parameters such as airflow, temperature, pressure, etc, are measured. Turbine Engine testing generates massive volumes of data at very high...a form that describes the signal flow graph topology as well as specific parameters of the processing blocks in the diagram. On multiprocessor...provides an interface to the symbolic builder and control functions such that parameters may be set during the build operation that will affect the
1977-02-11
Continue an reverse aide If necessaty and Identify by block number) A comprehensive computational procedure is presented for predicting the...Aeroballistic Reentry Technology ( ART ) program with some of the fundamental analytical and numerical work supported by NSWC Independent Research Funds. Most of...the Aerospace Corporation. The authors gratefully acknowledge the efforts of Mr. R. Feldhuhn, NSWC coordinator for the ART program, who was responsible
Microgravity research in NASA ground-based facilities
NASA Technical Reports Server (NTRS)
Lekan, Jack
1989-01-01
An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.
Heavy liquid metals: Research programs at PSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Y.
1996-06-01
The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futhermore » decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.« less
Parameter estimation of an ARMA model for river flow forecasting using goal programming
NASA Astrophysics Data System (ADS)
Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene
2006-11-01
SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.
A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators
NASA Technical Reports Server (NTRS)
Spight, C.
1976-01-01
A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.
1992-12-01
cm 2 heat flux which must be transferred by the buoyancy-induced gas flow. A survey of electronic cooling literature can easily demonstrate how large...Toward Implementation of a Certification Framework for Reusable Dr. Allen S. Parrish Software Modules 15 Data Association Problems in Multisensor Data...next section and the reader is referred to [5] for additional details of the analysis. Then the method is applied to a dipole element with straight
An Integer Programming Approach to School District Financial Management.
ERIC Educational Resources Information Center
Dembowski, Frederick L.
Because of the nature of school district cash flows, there are opportunities for investing surplus cash and the necessity to borrow cash in deficit periods. The term structure of interest rates makes the manual determination of the optimal financial package impossible. In this research, an integer programming model of this cash management process…
NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Hosler, E. Ramon (Editor); Armstrong, Dennis W. (Editor)
1989-01-01
The contractor's report contains all sixteen final reports prepared by the participants in the 1989 Summer Faculty Fellowship Program. Reports describe research projects on a number of different topics. Interface software, metal corrosion, rocket triggering lightning, automatic drawing, 60-Hertz power, carotid-cardiac baroreflex, acoustic fields, robotics, AI, CAD/CAE, cryogenics, titanium, and flow measurement are discussed.
Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin
2015-11-01
The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
9th International Conference on Multiphase Flow (ICMF 2016)
2016-08-12
Office of Naval Research Global (ONRG) Final CSP (Collaborative Science Program) Report Administrative Details: Event Name: 9th ...International Conference on Multiphase Flows Event Dates: May 22-27, 2016 Event City and Country: Florence, Italy Grantee (Name and Contact...2043 Date of the Final Report: August 12, 2016 Abstract: This report summarizes the main activities and outcomes of the 9th International
Oscillating Cascade Aerodynamics at Large Mean Incidence Angles
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1997-01-01
In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.
NASA Astrophysics Data System (ADS)
Chen, Lei
2005-11-01
Electroosmotic flow in nanochannels is characterized by a very small Reynolds number so that mixing is difficult. While several researchers have presented results for the case of periodic wall potential, and for a sudden change in potential there has been no systematic study of the effect of the variation of wall potential on the flow structure. We have calculated the flow and mass transport in a two-dimensional nanochannel having discontinuities in wall potential. Multiple nano-vortices are generated within the bulk flow due to the overpotential at the surface. The distributions of potential, velocity and mole fractions are calculated numerically and the structure of the flow within the ``nano-vortices'' resembles that of the classical Lamb vortex. The parameters that affect the circulation are investigated as well. The long electrode limit (the aspect ratio much less than one ) is investigated for small channels (EDLs are overlapped) and wide (thin EDL) channels as well. It is found that the flow is two-dimensional only near the corners of the electrode and is fully-developed elsewhere. The flow can be thus decomposed into one-dimensional electroosmotic flow and Poiseuille flow. For a wide channel, a singular perturbation analysis is performed for the electroosmotic component. The results are compared with recently generated experimental data. *This work is supported by the Air Force Office of Scientific Research through its Multi-University Research Initiative(MURI) program.
Flow Control Using Plasma and Synthetic Jet Actuators on Bluff Bodies
2007-01-01
Maryland Minta Martin Aeronautical Research Fund Program. Testing at NASA Langley was made possible through a Cooperative Research and Development...involved the cooperation from the NASA Langley Research Center, Army Research Laboratory, Eagle Aviation, the Boeing Company, the National Institute of...research for whom I am very grateful. From NASA Langley, I would like to thank Steve Wilkinson for his unending patience, support and guidance
Langley Mach 4 scramjet test facility
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Torrence, M. G.; Anderson, G. Y.; Northam, G. B.; Mackley, E. A.
1985-01-01
An engine test facility was constructed at the NASA Langley Research Center in support of a supersonic combustion ramjet (scramjet) technology development program. Hydrogen combustion in air with oxygen replenishment provides simulated air at Mach 4 flight velocity, pressure, and true total temperature for an altitude range from 57,000 to 86,000 feet. A facility nozzle with a 13 in square exit produces a Mach 3.5 free jet flow for engine propulsion tests. The facility is described and calibration results are presented which demonstrate the suitability of the test flow for conducting scramjet engine research.
Problem Solving in a Middle School Robotics Design Classroom
NASA Astrophysics Data System (ADS)
Norton, Stephen J.; McRobbie, Campbell J.; Ginns, Ian S.
2007-07-01
Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.
The development of laser speckle velocimetry for the study of vortical flows
NASA Technical Reports Server (NTRS)
Krothapalli, A.
1991-01-01
A research program was undertaken to develop a new experimental technique commonly known as particle image displacement velocity (PIVD) to measure an instantaneous two dimensional velocity field in a selected plane of flow field. This technique was successfully developed and applied to the study of several aerodynamic problems. A detailed description of the technique and a broad review of all the research activity carried out in this field are reported. A list of technical publications is also provided. The application of PIDV to unsteady flows with large scale structures is demonstrated in a study of the temporal evolution of the flow past an impulsively started circular cylinder. The instantaneous two dimensional flow in the transition region of a rectangular air jet was measured using PIDV and the details are presented. This experiment clearly demonstrates the PIDV capability in the measurement of turbulent flows. Preliminary experiments were also conducted to measure the instantaneous flow over a circular bump in a transonic flow. Several other experiments now routinely use PIDV as a non-intrustive measurement technique to obtain instantaneous two dimensional velocity fields.
DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Simpkins, Darin G.; Wildhaber, Mark L.; Reuter, Joanna M.; Bonnot, Tom W.; Chojnacki, Kimberly A.; Korschgen, Carl E.; Mestl, Gerald E.; Mac, Michael J.
2009-01-01
This report provides a synthesis of results obtained between 2005 and 2008 from the Comprehensive Sturgeon Research Program, an interagency collaboration between the U.S. Geological Survey, Nebraska Game and Parks Commission, U.S. Fish and Wildlife Service, and the U.S. Army Corps of Engineers' Missouri River Recovery - Integrated Science Program. The goal of the Comprehensive Sturgeon Research Program is to improve fundamental understanding of reproductive ecology of the pallid sturgeon with the intent that improved understanding will inform river and species management decisions. Specific objectives include: *Determining movement, habitat-use, and reproductive behavior of pallid sturgeon; *Understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; *Determining origin, transport, and fate of drifting pallid sturgeon larvae, and evaluating bottlenecks for recruitment of early life stages; *Quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages; and *Managing databases, integrating understanding, and publishing relevant information into the public domain. Management actions to increase reproductive success and survival of pallid sturgeon in the Lower Missouri River have been focused on flow regime, channel morphology, and propagation. Integration of 2005-08 Comprehensive Sturgeon Research Program research provides insight into linkages among flow regime, re-engineered channel morphology, and pallid sturgeon reproduction and survival. The research approach of the Comprehensive Sturgeon Research Program integrates opportunistic field studies, field-based experiments, and controlled laboratory studies. The field study plan is designed to explore the role of flow regime and associated environmental cues using two complementary approaches. An upstream-downstream approach compares sturgeon reproductive behavior between an upstream section of the Lower Missouri River with highly altered flow regime to a downstream section that maintains much of its pre-regulation flow variability. The upstream section also has the potential for an experimental approach to compare reproductive behavior in years with pulsed flow modifications ('spring rises') to years without. The reproductive cycle of the female sturgeon requires several years to progress through gonadal development, oocyte maturation, and spawning. Converging lines of evidence support the hypothesis that maturation and readiness to spawn in female sturgeon is cued many months before spawning. Information on reproductive readiness of shovelnose sturgeon indicates that sturgeon at different locations along the Lower Missouri River between St. Louis and Gavins Point Dam are all responding to the same early cue. Although not a perfect surrogate, the more abundant shovelnose sturgeon is morphologically, physiologically, and genetically similar to pallid sturgeon, and thereby provides a useful comparative model for the rarer species. Day length is the likely candidate to define a temporal spawning window. Within the spawning window, one or more additional, short-term, and specific cues may serve to signal ovulation and release of gametes. Of three potential spawning cues - water temperature, water discharge, and day of year - water temperature is the most likely proximate cue because of the fundamental physiological role temperature plays in sturgeon embryo development and survival, and the sensitivity of many fish hormones to temperature change. It also is possible that neither temperature nor discharge is cueing spawning; instead, reproductive behavior may result from the biological clock advancing an individual fish's readiness to spawn day after day through the spawning period until the right moment, independent of local environmental conditions. Separation of the individual effects of discharge events, water temperature, and other possible factors, such as proximity to male
The NASA Scientific and Technical Information Program: Prologue to the Future
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA STI Program offers researchers an infrastructure of people and systems that facilitates access to STI; worldwide. The Program is also NASA's institutional mechanism for disseminating the results of its research and developing activities. Through discussions in 1991, the STI Program formulated its Strategic Plan. The plan gives the Program a renewed sense of direction by focusing on future opportunities, customer requirements and Program goals, along with the changes needed to achieve those goals. The Program provides users access to a massive flow of STI which, in fact, represents the largest collection of aeronautical and space science information in the world. The STI Program products and services are outlined, along with the NASA centers, international operations, and the fact that total quality management drives NASA wide program developments. As is detailed, the NASA STI Program is using its resources as effectively as possible to meet the missing needs of NASA.
ERIC Educational Resources Information Center
Hamilton, Jenny; Bronte-Tinkew, Jacinta
2007-01-01
A logic model, also called a conceptual model and theory-of-change model, is a visual representation of how a program is expected to "work." It relates resources, activities, and the intended changes or impacts that a program is expected to create. Typically, logic models are diagrams or flow charts with illustrations, text, and arrows that…
HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)
2007-06-01
an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various
Parallel barrier effectiveness under free-flowing traffic conditions
DOT National Transportation Integrated Search
1992-04-01
The U.S. Department of Transportation, Research and Special Programs Administration, Volpe National Transportation Systems Center, in support of the Federal Highway Administration and seventeen sponsoring state transportation agencies, is conducting ...
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
1992-01-09
community and should form an impetus for future work in this rapidly developing field. SUMMARY A powerful experimental technique, that of X-ray...appropriate solar radiation absorption properties must be mixed with the hydrogen. Studies have been made which show the alkali metals to be powerful ...deposition of carbon. The treated substrates were placed in a tube furnace through which an acetylene-hydrogen or propane-hydrogen mixture flowed
NASA's Morphing Project Research Summaries in Fiscal Year 2002
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Waszak, Martin R.
2005-01-01
The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
Studying Turbulence Using Numerical Simulation Databases. No. 7; Proceedings of the Summer Program
NASA Technical Reports Server (NTRS)
1998-01-01
The Seventh Summer Program of the Center for Turbulence Research took place in the four-week period, July 5 to July 31, 1998. This was the largest CTR Summer Program to date, involving thirty-six participants from the U. S. and nine other countries. Thirty-one Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. A new feature, and perhaps a preview of the future programs, was that many of the projects were executed on non-NASA computers. These included supercomputers located in Europe as well as those operated by the Departments of Defense and Energy in the United States. In addition, several simulation programs developed by the visiting participants at their home institutions were used. Another new feature was the prevalence of lap-top personal computers which were used by several participants to carry out some of the work that in the past were performed on desk-top workstations. We expect these trends to continue as computing power is enhanced and as more researchers (many of whom CTR alumni) use numerical simulations to study turbulent flows. CTR's main role continues to be in providing a forum for the study of turbulence for engineering analysis and in facilitating intellectual exchange among the leading researchers in the field. Once again the combustion group was the largest. Turbulent combustion has enjoyed remarkable progress in using simulations to address increasingly complex and practically more relevant questions. The combustion group's studies included such challenging topics as fuel evaporation, soot chemistry, and thermonuclear reactions. The latter study was one of three projects related to the Department of Energy's ASCI Program (www.llnl.gov/asci); the other two (rocket propulsion and fire safety) were carried out in the turbulence modeling group. The flow control and acoustics group demonstrated a successful application of the so-called evolution algorithms which actually led to a previously unknown forcing strategy for jets yielding increased spreading rate. A very efficient algorithm for flow in complex geometries with moving boundaries based on the immersed boundary forcing technique was tested with very encouraging results. Also a new strategy for the destruction of aircraft trailing vortices was introduced and tested. The Reynolds Averaged Modeling (RANS) group demonstrated that the elliptic relaxation concept for RANS calculations is also applicable to transonic flows with shocks; however, prediction of laminar/turbulent transition remains an important pacing item. A large fraction of the LES effort was devoted to the development and testing of a new algorithmic procedure (as opposed to phenomenological model) for subgrid scale modeling based on regularized de-filtering of the flow variables. This appears to be a very promising approach, and a significant effort is currently underway to assess its robustness in high Reynolds number flows and in conjunction with numerical methods for complex flows. As part of the Summer Program two review tutorials were given on Turbulent structures in hydrocarbon pool fires (Sheldon Tieszen), and Turbulent combustion modeling: from RANS to LES via DNS (Luc Vervisch); and two seminars entitled Assessment of turbulence models for engineering applications (Paul Durbin) and Subgrid-scale modeling for non-premixed, turbulent reacting flows (James Riley) were presented. A number of colleagues from universities, government agencies, and industry attended the final presentations of the participants on July 31 and participated in the discussions. There are twenty-six papers in this volume grouped in five areas. Each group is preceded with an overview by its coordinator.
ERIC Educational Resources Information Center
Marcy, Willard
Intended as a guide for university administrators, this manual discusses programs to help faculty members in the recognition of inventions and to increase the flow of their disclosure. The benefits of patenting are outlined and it is suggested that these benefits provide justification for initiating a program to increase disclosures. Important…
New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Roeder, James W., Jr.
1998-01-01
In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.
Measurement of attachment-line location in a wind-tunnel and in supersonic flight
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Miley, Stan J.; Fisher, Michael C.; Anderson, Bianca T.; Geenen, Robert J.
1992-01-01
For the supersonic laminar flow control research program, tests are being conducted to measure the attachment-line flow characteristics and its location on a highly swept aircraft wing. Subsonic wind tunnel experiments were conducted on 2D models to develop sensors and techniques for the flight application. Representative attachment-line data are discussed and results from the wind tunnel investigation are presented.
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
Environmental flow allocation and statistics calculator
Konrad, Christopher P.
2011-01-01
The Environmental Flow Allocation and Statistics Calculator (EFASC) is a computer program that calculates hydrologic statistics based on a time series of daily streamflow values. EFASC will calculate statistics for daily streamflow in an input file or will generate synthetic daily flow series from an input file based on rules for allocating and protecting streamflow and then calculate statistics for the synthetic time series. The program reads dates and daily streamflow values from input files. The program writes statistics out to a series of worksheets and text files. Multiple sites can be processed in series as one run. EFASC is written in MicrosoftRegistered Visual BasicCopyright for Applications and implemented as a macro in MicrosoftOffice Excel 2007Registered. EFASC is intended as a research tool for users familiar with computer programming. The code for EFASC is provided so that it can be modified for specific applications. All users should review how output statistics are calculated and recognize that the algorithms may not comply with conventions used to calculate streamflow statistics published by the U.S. Geological Survey.
Land Treatment Research and Development Program, Synthesis of Research Results,
1983-08-01
at Pack Forest, Washington .......... 22 8. Infiltration test and the relationship between cumulative water uptake and tim e...the chemistry of phos- phorus in land treatment ..................................... 37 18. Schematic diagram of the compartmental water flow model...39 19. Comparison between predicted and measured water content in slow rate soils .................................................. 39 20
NASA Technical Reports Server (NTRS)
McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian
2003-01-01
The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
The research infrastructure of Chinese foundations, a database for Chinese civil society studies
Ma, Ji; Wang, Qun; Dong, Chao; Li, Huafang
2017-01-01
This paper provides technical details and user guidance on the Research Infrastructure of Chinese Foundations (RICF), a database of Chinese foundations, civil society, and social development in general. The structure of the RICF is deliberately designed and normalized according to the Three Normal Forms. The database schema consists of three major themes: foundations’ basic organizational profile (i.e., basic profile, board member, supervisor, staff, and related party tables), program information (i.e., program information, major program, program relationship, and major recipient tables), and financial information (i.e., financial position, financial activities, cash flow, activity overview, and large donation tables). The RICF’s data quality can be measured by four criteria: data source reputation and credibility, completeness, accuracy, and timeliness. Data records are properly versioned, allowing verification and replication for research purposes. PMID:28742065
Center for modeling of turbulence and transition: Research briefs, 1993
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1994-01-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from June 1992 to July 1993. It is also an annual report to the Institute for Computational Mechanics in Propulsion located at Ohio Aerospace Institute and NASA Lewis Research Center. The main objectives of the research activities at CMOTT are to develop, validate, and implement turbulence and transition models for flows of interest in propulsion systems. Currently, our research covers eddy viscosity one- and two-equation models, Reynolds-stress algebraic equation models, Reynolds-stress transport equation models, nonequilibrium multiple-scale models, bypass transition models, joint scalar probability density function models, and Renormalization Group Theory and Direct Interaction Approximation methods. Some numerical simulations (LES and DNS) have also been carried out to support the development of turbulence modeling. Last year was CMOTT's third year in operation. During this period, in addition to the above mentioned research, CMOTT has also hosted the following programs: an eighteen-hour short course on 'Turbulence--Fundamentals and Computational Modeling (Part I)' given by CMOTT at the NASA Lewis Research Center; a productive summer visitor research program that has generated many encouraging results; collaborative programs with industry customers to help improve their turbulent flow calculations for propulsion system designs; a biweekly CMOTT seminar series with speakers from within and without the NASA Lewis Research Center including foreign speakers. In addition, CMOTT members have been actively involved in the national and international turbulence research activities. The current CMOTT roster and organization are listed in Appendix A. Listed in Appendix B are the abstracts of the biweekly CMOTT seminar. Appendix C lists the papers contributed by CMOTT members.
NASA Technical Reports Server (NTRS)
Weatherill, Warren H.; Ehlers, F. Edward
1989-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.
Experimental Supersonic Combustion Research at NASA Langley
NASA Technical Reports Server (NTRS)
Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne
1998-01-01
Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.
Third Microgravity Fluid Physics Conference
NASA Technical Reports Server (NTRS)
1996-01-01
The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.
Three dimensional viscous analysis of a hypersonic inlet
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Smith, G. E.; Liou, M.-F.; Benson, Thomas J.
1989-01-01
The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet.
Habicht, Jean-Pierre; Pelto, Gretel H.
