Science.gov

Sample records for flow resistance

  1. Flow Resistivity Instrument

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1983-01-01

    A method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface is summarized. The novel feature of the invention is two concentric cylinders, inserted into the ground surface with a measured pressure applied to the surface inside the inner cylinder. The outer cylinder vents a plane beneath the surface to the atmosphere through an air space. The flow to the inner cylinder is measured thereby indicating the flow from the surface to the plane beneath the surface.

  2. Gene flow from glyphosate-resistant crops.

    PubMed

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

  3. Flow resistivity instrument in the earth

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor)

    1984-01-01

    Method and apparatus for making in-situ measurements of flow resistivity on the Earth's ground surface. The novel feature of the invention is two concentric cylinders, 22 and 23, inserted into the ground surface 24 with a measured pressure 21 applied to the surface inside the inner cylinder 22. The outer cylinder 23 vents a plane B-B beneath the surface to the atmosphere through an air space 28. The flow to the inner cylinder is measured (16) thereby indicating the flow from the surface to the plane beneath the surface.

  4. Effective flow resistivity of highway pavements.

    PubMed

    Rochat, Judith L; Read, David R

    2013-12-01

    In the case of highway traffic noise, propagating sound is influenced by the ground over which it travels, whether it is the pavement itself or the ground between the highway and nearby communities. Properly accounting for ground type in modeling can increase accuracy in noise impact determinations and noise abatement design. Pavement-specific effective flow resistivity values are being investigated for inclusion in the Federal Highway Administration Traffic Noise Model, which uses these values in the sound propagation algorithms and currently applies a single effective flow resistivity value to all pavement. Pavement-specific effective flow resistivity values were obtained by applying a modified version of the American National Standards Institute S1.18 standard. The data analysis process was tailored to allow for increased sensitivity and extraction of effective flow resistivity values for a broad range of pavements (sound absorptive to reflective). For porous pavements (sound absorptive), it was determined that examination of the measured data can reveal influence from an underlying structure. Use of such techniques can aid in the design of quieter pavements.

  5. Power formula for open-channel flow resistance

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.

  6. Effect of nonsymmetrical flow resistance upon orifice impedance resistance

    NASA Technical Reports Server (NTRS)

    Posey, J. W.; Compton, K. J.

    1974-01-01

    A nonreactive orifice in an infinite baffle is analyzed. The pressure difference delta across the orifice varies sinusoidally with amplitude 1.0 and average value -P. The orifice resistance, delta p is discontinuous at zero velocity and exhibits the constant values R sub + and R sub - for u 0 and u 0, respectively. The resultant velocity has power in all harmonics of the excitation frequency. A quasi-linear resistance is defined and found to be relatively insensitive to the presence or absence of a resonant backing cavity; however, it does vary from 1.33 R sub + to 0.67 R sub + for a resistance ratio R sub +/R sub - between 0.5 and 2.0.

  7. Flow resistance in open channels with fixed movable bed

    USGS Publications Warehouse

    Simoes, Francisco J.

    2010-01-01

    In spite of an increasingly large body of research by many investigators, accurate quantitative prediction of open channel flow resistance remains a challenge. In general, the relations between the elements influencing resistance (turbulence, boundary roughness, and channel shape features, such as discrete obstacles, bars, channel curvature, recirculation areas, secondary circulation, etc.) and mean flow variables are complex and poorly understood. This has resulted in numerous approaches to compute friction using many and diverse variables and equally diverse prescriptions for their use. In this paper, a new resistance law for surface (grain) resistance, the resistance due to the flow viscous effects on the channel boundary roughness elements, is presented for the cases of flow in the transition (5 < Re* <70) and fully rough (Re* ≥ 70) turbulent flow regimes, where Re* is the Reynolds number based on shear velocity and sediment particle mean diameter. It is shown that the new law is sensitive to bed movement without requiring previous knowledge of sediment transport conditions. Comparisons between computation and measurements, as well as comparisons with other well-known existing roughness predictors, are presented to demonstrate its accuracy and range of application. It is shown that the method accurately predicts total friction losses in channels and natural rivers with plane beds, regardless of sediment transport conditions. This work is useful to hydraulic engineers involved with the derivation of depth-discharge relations in open channel flow and with the estimation of sediment transport rates for the case of bedload transport.