2014-01-01
The biological efficacy of nutritional supplements to complement usual diets in poor populations is well established. This knowledge rests on decades of methodologic research development and, more recently, on codification of methods to compile and interpret results across studies. The challenge now is to develop implementation (delivery) science knowledge and achieve a similar consensus on efficacy criteria for the delivery of these nutrients by public health and other organizations. This requires analysis of the major policy instruments for delivery and well-designed program delivery studies that examine the flow of a nutrient through a program impact pathway. This article discusses the differences between biological and program efficacy, and why elucidating the fidelity of delivery along the program impact pathways is essential for implementing a program efficacy trial and for assessing its internal and external validity. Research on program efficacy is expanding, but there is a lack of adequate frameworks to facilitate the process of harmonizing concepts and vocabulary, which is essential for communication among scientists, policy planners, and program implementers. There is an urgent need to elaborate these frameworks at national and program levels not only for program efficacy studies but also for the broader research agenda to support and improve the science of delivering adequate nutrition to those who need it most. PMID:24425719
1993-11-01
indicate that the wel rnproved to nearly their original effec- tiveness as a result of the prolongf., eriod of flow during the flood. Evalua- tion of... flow data from the Flood of. )73 indicated restored yields in some of the test wells of slightly higher than 100 percent of the original values. Tests...redevelopment and flushing of bacterial residue occurred as a result of the high flows . The same studies indicated that the test wells of the Upper Wood
Active Control of Aerodynamic Noise Sources
NASA Technical Reports Server (NTRS)
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Energy efficient transport technology: Program summary and bibliography
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Bartlett, D. W.; Hood, R. V.
1985-01-01
The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.
Skin friction measurement in complex flows using thin oil film techniques
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA Grant NAG2-261 was initiated to support a program of research to study complex flows that occur in flight and laboratory experiments by building, testing and optimizing an on-board technique for direct measurement of surface shear stress using thin oil film techniques. The program of research has proceeded under the supervision of the NASA Ames Research Center and with further cooperation from the NASA Ames-Dryden and NASA Langley Research Centers. In accordance with the original statement of work, the following research milestones were accomplished: (1) design and testing of an internally mounted one-directional skin friction meter to demonstrate the feasibility of the concept; (2) design and construction of a compact instrument capable of measuring skin friction in two directions; (3) study of transitional and fully turbulent boundary layers over a flat plate with and without longitudinal pressure gradients utilizing the compact two-directional skin friction meter; (4) study of the interaction between a turbulent boundary layer and a shock wave generated by a compression corner using the two-directional meter; and (5) flight qualification of the compact meter and accompanying electronic and pneumatic systems, preliminary installation into flight test fixture.
Extending Cross-Generational Knowledge Flow Research in Edge Organizations
2008-06-01
letting Protégé generate the basic user interface, and then gradually write widgets and plug-ins to customize its look-and- feel and behavior . 4 3.0...2007a) focused on cross-generational knowledge flows in edge organizations. We found that cross- generational biases affect tacit knowledge transfer...the software engineering field, many matured methodologies already exist, such as Rational Unified Process (Hunt, 2003) or Extreme Programming (Beck
Controllers for Flow-Field Survey Apparatus
NASA Technical Reports Server (NTRS)
Ashby George C., JR.; Vaccarelli, M. D.
1986-01-01
Control systems of flow-field survey apparatuses of 22-inch (56centimeter) Hypersonic Helium Facility (two-dimensional) and 20-inch (51centimeter) Mach 6 Tunnel (three-dimensional) at Langley Research Center equipped with single-chip microcomputer and single-board microcomputer, respectively, to drive probes at selected speeds and perform other functions automatically. Various modes of operation programed as need arises. Both of these control systems fabricated relatively inexpensively from commercially available stock components.
Experimental Program to Stimulate Competitive Research (EPSCoR)
NASA Technical Reports Server (NTRS)
Dingerson, Michael R.
1997-01-01
Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.
Experiments on high speed ejectors
NASA Technical Reports Server (NTRS)
Wu, J. J.
1986-01-01
Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.
Multi-scale simulations of droplets in generic time-dependent flows
NASA Astrophysics Data System (ADS)
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Bowman, J. S., Jr.
1980-01-01
The NASA Langley Research Center has initiated a broad general aviation stall/spin research program. A rotary balance system was developed to support this effort. Located in the Langley spin tunnel, this system makes it possible to identify an airplane's aerodynamic characteristics in a rotational flow environment, and thereby permits prediction of spins. This paper presents a brief description of the experimental set-up, testing technique, five model programs conducted to date, and an overview of the rotary balance results and their correlation with spin tunnel free-spinning model results. It is shown, for example, that there is a large, nonlinear dependency of the aerodynamic moments on rotational rate and that these moments are pronouncedly configuration-dependent. Fuselage shape, horizontal tail and, in some instances, wing location are shown to appreciably influence the yawing moment characteristics above an angle of attack of 45 deg.
A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983
NASA Technical Reports Server (NTRS)
Moffat, R. J.; Kays, W. M.
1984-01-01
For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.
The NASA Langley Isolator Dynamics Research Lab
NASA Technical Reports Server (NTRS)
Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.
2010-01-01
The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1979-01-01
The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.
Dryden Test Pilots 1990 - Smolka, Fullerton, Schneider, Dana, Ishmael, Smith, and McMurtry
NASA Technical Reports Server (NTRS)
1990-01-01
It was a windy afternoon on Rogers Dry Lake as the research pilots of the National Aeronautics and Space Administration's Ames-Dryden Flight Research Facility gathered for a photo shoot. It was a special day too, the 30th anniversary of the first F-104 flight by research pilot Bill Dana. To celebrate, a fly over of Building 4800, in formation, was made with Bill in a Lockheed F-104 (826), Gordon Fullerton in a Northrop T-38, and Jim Smolka in a McDonnell Douglas F/A-18 (841) on March 23, 1990. The F-18 (841), standing on the NASA ramp is a backdrop for the photo of (Left to Right) James W. (Smoke) Smolka, C. Gordon Fullerton, Edward T. (Ed) Schneider, William H. (Bill) Dana, Stephen D. (Steve) Ishmael, Rogers E. Smith, and Thomas C. (Tom) McMurtry. Smolka joined NASA Ames-Dryden Flight Research Facility in September 1985. He has been the project pilot on the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) research and F-15 Aeronautical Research Aircraft programs. He has also flown as a pilot on the NASA B-52 launch aircraft, as a co-project pilot on the F-16XL Supersonic Laminar Flow Control aircraft and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft. Other aircraft he has flown in research programs are the F-16, F-111, F-104 and the T-38 as support. Fullerton, joined NASA's Ames-Dryden Flight Research Facility in November 1986. He was project pilot on the NASA/Convair 990 aircraft to test space shuttle landing gear components, project pilot on the F-18 Systems Research Aircraft, and project pilot on the B-52 launch aircraft, where he was involved in six air launches of the commercially developed Pegasus space launch vehicle. Other assignments include a variety of flight research and support activities in multi-engine and high performance aircraft such as, F-15, F-111, F-14, X-29, MD-11 and DC-8. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research pilot one year later. He has been project pilot for the F-18 High Angle-of-Attack program (HARV), project pilot for the F-15 aeronautical research aircraft, the NASA B-52 launch aircraft, and the SR-71 'Blackbird' aircraft. His past research work at Dryden has included participation in the F-8 Digital Fly-By-Wire, the FAA/NASA 720 Controlled Impact Demonstration, the F-14 Automatic Rudder Interconnect and Laminar Flow programs, and the F-104 Aeronautical Research and Microgravity programs. Dana joined the NASA's High-Speed Flight Station on October 1, 1958. As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program, flying the wingless M2-F1, HL-10, M2-F3, and the X-24B vehicles. He was a project pilot on the hypersonic X-15 research aircraft and flew the rocket-powered vehicle 16 times, reaching a speed of 3,897 mph and an altitude of 310,000 feet. Bill was the pilot on the final (199th) flight of the 10-year program. Other research and support programs Dana participated in were the F-15 Highly Integrated Digital Electronic Control (HIDEC), the F-18 High Angle-of-Attack Research Vehicle (HARV), YF-12, F-104, F-16, PA-30, and T-38. In 1993 Dana became Chief Engineer at NASA's Ames-Dryden Flight Research Facility (soon to be renamed the Dryden Flight Research Center). Ishmael was a research pilot at NASA's Dryden Flight Research Center from January 1977 until the spring of 1995, when he became manager of Dryden's Reusable Launch Vehicle (RLV) programs. In 1996 he became NASA's X-33 Deputy Manager for Flight Test and Operation. As a research pilot he served as the chief project pilot on two major aeronautical research programs, the SR-71 High Speed Research program and the F-16XL Laminar Flow Technology program. He took part in the X-29 Forward-Swept-Wing program, and gave support to other pilots' research flights in a T-38 and F-104 aircraft. Smith became a research pilot at NASA's Ames-Dryden Flight Research Facility in August 1982. In the spring of 1995 he became Chief of the Flight Crew Branch where currently there are 8 other NASA pilots and 2 flight engineers. Smith has also been a co-project pilot on two major aeronautical programs at Dryden. They are the integrated thrust vectoring F-15 ACTIVE and the SR-71 'Blackbird' Research programs. Other research programs that he has been associated with are the F-104 Zero 'G' tests, F-18 HARV, X-29 Forward-Swept-Wing, with support flights being flown in a T-38 and F-104. McMurtry has been a pilot at NASA's Dryden since joining the Flight Research Center in November 1967. In 1981, Tom became Chief Pilot a position he held until February 1986, when he was appointed Chief of the Research Aircraft Operations Division. McMurtry has been project pilot for the AD-1 Oblique Wing program, the F-15 Digital Electronic Engine Control (DEEC) project and the F-8 Supercritical Wing program. He was co- project pilot on the F-15 ACTIVE program, F-8 Digital Fly-By-Wire program and on several remotely piloted research vehicle programs such as the FAA/NASA 720 Controlled Impact Demonstration and the sub-scale F-15 spin research project. He has also been a co-project pilot on the NASA 747 Shuttle Carrier Aircraft.
An inlet analysis for the NASA hypersonic research engine aerothermodynamic integration model
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Russell, J. W.; Mackley, E. A.; Simmonds, A. L.
1974-01-01
A theoretical analysis for the inlet of the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM) has been undertaken by use of a method-of-characteristics computer program. The purpose of the analysis was to obtain pretest information on the full-scale HRE inlet in support of the experimental AIM program (completed May 1974). Mass-flow-ratio and additive-drag-coefficient schedules were obtained that well defined the range effected in the AIM tests. Mass-weighted average inlet total-pressure recovery, kinetic energy efficiency, and throat Mach numbers were obtained.
The NASA Microgravity Fluid Physics Program: Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.
2003-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.
UV Raman and Fluorescence for Multi-Species Measurement in Hydrocarbon-Fueled High-Speed Propulsion
NASA Technical Reports Server (NTRS)
Skaggs, Patricia Annette; Nandula, Sastri P.; Pitz, Robert W.
1999-01-01
This report documents work performed through the NASA Graduate Student Researchers Program, Grant No. NGT3-52316. Research performed included investigation of two-line fluorescence imaging of OH for temperature measurement and an investigation of negative flame speeds for modeling of premixed turbulent flames. The laboratory work and initial analysis of the fluorescence imaging was performed at NASA Glen Research Center with follow up analysis at Vanderbilt University. The negative flame speed investigation was performed using an opposed jet flow simulation program at Vanderbilt University. The fluorescence imaging work is presented first followed by the negative flame speed investigation.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor stall and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.
Satellite Propellant Pump Research
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan
2005-01-01
NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.
PMARC - PANEL METHOD AMES RESEARCH CENTER
NASA Technical Reports Server (NTRS)
Ashby, D. L.
1994-01-01
Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is reversed for internal flow problems where the internal region contains the flow field of interest and the external flow field is fictitious. In either case it is assumed that the velocity potentials in both regions satisfy Laplace's equation. PMARC has extensive geometry modeling capabilities for handling complex, three-dimensional surfaces. As with all panel methods, the geometry must be modeled by a set of panels. For convenience, the geometry is usually subdivided into several pieces and modeled with sets of panels called patches. A patch may be folded over on itself so that opposing sides of the patch form a common line. For example, wings are normally modeled with a folded patch to form the trailing edge of the wing. PMARC also has the capability to automatically generate a closing tip patch. In the case of a wing, a tip patch could be generated to close off the wing's third side. PMARC has a simple jet model for simulating a jet plume in a crossflow. The jet plume shape, trajectory, and entrainment velocities are computed using the Adler/Baron jet in crossflow code. This information is then passed back to PMARC. The wake model in PMARC is a time-stepping wake model. The wake is convected downstream from the wake separation line by the local velocity flowfield. With each time step, a new row of wake panels is added to the wake at the wake separation line. PMARC also allows an initial wake to be specified if desired, or, as a third option, no wakes need be modeled. The effective presentation of results for aerodynamics problems requires the generation of report-quality graphics. PMAPP (ARC-12751), the Panel Method Aerodynamic Plotting Program, (Sterling Software), was written for scientists at NASA's Ames Research Center to plot the aerodynamic analysis results (flow data) from PMARC. PMAPP is an interactive, color-capable graphics program for the DEC VAX or MicroVAX running VMS. It was designed to work with a variety of terminal types and hardcopy devices. PMAPP is available separately from COSMIC. PMARC was written in standard FORTRAN77 using adjustable size arrays throughout the code. Redimensioning PMARC will change the amount of disk space and memory the code requires to be able to run; however, due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The program was implemented on an Apple Macintosh (using 2.5 MB of memory) and tested on a VAX/VMS computer. The program is available on a 3.5 inch Macintosh format diskette (standard media) or in VAX BACKUP format on TK50 tape cartridge or 9-track magnetic tape. PMARC was developed in 1989.
Ed Schneider gives a "thumbs-up" after his last flight at the Dryden Flight Research Center
2000-09-19
In a lighter mood, Ed Schneider gives a "thumbs-up" after his last flight at the Dryden Flight Research Center on September 19, 2000. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research pilot one year later. He has been project pilot for the F-18 High Angle-of-Attack program (HARV), the F-15 aeronautical research aircraft, the NASA B-52 launch aircraft, and the SR-71 "Blackbird" aircraft. He also participated in such programs as the F-8 Digital Fly-By-Wire, the FAA/NASA 720 Controlled Impact Demonstration, the F-14 Automatic Rudder Interconnect and Laminar Flow, and the F-104 Aeronautical Research and Microgravity projects.
Testing and Implementation of Advanced Reynolds Stress Models
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1997-01-01
A research program was proposed for the testing and implementation of advanced turbulence models for non-equilibrium turbulent flows of aerodynamic importance that are of interest to NASA. Turbulence models that are being developed in connection with the Office of Naval Research ARI in Non-equilibrium are provided for implementation and testing in aerodynamic flows at NASA Langley Research Center. Close interactions were established with researchers at Nasa Langley RC and refinements to the models were made based on the results of these tests. The models that have been considered include two-equation models with an anisotropic eddy viscosity as well as full second-order closures. Three types of non-equilibrium corrections to the models have been considered in connection with the ARI on Nonequilibrium Turbulence: conducted for ONR.
Externally blown flap noise research
NASA Technical Reports Server (NTRS)
Dorsch, R. G.
1974-01-01
The Lewis Research Center cold-flow model externally blown flap (EBF) noise research test program is summarized. Both engine under-the-wing and over-the-wing EBF wing section configurations were studied. Ten large scale and nineteen small scale EBF models were tested. A limited number of forward airspeed effect and flap noise suppression tests were also run. The key results and conclusions drawn from the flap noise tests are summarized and discussed.
ERIC Educational Resources Information Center
Ayala, Gabriela Cota; Real, Francia Angélica Karlos; Ivan, Ramirez Alvarado Edqar
2016-01-01
The research was conducted to determine if the study program of the career of industrial processes Technological University of Chihuahua, 1 year after that it was certified by CACEI, continues achieving the established indicators and ISO 9001: 2008, implementing quality tools, monitoring of essential indicators are determined, flow charts are…
Modeling of Cavitating Flow through Waterjet Propulsors
2015-02-18
1-0197 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...RESPONSIBLE PERSON Jules W. Lindau 19b. TELEPONE NUMBER (Include area code) 814-865-8938 ^\\6^G%013 Standard Form 298 (Rev. 8-98) Prescribed by ANSI-Std...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State
An Interactive Excel Program for Tracking a Single Droplet in Crossflow Computation
NASA Technical Reports Server (NTRS)
Urip, E.; Yang, S. L.; Marek, C. J.
2002-01-01
Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.
1976-01-01
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
NASA Technical Reports Server (NTRS)
Crook, Andrew J.; Delaney, Robert A.
1992-01-01
The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.
NASA Technical Reports Server (NTRS)
Poinsot, Thierry J.
1993-01-01
Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct numerical simulation (DNS) appears to be one of the most attractive tools to use in addressing this problem. The general objective of DNS of reacting flows is to improve our knowledge of turbulent combustion but also to use this information for turbulent combustion models. For the foreseeable future, numerical simulation of the full three-dimensional governing partial differential equations with variable density and transport properties as well as complex chemistry will remain intractable; thus, various levels of simplification will remain necessary. On one hand, the requirement to simplify is not necessarily a handicap: numerical simulations allow the researcher a degree of control in isolating specific physical phenomena that is inaccessible in experiments. CTR has pursued an intensive research program in the field of DNS for turbulent reacting flows since 1987. DNS of reacting flows is quite different from DNS of non-reacting flows: without reaction, the equations to solve are clearly the five conservation equations of the Navier Stokes system for compressible situations (four for incompressible cases), and the limitation of the approach is the Reynolds number (or in other words the number of points in the computation). For reacting flows, the choice of the equations, the species (each species will require one additional conservation equation), the chemical scheme, and the configuration itself is more complex.
Large Eddy Simulation of Turbulent Flow in a Ribbed Pipe
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2011-11-01
Turbulent flow in a pipe with periodically wall-mounted ribs has been investigated by large eddy simulation with a dynamic subgrid-scale model. The value of Re considered is 98,000, based on hydraulic diameter and mean bulk velocity. An immersed boundary method was employed to implement the ribs in the computational domain. The spacing of the ribs is the key parameter to produce the d-type, intermediate and k-type roughness flows. The mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the experimental measurements currently available. Turbulence statistics, including budgets of the Reynolds stresses, were computed, and analyzed to elucidate turbulence structures, especially around the ribs. In particular, effects of the ribs are identified by comparing the turbulence structures with those of smooth pipe flow. The present investigation is relevant to the erosion/corrosion that often occurs around a protruding roughness in a pipe system. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Geothermal reservoir engineering research
NASA Technical Reports Server (NTRS)
Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.
1974-01-01
The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.
The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1995-01-01
This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the period 1 Oct. 1995 - 30 Sept. 1996. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics and high lift modeling studies. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the high lift activities.
United States Air Force Summer Faculty Research Program. Program Technical Report. 1990. Volume 3
1991-06-05
flowchart of the progran "NCHIPSIM" is shown o. the following two pages. 95-7 SSTAR ’ ’.Choose-Chip type; Microprocessor or Gate,-Array Choose...oeet ~alulaew ntegrionRsut YEYES FLOW CHART FOR NCHIPSIM" 95-9 IV. THE PROGRAM "NCHIPSIM": Using the flowchart and the steps outlined in the above...would make the technique more versatile in flaw detection in metallic materials. 113-16 REFERENCES 1. RUDLIN, J.R., "A Beginners Guide to-Eddy Current
Expanded serial communication capability for the transport systems research vehicle laptop computers
NASA Technical Reports Server (NTRS)
Easley, Wesley C.
1991-01-01
A recent upgrade of the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center included installation of a number of Grid 1500 series laptop computers. Each unit is a 80386-based IBM PC clone. RS-232 data busses are needed for TSRV flight research programs, and it has been advantageous to extend the application of the Grids in this area. Use was made of the expansion features of the Grid internal bus to add a user programmable serial communication channel. Software to allow use of the Grid bus expansion has been written and placed in a Turbo C library for incorporation into applications programs in a transparent manner via function calls. Port setup; interrupt-driven, two-way data transfer; and software flow control are built into the library functions.
1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
Fluid dynamic mechanisms and interactions within separated flows
NASA Astrophysics Data System (ADS)
Dutton, J. C.; Addy, A. L.
1990-02-01
The significant results of a joint research effort investigating the fundamental fluid dynamic mechanisms and interactions within high-speed separated flows are presented in detail. The results have obtained through analytical and numerical approaches, but with primary emphasis on experimental investigations of missile and projectile base flow-related configurations. The objectives of the research program focus on understanding the component mechanisms and interactions which establish and maintain high-speed separated flow regions. The analytical and numerical efforts have centered on unsteady plume-wall interactions in rocket launch tubes and on predictions of the effects of base bleed on transonic and supersonic base flowfields. The experimental efforts have considered the development and use of a state-of-the-art two component laser Doppler velocimeter (LDV) system for experiments with planar, two-dimensional, small-scale models in supersonic flows. The LDV experiments have yielded high quality, well documented mean and turbulence velocity data for a variety of high-speed separated flows including initial shear layer development, recompression/reattachment processes for two supersonic shear layers, oblique shock wave/turbulent boundary layer interactions in a compression corner, and two-stream, supersonic, near-wake flow behind a finite-thickness base.
NASA Technical Reports Server (NTRS)
Otugen, M. Volkan
1997-01-01
Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.
Microgravity Research: A Retrospective of Accomplishments
NASA Astrophysics Data System (ADS)
Voorhees, Peter
2005-03-01
During the early days of human spaceflight U.S. National Aeronautics and Space Administration (NASA) began giving researchers the ability to perform experiments under extremely low gravity conditions (microgravity). Early microgravity experiments were rudimentary and discovery driven. The limitations of such an approach were clear and in the early 1990s, NASA broadened its program significantly beyond those experiments that were destined to be flown to include a ground- based program that contained both experimental and theoretical investigations. The ground-based program provided a source of carefully designed microgravity experiments. This led to the program in the Physical Sciences Division that involved research in, for example, fluids, materials and low temperature physics. The impact of the microgravity research program has been the focus of a recent National Research Council report titled “Assessment of Directions in Microgravity and Physical Sciences Research at NASA.” We found that there have been numerous high impact ground-based and flight investigations. For example, NASA funding has been instrumental in elucidating the nature of surface-tension-driven fluid flows, dendritic crystal growth and the thermodynamics of phase transitions near critical points. Using this report as a basis, a discussion of the impact of microgravity research on the fields in which it is a part will be given.
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.
Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2011-01-01
A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.
Seals Research at Texas A/M University
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.
1991-01-01
The Turbomachinery Laboratory at Texas A&M has been providing experimental data and computational codes for the design seals for many years. The program began with the development of a Halon based seal test rig. This facility provided information about the effective stiffness and damping in whirling seals. The Halon effectively simulated cryogenic fluids. Another test facility was developed (using air as the working fluid) where the stiffness and damping matrices can be determined. This data was used to develop bulk flow models of the seal's effect upon rotating machinery; in conjunction with this research, a bulk flow model for calculation of performance and rotordynamic coefficients of annular pressure seals of arbitrary non-uniform clearance for barotropic fluids such as LH2, LOX, LN2, and CH4 was developed. This program is very efficient (fast) and converges for very large eccentricities. Currently, work is being performed on a bulk flow analysis of the effects of the impeller-shroud interaction upon the stability of pumps. The data was used along with data from other researchers to develop an empirical leakage prediction code for MSFC. Presently, the flow field inside labyrinth and annular seals are being studied in detail. An advanced 3-D Doppler anemometer system is being used to measure the mean velocity and entire Reynolds stress tensor distribution throughout the seals. Concentric and statically eccentric seals were studied; presently, whirling seals are being studied. The data obtained are providing valuable information about the flow phenomena occurring inside the seals, as well as a data base for comparison with numerical predictions and for turbulence model development. A finite difference computer code was developed for solving the Reynolds averaged Navier Stokes equation inside labyrinth seals. A multi-scale k-epsilon turbulence model is currently being evaluated. A new seal geometry was designed and patented using a computer code. A large scale, 2-D seal flow visualization facility is also being developed.
NASA Astrophysics Data System (ADS)
Hill, Craig Steven
Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics. Results provide the foundation for investigating advanced turbine control strategies for optimal power production in non-stationary environments, while also providing a robust data-set for computational model validation for further investigating the interactions between energy conversion devices and the physical environment.
Updated Panel-Method Computer Program
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1995-01-01
Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.
High speed hydrogen/graphite interaction
NASA Technical Reports Server (NTRS)
Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.
1974-01-01
Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.
Two research studies funded and overseen by EPA have been conducted since October 2006 on soil gas sampling methods and variations in shallow soil gas concentrations with the purpose of improving our understanding of soil gas methods and data for vapor intrusion applications. Al...
Applicability of implantable telemetry systems in cardiovascular research.
NASA Technical Reports Server (NTRS)
Krutz, R. W.; Rader, R. D.; Meehan, J. P.; Henry, J. P.
1971-01-01
This paper briefly describes the results of an experimental program undertaken to develop and apply implanted telemetry to cardiovascular research. Because of the role the kidney may play in essential hypertension, emphasis is placed on telemetry's applicability in the study of renal physiology. Consequently, the relationship between pressure, flow, and hydraulic impedance are stressed. Results of an exercise study are given.
High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual
NASA Technical Reports Server (NTRS)
Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.
2004-01-01
This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.
Computer simulation of electron flow in linear-beam microwave tubes
NASA Astrophysics Data System (ADS)
Kumar, Lalit
1990-12-01
The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.
Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Driggers, H. H.; Powers, S. A.; Roush, R. T.
1982-01-01
A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.
Computation of steady nozzle flow by a time-dependent method
NASA Technical Reports Server (NTRS)
Cline, M. C.
1974-01-01
The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.
Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).
Injection of Nucleate-Boiling Slug Flows into a Heat Exchange Chamber in Microgravity
2015-06-01
Casademunt UNIVERSITAT DE BARCELONA CALLE GRAN VIA DE LES CORTS CATALANES 585 BARCELONA 08007 SPAIN EOARD GRANT #FA8655-12-1- 2060 ...slug flows into a heat exchange chamber in microgravity 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8655-12-1- 2060 5c. PROGRAM ELEMENT NUMBER...Scientific Research (AFOSR) FINAL REPORT EOARD Grant : FA8655-12-1- 2060 PERIOD: 20 March 2012 – 19 March 2015 PROJECT TITLE
Potential Regional Sediment Management (RSM) Projects in the Haleiwa Region, Oahu, Hawaii
2014-05-01
relic stream channels on wave -induced flow patterns. Wave breaking and energy dissipation over the reefs result in return currents (from nearshore to...long), (c) a stub breakwater (80 ft long), and (d) a wave absorber (140 ft long). The non-federal sponsor for the harbor is the State of Hawaii...Coastal Inlets Research Program (CIRP) Coastal Modeling System (CMS) numerical models CMS- Wave and CMS- Flow (Sanchez et al. 2011) were implemented to
NASA Astrophysics Data System (ADS)
Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael
2017-11-01
We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.
YF-12 propulsion research program and results
NASA Technical Reports Server (NTRS)
Albers, J. A.; Olinger, F. V.
1976-01-01
The objectives and status of the propulsion program, along with the results acquired in the various technology areas, are discussed. The instrumentation requirements for and experience with flight testing the propulsion systems at high supersonic cruise are reported. Propulsion system performance differences between wind tunnel and flight are given. The effects of high frequency flow fluctuations (transients) on the stability of the propulsion system are described, and shock position control is evaluated.
High-speed inlet research program and supporting analysis
NASA Technical Reports Server (NTRS)
Coltrin, Robert E.
1990-01-01
The technology challenges faced by the high speed inlet designer are discussed by describing the considerations that went into the design of the Mach 5 research inlet. It is shown that the emerging three dimensional viscous computational fluid dynamics (CFD) flow codes, together with small scale experiments, can be used to guide larger scale full inlet systems research. Then, in turn, the results of the large scale research, if properly instrumented, can be used to validate or at least to calibrate the CFD codes.
Advanced research to qualify man for long term weightlessness.
NASA Technical Reports Server (NTRS)
Jones, W. L.
1972-01-01
NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.
Targeting specific azimuthal modes using wall changes in turbulent pipe flow
NASA Astrophysics Data System (ADS)
van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander
2017-11-01
We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Assessment of computational issues associated with analysis of high-lift systems
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.
1992-01-01
Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1974-01-01
A computer program is presented for compressible fluid flow with friction and area change. The program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. The program was written to be applied to gas film seals. The area-change analysis should prove useful for choked flow conditions with small mean thickness, as well as for face seals where radial area change is significant. The program is written in FORTRAN 4.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1992-01-01
Aspects of the design and construction of the Laminar Flow Supersonic Wind Tunnel at the NASA-Ames Fluid Mechanics Laboratory are discussed. The wind tunnel is to be used as part of the NASA High Speed Research Program (HSRP).
Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.
Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A
2003-07-01
Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Seeding for laser velocimetry in confined supersonic flows with shocks
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Bruckner, R. J.
1996-01-01
There is a lack of firm conclusions or recommendations in the open literature to guide laser velocimeter (LV) users in minimizing the uncertainty of LV data acquired in confined supersonic flows with steep velocity gradients. This fact led the NASA Lewis Research Center (LeRC) in Cleveland (Ohio, USA), and the Institute of Propulsion Technology of DLR in Cologne (Germany) to a joint research effort to improve reliability of LV measurements in supersonic flows. Over the years, NASA and DLR have developed different expertise in laser velocimetry, using different LV systems: Doppler and two-spot (L2F). The goal of the joint program is to improve the reliability of LV measurements by comparing results from experiments in confined supersonic flows performed under identical test conditions but using two different LV systems and several seed particle generators. Initial experiments conducted at the NASA LERC are reported in this paper. The experiments were performed in a narrow channel with Mach number 2.5 flow containing an oblique shock wave generated by an immersed 25-dg wedge.
CACDA Jiffy War Game Programmers Manual
1977-03-01
variables for INDEX5. F-12 F-4. Program variables for LOSS. F-14 F-5. Program variables for DISPLAY. F- 16 G-I. Program variables for OVLY 1 (ROFA). G...variables for FASCAM. J-9 K-1. Program variables for OVLY 5 (AHAD). K-2 L-i. Program variables for CANNON. L-2 L-2. Program variables for CLGP. L- 16 M-i...flow diagram. 56 13. TANK (OVLY 2) flow diagram. 62 14. INFANT (OVLY 3) flow diagram. 69 15. MINE flow diagram. 74 16 . Subroutine FASCAM flow
Particle trajectory computer program for icing analysis of axisymmetric bodies
NASA Technical Reports Server (NTRS)
Frost, Walter; Chang, Ho-Pen; Kimble, Kenneth R.
1982-01-01
General aviation aircraft and helicopters exposed to an icing environment can accumulate ice resulting in a sharp increase in drag and reduction of maximum lift causing hazardous flight conditions. NASA Lewis Research Center (LeRC) is conducting a program to examine, with the aid of high-speed computer facilities, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. This study, as part of the NASA/LeRC research program, develops a computer program for the calculation of icing particle trajectories and impingement limits relative to axisymmetric bodies in the leeward-windward symmetry plane. The methodology employed in the current particle trajectory calculation is to integrate the governing equations of particle motion in a flow field computed by the Douglas axisymmetric potential flow program. The three-degrees-of-freedom (horizontal, vertical, and pitch) motion of the particle is considered. The particle is assumed to be acted upon by aerodynamic lift and drag forces, gravitational forces, and for nonspherical particles, aerodynamic moments. The particle momentum equation is integrated to determine the particle trajectory. Derivation of the governing equations and the method of their solution are described in Section 2.0. General features, as well as input/output instructions for the particle trajectory computer program, are described in Section 3.0. The details of the computer program are described in Section 4.0. Examples of the calculation of particle trajectories demonstrating application of the trajectory program to given axisymmetric inlet test cases are presented in Section 5.0. For the examples presented, the particles are treated as spherical water droplets. In Section 6.0, limitations of the program relative to excessive computer time and recommendations in this regard are discussed.
The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions
NASA Technical Reports Server (NTRS)
Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.
2002-01-01
Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.
3D flow effects on measuring turbulence statistics using 2D PIV
NASA Astrophysics Data System (ADS)
Lee, Hoonsang; Hwang, Wontae
2017-11-01
Homogeneous & isotropic turbulence (HIT) with no mean flow is the simplest type of turbulent flow which can be used to study various phenomena. Although HIT is inherently three dimensional in nature, various turbulence statistics can be measured with 2D PIV utilizing various assumptions. In this study, the loss of tracer particle pairs due to out-of-plane motion, and the effect it has on statistics such as turbulence kinetic energy, dissipation rate, and velocity correlations is investigated. Synthetic PIV images created from HIT direct numerical simulation (DNS) data are utilized to quantify this effect. We estimate the out-of-plane error by adjusting parameters such as PIV time interval, interrogation window size, and particle size. This information can be utilized to optimize experimental parameters when examining 3D turbulence via 2D PIV. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4007372), and also by SNU new faculty Research Resettlement Fund.
Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control
NASA Astrophysics Data System (ADS)
Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh
2017-11-01
Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.
1988-01-01
Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.
B-1 AFT Nacelle Flow Visualization Study
NASA Technical Reports Server (NTRS)
Celniker, Robert
1975-01-01
A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.
Testing of Ruggedized Antibodies within a Lateral Flow Immunoassay
2017-10-01
Roy Thompson RESEARCH AND TECHNOLOGY DIRECTORATE Kelley Betts LEIDOS Gunpowder, MD 21010-0068 Randy Hofmann EXCET, INC. Springfield, VA 22150-2519 Hsiu...average 1 h per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...on the work performed at ECBC in collaboration with the Defense Advanced Research Projects Agency, Antibody Technology Program and the Defense Threat
Turbulent pipe flows subjected to temporal decelerations
NASA Astrophysics Data System (ADS)
Jeong, Wongwan; Lee, Jae Hwa
2016-11-01
Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Large-scale structures in turbulent Couette flow
NASA Astrophysics Data System (ADS)
Kim, Jung Hoon; Lee, Jae Hwa
2016-11-01
Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
A scalable neuroinformatics data flow for electrophysiological signals using MapReduce.
Jayapandian, Catherine; Wei, Annan; Ramesh, Priya; Zonjy, Bilal; Lhatoo, Samden D; Loparo, Kenneth; Zhang, Guo-Qiang; Sahoo, Satya S
2015-01-01
Data-driven neuroscience research is providing new insights in progression of neurological disorders and supporting the development of improved treatment approaches. However, the volume, velocity, and variety of neuroscience data generated from sophisticated recording instruments and acquisition methods have exacerbated the limited scalability of existing neuroinformatics tools. This makes it difficult for neuroscience researchers to effectively leverage the growing multi-modal neuroscience data to advance research in serious neurological disorders, such as epilepsy. We describe the development of the Cloudwave data flow that uses new data partitioning techniques to store and analyze electrophysiological signal in distributed computing infrastructure. The Cloudwave data flow uses MapReduce parallel programming algorithm to implement an integrated signal data processing pipeline that scales with large volume of data generated at high velocity. Using an epilepsy domain ontology together with an epilepsy focused extensible data representation format called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data heterogeneity and is interoperable with existing neuroinformatics data representation formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using a 30-node cluster installed with the open source Hadoop software stack. The results demonstrate that the Cloudwave data flow can process increasing volume of signal data by leveraging Hadoop Data Nodes to reduce the total data processing time. The Cloudwave data flow is a template for developing highly scalable neuroscience data processing pipelines using MapReduce algorithms to support a variety of user applications.
A scalable neuroinformatics data flow for electrophysiological signals using MapReduce
Jayapandian, Catherine; Wei, Annan; Ramesh, Priya; Zonjy, Bilal; Lhatoo, Samden D.; Loparo, Kenneth; Zhang, Guo-Qiang; Sahoo, Satya S.
2015-01-01
Data-driven neuroscience research is providing new insights in progression of neurological disorders and supporting the development of improved treatment approaches. However, the volume, velocity, and variety of neuroscience data generated from sophisticated recording instruments and acquisition methods have exacerbated the limited scalability of existing neuroinformatics tools. This makes it difficult for neuroscience researchers to effectively leverage the growing multi-modal neuroscience data to advance research in serious neurological disorders, such as epilepsy. We describe the development of the Cloudwave data flow that uses new data partitioning techniques to store and analyze electrophysiological signal in distributed computing infrastructure. The Cloudwave data flow uses MapReduce parallel programming algorithm to implement an integrated signal data processing pipeline that scales with large volume of data generated at high velocity. Using an epilepsy domain ontology together with an epilepsy focused extensible data representation format called Cloudwave Signal Format (CSF), the data flow addresses the challenge of data heterogeneity and is interoperable with existing neuroinformatics data representation formats, such as HDF5. The scalability of the Cloudwave data flow is evaluated using a 30-node cluster installed with the open source Hadoop software stack. The results demonstrate that the Cloudwave data flow can process increasing volume of signal data by leveraging Hadoop Data Nodes to reduce the total data processing time. The Cloudwave data flow is a template for developing highly scalable neuroscience data processing pipelines using MapReduce algorithms to support a variety of user applications. PMID:25852536
The NASA Space Life Sciences Training Program - Preparing the way
NASA Technical Reports Server (NTRS)
Biro, Ronald; Munsey, Bill; Long, Irene
1990-01-01
Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.
NASA Technical Reports Server (NTRS)
2002-01-01
This report presents three-year accomplishments from the national program on Commercial Remote Sensing and Geospatial Technology (CRSGT) application to transportation, administered by the U.S. Department of Transportation (U.S. DOT) in collaboration with the National Aeronautics and Space Administration (NASA). The joint program was authorized under Section 5113 of the Transportation Equity Act for the 21st Century (TEA-21). This is the first national program of its type focusing on transportation applications of emerging commercial remote sensing technologies. U.S. DOT's Research and Special Programs Administration manages the program in coordination with NASA's Earth Science Enterprise's application programs. The program focuses on applications of CRSGT products and systems for providing smarter and more efficient transportation operations and services. The program is performed in partnership with four major National Consortia for Remote Sensing in Transportation (NCRST). Each consortium focuses on research and development of products in one of the four priority areas for transportation application, and includes technical application and demonstration projects carried out in partnership with industries and service providers in their respective areas. The report identifies products and accomplishments from each of the four consortia in meeting the goal of providing smarter and more efficient transportation services. The products and results emerging from the program are being implemented in transportation operations and services through state and local agencies. The Environmental Assessment and Application Consortium (NCRST-E) provides leadership for developing and deploying cost effective environmental and transportation planning services, and integrates CRSGT advances for achieving smarter and cost effective corridor planning. The Infrastructure Management Consortium (NCRST-I) provides leadership in technologies that achieve smarter and cheaper ways of managing transportation infrastructure assets, operation, and inspection, and integrates CRSGT advances for achieving infrastructure security. The Traffic Flow Consortium (NCRST-F) provides leadership to develop new tools for regional traffic flow management including heavy vehicles and intermodal flow of freight, and integrates CRSGT advances for complementing and extending the reach of ITS user services. The Safety, Hazards and Disasters (NCRST-H) provides leadership for deploying remote sensing technology to locate transportation hazards and improve disaster recovery, and integrates CRSGT advances for application to protect transportation systems from terrorism. The DOT-NASA team is proud to present this report of accomplishments on products and results emerging from the joint program for application to transportation practice.