  8. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  9. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  10. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  11. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  12. Suppression of turbulent resistivity in turbulent Couette flow

    SciTech Connect

    Si, Jiahe Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  13. Innovative Method for Greatly Reducing Flow Resistance and Obtaining Well-Ordered Continuous Flow

    NASA Astrophysics Data System (ADS)

    Lin, Weiyi

    2009-11-01

    In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. And some experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of Gravity Pipe Flow under the action of Torricelli's Vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under GPFUTV condition the water flow in the tube is full-pipe and continuous, colorless and non-aerated, high-speed and non-rotational as distinguished from laminar flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, the well-known Reynolds' experiment under GPFUTV condition, the potential for GPFUTV to be developed for deep seawater suction technology, seawater intake pipe of OTEC and lifting technology for deep ocean mining in Fe-Mn concretions, flow stability and flow resistance under GPFUTV condition, etc.

  14. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  15. Flux-flow resistivity of three high-temperature superconductors

    SciTech Connect

    Cha, Y.S.; Evans, D.J.; Hull, J.R.; Seol, S.Y.

    1996-10-01

    Results of experiments on flux-flow resistivity (the relationship of voltage to current) of three high-temperature superconductors are described. The superconductors are a melt-cast BSCCO 2212 rod, a single filament BSCCO powder-in-tube (PIT) tape, and a multifilament PIT tape. The flux-flow resistivity of these superconductors was measured at three temperatures: 77 K (saturated liquid nitrogen), 87 K (saturated liquid argon), and 67 K (subcooled liquid nitrogen). Implications of the present results for practical applications are discussed.

  16. Calculations of flow resistance in the juxtacanalicular meshwork.

    PubMed

    Ethier, C R; Kamm, R D; Palaszewski, B A; Johnson, M C; Richardson, T M

    1986-12-01

    The structure of the juxtacanalicular meshwork (JCM) was analyzed morphometrically, and the resulting data were used to calculate the resistance to flow through this tissue. Two models of the JCM were presented and compared. In the first (Model A), aqueous humor was assumed to flow via open channels within a solid framework, while, in the second (Model B), these open spaces were assumed to be filled with extracellular matrix gel. An expression giving the resistance of such a gel as a function of gel concentration was presented and tested on corneal and scleral stroma. Morphometry of normal and glaucomatous human eyes showed that Model A underpredicted the resistance of the JCM by factors of 10-100, suggesting that a GAG or proteoglycan gel may control the flow resistance of this tissue. This was supported by Model B, which showed that measured bulk concentrations of GAGs were consistent with gel concentrations needed to account for the estimated resistance of the JCM in vivo. Some limitations and implications of Model B were discussed.

  17. Innovative method for greatly reducing fluid flow resistance

    NASA Astrophysics Data System (ADS)

    Lin, Weiyi

    2007-11-01

    In this paper, firstly, the aerated pipe flow experiment is introduced. And some experimental research on comparison between different volume of air entrained is presented. Secondly, the technical characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle and the strange energy loss phenomena, etc. The detailed information on energy loss of water flow under GPFUTV's condition please find the attached YongAn Water Plant Test Report Auguest 1997 and ShiLong District Reservoir Diversion Project Test Report April 2007. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, Reynolds' experiment and Nikuradze's experiments under GPFUTV's condition, the use of GPFUTV instead of lifting pump in DOW project and deep ocean mining project, flow stability and flow resistance under GPFUTV's condition, etc. At last, the application of GPFUTV in reservoir release control is is illustrated.

  18. Effect of nonsymmetrical flow resistance upon orifice impedance

    NASA Technical Reports Server (NTRS)

    Posey, J. W.; Compton, K. J.

    1974-01-01

    Previous laboratory work has indicated that an orifice in a thin sheet behaves in a quasisteady manner under acoustical excitation. Also, it has been found that the steady flow resistance of an orifice may be dependent upon the direction of flow, especially in the presence of a crossflow on one side of the hole. An analytical study is presented which assumes a nonreactive orifice in an infinite baffle. The pressure difference across the orifice varies sinusoidally with amplitude 1.0 and average value -P. The orifice resistance is discontinuous at zero velocity and exhibits the constant values when the velocity is nonzero. The resultant velocity has power in all harmonics of the excitation frequency, providing an explanation of the even harmonic excitation observed by other investigators, but not predicted by symmetric nonlinearity. A quasilinear resistance is defined and found to be relatively insensitive to the presence or absence of a resonant backing cavity.