Advanced aerodynamics. Selected NASA research
NASA Technical Reports Server (NTRS)
1981-01-01
This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.
Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.
1987-01-01
The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.
DOT National Transportation Integrated Search
2012-03-01
Through the USDOT Dynamic Mobility Applications (DMA) program, a number of high-priority mobility applications have been assessed and identified that can connect vehicles, travelers, and infrastructure in order to provide better information to travel...
FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES
This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...
EPA'S URBAN RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY IMPROVEMENT
The Urban Watershed Management Branch is responsible for developing, and demonstrating technologies and methods required to manage the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed at rest...
EPA'S URBAN RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY IMPROVEMENT
The Urban Watershed Management Branch is responsible for developing, and demonstrating technologies and methods required to managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed at re...
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Research on Streamlines and Aerodynamic Heating for Unstructured Grids on High-Speed Vehicles
NASA Technical Reports Server (NTRS)
DeJarnette, Fred R.; Hamilton, H. Harris (Technical Monitor)
2001-01-01
Engineering codes are needed which can calculate convective heating rates accurately and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code. It uses the axisymmetric analogue in an integral boundary-layer method to calculate laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of the inviscid flow field to provide the surface properties needed to calculate the streamlines and streamline metrics. The LATCH code has been used with inviscid codes which calculated the flow field on structured grids, Several more recent inviscid codes calculate flow field properties on unstructured grids. The present research develops a method to calculate inviscid surface streamlines, the streamline metrics, and heating rates using the properties calculated from inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish these goals. No publication was made on his research. The present research extends and improves on the code developed by Riley. Particular attention is devoted to the stagnation region, and the method is intended for programming in the FORTRAN 90 language.
Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Gonsalez, Jose C.; Arrington, E. Allen
1999-01-01
A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.
Hawaii Island Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.
Nicole Lautze
2015-01-01
Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.
East Maui Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
West Maui Groundwater Flow Model
Nicole Lautze
2015-01-01
Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.
[Family Health Program implementation in municipalities in Mato Grosso State, Brazil].
Canesqui, Ana Maria; Spinelli, Maria Angélica do Santos
2008-04-01
This article analysis some key aspects in the implementation of the Family Health Program (FHP): results; conditions; and institutional mechanisms; flow and regularity of funding; organizational structures; and human resources availability and training. The study was conducted in seven municipalities (counties) in the State of Mato Grosso, Brazil, and used secondary data as well as primary data from interviews with different stakeholders. The research design was evaluative, using a quantitative/qualitative analysis. The results showed: varying stages in the implementation process, different FHP models, and adaptation of organizational structures; high level of human resources availability, except for nurse assistants; availability of financial resources, with some difficulties in their flow; and other institutional factors that hinder or facilitate the micro-implementation process in the municipalities.
Adapting high-level language programs for parallel processing using data flow
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1988-01-01
EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.
2000-01-08
room temperature and 400 K. The major reason for increasing the plenum temperature was to avoid condensation in the unheated flow. Follow-on e...developed laminar flow in a pipe, an experimentally suggested form for the Nusselt Number is (Ref. 11): 3 1 PrRe µ µ861...Compression of Condensed Matter Conference, Colorado Springs, Colorado, June 28–July 2, 1993, AIP Press, NY, 1994, pp 1581–1584. 8. Baba, K. and Ochi, M
Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows
2013-08-13
5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0042 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jules W. Lindau and Michael P. Kinzel 5d. PROJECT...REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT U 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Jules W. Lindau...Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows Michael P. Kinzel Jules W. Lindau Penn State University Applied Research
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
Laboratory outreach: student assessment of flow cytometer fluidics in zero gravity.
Crucian, B; Norman, J; Brentz, J; Pietrzyk, R; Sams, C
2000-10-01
Due to the the clinical utility of the flow cytometer, the National Aeronautics and Space Administration (NASA) is interested in the design of a space flight-compatible cytometer for use on long-duration space missions. Because fluid behavior is altered dramatically during space flight, it was deemed necessary to validate the principles of hydrodynamic focusing and laminar flow (cytometer fluidics) in a true microgravity environment. An experiment to validate these properties was conducted by 12 students from Sweetwater High School (Sweetwater, TX) participating in the NASA Reduced Gravity Student Flight Opportunity, Class of 2000. This program allows high school students to gain scientific experience by conducting an experiment on the NASA KC-135 zero gravity laboratory aircraft. The KC-135 creates actual zero-gravity conditions in 30-second intervals by flying a highly inclined parabolic flight path. The experiment was designed by their mentor in the program, the Johnson Space Center's flow cytometrist Brian Crucian, PhD, MT(ASCP). The students performed the experiment, with the mentor, onboard the NASA zero-gravity research aircraft in April 2000.
NASA cancels carbon monitoring research program
NASA Astrophysics Data System (ADS)
Voosen, Paul
2018-05-01
The administration of President Donald Trump has waged a broad attack on climate science conducted by NASA, including proposals to cut the budget of earth science research and kill off the Orbiting Carbon Observatory 3 mission. Congress has fended these attacks off—with one exception. NASA has moved ahead with plans to end the Carbon Monitoring System, a $10-million-a-year research line that has helped stitch together observations of sources and sinks of methane and carbon dioxide into high-resolution models of the planet's flows of carbon, the agency confirmed to Science. The program, begun in 2010, has developed tools to improve estimates of carbon stocks in forests, especially, from Alaska to Indonesia. Ending it, researchers say, will complicate future efforts to monitor and verify national emission cuts stemming from the Paris climate deal.
Boundary Layer Transition Experiments in Support of the Hypersonics Program
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.
2007-01-01
Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.
Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling
NASA Technical Reports Server (NTRS)
Tew, Roy C., Jr.
1988-01-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
Program of research in severe storms
NASA Technical Reports Server (NTRS)
1979-01-01
Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.
An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Effect of Transpiration Injection on Skin Friction in an Internal Supersonic Flow
NASA Technical Reports Server (NTRS)
Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roe, L. A.
1996-01-01
An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.
Synthetic perspective optical flow: Influence on pilot control tasks
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.
1989-01-01
One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.
NASA Technical Reports Server (NTRS)
Klopfer, Goetz H.
1993-01-01
The work performed during the past year on this cooperative agreement covered two major areas and two lesser ones. The two major items included further development and validation of the Compressible Navier-Stokes Finite Volume (CNSFV) code and providing computational support for the Laminar Flow Supersonic Wind Tunnel (LFSWT). The two lesser items involve a Navier-Stokes simulation of an oscillating control surface at transonic speeds and improving the basic algorithm used in the CNSFV code for faster convergence rates and more robustness. The work done in all four areas is in support of the High Speed Research Program at NASA Ames Research Center.
NASA Technical Reports Server (NTRS)
Walton, J. T.
1994-01-01
The development of a single-stage-to-orbit aerospace vehicle intended to be launched horizontally into low Earth orbit, such as the National Aero-Space Plane (NASP), has concentrated on the use of the supersonic combustion ramjet (scramjet) propulsion cycle. SRGULL, a scramjet cycle analysis code, is an engineer's tool capable of nose-to-tail, hydrogen-fueled, airframe-integrated scramjet simulation in a real gas flow with equilibrium thermodynamic properties. This program facilitates initial estimates of scramjet cycle performance by linking a two-dimensional forebody, inlet and nozzle code with a one-dimensional combustor code. Five computer codes (SCRAM, SEAGUL, INLET, Progam HUD, and GASH) originally developed at NASA Langley Research Center in support of hypersonic technology are integrated in this program to analyze changing flow conditions. The one-dimensional combustor code is based on the combustor subroutine from SCRAM and the two-dimensional coding is based on an inviscid Euler program (SEAGUL). Kinetic energy efficiency input for sidewall area variation modeling can be calculated by the INLET program code. At the completion of inviscid component analysis, Program HUD, an integral boundary layer code based on the Spaulding-Chi method, is applied to determine the friction coefficient which is then used in a modified Reynolds Analogy to calculate heat transfer. Real gas flow properties such as flow composition, enthalpy, entropy, and density are calculated by the subroutine GASH. Combustor input conditions are taken from one-dimensionalizing the two-dimensional inlet exit flow. The SEAGUL portions of this program are limited to supersonic flows, but the combustor (SCRAM) section can handle supersonic and dual-mode operation. SRGULL has been compared to scramjet engine tests with excellent results. SRGULL was written in FORTRAN 77 on an IBM PC compatible using IBM's FORTRAN/2 or Microway's NDP386 F77 compiler. The program is fully user interactive, but can also run in batch mode. It operates under the UNIX, VMS, NOS, and DOS operating systems. The source code is not directly compatible with all PC compilers (e.g., Lahey or Microsoft FORTRAN) due to block and segment size requirements. SRGULL executable code requires about 490K RAM and a math coprocessor on PC's. The SRGULL program was developed in 1989, although the component programs originated in the 1960's and 1970's. IBM, IBM PC, and DOS are registered trademarks of International Business Machines. VMS is a registered trademark of Digital Equipment Corporation. UNIX is a registered trademark of Bell Laboratories. NOS is a registered trademark of Control Data Corporation.
Rapid tooling for functional prototyping of metal mold processes. CRADA final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.
1997-12-01
The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that wouldmore » coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.« less
Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Corlett, W. A.
1982-01-01
The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.
Current Issues in Unsteady Turbomachinery Flows (Images)
NASA Technical Reports Server (NTRS)
Povinelli, Louis
2004-01-01
Among the numerous causes for unsteadiness in turbo machinery flows are turbulence and flow environment, wakes from stationary and rotating vanes, boundary layer separation, boundary layer/shear layer instabilities, presence of shock waves and deliberate unsteadiness for flow control purposes. These unsteady phenomena may lead to flow-structure interactions such as flutter and forced vibration as well as system instabilities such as stall and surge. A major issue of unsteadiness relates to the fact that a fundamental understanding of unsteady flow physics is lacking and requires continued attention. Accurate simulations and sufficient high fidelity experimental data are not available. The Glenn Research Center plan for Engine Component Flow Physics Modeling is part of the NASA 21st Century Aircraft Program. The main components of the plan include Low Pressure Turbine National Combustor Code. The goals, technical output and benefits/impacts of each element are described in the presentation. The specific areas selected for discussion in this presentation are blade wake interactions, flow control, and combustor exit turbulence and modeling.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Dallimore, S. R.; Numasawa, M.; Yasuda, M.; Fujii, T.; Fujii, K.; Wright, J.; Nixon, F.
2007-12-01
Japan Oil, Gas and Metals National Corporation (JOGMEC) and Natural Resource Canada (NRCan) have embarked on a new research program to study the production potential of gas hydrates. The program is being carried out at the Mallik gas hydrate field in the Mackenzie Delta, a location where two previous scientific investigations have been carried in 1998 and 2002. In the 2002 program that was undertaken by seven partners from five countries, 468m3 of gas flow was measured during 124 hours of thermal stimulation using hot warm fluid. Small-scale pressure drawdown tests were also carried out using Schlumberger's Modular Dynamics Tester (MDT) wireline tool, gas flow was observed and the inferred formation permeabilities suggested the possible effectiveness of the simple depressurization method. While the testing undertaken in 2002 can be cited as the first well constrained gas production from a gas hydrate deposit, the results fell short of that required to fully calibrate reservoir simulation models or indeed establish the technical viability of long term production from gas hydrates. The objectives of the current JOGMEC/NRCan/Aurora Mallik production research program are to undertake longer term production testing to further constrain the scientific unknowns and to demonstrate the technical feasibility of sustained gas hydrate production using the depressurization method. A key priority is to accurately measure water and gas production using state-of-art production technologies. The primary production test well was established during the 2007 field season with the re-entry and deepening of JAPEX/JNOC/GSC Mallik 2L-38 well, originally drilled in 1998. Production testing was carried out in April of 2007 under a relatively low drawdown pressure condition. Flow of methane gas was measured from a 12m perforated interval of gas-hydrate-saturated sands from 1093 to 1105m. The results establish the potential of the depressurization method and provide a basis for future prolonged testing planned in the near future. The authors acknowledge the Research Consortium for Methane Hydrate Resources in Japan (MH21), the Ministry of Economy, Trade and Industry (METI) and NRCan for the support and funding. The Mallik 2002 program was undertaken jointly by JNOC, NRCan, GeoForschungsZentrum Potsdam (GFZ), the United State Geological Survey (USGS), the United States Department of Energy (USDOE), the India Ministry of Petroleum and Natural Gas (MOPNG)-Gas Authority of India (GAIL), and the BP-Chevron Texaco Mackenzie Delta Joint Venture.
NASA Technical Reports Server (NTRS)
Klunker, E. B.; South, J. C., Jr.; Davis, R. M.
1972-01-01
A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.
RPAs: Revolution or Retrogression?
2010-04-01
be a “never again” syndrome with respect to a Vietnam sort of war. The concept was that somehow the North Atlantic Treaty Organization (NATO) would...Washington, DC: Air Force History and Museums Program, 1998), 58. 64. Michael P. Noonan , “Disrupting the Foreign Fighter Flow,” Foreign Policy Research
ANALYTIC ELEMENT GROUND WATER MODELING AS A RESEARCH PROGRAM (1980-2006)
Scientists and engineers who use the analytic element method (AEM) for solving problems of regional ground water flow may be considered a community, and this community can be studied from the perspective of history and philosophy of science. Applying the methods of the Hungarian...
NASA Technical Reports Server (NTRS)
Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Wilson, Lloyd G.
2008-01-01
Under the Propulsion Discipline of NASA s Fundamental Aeronautics Program s Hypersonics Project, a test apparatus, for testing a scramjet isolator model, is being constructed at NASA's Langley Research Center. The test apparatus will incorporate a 1-inch by 2-inch by 15-inch-long scramjet isolator model supplied with 2.1 lbm/sec of unheated dry air through a Mach 2.5 converging-diverging nozzle. The planned research will incorporate progressively more challenging measurement techniques to characterize the flow field within the isolator, concluding with the application of the Laser-Induced Thermal Acoustic (LITA) measurement technique. The primary goal of this research is to use the data acquired to validate Computational Fluid Dynamics (CFD) models employed to characterize the complex flow field of a scramjet isolator. This paper describes the test apparatus being constructed, pre-test CFD simulations, and the LITA measurement technique.
Current Lewis Turbomachinery Research: Building on our Legacy of Excellence
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1997-01-01
This Wu Chang-Hua lecture is concerned with the development of analysis and computational capability for turbomachinery flows which is based on detailed flow field physics. A brief review of the work of Professor Wu is presented as well as a summary of the current NASA aeropropulsion programs. Two major areas of research are described in order to determine our predictive capabilities using modern day computational tools evolved from the work of Professor Wu. In one of these areas, namely transonic rotor flow, it is demonstrated that a high level of accuracy is obtainable provided sufficient geometric detail is simulated. In the second case, namely turbine heat transfer, our capability is lacking for rotating blade rows and experimental correlations will provide needed information in the near term. It is believed that continuing progress will allow us to realize the full computational potential and its impact on design time and cost.
Flow visualization studies of VTOL aircraft models during Hover in ground effect
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.
1995-01-01
A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.
NASA Astrophysics Data System (ADS)
Shrestha, Pranav; Stoeber, Boris
2017-11-01
Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.
Environmental research program. 1995 Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.J.
1996-06-01
The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less
Adaptive Management of Environmental Flows
NASA Astrophysics Data System (ADS)
Webb, J. Angus; Watts, Robyn J.; Allan, Catherine; Conallin, John C.
2018-03-01
Adaptive management enables managers to work with complexity and uncertainty, and to respond to changing biophysical and social conditions. Amid considerable uncertainty over the benefits of environmental flows, governments are embracing adaptive management as a means to inform decision making. This Special Issue of Environmental Management presents examples of adaptive management of environmental flows and addresses claims that there are few examples of its successful implementation. It arose from a session at the 11th International Symposium on Ecohydraulics held in Australia, and is consequently dominated by papers from Australia. We classified the papers according to the involvement of researchers, managers and the local community in adaptive management. Five papers report on approaches developed by researchers, and one paper on a community-led program; these case studies currently have little impact on decision making. Six papers provide examples involving water managers and researchers, and two papers provide examples involving water managers and the local community. There are no papers where researchers, managers and local communities all contribute equally to adaptive management. Successful adaptive management of environmental flows occurs more often than is perceived. The final paper explores why successes are rarely reported, suggesting a lack of emphasis on reflection on management practices. One major challenge is to increase the documentation of successful adaptive management, so that benefits of learning extend beyond the project where it takes place. Finally, moving towards greater involvement of all stakeholders is critical if we are to realize the benefits of adaptive management for improving outcomes from environmental flows.
NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.
Dimensions of flow during an experiential wilderness science program
NASA Astrophysics Data System (ADS)
Wang, Robert
Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and developing intrinsic and extrinsic motivation. The instructional dimension included: selecting appropriate subject matter, using proper instructional methods, utilizing appropriate activity levels, and selecting proper goals.
Effects of surface roughness on an adverse-pressure-gradient separating turbulent boundary layer
NASA Astrophysics Data System (ADS)
Wu, Wen; Piomelli, Ugo; Turbulence Simulation; Modelling Laboratory Team
2017-11-01
Separating turbulent boundary layers over smooth and rough flat plates are investigated by large-eddy simulations. A suction-blowing velocity distribution is imposed at the top boundary to produce an adverse-to-favourable pressure gradient and a closed separation bubble. Sandgrain roughness in the fully-rough regime is modelled by an immersed boundary method. In the rough-wall case, streamline detachment occurs earlier and the separation region is substantially larger due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag and causes a thin reversed-flow region below the roughness crest, so that Cf = 0 does not coincide with the detachment of the flow from the surface. The wake regions behind roughness elements affect the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average is positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE); the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes. The authors acknowledge the support from Hydro-Québec and the NSERC Collaborative Research & Development program (CRDPJ 418786-11). The simulations were performed at CAC Queen't site. UP also thanks the support of Canada Research Chair Program.
3D critical layers in fully-developed turbulent flows
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
NASA Astrophysics Data System (ADS)
Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang
2016-09-01
The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
NASA Technical Reports Server (NTRS)
Groth, Clinton P. T.; Roe, Philip L.
1998-01-01
Six months of funding was received for the proposed three year research program (funding for the period from March 1, 1997 to August 31, 1997). Although the official starting date for the project was March 1, 1997, no funding for the project was received until July 1997. In the funded research period, considerable progress was made on Phase I of the proposed research program. The initial research efforts concentrated on applying the 10-, 20-, and 35-moment Gaussian-based closures to a series of standard two-dimensional non-reacting single species test flow problems, such as the flat plate, couette, channel, and rearward facing step flows, and to some other two-dimensional flows having geometries similar to those encountered in chemical-vapor deposition (CVD) reactors. Eigensystem analyses for these systems for the case of two spatial dimensions was carried out and efficient formulations of approximate Riemann solvers have been formulated using these eigenstructures. Formulations to include rotational non-equilibrium effects into the moment closure models for the treatment of polyatomic gases were explored, as the original formulations of the closure models were developed strictly for gases composed of monatomic molecules. The development of a software library and computer code for solving relaxing hyperbolic systems in two spatial dimensions of the type arising from the closure models was also initiated. The software makes use of high-resolution upwind finite-volumes schemes, multi-stage point implicit time stepping, and automatic adaptive mesh refinement (AMR) to solve the governing conservation equations for the moment closures. The initial phase of the code development was completed and a numerical investigation of the solutions of the 10-moment closure model for the simple two-dimensional test cases mentioned above was initiated. Predictions of the 10-moment model were compared to available theoretical solutions and the results of direct-simulation Monte Carlo (DSMC) calculations. The first results of this study were presented at a meeting last year.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.
1990-01-01
A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.
1991-02-01
200 words) Aquatic plant control is necessary to maintain the flow of benefits for which water resources projects are constructed and operated (e.g...but little work has been performed by the Corps to evaluate the economic benefits resulting from aquatic plant control programs. This report reviewed...the applicability of the project evaluation guidance, Principles and Guidelines (P&G), for the eval- uation of aquatic plant control benefits . It was
The pallid sturgeon: Scientific investigations help understand recovery needs
DeLonay, Aaron J.
2010-01-01
Understanding of the pallid sturgeon (Scaphirhynchus albus) has increased significantly since the species was listed as endangered over two decades ago. Since 2005, scientists at the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have been engaged in an interdisciplinary research program in cooperation with the U.S. Army Corps of Engineers Missouri River Recovery Program, U.S. Fish and Wildlife Service, Nebraska Game and Parks Commission, and numerous other State and Federal cooperators to provide managers and policy makers with the knowledge needed to evaluate recovery options. During that time, the USGS has worked collaboratively with river scientists and managers to develop methods, baseline information, and research approaches that are critical contributions to recovery success. The pallid sturgeon is endangered throughout the Missouri River because of insufficient reproduction and survival of early life stages. Primary management actions on the Missouri River designed to increase reproductive success and survival have focused on flow regime, channel morphology, and propagation. The CERC research strategies have, therefore, been designed to examine the linkages among flow regime, re-engineered channel morphology, and reproductive success and survival. Specific research objectives include the following: (1) understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; (2) determining movement, habitat use, and reproductive behavior of pallid sturgeon; and (3) quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages.
St Elsewhere's or St Everywhere's: improving patient throughput in the private hospital sector.
Laffey, Jennifer A; Wasson, Moran
2007-01-01
Communication errors have been found to be most common root cause of medical errors by the US-based Agency for Healthcare Research and Quality [1]. Although elective admissions to hospital involves a high volume of important healthcare communications where incorrect, missing or illegible information could result in a serious medical error, there is little published research on the impact of improving pre-admission communication flow between admitting doctors and hospitals. The Sydney Adventist Hospital (the San) is a 341-bed private hospital in Sydney's northern suburbs that provides a comprehensive range of health services. A process improvement program began in early 2005 to streamline preadmission communications. The objectives of this ongoing program are broadly to improve patient safety and to increase operating efficiency. The first major initiative within this program was to implement a standardised method for inpatient booking/referral with over three hundred admitting doctors. Eighteen months on, the hospital has been able to demonstrate a significant shift in the timeliness of patient bookings from specialists' rooms, more comprehensive provision of clinical indicators that can facilitate resource planning in operating theatres and on the wards, and reduction in the ratio of bookings made in areas other than the hospital bookings department. The program continues with focus on improving accuracy of data entry, rationalising patient forms, making more effective use of information received and automation of pre-admission information flows.
Computer program for determining rotational line intensity factors for diatomic molecules
NASA Technical Reports Server (NTRS)
Whiting, E. E.
1973-01-01
A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.
Programming for energy monitoring/display system in multicolor lidar system research
NASA Technical Reports Server (NTRS)
Alvarado, R. C., Jr.; Allen, R. J.
1982-01-01
The Z80 microprocessor based computer program that directs and controls the operation of the six channel energy monitoring/display system that is a part of the NASA Multipurpose Airborne Differential Absorption Lidar (DIAL) system is described. The program is written in the Z80 assembly language and is located on EPROM memories. All source and assembled listings of the main program, five subroutines, and two service routines along with flow charts and memory maps are included. A combinational block diagram shows the interfacing (including port addresses) between the six power sensors, displays, front panel controls, the main general purpose minicomputer, and this dedicated microcomputer system.
Comparison of numerical results and multicavity purge and rim seal data with extensions to dynamics
NASA Astrophysics Data System (ADS)
Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.
1995-05-01
The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).
Comparison of Numerical Results and Multicavity Purge and Rim Seal Data with Extensions to Dynamics
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej J.; Hendricks, Robert C.; Steinetz, Bruce M.
1995-01-01
The computation of flows within interconnected, multiple-disk cavities shows strong interaction between the cavities and the power stream. For this reason, simulations of single cavities in such cases are not realistic; the complete, linked configuration must be considered. Unsteady flow fields affect engine stability and can engender power-stream-driven secondary flows that produce local hot spotting or general cavity heating. Further, a concentric whirling rotor produces a circumferential pressure wave, but a statically eccentric whirling rotor produces a radial wave; both waves affect cavity ingestion and the stability of the entire engine. It is strongly suggested that seals be used to enhance turbojet engine stability. Simple devices, such as swirl brakes, honeycomb inserts, and new seal configurations, should be considered. The cost effectiveness of the NASA Lewis Research Center seals program can be expressed in terms of program goals (e.g., the Integrated High-pressure/Temperature Engine Technology (IHPTET) cannot be achieved without such a program), cost (savings to $250 million/1-percent decrease in specific fuel consumption), and indirect benefits (reduction of atmospheric NO(x) and CO2 and reduction of powerplant downtime).
The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...
The overarching goal of USEPA’s Sustainable and Healthy Communities Research Program (SHCRP) is to inform and empower decision makers to equitably weigh and integrate human health, socio-economic, environmental, and ecological factors to foster sustainability in the built and nat...
U.S. EPA'S URBAN WATERSHED RESEARCH PROGRAM IN BMPS AND RESTORATION FOR WATER QUALITY MANAGEMENT
The U.S. EPA's Urban Watershed Management Branch is responsible for developing and demonstrating technologies and methods required managing the risk to public health, property and the environment from wet weather flows (WWF) in urban watersheds. The activities are primarily aimed...
Institutional Management in Higher Education.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.
This is the report of a conference sponsored by the Centre for Educational Research and Innovation. The conference discussed the findings of the Centre's 2-year program which attempted to demonstrate how the resource management of universities may be improved through better decisionmaking in the realms of finance, information, human flows, the use…
Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.
2003-01-01
A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.
Quasi-one-dimensional compressible flow across face seals and narrow slots. 2: Computer program
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1972-01-01
A computer program is presented for compressible fluid flow with friction across face seals and through narrow slots. The computer program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions for parallel surfaces. The program is written in FORTRAN IV. The input and output variables are in either the International System of Units (SI) or the U.S. customary system.
A Holistic Framework for Environmental Flows Determination in Hydropower Contexts
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A; Bevelhimer, Mark S
2013-05-01
Among the ecological science community, the consensus view is that the natural flow regime sustains the ecological integrity of river systems. This prevailing viewpoint by many environmental stakeholders has progressively led to increased pressure on hydropower dam owners to change plant operations to affect downstream river flows with the intention of providing better conditions for aquatic biological communities. Identifying the neccessary magnitude, frequency, duration, timing, or rate of change of stream flows to meet ecological needs in a hydropower context is challenging because the ecological responses to changes in flows may not be fully known, there are usually a multitudemore » of competing users of flow, and implementing environmental flows usually comes at a price to energy production. Realistically, hydropower managers must develop a reduced set of goals that provide the most benefit to the identified ecological needs. As a part of the Department of Energy (DOE) Water Power Program, the Instream Flow Project (IFP) was carried out by Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Argon National Laboratory (ANL) as an attempt to develop tools aimed at defining environmental flow needs for hydropower operations. The application of these tools ranges from national to site-specific scales; thus, the utility of each tool will depend on various phases of the environmental flow process. Given the complexity and sheer volume of applications used to determine environmentally acceptable flows for hydropower, a framework is needed to organize efforts into a staged process dependent upon spatial, temporal, and functional attributes. By far, the predominant domain for determining environmental flows related to hydropower is within the Federal Energy Regulatory Commission (FERC) relicensing process. This process can take multiple years and can be very expensive depending on the scale of each hydropower project. The utility of such a framework is that it can expedite the environmental flow process by 1) organizing data and applications to identify predictable relationships between flows and ecology, and 2) suggesting when and where tools should be used in the environmental flow process. In addition to regulatory procedures, a framework should also provide the coordination for a comprehensive research agenda to guide the science of environmental flows. This research program has further reaching benefits than just environmental flow determination by providing modeling applications, data, and geospatial layers to inform potential hydropower development. We address several objectives within this document that highlight the limitations of existing environmental flow paradigms and their applications to hydropower while presenting a new framework catered towards hydropower needs. Herein, we address the following objectives: 1) Provide a brief overview of the Natural Flow Regime paradigm and existing environmental flow frameworks that have been used to determine ecologically sensitive stream flows for hydropower operations. 2) Describe a new conceptual framework to aid in determining flows needed to meet ecological objectives with regard to hydropower operations. The framework is centralized around determining predictable relationships between flow and ecological responses. 3) Provide evidence of how efforts from ORNL, PNNL, and ANL have filled some of the gaps in this broader framework, and suggest how the framework can be used to set the stage for a research agenda for environmental flow.« less
Marshall Space Flight Center Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Six, N. F.; Damiani, R. (Compiler)
2017-01-01
The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.
NASA Technical Reports Server (NTRS)
Saiyed, Naseem H.
2000-01-01
Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.
Evaluation of the three-dimensional parabolic flow computer program SHIP
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.
Small Business Grants at the National Cancer Institute and National Institutes of Health
NASA Astrophysics Data System (ADS)
Baker, Houston
2002-10-01
Ten Federal Agencies set aside 2.5% of their external research budget for US small businesses—mainly for technology research and development, including radiation sensor system developments. Five agencies also set aside another 0.15% for the Small Business Technology Transfer Program, which is intended to facilitate technology transfers from research laboratories to public use through small businesses. The second largest of these agencies is the Department of Health and Human Services, and almost all of its extramural research funds flow through the 28 Institutes and Centers of the National Institutes of Health. For information, instructions, and application forms, visit the NIH website's Omnibus Solicitation for SBIR and STTR applications. The National Cancer Institute is the largest NIH research unit and SBIR/STTR participant. NCI also issues SBIR and STTR Program Announcements of its own that feature details modified to better support its initiatives and objectives in cancer prevention, detection, diagnosis, treatment, and monitoring.
NASA Technical Reports Server (NTRS)
Lamar, J. E.; Luckring, J. M.
1978-01-01
A review is presented of recent progress in a research program directed towards the development of an improved vortex-flow technology base. It is pointed out that separation induced vortex-flows from the leading and side edges play an important role in the high angle-of-attack aerodynamic characteristics of a wide range of modern aircraft. In the analysis and design of high-speed aircraft, a detailed knowledge of this type of separation is required, particularly with regard to critical wind loads and the stability and performance at various off-design conditions. A description of analytical methods is presented. The theoretical methods employed are divided into two classes which are dependent upon the underlying aerodynamic assumptions. One conical flow method is considered along with three different nonconical flow methods. Comparisons are conducted between the described methods and available aerodynamic data. Attention is also given to a vortex flow drag study and a vortex flow wing design using suction analogy.
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
ADAM: An Axisymmetric Duct Aeroacoustic Modeling system. [aircraft turbofan engines
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1983-01-01
An interconnected system of computer programs for analyzing the propagation and attenuation of sound in aeroengine ducts containing realistic compressible subsonic mean flows, ADAM was developed primarily for research directed towards the reduction of noise emitted from turbofan aircraft engines. The two basic components are a streamtube curvature program for determination of the mean flow, and a finite element code for solution of the acoustic propagation problem. The system, which has been specifically tailored for ease of use, is presently installed at NASA Langley Reseach Center on a Control Data Cyber 175 Computer under the NOS Operating system employing a Tektronix terminal for interactive graphics. The scope and organization of the ADAM system is described. A users guide, examples of input data, and results for selected cases are included.
NASA Technical Reports Server (NTRS)
Comfort, R. H.; Horwitz, J. L.
1986-01-01
Temperature and density analysis in the Automated Analysis Program (for the global empirical model) were modified to use flow velocities produced by the flow velocity analysis. Revisions were started to construct an interactive version of the technique for temperature and density analysis used in the automated analysis program. A sutdy of ion and electron heating at high altitudes in the outer plasmasphere was initiated. Also the analysis of the electron gun experiments on SCATHA were extended to include eclipse operations in order to test a hypothesis that there are interactions between the 50 to 100 eV beam and spacecraft generated photoelectrons. The MASSCOMP software to be used in taking and displaying data in the two-ion plasma experiment was tested and is now working satisfactorily. Papers published during the report period are listed.
NASA Astrophysics Data System (ADS)
Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.
2014-12-01
Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.
Turbulent Heat Transfer in Curved Pipe Flow
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
NASA Technical Reports Server (NTRS)
Woollett, R. R.
1983-01-01
An experimental research program was conducted in the Lewis Research Center's 9x15-foot (2.74x4.57 m) low speed wind tunnel to evaluate the aerodynamic performance of an inlet and fan system with variable inlet guide vanes (VIGVs) for use on a subsonic V/STOL aircraft. At high VIGV blade angles (lower weight flow and thrust levels), the fan stage was stalled over a major portion of its radius. In spite of the stall, fan blade stresses only exceeded the limits at the most extreme flow conditions. It was found that inlet flow separation does not necessarily lead to poor inlet performance or adverse fan operating conditions. Generally speaking, separated inlet flow did not adversely affect the fan blade stress levels. There were some cases, however, at high VIGV angles and high inlet angles-of-attack where excessive blade stress levels were encountered. An evaluation term made up of the product of the distortion parameter, K alpha, the weight flow and the fan pressure ratio minus one, was found to correlate quite well with the observed blade stress results.
NASA Technical Reports Server (NTRS)
Woollett, R. R.
1983-01-01
An experimental research program was conducted in the Lewis Research Center's 9 x 15-foot (2.74 x 4.57 m) low speed wind tunnel to evaluate the aerodynamic performance of an inlet and fan system with variable inlet guide vanes (VIGVs) for use on a subsonic V/STOL aircraft. At high VIGV blade angles (lower weight flow and thrust levels), the fan stage was stalled over a major portion of its radius. In spite of the stall, fan blade stresses only exceeded the limits at the most extreme flow conditions. It was found that inlet flow separation does not necessarily lead to poor inlet performance or adverse fan operating conditions. Generally speaking, separated inlet flow did not adversely affect the fan blade stress levels. There were some cases, however, at high VIGV angles and high inlet angles-of-attack where excessive blade stress levels were encountered. An evaluation term made up of the product of the distortion parameter, K alpha, the weight flow and the fan pressure ratio minus one, was found to correlate quite well with the observed blade stress results. Previously announced in STAR as N83-27957
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Effect of flow rate and concentration difference on reverse electrodialysis system
NASA Astrophysics Data System (ADS)
Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong
2013-11-01
Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Hiller, B.; Hassa, C.; Booman, R. A.
1984-01-01
Techniques yielding simultaneous, multiple-point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. This research program is aimed at investigating several candidate schemes which could provide such measurement capability. The concepts under study have in common the use of a laser source (to illuminate a column, a grid, a plane or a volume in the flow) and the collection of light at right angles (from Mie scattering, fluorescence, phosphorescence or chemiluminescence) using a multi-element solid-state camera (100 x 100 array of photodiodes). The work will include an overview and a status report of work in progress with particular emphasis on the method of Doppler-modulated absorption.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1982-01-01
Measurements and computations are being applied to an axisymmetric swirling flow, emerging from swirl vanes at angle phi, entering a large chamber test section via a sudden expansion of various side-wall angles alpha. New features are: the turbulence measurements are being performed on swirling as well as nonswirling flow; and all measurements and computations are also being performed on a confined jet flowfield with realistic downstream blockage. Recent activity falls into three categories: (1) Time-mean flowfield characterization by five-hole pitot probe measurements and by flow visualization; (2) Turbulence measurements by a variety of single- and multi-wire hot-wire probe techniques; and (3) Flowfield computations using the computer code developed during the previous year's research program.
Numerical study of a scramjet engine flow field
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Weidner, E. H.
1981-01-01
A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.
1981-09-01
organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Spiegler, E.
1977-01-01
The research activity focused on two main tasks: (1) the further development of the SCRAM program and, in particular, the addition of a procedure for modeling the mechanism of the internal adjustment process of the flow, in response to the imposed thermal load across the combustor and (2) the development of a numerical code for the computation of the variation of concentrations throughout a turbulent field, where finite-rate reactions occur. The code also includes an estimation of the effect of the phenomenon called 'unmixedness'.
Laboratory Study of Wave Generation Near Dipolarization Fronts
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Enloe, C. L.; Amatucci, B.; Crabtree, C. E.; Ganguli, G.; Malaspina, D.
2017-12-01
Experiments conducted in the Space Physics Simulation Chamber at the Naval Research Laboratory (NRL) create plasma equilibria that replicate those found in dipolarization fronts. These experiments were designed to study the dynamics of boundary layers, such as dipolarization fronts, and it was found that there are instabilities generated by highly inhomogeneous plasma flows. It has previously been shown that these highly inhomogeneous flows can generate waves in the lower hybrid frequency range. Analysis of satellite observations indicate that the sheared flows are a plausible explanation for the observed lower hybrid waves at dipolarization fronts since they can generate longer wavelengths compared to the electron gyroradius, which is consistent with observations. Recent experiments at NRL have demonstrated that these flows can also generate electromagnetic waves in the whistler band. These waves are large amplitude, bursty waves that exhibit frequency chirps similar to whistler mode chorus. Recent results from these experiments and comparisons to in situ observations will be presented. * Work supported by the Naval Research Laboratory Base Program and NASA Grant No. NNH17AE70I.
Brokering the Research-Practice Gap: A typology.
Neal, Jennifer Watling; Neal, Zachary P; Kornbluh, Mariah; Mills, Kristen J; Lawlor, Jennifer A
2015-12-01
Despite widespread recognition of a research-practice gap in multiple service sectors, less is known about how pre-existing communication channels facilitate the flow of information between researchers and practitioners. In the current study, we applied an existing typology of brokerage developed by Gould and Fernandez (Sociol Methodol 19:89-126, 1989) to examine what types of brokerage facilitate information spread between researchers and educational practitioners. Specifically, we conducted semi-structured interviews with 19 school administrators and staff in two public school districts regarding their experiences searching for information about instructional, health, and social skills programs. Using deductive content analysis, we found evidence of all five types of brokerage identified by Gould and Fernandez (1989). However, only three types of brokerage-gatekeepers, representatives, and liaisons-were involved in the flow of information between school administrators and researchers. Moreover, information transfer often occurred in longer chains that involved multiple, distinct types of brokerage. We conclude with the broad implications of our findings for narrowing the research-practice gap by improving researchers' dissemination efforts and practitioners' search for information.
Experimental aerothermodynamic research of hypersonic aircraft
NASA Technical Reports Server (NTRS)
Cleary, Joseph W.
1987-01-01
The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
NASA and CFD - Making investments for the future
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.; Richardson, P. F.
1992-01-01
From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)
NASA Technical Reports Server (NTRS)
Elam, S. K.
2000-01-01
The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.
Calculating the Flow Field in a Radial Turbine Scroll
NASA Technical Reports Server (NTRS)
Baskharone, E.; Abdallah, S.; Hamed, A.; Tabaoff, W.
1983-01-01
Set of two computer programs calculates flow field in radial turbine scroll. Programs represent improvement in analyzing flow in radial turbine scrolls and provide designer with tools for designing better scrolls. Programs written in FORTRAN IV.
Scramjet exhaust simulation technique for hypersonic aircraft nozzle design and aerodynamic tests
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Talcott, N. A., Jr.; Cubbage, J. M.