  19. Accounting for flow dependence of respiratory resistance during exercise.

    PubMed

    de Bisschop, Claire; Pichon, Aurélien; Guénard, Hervé; Denjean, André

    2003-06-12

    Studies of airway function during exercise have produced conflicting results both in healthy and diseased subjects. Respiratory resistance (Rrs) was measured using an impulse oscillation technique. A flow/resistance curve was established for each of 16 healthy males during voluntary hyperventilation (VHV) at rest. Then, Rrs and flow were measured immediately (t(0)) and 90 sec (t(90)) after exercise on a cycle ergometer at 60, 70, and 80% of maximal aerobic power. The flow/resistance relationship at rest during VHV was used to assess the flow dependence of Rrs. Rrs at t(0) was higher than at rest (P <0.01) but lower than Rrs obtained at matched flow during VHV (P <0.05). In healthy subjects, the linear increase in Rrs with VHV indicates airflow dependency of Rrs following Rohrer's equation. The relative decrease in Rrs with exercise suggests bronchodilation. The bronchodilating effect disappeared promptly when exercise was stopped suggesting that it may have been related to a reflex mechanism.

  20. Remotely Sensed, catchment scale, estimations of flow resistance

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  1. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona

    USGS Publications Warehouse

    Adams, E.A.; Monroe, S.A.; Springer, A.E.; Blasch, K.W.; Bills, D.J.

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  2. Electrical resistance sensors record spring flow timing, Grand Canyon, Arizona.

    PubMed

    Adams, Eric A; Monroe, Stephen A; Springer, Abraham E; Blasch, Kyle W; Bills, Donald J

    2006-01-01

    Springs along the south rim of the Grand Canyon, Arizona, are important ecological and cultural resources in Grand Canyon National Park and are discharge points for regional and local aquifers of the Coconino Plateau. This study evaluated the applicability of electrical resistance (ER) sensors for measuring diffuse, low-stage (<1.0 cm) intermittent and ephemeral flow in the steep, rocky spring-fed tributaries of the south rim. ER sensors were used to conduct a baseline survey of spring flow timing at eight sites in three spring-fed tributaries in Grand Canyon. Sensors were attached to a nearly vertical rock wall at a spring outlet and were installed in alluvial and bedrock channels. Spring flow timing data inferred by the ER sensors were consistent with observations during site visits, with flow events recorded with collocated streamflow gauging stations and with local precipitation gauges. ER sensors were able to distinguish the presence of flow along nearly vertical rock surfaces with flow depths between 0.3 and 1.0 cm. Laboratory experiments confirmed the ability of the sensors to monitor the timing of diffuse flow on impervious surfaces. A comparison of flow patterns along the stream reaches and at springs identified the timing and location of perennial and intermittent flow, and periods of increased evapotranspiration.

  3. Physical mechanisms of flow resistance in textured microchannels

    NASA Astrophysics Data System (ADS)

    Game, Simon; Papageorgiou, Demetrios; Keaveny, Eric; Hodes, Marc

    2015-11-01

    Transport in microchannels can be enhanced by replacing flat, no-slip boundaries with boundaries etched with longitudinal grooves containing an inert gas, resulting in an effective slip flow. Various physical considerations which are often omitted from mathematical models play a significant role in the behaviour of this flow. Such considerations include: gas viscosity, meniscus curvature, finite channel cross-sections, molecular slip on the gas/liquid or gas/solid interfaces. Using a computationally efficient, multi-element, Chebyshev collocation method, we are able to quantify and combine each of these physical effects. We have shown that for physically realistic parameter values, including each of these effects significantly alters the volumetric flow rate, and hence these effects should not be ignored. Using this framework, we hope to manipulate these effects in order to minimise the flow resistance of the channel.

  4. Flow resistance dynamics in step-pool stream channels: 1. Large woody debris and controls on total resistance

    USGS Publications Warehouse

    Wilcox, A.C.; Wohl, E.E.

    2006-01-01

    Flow resistance dynamics in step-pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step-pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two-way and three-way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step-forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge-dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables. Copyright 2006 by the American Geophysical Union.

  5. Response time correlations for platinum resistance thermometers in flowing fluids

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.

    1985-01-01

    The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases.

  6. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  7. Flow resistance and its prediction methods in compound channels

    NASA Astrophysics Data System (ADS)

    Yang, Kejun; Cao, Shuyou; Liu, Xingnian

    2007-02-01

    A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows. The effective Manning, Darcy-Weisbach, Chezy coefficients and the relative Nikuradse roughness height were analyzed. Many different representative methods for predicting the composite roughness were systematically summarized. Besides the measured data, a vast number of laboratory data and field data for compound channels were collected and used to check the validity of these methods for different subsection divisions including the vertical, horizontal, diagonal and bisectional divisions. The computation showed that these methods resulted in big errors in assessing the composite roughness in compound channels, and the reasons were analyzed in detail. The error magnitude is related to the subsection divisions.

  8. Flow stabilization of the ideal MHD resistive wall mode^1

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.

    2009-05-01

    We demonstrate for the first time in a numerical calculation that for a typical circular cylindrical equilibrium, the ideal MHD resistive wall mode (RWM) can be completely stabilized by bulk equilibrium plasma flow, V, for a window of wall locations without introducing additional dissipation into the system. The stabilization is due to a resonance between the RWM and the Doppler shifted ideal MHD sound continuum. Our numerical approach introduces^2 u=φξ+ iV .∇ξ and the perturbed wall current^3 as variables, such that the eigenvalue, φ, only appears linearly in the linearized stability equations, which allows for the use of standard eigenvalue solvers. The wall current is related to the plasma displacement at the boundary by a Green's function. With the introduction of the resistive wall, we find that it is essential that the finite element grid be highly localized around the resonance radius where the parallel displacement, ξ, becomes singular. We present numerical convergence studies demonstrating that this singular behavior can be approached in a limiting sense. We also report on progress toward extending this calculation to an axisymmetric toroidal geometry. ^1Work supported by a DOE FES fellowship through ORISE and ORAU. ^2L.Guazzotto, J.P Freidberg, and R. Betti, Phys.Plasmas 15, 072503 (2008). ^3S.P. Smith and S. C. Jardin, Phys. Plasmas 15, 080701 (2008).

  9. Gene flow from herbicide-resistant crops: it's not just for transgenes.

    PubMed

    Mallory-Smith, Carol A; Sanchez Olguin, Elena

    2011-06-08

    Gene flow was raised as one of the first issues related to the development and release of genetically engineered (GE) crops. Gene flow has remained a topic of discussion for more than 20 years and is still used as an argument against the release of transgenic crops. With respect to herbicide-resistant crops, gene flow does not differ whether the herbicide resistance trait is introduced via genetic engineering or via conventional breeding techniques. Conventional breeding and genetic engineering techniques have been used to produce herbicide resistance in many of the same crop species. In addition, conventional breeding has been used to produce a broader range of herbicide-resistant crops than have been genetically engineered for herbicide resistance. Economic, political, and social concerns center on the breeding technique, but the results of gene flow for weed management are the same irrespective of breeding technique. This paper will focus on gene flow from nonGE herbicide-resistant crops in North America.

  10. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms.

    PubMed

    Ugron, Adám; Szikora, István; Paál, György

    2014-06-01

    Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations.

  11. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms

    PubMed Central

    Szikora, István; Paál, György

    2014-01-01

    Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations. PMID:24936307

  12. Resistance formulas in hydraulics-based models for routing debris flows

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai

    1997-01-01

    The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.

  13. Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Cho, Y. I.; Crawford, D. W.; Cuffel, R. F.

    1984-01-01

    An in-vitro flow study was conducted in a mildly atherosclerotic main coronary artery casting of man using sugar-water solutions simulating blood viscosity. Steady flow results indicated substantial increases in pressure drop, and thus flow resistance at the same Reynolds number, above those for Poiseuille flow by 30 to 100 percent in the physiological Reynolds number range from about 100 to 400. Time-averaged pulsatile flow data showed additional 5 percent increases in flow resistance above the steady flow results. Both pulsatile and steady flow data from the casting were found to be nearly equal to those from a straight, axisymmetric model of the casting up to a Reynolds number of about 200, above which the flow resistance of the casting became gradually larger than the corresponding values from the axisymmetric model.

  14. Effects of grazing flow on the steady-state flow resistance and acoustic impedance of thin porous-faced liners

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1978-01-01

    The effects of grazing flow on the steady state flow resistance and acoustic impedance of seven Feltmetal and three Rigimesh thin porous faced liners were studied. The steady-state flow resistance of the ten specimens was measured using standard fluid mechanical experimental techniques. The acoustic impedance was measured using the two microphone method. The principal findings of the study are that the effects of grazing flow were measured and found to be small; small differences were measured between steady-state and acoustic resistance, and a semi-empirical model was derived that correlated the steady-state resistance data of the seven Feltmetal liners and the face sheet reactance of both the Feltmetal and Rigimesh liners.

  15. Suppression of resistance to flow in suspensions of bacteria

    NASA Astrophysics Data System (ADS)

    Lopez, Hector; Gachelin, Jérémie; Douarche, Carine; Clément, Eric; Auradou, Harold

    2014-11-01

    It is usually believed that the influence of small amounts of bacteria on the rheological properties of a fluid is negligible. However, recent theoretical studies predict that the activity results in a decrease of the viscosity at values lower than the suspending fluid viscosity. We present experimental measurements of the viscosity of suspensions of Escherichia coli (volume fractions ϕ<1%) in a simple Couette flow over a broad range of shear rates. For shear rates larger than 1.5 s-1, the viscosity is constant and slightly above the viscosity of the suspending fluid. This behavior is similar to the one expected for non-active particles. For lower shear rates the fluid exhibits a non-Newtonian behavior: the viscosity decreases and finally reaches a second Newtonian plateau for shear rates below 0.1 s-1. For ϕ <0.6%, the decrease is proportional to the bacteria concentration, as predicted by the theories, suggesting that it is a result of the energy input of each individual microswimmer. For ϕ >0.6%, we evidence for the first time the existence of a super-lubrication regime where the viscous resistance to shear vanishes. We will demonstrate that this regime holds up over a large window of concentration.