1977-01-01
Current design philosophy for scramjet-powered hypersonic aircraft results in configurations with the entire lower fuselage surface utilized as part of the propulsion system. The lower aft-end of the vehicle acts as a high expansion ratio nozzle. Not only must the external nozzle be designed to extract the maximum possible thrust force from the high energy flow at the combustor exit, but the forces produced by the nozzle must be aligned such that they do not unduly affect aerodynamic balance. The strong coupling between the propulsion system and aerodynamics of the aircraft makes imperative at least a partial simulation of the inlet, exhaust, and external flows of the hydrogen-burning scramjet in conventional facilities for both nozzle formulation and aerodynamic-force data acquisition. Aerodynamic testing methods offer no contemporary approach for such vehicle design requirements. NASA-Langley has pursued an extensive scramjet/airframe integration R&D program for several years and has recently developed a promising technique for simulation of the scramjet exhaust flow for hypersonic aircraft. Current results of the research program to develop a scramjet flow simulation technique through the use of substitute gas blends are described in this paper.
Experimental Studies of Low-Pressure Turbine Flows and Flow Control
NASA Technical Reports Server (NTRS)
Volino, Ralph J.
2012-01-01
This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1993-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.
Analysis of magnitude and duration of floods and droughts in the context of climate change
NASA Astrophysics Data System (ADS)
Eshetu Debele, Sisay; Bogdanowicz, Ewa; Strupczewski, Witold
2016-04-01
Research and scientific information are key elements of any decision-making process. There is also a strong need for tools to describe and compare in a concise way the regime of hydrological extreme events in the context of presumed climate change. To meet these demands, two complementary methods for estimating high and low-flow frequency characteristics are proposed. Both methods deal with duration and magnitude of extreme events. The first one "flow-duration-frequency" (known as QdF) has already been applied successfully to low-flow analysis, flood flows and rainfall intensity. The second one called "duration-flow-frequency" (DqF) was proposed by Strupczewski et al. in 2010 to flood frequency analysis. The two methods differ in the treatment of flow and duration. In the QdF method the duration (d-consecutive days) is a chosen fixed value and the frequency analysis concerns the annual or seasonal series of mean value of flows exceeded (in the case of floods) or non-exceeded (in the case of droughts) within d-day period. In the second method, DqF, the flows are treated as fixed thresholds and the duration of flows exceeding (floods) and non-exceeding (droughts) these thresholds are a subject of frequency analysis. The comparison of characteristics of floods and droughts in reference period and under future climate conditions for catchments studied within the CHIHE project is presented and a simple way to show the results to non-professionals and decision-makers is proposed. The work was undertaken within the project "Climate Change Impacts on Hydrological Extremes (CHIHE)", which is supported by the Norway-Poland Grants Program administered by the Norwegian Research Council. The observed time series were provided by the Institute of Meteorology and Water Management (IMGW), Poland. Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & Singh V. P. (2010). On the Tails of Distributions of Annual Peak Flow. Hydrology Research, 42, 171-192. http://dx.doi.org/10.2166/nh.2011.062
Improving Ecological Response Monitoring of Environmental Flows
NASA Astrophysics Data System (ADS)
King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina
2015-05-01
Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.
Based on authority granted by provisions of the Clean Air Act (42 U.S.C 7410, et seq.), the Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, NC administers periodic surveys of analytical proficiency for sulfur dioxide, nitroge...
Solid Inflammability Boundary At Low-Speed (SIBAL)
NASA Technical Reports Server (NTRS)
T'ien, J.; Sacksteder, K.; Ferkul, P.; Pettegrew, R.; Street, K.; Kumar, A.; Tolejko, K.; Kleinhenz, J.; Piltch, N.
2003-01-01
This research program is concerned with the effect of low-speed flow on the spreading and extinction processes over solid fuels. The project has passed the Science Concept Review and the experiment is currently scheduled to be performed in the ISS Combustion Integrated Rack. We present an overview of recent and ongoing experimental and theoretical efforts.
ERIC Educational Resources Information Center
Wilson, Marenda A.; DePass, Anthony; Bean, Andrew J.
2018-01-01
The faculty and student populations in academia are not representative of the diversity in the U.S. population. Thus, research institutions and funding agencies invest significant funds and effort into recruitment and retention programs that focus on increasing the flow of historically underrepresented minorities (URMs) into the science,…
Risk communications and the Chemical Stockpile Emergency Preparedness Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, B.M.
1995-12-31
One of the greater challenges the Army faces is effectively dealing with the concerns of the public, local officials and the news media on the disposal of aging chemical agents. This paper describes the method developed for the Chemical Stockpile Emergency Preparedness Program (CSEPP). The purpose was to provide a fairly comprehensive document on risk communication research and recommended practices as they related to the CSEPP. Using the communications perspective suggested by Covello and colleagues, the existing practices of communicating risk information about chemical weapons and the associated efforts in emergency planning, storage and eventual disposal are described. Risk communicationmore » problems specific to the CSEPP are then examined and described via scenarios. A framework is developed that distinguishes between the major components of risk communication, flow and intent. Within this framework, the research and recommendations are summarized as to direction of flow -- dialogue, or two-way interaction, versus monologue, or one-way communication -- and that of intent -- exchange versus persuasion. The findings and recommendations are synthesized and related to risk events for the CSEPP as posited in the scenarios.« less
Applications of automatic differentiation in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Carle, A.; Bischof, C.; Haigler, Kara J.; Newman, Perry A.
1994-01-01
Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences.
The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1997-01-01
This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1997 to September 30, 1998. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the Institute include the following: (1) To conduct basic and applied research; (2) to promote joint endeavors between Center scientists and those in the academic community; (3) to provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute; (4) to provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute; and (5) to disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.
The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1996-01-01
This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1996 to September 30, 1997. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the institute include the following: To conduct basic and applied research. To promote joint endeavors between Center scientists and those in the academic community To provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute. To provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute. To disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.
Van Metre, P.C.
1990-01-01
A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)
Cockell, Charles S; Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer
2018-02-01
The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.
Biller, Beth; Bryce, Casey; Cousins, Claire; Direito, Susana; Forgan, Duncan; Fox-Powell, Mark; Harrison, Jesse; Landenmark, Hanna; Nixon, Sophie; Payler, Samuel J.; Rice, Ken; Samuels, Toby; Schwendner, Petra; Stevens, Adam; Nicholson, Natasha; Wadsworth, Jennifer
2018-01-01
Abstract The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology—Centre—Education—Subsurface—Analog research. Astrobiology 18, 224–243. PMID:29377716
NASA Technical Reports Server (NTRS)
Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.
2016-01-01
Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.
NASA Technical Reports Server (NTRS)
Mcardle, J. G.; Homyak, L.; Moore, A. S.
1979-01-01
The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.
Calculating Flow Through A Helicopter Rotor
NASA Technical Reports Server (NTRS)
Kunz, Donald L.; Hodges, Dewey H.
1991-01-01
New method for calculating flow of air through and around helicopter rotor incorporated into General Rotorcraft Aeromechanical Stability Program (GRASP) (computer program for aeroelastic analysis). Flow about helicopter rotor represented by axisymmetric flow field in cylindrical region with actuator disk as source of flow.
First Annual High-Speed Research Workshop, part 4
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.
Evaluation of Turbulence-Model Performance in Jet Flows
NASA Technical Reports Server (NTRS)
Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.
2001-01-01
The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are compared with experimental data.
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
Alabama NASA EPSCoR Preparation Grant Program: Grant No. NCC5-391
NASA Technical Reports Server (NTRS)
Gregory, John C.
2003-01-01
The funded research projects under the Experimental Program to Stimulate Cooperative Research (EPSCoR) grant program and the student fellowship awards are summarized in this report. The projects include: 1) Crystallization of Dehydratase/DcoH: A Target in Lung Disease; 2) Measuring Velocity Profiles in Liquid Metals using an Ultrasonic Doppler Velocimeter; 3) Synthesis, Structure, and Properties of New Thermoelectric Materials; 4) Computational Determination of Structures and Reactivity of Phenol-Formaldehyde Resins; 5) Synthesis of Microbial Polyesters in the NASA Bioreactor; 6) Visualization of Flow-Fields in Magnetocombustion; 7) Synthesis of Fluorescent Saccharide Derivatives. The student fellowship awards include: 1) Distributed Fusion of Satellite Images; 2) Study of the Relationship between Urban Development, Local Climate, and Water Quality for the Atlanta, Georgia Metrop; 3) Computer Simulation of the Effectiveness of a Spring-Loaded Exercise Device.
PREDICTING TURBINE STAGE PERFORMANCE
NASA Technical Reports Server (NTRS)
Boyle, R. J.
1994-01-01
This program was developed to predict turbine stage performance taking into account the effects of complex passage geometries. The method uses a quasi-3D inviscid-flow analysis iteratively coupled to calculated losses so that changes in losses result in changes in the flow distribution. In this manner the effects of both the geometry on the flow distribution and the flow distribution on losses are accounted for. The flow may be subsonic or shock-free transonic. The blade row may be fixed or rotating, and the blades may be twisted and leaned. This program has been applied to axial and radial turbines, and is helpful in the analysis of mixed flow machines. This program is a combination of the flow analysis programs MERIDL and TSONIC coupled to the boundary layer program BLAYER. The subsonic flow solution is obtained by a finite difference, stream function analysis. Transonic blade-to-blade solutions are obtained using information from the finite difference, stream function solution with a reduced flow factor. Upstream and downstream flow variables may vary from hub to shroud and provision is made to correct for loss of stagnation pressure. Boundary layer analyses are made to determine profile and end-wall friction losses. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses. The total losses are then used to calculate stator, rotor, and stage efficiency. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370/3033 under TSS with a central memory requirement of approximately 4.5 Megs of 8 bit bytes. This program was developed in 1985.
Computational aeroacoustics and numerical simulation of supersonic jets
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Long, Lyle N.
1996-01-01
The research project has been a computational study of computational aeroacoustics algorithms and numerical simulations of the flow and noise of supersonic jets. During this study a new method for the implementation of solid wall boundary conditions for complex geometries in three dimensions has been developed. In addition, a detailed study of the simulation of the flow in and noise from supersonic circular and rectangular jets has been conducted. Extensive comparisons have been made with experimental measurements. A summary of the results of the research program are attached as the main body of this report in the form of two publications. Also, the report lists the names of the students who were supported by this grant, their degrees, and the titles of their dissertations. In addition, a list of presentations and publications made by the Principal Investigators and the research students is also included.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anbo Wang; Kristie L. Cooper; Gary R. Pickrell
2003-06-01
Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateralmore » wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.« less
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.
1981-01-01
By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.
A Unit-Problem Investigation of Blunt Leading-Edge Separation Motivated by AVT-161 SACCON Research
NASA Technical Reports Server (NTRS)
Luckring, James M.; Boelens, Okko J.
2011-01-01
A research effort has been initiated to examine in more detail some of the challenging flow fields discovered from analysis of the SACCON configuration aerodynamics. This particular effort is oriented toward a diamond wing investigation specifically designed to isolate blunt leading-edge separation phenomena relevant to the SACCON investigations of the present workshop. The approach taken to design this new effort is reviewed along with the current status of the program.
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
programming MAPE mean average percentage error MLRPS Manpower Long-Range Planning System MT marine technician OR operations research RAN Royal...OR Practice—The Army Manpower Long-Range Planning System. Operations Research , 36(1), 5–17. http://dx.doi.org/10.1287/opre.36.1.5 Guerry, M. A...unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The purpose of this thesis is to develop a model to assist military manpower planners in
Water Efficient Installations - A New Army Guidance Document
2010-06-01
Toilets 1.28 gpf or less, 50 manuf., 500+ models Required in CA Dual flush options also available WaterSense program provides certification and...lose 8760 to 219,000 gal/year Broken flush valve on toilet can lose 40 gal/hour US Army Corps of Engineers® Engineer Research and Development Center...Engineer Research and Development Center Toilets and Urinals ULFTs Ultra-Low Flush Toilet , also called low flow 1.28 gpf to 1.6 gpf HETs High Efficiency
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.
1990-01-01
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown.
NASA Astrophysics Data System (ADS)
Liu, Miaolong; Chen, Peng
2006-10-01
Based on the development trend of research on urban morphology and its evolution from macro scale to micro scale, a new tight-coupling integrating method of GIS and MAS has been discussed briefly in this paper. After analyzing the characteristics and mechanism of pedestrian's flows in a crowds' activity center in a metropolitan, a prototype and mathematical expression of pedestrian's flows simulation have been put forward in the paper. A few key expressions and techniques for treating the specific behaviors of pedestrians flows, especially how the individuals of the flows make a decision to follow a original designed direction, how to make a decision whether stop or change his movement and select a new direction when the individuals meet a obstacle have been explored and discussed in detail. Using some tools provided by general GIS systems (such as ArcGIS 9) and a few specific programming languages, a new software system integrating GIS and MAS applicable for simulating pedestrians flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. The successful simulating of a case of emergence when one or more exits emerge accidents will be very useful for managing and treating crowds' safety in a lot of assembling centers. At the end of the paper, some new research problems have been pointed out for the future.
Use of a Scale Model in the Design of Modifications to the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Gonsalez, Jose C.; Spera, David A.; Burke, Thomas (Technical Monitor)
2001-01-01
Major modifications were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research tunnel (IRT) at the NASA Glenn Research Center, including replacement of its heat exchanger and associated ducts and turning vanes, and the addition of fan outlet guide vanes (OGV's). A one-tenth scale model of the IRT (designated as the SMIRT) was constructed with and without these modifications and tested to increase confidence in obtaining expected improvements in flow quality around the tunnel loop. The SMIRT is itself an aerodynamic test facility whose flow patterns without modifications have been shown to be accurate, scaled representations of those measured in the IRT prior to the 1999 upgrade program. In addition, tests in the SMIRT equipped with simulated OGV's indicated that these devices in the IRT might reduce flow distortions immediately downstream of the fan by two thirds. Flow quality parameters measured in the SMIRT were projected to the full-size modified IRT, and quantitative estimates of improvements in flow quality were given prior to construction. In this paper, the results of extensive flow quality studies conducted in the SMIRT are documented. Samples of these are then compared with equivalent measurements made in the full-scale IRT, both before and after its configuration was upgraded. Airspeed, turbulence intensity, and flow angularity distributions are presented for cross sections downstream of the drive fan, both upstream and downstream of the replacement flat heat exchanger, in the stilling chamber, in the test section, and in the wakes of the new comer turning vanes with their unique expanding and contracting designs. Lessons learned from these scale-model studies are discussed.
A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs
NASA Technical Reports Server (NTRS)
Khalil, I.; Sheoran, Y.; Tabakoff, W.
1980-01-01
A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.
A computer program for the calculation of laminar and turbulent boundary layer flows
NASA Technical Reports Server (NTRS)
Dwyer, H. A.; Doss, E. D.; Goldman, A. L.
1972-01-01
The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
NASA Astrophysics Data System (ADS)
Godbole, Saurabh
Traditionally, textual tools have been utilized to teach basic programming languages and paradigms. Research has shown that students tend to be visual learners. Using flowcharts, students can quickly understand the logic of their programs and visualize the flow of commands in the algorithm. Moreover, applying programming to physical systems through the use of a microcontroller to facilitate this type of learning can spark an interest in students to advance their programming knowledge to create novel applications. This study examined if freshmen college students' attitudes towards programming changed after completing a graphical programming lesson. Various attributes about students' attitudes were examined including confidence, interest, stereotypes, and their belief in the usefulness of acquiring programming skills. The study found that there were no statistically significant differences in attitudes either immediately following the session or after a period of four weeks.
Combustion and Flammability Characteristics of Solids at Microgravity in very Small Velocity Flows
NASA Technical Reports Server (NTRS)
Sanchez-Tarifa, C.; Rodriguez, M.
1999-01-01
Fires still remain as one of the most important safety risks in manned spacecraft. This problem will become even more important in long endurance non orbital flights in which maintenance will be non existing or very difficult. The basic process of a fire is the combustion of a solid at microgravity conditions in O2/N2 mixtures. Although a large number of research programs have been carried out on this problem, especially on flame spreading, several aspects of these processes are not yet well understood. It may be mentioned, for example, the temperature and characteristic of low emissivity flames in the visual range that take place in some conditions at microgravity; and there exists a lack of knowledge on the influence of key parameters, such as convective flow velocities of the order of magnitude of typical oxygen diffusion velocities. The "Departamento de Motopropulsion y Termofluidodinamica" of the "Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Aeronauticos" is conducting a research program on the combustion of solids at reduced gravity conditions within O2/N2 mixtures. The material utilized has been polymethylmethacrylate (PMMA) in the form of rectangular slabs and hollow cylinders. The main parameters of the process have been small convective flow velocities (including velocity angle with the direction of the spreading flame) and oxygen concentration. Some results have also been obtained on the influence of material thickness and gas pressure.
Time-evolving of very large-scale motions in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.
2014-11-01
Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
2014-01-01
The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.
NASA Technical Reports Server (NTRS)
Volino, Ralph
2012-01-01
This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies. The folders in this supplement contain processed data in ASCII format. Streamwise pressure profiles and velocity profiles are included. The velocity profiles were acquired using single sensor and cross sensor hot-wire probes which were traversed from the wall to the freestream at various streamwise locations. In some of the flow control cases (3D Trips and Jets) profiles were acquired at multiple spanwise locations.
Design of experiments enhanced statistical process control for wind tunnel check standard testing
NASA Astrophysics Data System (ADS)
Phillips, Ben D.
The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.
Analysis of eletrectrohydrodynamic jetting using multifunctional and three-dimensional tomography
NASA Astrophysics Data System (ADS)
Ko, Han Seo; Nguyen, Xuan Hung; Lee, Soo-Hong; Kim, Young Hyun
2013-11-01
Three-dimensional optical tomography technique was developed to reconstruct three-dimensional flow fields using a set of two-dimensional shadowgraphic images and normal gray images. From three high speed cameras, which were positioned at an offset angle of 45° relative to one another, number, size and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing a multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside cone-shaped liquid (Taylor cone) which was induced under electric field was also observed using a simultaneous multiplicative algebraic reconstruction technique (SMART) for reconstructing intensities of particle light and combining with a three-dimensional cross correlation. Various velocity fields of a circulating flow inside the cone-shaped liquid due to different physico-chemical properties of liquid and applied voltages were also investigated. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).
Modeling of gun barrel surface erosion: Historic perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, A.C.
1996-08-01
Results and interpretations of numerical simulations of some dominant processes influencing gun barrel propellant combustion and flow-induced erosion are presented. Results include modeled influences of erosion reduction techniques such as solid additives, vapor phase chemical modifications, and alteration of surface solid composition through use of thin coatings. Precedents and historical perspective are provided with predictions from traditional interior ballistics compared to computer simulations. Accelerating reactive combustion flow, multiphase and multicomponent transport, flow-to-surface thermal/momentum/phase change/gas-surface chemical exchanges, surface and micro-depth subsurface heating/stress/composition evolution and their roles in inducing surface cracking, spall, ablation, melting, and vaporization are considered. Recognition is given tomore » cyclic effects of previous firing history on material preconditioning. Current perspective and outlook for future are based on results of a US Army-LLNL erosion research program covering 7 y in late 1970s. This is supplemented by more recent research on hypervelocity electromagnetic projectile launchers.« less
Jet Noise Reduction Potential from Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James; Wernet, Mark
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Jet Noise Reduction Potential From Emerging Variable Cycle Technologies
NASA Technical Reports Server (NTRS)
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.
Visualizing Coolant Flow in Sodium Reactor Subassemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Uniformity of temperature controls peak power output. Interchannel cross-flow is the principal cross-assembly energy transport mechanism. The areas of fastest flow all occur at the exterior of the assembly. Further, the fast moving region winds around the assembly in a continuous swath. This Nek5000 simulation uses an unstructured mesh with over one billion grid points, resulting in five billion degrees of freedom per time slice. High speed patches of turbulence due to vertex shedding downstream of the wires persist for about a quarter of the wire-wrap periodic length. Credits: Science: Paul Fisher and Aleks Obabko, Argonne National Laboratory. Visualization: Hankmore » Childs and Janet Jacobsen, Lawrence Berkeley National Laboratory. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was sponsored by the Department of Energy's Office of Nuclear Energy's NEAMS program.« less
NASA Technical Reports Server (NTRS)
Lahey, Richard T., Jr.; Dhir, Vijay
2004-01-01
This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.
Williams, P Stephen
2017-01-01
Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.
Research Program of a Super Fast Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less
NASA Technical Reports Server (NTRS)
Pan, Y. S.; Drummond, J. P.; Mcclinton, C. R.
1978-01-01
Two parabolic flow computer programs, SHIP (a finite-difference program) and COMOC (a finite-element program), are used for predicting three-dimensional turbulent reacting flow fields in supersonic combustors. The theoretical foundation of the two computer programs are described, and then the programs are applied to a three-dimensional turbulent mixing experiment. The cold (nonreacting) flow experiment was performed to study the mixing of helium jets with a supersonic airstream in a rectangular duct. Surveys of the flow field at an upstream were used as the initial data by programs; surveys at a downstream station provided comparison to assess program accuracy. Both computer programs predicted the experimental results and data trends reasonably well. However, the comparison between the computations from the two programs indicated that SHIP was more accurate in computation and more efficient in both computer storage and computing time than COMOC.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
A Comparative Propulsion System Analysis for the High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.
2005-01-01
Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.
F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
The perforated titanium overlay mounted on the upper surface of the left wing is clearly evident on this view of NASA 848, a highly modified F-16XL aircraft flown by NASA's Dryden Flight Research Center in the Supersonic Laminar Flow Control (SLFC) research program. The two-seat, single-engine craft, one of only two 'XL' F-16s built, recently concluded the SLFC project with its 45th data collection mission. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew a small part of the boundary-layer air through millions of tiny laser-drilled holes in the 'glove' fitted to the upper left wing.
Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup
NASA Astrophysics Data System (ADS)
Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang
2013-03-01
In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristie Cooper; Gary Pickrell; Anbo Wang
2003-04-01
This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less
Computer programs for calculating potential flow in propulsion system inlets
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Button, S. L.
1973-01-01
In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.
Program and charts for determining shock tube, and expansion tunnel flow quantities for real air
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1975-01-01
A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.
Intrinsic Flow Behavior During Improved Confinement in MST Reversed-field Pinch
NASA Astrophysics Data System (ADS)
Tan, E.; Craig, D.; Schott, B.; Boguski, J.; Xing, Z. A.; Nornberg, M. D.; Anderson, J. K.
2017-10-01
We used active charge exchange recombination spectroscopy to measure impurity ion flow velocity in high-current plasmas during periods of improved confinement. Velocity measurements througout the core reveal that ion flow parallel to the magnetic field is dominant compared to the perpendicular flow. The poloidal flow profile reverses at r/a = 0.6, and the flow near the core is larger on outboard positions compared to the inboard positions. A strong shear in the toroidal flow develops near the axis as PPCD proceeds. In the past, the mode velocity has been used to infer the toroidal flow based on the `no-slip' assumption that the mode and local plasma co-rotate. We tested this assumption with direct measurements near the m = 1, n = 6 resonant surface. Inboard flow measurements are consistent with the no-slip condition and exhibit a time dependence where the flow decreases together with the n = 6 mode velocity. The outboard flow is consistent in magnitude with the no-slip condition but the variations in time and across shots do not correlate well with the n = 6 mode velocity. Possible reasons why the inboard and outboard flow exhibit different behavior are discussed. This work has been supported by the US DOE and the Wheaton College summer research program.
Superhydrophobic Drag Reduction in Various Turbulent Flows
NASA Astrophysics Data System (ADS)
Gose, James W.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.
2017-11-01
Superhydrophobic surfaces (SHSs) have been studied exhaustively in laminar flow applications while interest in SHS drag reduction in turbulent flow applications has been increasing steadily. In this discussion, we will highlight recent advances of SHS applications in various high-Reynolds number flows. We will address the application of mechanically robust and scalable spray SHSs in three cases: fully-developed internal flow; a near-zero pressure gradient turbulent boundary layer; and an axisymmetric DARPA SUBOFF model. The model will be towed in the University of Michigan's Physical Model Basin. Experimental measurements of streamwise pressure drop and the near-wall flow via Particle Image Velocimetry and Laser Doppler Velocimetry will be discussed where applicable. Moreover, integral measurement of the total resistance of the SUBOFF model, with and without SHS application, will be examined. The SUBOFF model extends 2.6 m and is 0.3 m in diameter, and will be tested at water depths of three to six model diameters. Previous investigation of these SHSs have proven that skin-friction savings of 20% or more can be attained for friction Reynolds numbers greater than of 1,000. This project was carried out as part of the U.S. Office of Naval Research (ONR) MURI (Multidisciplinary University Research Initiatives) program (Grant No. N00014-12-1-0874) managed by Dr. Ki-Han Kim and led by Dr. Steven L. Ceccio.
The NASA Low-Pressure Turbine Flow Physics Program
NASA Technical Reports Server (NTRS)
Ashpis, David E.
1998-01-01
An overview of the NASA Lewis Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The program was established in response to the aero-engine industry's need for improved LPT efficiency and designs. Modern jet engines have four to seven LPT stages, significantly contributing to engine weight. In addition, there is a significant efficiency degradation between takeoff and cruise conditions, of up to 2 points. Reducing the weight and part count of the LPT and minimizing the efficiency degradation will translate into fuel savings. Accurate prediction methods of LPT flows and losses are needed to accomplish those improvements. The flow in LPT passages is at low Reynolds number, and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The affecting parameters traditionally considered are Reynolds number, freestream turbulence intensity, wake frequency parameter, and the pressure distribution (loading). Three-dimensional effects and additional parameters, particularly turbulence characteristics like length scales, spectra and other statistics, as well as wake turbulence intensity and properties also play a role. The flow of most interest is on the suction surface, where large losses are generated as the flow tends to separate at the low Reynolds numbers. Ignoring wakes, a common flow scenario, there is laminar separation, followed by transition on the separation bubble and turbulent reattachment. If transition starts earlier the separation will be eliminated and the boundary layer will be attached leading to the well known bypass transition issues. In contrast, transition over a separation bubble is closer to free shear layer transition and was not investigated as well, particularly in the turbine environment. Unsteadiness created by wakes complicates the picture. Wakes induce earlier transition, and the calmed regions trailing the induced turbulent spots can delay or eliminate separation via shear stress modification. Three-dimensional flow physics and geometry will have strong effects. Altogether a very complex and challenging problem emerges. The objective of the program is to provide improved models and physical understanding of the complex flow, which are essential for accurate prediction of flow and losses in the LPT. Experimental, computational and analytical work as complementing and augmenting approaches are used. The program involves industry, universities and research institutes, and other government laboratories. It is characterized by strong interaction among participants, quick dissemination of results, and responsiveness to industry's needs. The presentation will describe the work elements. Highlighting some activities in progress are experiments on simulated blade suction surface in low-speed wind tunnels, on curved wall, and on a flat-plate, both with pressure gradient. In the area of computation, assessment of existing models is performed using RANS (Reynolds Averaged Navier Stokes) simulations. Laminar flow DNS was completed. Analytical studies of instability and receptivity in attached and separated flows were started. In the near future the program is moving to include wake effects and development of improved modeling. Experimental work in preparation stages are: (1) Addition of wakes to the curved tunnel experiment; (2) Low-speed rotating rig experiment on GE90 engine LPT; and (3) Transonic cascade. In the area of computation, it is expected to move from model assessment towards development of improved models. In addition, a new project of Large Eddy Simulation (LES) of LPT is to begin and will provide numerical data bases. It is planned to implement the emerging improved models in a multistage turbomachinery code and to validate against the GE90 engine LPT.
Development of a Bio-inspired Microflap Array for Passive Control of Flow Separation
NASA Astrophysics Data System (ADS)
Devey, Sean; Morris, Jackson; Hubner, Paul; Lang, Amy
2017-11-01
The shortfin mako shark benefits from its flexible microscopic scales, or denticles; which can passively limit flow separation in water. These denticles can be passively actuated by incipient reversing flow in the lower 5% of the boundary layer, thereby impeding further flow reversal and promoting increased momentum exchange. In air, an array of flow actuated microflaps has the potential to provide similar benefits to man-made systems. Multiple iterations of microflap arrays have been developed and tested in the University of Alabama's Boundary Layer Tunnel. A variety of 3D-printed flaps derived from mako denticle geometries were arranged in rows with freedom to rotate, like mako denticles, to angles up to 50 degrees. Placing the microflap array in separated flow regions allowed for direct observation of the microflap response. Like mako denticles, microflaps with lengths of about 4 mm have been shown to actuate in response to reversing surface flows. This presentation will focus on the development and implementation of passive microflap arrays. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas J. Hanratty
A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such asmore » frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.« less
Effect of internal flow and evaporation on hydrogel assembly process at droplet interface
NASA Astrophysics Data System (ADS)
Kang, Giho; Seong, Baekhoon; Gim, Yeonghyeon; Ko, Han Seo; Byun, Doyoung
2017-11-01
Recently, controlling the behavior of nanoparticles inside liquid droplet has been widely studied. There have been many reports about the mechanism of the nanoparticles assembly and fabrication of a thin film on a substrate. However, the assembly mechanism at a liquid-air interface has not been clearly understood to form polymer chains into films. Herein, we investigated the role of internal flow on the thin film assembly process at the interface of the hydrogel droplet. The internal fluid flow during the formation of the hydrogel film was visualized systematically using micro-PIV (Particle image velocimetry) technique at various temperatures. We show that the buoyancy effect and convection flow induced by heat can affect the film morphology and its mechanical characteristics. Due to the accelerated fluid flow inside the droplet and evaporation flux, densely assembled hydrogel film was able to be formed. Film strength was increased 24% with temperature increase from 40 to 80 degrees Celsius. We expect our investigations could be applied to many applications such as self-assembly of planar structures at the interface in coating and printing process. The support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A1A05001829) is acknowledged.
NASA Astrophysics Data System (ADS)
Markeviciute, Vilda; White, Nicholas; Troian, Sandra
2017-11-01
Although spontaneous capillary flow can be an especially rapid process in slender open microchannels resembling V-grooves, enhanced flow control is possible through implementation of electric field distributions which generate opposing electrohydrodynamic pressures along the air/liquid interface to modulate the capillary pressures. Important fundamental work by Romero and Yost (1996) and Weislogel(1996) has elucidated the behavior of Newtonian films in slender V-grooves driven to flow solely by the streamwise change in capillary pressure due to the change in radius of curvature of the circular arc describing the interface of wetting or non-wetting fluids. Here we augment the Romero and Yost model with inclusion of Maxwell stresses for perfectly conducting wetting films and examine which electric field distributions allow formation of steady state film shapes for various inlet and outlet boundary conditions. We investigate the stability of these steady solutions to small perturbations in film thickness using a generalized stability analysis. These results reveal how the ratio of Maxwell to capillary stresses influences the degree of linearized transient growth or decay for thin films confined to flow within an open V-groove. Funding from the 2017 Caltech Summer Undergraduate Research Fellowship Program (Markeviciute) as well as a 2017 NASA Space Technology Research Fellowship (White) is gratefully acknowledged.
Structure and Flow: Toward an Organic Approach to Critical Multiliteracies in a Writing Workshop
ERIC Educational Resources Information Center
Schaenen, Inda
2010-01-01
This qualitative case study reports on a three-year writing enrichment program among second, third, and fourth graders at a public urban elementary school in a medium-sized midwestern city. Designed as teacher research, the inquiry is a phenomenological examination of the experience of the workshop for its participants, including more than one…
ERIC Educational Resources Information Center
Scigliano, John A.
1983-01-01
Presents a research-based marketing model consisting of an environmental scanning process, a series of marketing audits, and an information-processing scheme. Views the essential elements of college marketing as information flow; high-level, long-term commitment; diverse strategies; innovation; and a broad view of marketing. Includes a marketing…
Financial Aid Policy: Lessons from Research
ERIC Educational Resources Information Center
Dynarski, Susan; Scott-Clayton, Judith
2013-01-01
In the nearly fifty years since the adoption of the Higher Education Act of 1965, financial aid programs have grown in scale, expanded in scope, and multiplied in form. As a result, financial aid has become the norm among college enrollees. Aid now flows not only to traditional college students but also to part-time students, older students, and…
Integrating Elements of Inquiry into the Flow of Middle Level Teaching.
ERIC Educational Resources Information Center
Flick, Lawrence B.
This paper is a part of a research program whose purpose it is to design instruction for scaffolding classroom inquiry in middle school classrooms. Scaffolding is a dynamic process, reflecting teacher adjustments based on student responses. Even though a computer, textbook, or laboratory materials may serve as proxy for a "teacher", arguably the…
Fluid mechanics experiments in oscillatory flow. Volume 1: Report
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).
Cryogenic flow rate measurement with a laser Doppler velocimetry standard
NASA Astrophysics Data System (ADS)
Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.
2018-03-01
A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).
NASA Astrophysics Data System (ADS)
Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua
2015-07-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).
Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator
NASA Astrophysics Data System (ADS)
Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.
2012-12-01
Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.
1976-01-01
A large variety of two dimensional flows can be accommodated by the program, including boundary layers on a flat plate, flow inside nozzles and diffusers (for a prescribed potential flow distribution), flow over axisymmetric bodies, and developing and fully developed flow inside circular pipes and flat ducts. The flows may be laminar or turbulent, and provision is made to handle transition.
AOFA- THREE-DIMENSIONAL SUPERSONIC VISCOUS FLOW
NASA Technical Reports Server (NTRS)
Rakich, J. V.
1994-01-01
This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
1989-07-01
were checked by means of a cone penetrometer. Because of concerns that clogging would occur in the ran- dom zones, a special filter cloth sock was...that surrounded the pipes was dirty Figure 3. Old 24-in. BCCMP from toe drain; perforations are essentially plugged due to incrustation 46 Figure 4...associated deposits of ferric hydroxide have resulted in discolored water, unpalatable taste and odors , and reductions in flow through pipes. Additionally
BASIC Language Flow Charting Program (BASCHART). Technical Note 3-82.
ERIC Educational Resources Information Center
Johnson, Charles C.; And Others
This document describes BASCHART, a computer aid designed to decipher and automatically flow chart computer program logic; it also provides the computer code necessary for this process. Developed to reduce the labor intensive manual process of producing a flow chart for an undocumented or inadequately documented program, BASCHART will…
An integrated database with system optimization and design features
NASA Technical Reports Server (NTRS)
Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.
1992-01-01
A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others.
Microgravity sciences application visiting scientist program
NASA Technical Reports Server (NTRS)
1994-01-01
Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
Wind-Tunnel Balance Characterization for Hypersonic Research Applications
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.
2012-01-01
Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Exact and heuristic algorithms for Space Information Flow.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng
2018-01-01
Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
NASA Technical Reports Server (NTRS)
1991-01-01
Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.
Human Research Program Requirements Document (Revision C)
NASA Technical Reports Server (NTRS)
Vargas, Paul R.
2009-01-01
The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program Elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD's and OCHMO's exploration mission requirements. Requirements driving the HRP work and deliverables are derived from the exploration architecture, as well as Agency standards regarding the maintenance of human health and performance. Agency human health and performance standards will define acceptable risk for each type and duration of exploration mission. It is critical to have the best available scientific and clinical evidence in setting and validating these standards. In addition, it is imperative that the best available evidence on preventing and mitigating human health and performance risks is incorporated into exploration mission and vehicle designs. These elements form the basis of the HRP research and technology development requirements and highlight the importance of HRP investments in enabling NASA's exploration missions. This PRD defines the requirements of the HRP which is comprised of the following major Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors and Habitability (SHFH), and Space Radiation (SR).
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Nafisah, L.; Palupi, D. L.
2018-03-01
Sari Warna Co. Ltd, a company engaged in the textile industry, is experiencing problems in the allocation and placement of goods in the warehouse. During this time the company has not implemented the product flow type allocation and product placement to the respective products resulting in a high total material handling cost. Therefore, this study aimed to determine the allocation and placement of goods in the warehouse corresponding to product flow type with minimal total material handling cost. This research is a quantitative research based on the theory of storage and warehouse that uses a mathematical model of optimization problem solving using mathematical optimization model approach belongs to Heragu (2005), aided by software LINGO 11.0 in the calculation of the optimization model. Results obtained from this study is the proportion of the distribution for each functional area is the area of cross-docking at 0.0734, the reserve area at 0.1894, and the forward area at 0.7372. The allocation of product flow type 1 is 5 products, the product flow type 2 is 9 products, the product flow type 3 is 2 products, and the product flow type 4 is 6 products. The optimal total material handling cost by using this mathematical model equal to Rp43.079.510 while it is equal to Rp 49.869.728 by using the company’s existing method. It saves Rp6.790.218 for the total material handling cost. Thus, all of the products can be allocated in accordance with the product flow type with minimal total material handling cost.
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.
1992-01-01
As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.
Prudic, David E.
1989-01-01
Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)
NASA Technical Reports Server (NTRS)
Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.
1982-01-01
This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.
2013-01-01
A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.
Hot-flow tests of a series of 10-percent-scale turbofan forced mixing nozzles
NASA Technical Reports Server (NTRS)
Head, V. L.; Povinelli, L. A.; Gerstenmaier, W. H.
1984-01-01
An approximately 1/10-scale model of a mixed-flow exhaust system was tested in a static facility with fully simulated hot-flow cruise and takeoff conditions. Nine mixer geometries with 12 to 24 lobes were tested. The areas of the core and fan stream were held constant to maintain a bypass ratio of approximately 5. The research results presented in this report were obtained as part of a program directed toward developing an improved mixer design methodology by using a combined analytical and experimental approach. The effects of lobe spacing, lobe penetration, lobe-to-centerbody gap, lobe contour, and scalloping of the radial side walls were investigated. Test measurements included total pressure and temperature surveys, flow angularity surveys, and wall and centerbody surface static pressure measurements. Contour plots at various stations in the mixing region are presented to show the mixing effectiveness for the various lobe geometries.
Measurement of entropy generation within bypass transitional flow
NASA Astrophysics Data System (ADS)
Skifton, Richard; Budwig, Ralph; McEligot, Donald; Crepeau, John
2012-11-01
A flat plate made from quartz was submersed in the Idaho National Laboratory's Matched Index of Refraction (MIR) flow facility. PIV was utilized to capture spatial vectors maps at near wall locations with five to ten points within the viscous sublayer. Entropy generation was calculated directly from measured velocity fluctuation derivatives. Two flows were studied: a zero pressure gradient and an adverse pressure gradient (β = -0.039). The free stream turbulence intensity to drive bypass transition ranged between 3% (near trailing edge) and 8% (near leading edge). The pointwise entropy generation rate will be utilized as a design parameter to systematically reduce losses. As a second observation, the pointwise entropy can be shown to predict the onset of transitional flow. This research was partially supported by the DOE EPSCOR program, grant DE-SC0004751 and by the Idaho National Laboratory. Center for Advanced Energy Studies.
Determinants of corporate dividend policy in Indonesia
NASA Astrophysics Data System (ADS)
Lestari, H. S.