  16. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  17. Hypotensive effects of resistance exercises with blood flow restriction.

    PubMed

    Neto, Gabriel R; Sousa, Maria S C; Costa, Pablo B; Salles, Belmiro F; Novaes, Giovanni S; Novaes, Jefferson S

    2015-04-01

    The effects of low-intensity resistance exercise (RE) combined with blood flow restriction (BFR) on blood pressure (BP) are an important factor to be considered because of the acute responses imposed by training. The aim of this study was to compare the hypotensive effect of RE performed with and without BFR in normotensive young subjects. After 1 repetition maximum (1RM) tests, 24 men (21.79 ± 3.21 years; 1.72 ± 0.06 m; 69.49 ± 9.80 kg) performed the following 4 experimental protocols in a randomized order: (a) high-intensity RE at 80% of 1RM (HI), (b) low-intensity RE at 20% of 1RM (LI), (c) low-intensity RE at 20% of 1RM combined with partial BFR (LI + BFR), and (d) control. Analysis of systolic blood pressure (SBP) and diastolic blood pressure (DBP) was conducted over a 60-minute period. The 3 RE protocols resulted in hypotensive SBP (HI = -3.8%, LI = -3.3%, LI + BFR = -5.5%) responses during the 60 minutes (p ≤ 0.05). The LI + BFR protocol promoted hypotensive (-11.5%) responses in DBP during the 60 minutes (p ≤ 0.05), and both the HI and LI + BFR protocols resulted in mean blood pressure (MBP) hypotension between 30 (-7.0%, -7.7%) and 60 minutes (-3.6%, -8.8%), respectively. In conclusion, postexercise hypotension may occur after all 3 exercise protocols with greater reductions in SBP after HI and LI + BFR, in DBP after LI + BFR, and in MBP after HI and LI + BFR protocols.

  18. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington

    USGS Publications Warehouse

    Curran, Janet H.; Wohl, Ellen E.

    2003-01-01

    Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.

  19. Experimental investigation of head resistance reduction in bubbly Couette-Taylor flow

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Javadpoor, M.; Farahat, S.

    2016-12-01

    Small bubble experiments are carried out in a circulating vertical Couette-Taylor flow system to investigate the effect of air bubbles on head resistance. In the system with inner rotating cylinder and circulating flow, flow is combined with circumferential and axial flow. Moreover, the variation range of rotational Reynolds number is 7 × 103 ≤ {Re}_{ω } ≤ 70 × 103 and small bubbles are dispersed into fully turbulent flow which consists of Taylor vortices. The modification of head resistance is examined by measuring the pressure difference between two certain holes along the cylinders axis. The results show that head resistance is decreased in the presence of small bubbles and a head resistance reduction greater than 60 % is achieved in low {Re}_{ω } s and in all {Re}_{ax} s changing from 299.15 to 396.27. The effect of air bubbles on vortices could be possible reason for head resistance reduction. Since Taylor vortices are stable in this regime, bubbles decrease the momentum transfer by elongating vortices along the axis of cylinders and decreasing their numbers. The positive effect of air bubbles on head resistance reduction is diminished when {Re}_{ω } is increased. Moreover, in certain ranges of {Re}_{ω }, small bubbles enhance head resistance when {Re}_{ax} is increased. It is predicted that negative effect of small bubbles on head resistance reduction is due to flow turbulence enhancement when {Re}_{ω } and {Re}_{ax} are increased.

  20. Flow resistance dynamics in step-pool channels: 2. Partitioning between grain, spill, and woody debris resistance

    USGS Publications Warehouse

    Wilcox, A.C.; Nelson, J.M.; Wohl, E.E.

    2006-01-01

    In step-pool stream channels, flow resistance is created primarily by bed sediments, spill over step-pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step-pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult-to-measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume-derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components. Copyright 2006 by the American Geophysical Union.

  1. Constraints on Hydrothermal Fluid Flow Geometry From Resistivity Measurements

    NASA Astrophysics Data System (ADS)

    Snyder, A. G.; McClain, J. S.

    2009-12-01

    Understanding the behavior of geothermal fluids in the subsurface has applications in several fields. Determining the pathway taken by the fluid and its interaction with the surrounding lithology may help determine the source of both the fluid and the formation that is heating it. This study was designed to use electrical resistivity surveying to determine the geometry of the conduit through which hydrothermal fluid is reaching the surface and creating the Jone’s Fountain of Life hot spring in the Sulfur Creek district, near Wilbur Springs, CA. Bounded by two northwest trending faults, each with associated hot springs, this geothermal spring is not located near a known fault and is buried by alluvium. Resistivity profiles were performed using vertical electrical soundings arranged in a Schlumberger configuration. Several profiles were taken, focusing primarily on the shallow subsurface immediately surrounding the hot spring. Using a 1-dimensional inversion model, a prediction of the resistivity structure of the subsurface was made that matched the measured apparent resistivity. The model depicted a layer of low resistivity near the surface, underlain by a zone of higher resistivity. The base of the low resistivity zone was shallow near the spring, but showed a gradational increase in depth at increasing distances from the hot spring. Furthest away from the spring, the low resistivity zone was also overlain by a layer of higher resistivity. This zone of low resistivity was interpreted to be porous material containing groundwater (aquifer), which lies on top of less porous rock with a higher resistivity (aquatard). The less porous material creates a cone shape around the hot spring, suggesting that it may the result of hydrothermal cementation. The data collected in this study suggests a pipeline structure in the alluvium, though the behavior of the fluid may be different in the basement rock. This could be determined by geophysical investigation of the fluid

  2. Nonlinear evolution of resistive tearing mode instability with shear flow and viscosity

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Morrison, P. J.; Steinolfson, R. S.

    1993-01-01

    The effect of shear flow on the nonlinear evolution of the tearing mode is investigated via numerical solutions of the resistive MHD equations in slab geometry, using a finite-difference alternative-direction implicit method. It was found that, when the shear flow is small (V less than 0.3), the tearing mode saturates within one resistive time, whereas for larger flows the nonlinear saturation develops on longer time scales. The magnetic energy release decreases and the saturation time increases with increasing values of V for both small and large resistivity. Shear flow was found to decrease the saturated magnetic island width and to generate currents far from the tearing layer. Results suggest that equilibrium shear flow may improve the confinement of tokamak plasma.

  3. Low-Load Resistance Training with Blood Flow Occlusion as a Countermeasure to Disuse Atrophy

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Cook, S. B.

    2009-01-01

    Decreases in strength and neuromuscular function are observed following prolonged disuse. Exercise countermeasures to prevent muscle dysfunction during disuse typically involve high intensity resistance training. The purpose of the study is to evaluate the effectiveness of low-load resistance training with a blood flow occlusion to mitigate muscle loss and dysfunction during 30 days of unilateral lower limb suspension (ULLS).

  4. On the magnetic reconnection of resistive tearing mode with the dynamic flow effects

    SciTech Connect

    Ali, A.; Li, Jiquan Kishimoto, Y.

    2015-04-15

    Magnetic reconnection usually occurs in turbulent environments, which may not only provide anomalous resistivity to enhance reconnection rates but also significantly modify the reconnection process through direct nonlinear interaction with magnetic islands. This study presents numerical simulations investigating the effects of an imposed dynamic flow on magnetic reconnection, based on a two-dimensional reduced resistive MHD model. Results show that while the linear stability properties of the resistive tearing mode are moderately affected by the dynamic flow, nonlinear evolution is significantly modified by radial parity, amplitude, and frequency of the dynamic flow. After the slowly evolving nonlinear Rutherford stage, the reconnection process is found to progress in two phases by including the dynamic flow. A Sweet-Parker like current sheet is formed in the first phase. Afterwards, plasmoid instability is triggered in the second phase, where multiple plasmoids are continuously generated and ejected along the current sheet, leading to an impulsive bursty reconnection. The reconnection rate is considerably enhanced in the range of low resistivity as compared to without flow. We found that plasmoid instability onset and evolution are strongly influenced by the frequency and radial parity of the dynamic flows. The scaling of effective reconnection rates with the flow is found to be independent of resistivity.

  5. THE LOCAL EFFECT OF SEROTONIN UPON RENAL VASCULAR RESISTANCE AND URINE FLOW RATE,

    DTIC Science & Technology

    and following denervation plus infusion of phentolamine . Blood flow rate was controlled and uncontrolled. Renal vascular resistance increased, on the... phentolamine . Significant changes in urine flow rate were not observed. Gross and microscopic examination of the kidneys revealed no specific pathological

  6. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    PubMed

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm < D < 100 μm. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can

  7. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  8. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  9. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  10. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  11. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  12. Effect of grazing flow on steady-state resistance of isolated square-edged orifices

    NASA Technical Reports Server (NTRS)

    Rogers, T.