2018-01-01
This study aims to investigate the determinants factors that effect the dividend policy. The sample used in this research is manufacture companies listed in Indonesia Stock Exchange (IDX) and the period 2011 - 2015. There are independent variables such as earning, cash flow, free cash flow, debt, growth opportunities, investment opportunities, firm size, largest shareholder, firm risk, lagged dividend and dividend policy used as dependent variable. The study examines a total of 32 manufacture companies. After analyzing the data using the program software Eviews 9.0 by multiples regression analysis reveal that earning, cash flow, free cash flow, firm size, and lagged dividend have significant effect on dividend policy, whereas debt, growth opportunities, investment opportunities, largest shareholder, and firm risk have no significant effect on dividend policy. The results of this study are expected to be implemented by the financial managers in improving corporate profits and basic information as return on investment decisions.
The aerodynamic performance of several flow control devices for internal flow systems
NASA Technical Reports Server (NTRS)
Eckert, W. T.; Wettlaufer, B. M.; Mort, K. W.
1982-01-01
An experimental reseach and development program was undertaken to develop and document new flow-control devices for use in the major modifications to the 40 by 80 Foot wind tunnel at Ames Research Center. These devices, which are applicable to other facilities as well, included grid-type and quasi-two-dimensional flow straighteners, louver panels for valving, and turning-vane cascades with net turning angles from 0 deg to 90 deg. The tests were conducted at model scale over a Reynolds number range from 2 x 100,000 to 17 x 100,000, based on chord. The results showed quantitatively the performance benefits of faired, low-blockage, smooth-surface straightener systems, and the advantages of curved turning-vanes with hinge-line gaps sealed and a preferred chord-to-gap ratio between 2.5 and 3.0 for 45 deg or 90 deg turns.
Overview of Fundamental High-Lift Research for Transport Aircraft at NASA
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.
2007-01-01
NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.
NASA Technical Reports Server (NTRS)
Lee, L. R.; Montague, K. A.; Charvat, J. M.; Wear, M. L.; Thomas, D. M.; Van Baalen, M.
2016-01-01
Since the 2010 NASA directive to make the Life Sciences Data Archive (LSDA) and Lifetime Surveillance of Astronaut Health (LSAH) data archives more accessible by the research and operational communities, demand for astronaut medical data has increased greatly. LSAH and LSDA personnel are working with Human Research Program on many fronts to improve data access and decrease lead time for release of data. Some examples include the following: Feasibility reviews for NASA Research Announcement (NRA) data mining proposals; Improved communication, support for researchers, and process improvements for retrospective Institutional Review Board (IRB) protocols; Supplemental data sharing for flight investigators versus purely retrospective studies; Work with the Multilateral Human Research Panel for Exploration (MHRPE) to develop acceptable data sharing and crew consent processes and to organize inter-agency data coordinators to facilitate requests for international crewmember data. Current metrics on data requests crew consenting will be presented, along with limitations on contacting crew to obtain consent. Categories of medical monitoring data available for request will be presented as well as flow diagrams detailing data request processing and approval steps.
Some experience with Barnwell-Sewall type correction to two-dimensional airfoil data
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1984-01-01
A series of airfoils were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) at Reynolds numbers from 2 to 50 million. The 0.3-m TCT is equipped with Barnwell slots designed to minimize blockage due to the tunnel flow and ceiling. This design suggests that sidewall corrections for blockage is needed, and that a lifting airfoil produces a change in angle of attack. Sidewall correction methods were developed for subsonic and subsonic-transonic flow. Comparisons of theory with experimental data obtained in the 0.3-m TCT for two airfoils, the British NPL 9510 and the German R-4 are presented. The NPL 9510 was tested as part of the NASA/United Kingdom Joint Aeronautical Program and R-4 was tested as part f the DFVLR/NASA Advanced Airfoil Research Program. For the NPL 9510 airfoil, only those test points that one would anticipate being difficult to predict theoretically are presented.
Recent advances at NASA in calculating the electronic spectra of diatomic molecules
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Paterson, John A.
1988-01-01
Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.
Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico
2005-01-01
Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, M. H.
1980-01-01
The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
NASA Technical Reports Server (NTRS)
Bishop, A. R.
1994-01-01
This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.
Arduino control of a pulsatile flow rig.
Drost, S; de Kruif, B J; Newport, D
2018-01-01
This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
The effects of particle loading on turbulence structure and modelling
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Eaton, J. K.
1989-01-01
The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated.
NASA Technical Reports Server (NTRS)
Buquo, Lynn E.; Johnson-Throop, Kathy A.
2011-01-01
An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.
Modeling Compressibility Effects in High-Speed Turbulent Flows
NASA Technical Reports Server (NTRS)
Sarkar, S.
2004-01-01
Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.
NASA Technical Reports Server (NTRS)
Miller, D. S.; Wood, R. M.; Covell, P. F.
1986-01-01
For the past 3 years, a research program pertaining to the study of wing leading edge vortices at supersonic speeds has been conducted in the Fundamental Aerodynamics Branch of the High-Speed Aerodynamics Division at the Langley Research Center. The purpose of the research is to provide an understanding of the factors governing the formation and the control of wing leading-edge vortices and to evaluate the use of these vortices for improving supersonic aerodynamic performance. The studies include both experimental and theoretical investigations and focus primarily on planform, thickness and camber effects for delta wings. An overview of this research activity is presented.
Maglev program test plan. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
deBenedet, D.; Gilchrist, A.J.; Karanian, L.A.
1992-07-01
Maglev systems represent a promising evolution in the high-speed ground transportation, offering speeds in excess of 300 mph along with the potential for low operating costs and minimal environmental impact. The goal of this effort is to investigate the feasibility and viability of maglev systems in the United States. The emergence of a sophisticated technology such as maglev requires a need for a coordinated research test program and the determination of test requirements to identify and mitigate development risk and to maximize the use of domestic resources. The study is directed toward the identification and characterization of maglev systems developmentmore » risks tied to a preliminary system architecture. Research objectives are accomplished by surveying experiences from previous maglev development programs, both foreign and domestic, and interviews with individuals involved with maglev research and testing. Findings include ninety-four distinct development risks and twenty risk types. Planning and implementation requirements are identified for a maglev test program, including the development of a facilities strategy to meet any operational concepts that evolve out of early development effort. Also specified is the logical development flow and associated long-lead support needs for sub-scale and full-scale testing.« less
The emergence and diffusion of DNA microarray technology.
Lenoir, Tim; Giannella, Eric
2006-08-22
The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow--namely; the flow of inventions into industry through the licensing of university-based technologies--has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields.
The emergence and diffusion of DNA microarray technology
Lenoir, Tim; Giannella, Eric
2006-01-01
The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail. We discuss the role of federal funding of academic research in the microarray field, and the multiple pathways through which federally supported development of commercial microarray technologies have transformed core academic research fields. Our study confirms the picture put forward by several scholars that the open character of networked economies is what makes them truly innovative. In an open system innovations emerge from the network. The emergence and diffusion of microarray technologies we have traced here provides an excellent example of an open system of innovation in action. Whether they originated in a startup company environment that operated like a think-tank, such as Affymax, the research labs of a large firm, such as Agilent, or within a research university, the inventors we have followed drew heavily on knowledge resources from all parts of the network in bringing microarray platforms to light. Federal funding for high-tech startups and new industrial development was important at several phases in the early history of microarrays, and federal funding of academic researchers using microarrays was fundamental to transforming the research agendas of several fields within academe. The typical story told about the role of federal funding emphasizes the spillovers from federally funded academic research to industry. Our study shows that the knowledge spillovers worked both ways, with federal funding of non-university research providing the impetus for reshaping the research agendas of several academic fields. PMID:16925816
Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.
1982-08-27
EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER
Coastal Inlets Research Program
2015-10-30
transport, and vessel-induced flow and wake. In FY 2014, the Corps spent approximately $808 million in maintenance dredging of 152 million cubic...yards from Federal navigation channels*. Dredging costs are likely to increase in the future because of increasing fuel, mobilization, and...channels and jetties can have a profound effect on the integrity of the navigation structures, adjacent beaches, estuaries, ecosystems and regions
Merriwether Cherokee Potamology Study
2017-05-01
reference only and do not directly correlate to flow hydrographs created and utilized for this study . MRG&P Report No. 9 58 Figure 2-30...Mississippi Valley Division Engineer Research and Development Center Merriwether-Cherokee Potamology Study MRG&P Report No. 9 • May 2017...Mississippi River Geomorphology & Potamology (MRG&P) Program MRG&P Report No. 9 May 2017 Merriwether-Cherokee Potamology Study Brian M. Hall
ERIC Educational Resources Information Center
Adelson, Nancy C.; And Others
The Laboratory staff reported the unit development and field test activities in their effort to collect, analyze, synthesize, and disseminate new curriculum developments in secondary level social studies to school curriculum decision makers. The audience consisted primarily of social studies teachers and department chairmen. To further refine and…
NASA Technical Reports Server (NTRS)
Jackson, R. J.; Wang, T. T.
1974-01-01
A computer program was developed to describe the performance of ramjet and scramjet cycles. The program performs one dimensional calculations of the equilibrium, real-gas internal flow properties of the engine. The program can be used for the following: (1) preliminary design calculation and (2) design analysis of internal flow properties corresponding to stipulated flow areas. Only the combustion of hydrogen in air is considered in this case.
An investigation of the effects of the propeller slipstream of a laminar wing boundary layer
NASA Technical Reports Server (NTRS)
Howard, R. M.; Miley, S. J.; Holmes, B. J.
1985-01-01
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters
NASA Technical Reports Server (NTRS)
Lamar, John E.; Johnson, Thomas D., Jr.
1988-01-01
A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.
NASA Technical Reports Server (NTRS)
Wieber, P. R.
1973-01-01
A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.
Examining youth and program predictors of engagement in out-of-school time programs.
Greene, Kaylin M; Lee, Bora; Constance, Nicole; Hynes, Kathryn
2013-10-01
Prior research suggests that youths' engagement in out-of-school time programs may be a crucial factor linking program participation to positive outcomes during adolescence. Guided by the theoretical concept of flow and by stage-environment fit theory, the present study explored correlates of engagement in youth programs. Engagement was conceptualized as the extent to which youth found the program activities enjoyable, interesting, and challenging. The current study examined how program content, monetary incentives, and youth demographic characteristics were linked to youth engagement among a sample of primarily low-income middle and high school youth attending 30 out-of-school programs (n = 435, 51 % female). Results from multilevel models suggested that program content and staff quality were strongly associated with youth engagement. Youth who reported learning new skills, learning about college, and learning about jobs through activities in the program were more engaged, as were youth who found the staff caring and competent. Results demonstrated that the link between learning content for the future and engagement was stronger for older youth than younger youth. In addition, there was a trend suggesting that providing a monetary incentive was associated negatively with youth engagement. Taken as a whole, these findings have important implications for researchers, practitioners, and policymakers interested in understanding the characteristics of out-of-school time programs that engage older youth.
Planning Student Flow with Linear Programming: A Tunisian Case Study.
ERIC Educational Resources Information Center
Bezeau, Lawrence
A student flow model in linear programming format, designed to plan the movement of students into secondary and university programs in Tunisia, is described. The purpose of the plan is to determine a sufficient number of graduating students that would flow back into the system as teachers or move into the labor market to meet fixed manpower…
NASA Technical Reports Server (NTRS)
Esker, Barbara S.; Debonis, James R.
1991-01-01
Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns.
NASA's Applied Sciences: Natural Disasters Program
NASA Technical Reports Server (NTRS)
Kessler, Jason L.
2010-01-01
Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.
A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing; Lu, Guoping
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.
1988-01-01
The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.
Control of fluid flow during Bridgman crystal growth using low-frequency vibrational stirring
NASA Astrophysics Data System (ADS)
Zawilski, Kevin Thomas
The goal of this research program was to develop an in depth understanding of a promising new method for stirring crystal growth melts called coupled vibrational stirring (CVS). CVS is a mixing technique that can be used in sealed systems and produces rapid mixing through vortex flows. Under normal operating conditions, CVS uses low-frequency vibrations to move the growth crucible along a circular path, producing a surface wave and convection in the melt. This research focused on the application of CVS to the vertical Bridgman technique. CVS generated flows were directly studied using a physical modeling system containing water/glycerin solutions. Sodium nitrate was chosen as a model growth system because the growth process could be directly observed using a transparent furnace. Lead magnesium niobate-lead titanate (PMNT) was chosen as the third system because of its potential application for high performance solid state transducers and actuators. In this study, the critical parameters for controlling CVS flows in cylindrical Bridgman systems were established. One of the most important results obtained was the dependence of an axial velocity gradient on the vibrational frequency. By changing the frequency, the intensity of fluid flow at a given depth can be easily manipulated. The intensity of CVS flows near the crystal-melt interface was found to be important. When flow intensity near the interface increased during growth, large growth rate fluctuations and significant changes in interface shape were observed. To eliminate such fluctuations, a constant flow rate near the crystal-melt interface was maintained by decreasing the vibrational frequency. A continuous frequency ramp was found to be essential to grow crystals of good quality under strong CVS flows. CVS generated flows were also useful in controlling the shape of the growth interface. In the sodium nitrate system without stirring, high growth rates produced a very concave interface. By adjusting the flow intensity near the interface, CVS flows were able to flatten the growth interface under these extreme growth conditions.
Flow Effects on the Flammability Diagrams of Solid Fuels
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.
1997-01-01
A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.
NASA Astrophysics Data System (ADS)
Galerkin, Y. B.; Voinov, I. B.; Drozdov, A. A.
2017-08-01
Computational Fluid Dynamics (CFD) methods are widely used for centrifugal compressors design and flow analysis. The calculation results are dependent on the chosen software, turbulence models and solver settings. Two of the most widely applicable programs are NUMECA Fine Turbo and ANSYS CFX. The objects of the study were two different stages. CFD-calculations were made for a single blade channel and for full 360-degree flow paths. Stage 1 with 3D impeller and vaneless diffuser was tested experimentally. Its flow coefficient is 0.08 and loading factor is 0.74. For stage 1 calculations were performed with different grid quality, a different number of cells and different models of turbulence. The best results have demonstrated the Spalart-Allmaras model and mesh with 1.854 million cells. Stage 2 with return channel, vaneless diffuser and 3D impeller with flow coefficient 0.15 and loading factor 0.5 was designed by the known Universal Modeling Method. Its performances were calculated by the well identified Math model. Stage 2 performances by CFD calculations shift to higher flow rate in comparison with design performances. The same result was obtained for stage 1 in comparison with measured performances. Calculated loading factor is higher in both cases for a single blade channel. Loading factor performance calculated for full flow path (“360 degrees”) by ANSYS CFX is in satisfactory agreement with the stage 2 design performance. Maximum efficiency is predicted accurately by the ANSYS CFX “360 degrees” calculation. “Sector” calculation is less accurate. Further research is needed to solve the problem of performances mismatch.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.
A Review of the NASA Textile Composites Research
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.
1997-01-01
During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Noise produced by turbulent flow into a rotor: Users manual for noise calculation
NASA Technical Reports Server (NTRS)
Amiet, R. K.; Egolf, C. G.; Simonich, J. C.
1989-01-01
A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
NASA Technical Reports Server (NTRS)
Goodyear, M. D.
1987-01-01
NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.
A Preliminary Investigation of Hall Thruster Technology
NASA Technical Reports Server (NTRS)
Gallimore, Alec D.
1997-01-01
A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.
Multidimensional computer simulation of Stirling cycle engines
NASA Technical Reports Server (NTRS)
Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.
1990-01-01
The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.
Modelling a flows in supply chain with analytical models: Case of a chemical industry
NASA Astrophysics Data System (ADS)
Benhida, Khalid; Azougagh, Yassine; Elfezazi, Said
2016-02-01
This study is interested on the modelling of the logistics flows in a supply chain composed on a production sites and a logistics platform. The contribution of this research is to develop an analytical model (integrated linear programming model), based on a case study of a real company operating in the phosphate field, considering a various constraints in this supply chain to resolve the planning problems for a better decision-making. The objectives of this model is to determine and define the optimal quantities of different products to route, to and from the various entities in the supply chain studied.
Torrey, William C; Bond, Gary R; McHugo, Gregory J; Swain, Karin
2012-09-01
Implementation research has examined practice prioritization, implementation leadership, workforce development, workflow re-engineering, and practice reinforcement, but not addressed their relative importance as implementation drivers. This study investigated domains of implementation activities and correlated them to implementation success during a large national evidence-based practice implementation project. Implementation success was correlated with active leadership strategically devoted to redesigning the flow of work and reinforcing implementation through measurement and feedback. Relative attention to workforce development was negatively correlated with implementation. Active leaders should focus on redesigning the flow of work to support the implementation and on reinforcing program improvements.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.
1989-01-01
A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, J.; Zuo, G. Z.; Hu, J. S.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thinmore » flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.« less
NASA Technical Reports Server (NTRS)
1995-01-01
This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1981-01-01
Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.
The use of three-parameter rating table lookup programs, RDRAT and PARM3, in hydraulic flow models
Sanders, C.L.
1995-01-01
Subroutines RDRAT and PARM3 enable computer programs such as the BRANCH open-channel unsteady-flow model to route flows through or over combinations of critical-flow sections, culverts, bridges, road- overflow sections, fixed spillways, and(or) dams. The subroutines also obstruct upstream flow to simulate operation of flapper-type tide gates. A multiplier can be applied by date and time to simulate varying numbers of tide gates being open or alternative construction scenarios for multiple culverts. The subroutines use three-parameter (headwater, tailwater, and discharge) rating table lookup methods. These tables may be manually prepared using other programs that do step-backwater computations or compute flow through bridges and culverts or over dams. The subroutine, therefore, precludes the necessity of incorporating considerable hydraulic computational code into the client program, and provides complete flexibility for users of the model for routing flow through almost any affixed structure or combination of structures. The subroutines are written in Fortran 77 language, and have minimal exchange of information with the BRANCH model or other possible client programs. The report documents the interpolation methodology, data input requirements, and software.
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2000-01-01
Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.
1997-09-29
Four different versions of the F-16 were used by Dryden in the 1990s. On the left and right sides are two F-16XLs. On the left is the F-16XL #2 (NASA 848), which is the two-seat version, used for advanced laminar flow studies until late 1996. On the right is the single-seat F-16XL #1 (NASA 849), used for laminar flow research and sonic boom research. (Laminar flow refers to smooth airflow over a wing, which increases lift and reduces drag compared to turbulent airflow). Between them at center left is an F-16A (NASA 816), the only civilian operated F-16. Next to it at center right is the U.S. Air Force Advance Fighter Technology Integration (AFTI) F-16, a program to test new sensor and control technologies for future fighter aircraft. Both F-16XLs are in storage at Dryden. The F-16A was never flown at Dryden, and was parked by the entrance to the center. The AFTI F-16 is in the Air Force Museum.
1997-09-29
Four different versions of the F-16 were used by Dryden in the 1990s. On the left and right sides are two F-16XLs. On the left is the F-16XL #2 (NASA 848), which is the two-seat version, used for advanced laminar flow studies until late 1996. On the right is the single-seat F-16XL #1 (NASA 849), used for laminar flow research and sonic boom research. (Laminar flow refers to smooth airflow over a wing, which increases lift and reduces drag compared to turbulent airflow). Between them at center left is an F-16A (NASA 816), the only civilian operated F-16. Next to it at center right is the U.S. Air Force Advance Fighter Technology Integration (AFTI) F-16, a program to test new sensor and control technologies for future fighter aircraft. Both F-16XLs are in storage at Dryden. The F-16A was never flown at Dryden, and was parked by the entrance to the center. The AFTI F-16 is in the Air Force Museum.