    1976-01-01

    Steady state diagnostic testing of an isolated orifice has shown the nature of the interaction between grazing and orifice flow causing the large increase in orifice resistance for both inflow and outflow. A simple inviscid interaction model is developed which uses thin aerofoil theory to account for pressure forces exerted at the interface between the orifice and grazing flow together with a one-dimensional discharge coefficient concept. The effect of grazing flow boundary layer thickness is also included in the model. Resistance measurements for each orifice tested, over a wide range of grazing flow speeds and flow rates, collapse into a single curve when plotted in terms of effective discharge coefficient against orifice to grazing velocity ratio. The correlation curves for inflow and outflow are different. Data for clustered orifices collapse in the same way as those for the single orifice. The effect of boundary layer thickness is compared with model predictions.

  13. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  14. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.

    PubMed

    Van der Kelen, Christophe; Göransson, Peter

    2013-12-01

    The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of porous materials used in acoustic treatments. Due to the manufacturing processes involved, these porous materials are most often geometrically anisotropic on a microscopic scale, and for demanding applications, there is a need for improved characterization methods. This paper discusses recent refinements of a method for the identification of the anisotropic flow resistivity tensor. The inverse estimation is verified for three fictitious materials with different degrees of anisotropy. Measurements are performed on nine glass wool samples and seven melamine foam samples, and the anisotropic flow resistivity tensors obtained are validated by comparison to measurements performed on uni-directional cylindrical samples, extracted from the same, previously measured cubic samples. The variability of flow resistivity in the batch of material from which the glass wool is extracted is discussed. The results for the melamine foam suggest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.

  15. Flow-induced remodeling in resistance arteries from obese Zucker rats is associated with endothelial dysfunction.

    PubMed

    Bouvet, Céline; Belin de Chantemèle, Eric; Guihot, Anne-Laure; Vessières, Emilie; Bocquet, Arnaud; Dumont, Odile; Jardel, Alain; Loufrani, Laurent; Moreau, Pierre; Henrion, Daniel

    2007-07-01

    Chronic increases in blood flow increase arterial diameter and NO-dependent dilation in resistance arteries. Because endothelial dysfunction accompanies metabolic syndrome, we hypothesized that flow-mediated remodeling might be impaired in obese rat resistance arteries. Obese and lean Zucker rat mesenteric resistance arteries were exposed to chronic flow increases through arterial ligation in vivo: arteries exposed to high flow were compared with normal flow arteries. Diameter was measured in vitro in cannulated arteries using pressure arteriography. After 7 days, outward remodeling (diameter increased from 346+/-9 to 412+/-11 mum at 100 mm Hg) occurred in lean high-flow arteries. Endothelium-dependent tone was reduced in high-flow arteries from obese rats by contrast with lean animals. On the other hand, diameter enlargement occurred similarly in the 2 strains. The involvement of NO in endothelium-dependent dilation (evidenced by NO blockade) and endothelial NO synthase phosphorylation was smaller in obese than in lean rats. Superoxide anion and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunit expression (p67phox and gp91phox) increased in obese rats and were higher in high-flow than in control arteries. Acute Tempol (a catalase mimetic), catalase plus superoxide dismutase, and l-arginine plus tetrahydrobiopterin restored endothelium-dependent dilation in obese rat normal and high-flow arteries to the level found in lean control arteries. Thus, flow-induced remodeling in obese resistance arteries was associated with a reduced endothelium-mediated dilation because of a decreased NO bioavailability and an excessive superoxide production. This dysfunction might have negative consequences in ischemic diseases in patients with obesity or metabolic syndrome.

  16. Determining the Combined Effect of the Lymphatic Valve Leaflets and Sinus on Resistance to Forward Flow

    PubMed Central

    Wilson, John T.; van Loon, Raoul; Wang, Wei; Zawieja, David C.; Moore, James E.

    2015-01-01

    The lymphatic system is vital to a proper maintenance of fluid and solute homeostasis. Collecting lymphatics are composed of actively contracting tubular vessels segmented by bulbous sinus regions that encapsulate bi-leaflet check valves. Valve resistance to forward flow strongly influences pumping performance. However, because of the sub-millimeter size of the vessels with flow rates typically < 1 ml/hour and pressures of a few cmH2O, resistance is difficult to measure experimentally. Using a newly defined idealized geometry, we employed an uncoupled approach where the solid leaflet deflections of the open valve were computed and lymph flow calculations were subsequently performed. We sought to understand: 1) the effect of sinus and leaflet size on the resulting deflections experienced by the valve leaflets and 2) the effects on valve resistance to forward flow of the fully open valve. For geometries with sinus-to-root diameter ratios > 1.39, the average resistance to forward flow was 0.95 × 106 [g/(cm4 s)]. Compared to the viscous pressure drop that would occur in a straight tube the same diameter as the upstream lymphangion, valve leaflets alone increase the pressure drop up to 35%. However, the presence of the sinus reduces viscous losses, with the net effect that when combined with leaflets the overall resistance is less than that of the equivalent continuing straight tube. Accurately quantifying resistance to forward flow will add to the knowledge used to develop therapeutics for treating lymphatic disorders and may eventually lead to understanding some forms of primary lymphedema. PMID:26315921

  17. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  18. Effect of submerged flexible vegetation on flow structure and resistance

    NASA Astrophysics Data System (ADS)

    Järvelä, Juha

    2005-06-01

    Flume studies were carried out to investigate flow structure above flexible vegetation. A new data set of mean velocity profiles and turbulence characteristics is reported from experiments with wheat. The flow above the wheat reasonably followed the log law. Maximum values of the turbulence intensity urms and Reynolds stress -uw¯ were found approximately at the level of the maximum observed deflected plant height. A recent approach for describing vertical velocity profiles above aquatic vegetation [Stephan, U., 2002. Zum Fließwiderstandsverhalten flexibler Vegetation. Wiener Mitteilungen 180. Doctoral Thesis. Institute of Hydraulics, Hydrology and Water Resources Management, Faculty of Civil Engineering, Technical University of Vienna.] was evaluated with these new data, which represent a different vegetal roughness type. The approach proved to be successful beyond the original scope. However, a new definition for the shear velocity based on the deflected plant height is suggested. The benefit of this modification is that complex turbulence measurements can be avoided, which enhances the practical applicability of the approach.

  19. Dam-break flows with resistance as agents of sediment transport

    NASA Astrophysics Data System (ADS)

    Emmett, M.; Moodie, T. B.

    2008-08-01

    When a semi-infinite body of fluid initially at rest behind a vertical retaining wall is suddenly released by the removal of the barrier, the resulting flow over either a horizontal or a sloping bed is referred to as a dam-break flow. When resistance to the flow is neglected, the exact solution in the case of a horizontal bed with or without "tail water" may be obtained on the basis of shallow-water theory via the method of characteristics, and the results are well known. The inclusion of the effects of resistance in the form of basal friction that are needed in order to bring the mathematical solutions into closer harmony with the experimental results modifies the wave speed and flow profile near the head of the wave significantly and the simple exact solution of the shallow-water equations can no longer be employed as a reasonable description of the flow field. It is our intention here to study dam-break flows as agents of sediment transport taking into account basal friction and the attendant changes in depth profiles near the head, as well as the effects of particle concentrations on the flow dynamics including both erosion and deposition of particles arising through the interaction of the flow with the bed material. We shall consider shallow flows over dry beds and investigate the effects of changes in the depositional and erosional models employed as well as in the nature of the drag acting on the flow. These models offer some insight into the transport of sediment in the worst case scenario of complete and instantaneous collapse of a dam. They are also anticipated to provide information on other sheet flow events where particle transport plays a significant role in the flow dynamics.

  20. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers.

    PubMed

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny

    2014-01-01

    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p < 0.001). Mathematical modeling confirmed this decrease both in LF and HF dialyzers which was accompanied by a concomitant decrease in internal filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  1. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  2. Methicillin Resistant Staphylococcus Aureus Biofilm Formation Over A Separated Flow Region Under Steady And Pulsatile Flow Conditions

    NASA Astrophysics Data System (ADS)

    Salek, M. Mehdi; Martinuzzi, Robert

    2012-02-01

    Several researchers have observed that the formation, morphology and susceptibility of bacterial biofilms are affected by the local hydrodynamic condition and, in particular, shear stresses acting on the fluid-biofilm interface. A backwards facing step (BFS) experimental model has been widely utilized as an in vitro model to examine and characterize the effect of flow separation and recirculation zones comparable to those present within various medical devices as well as those observed in vivo. The specific geometry of BFS covers a vide range of flow features observed in physiological or environmental conditions. The hypothesis of this study is that the flow behavior and structures can effectively contribute to the transport and attachment of cells and affecting the morphology of adhered colonies as well as suspended structures (i.e. biofilm streamers). Hence, the formation of the recirculation region occurring within a backward facing step (BFS) under steady and pulsatile conditions as well as three-dimensional flow structures arising close to the side walls are investigated to correlate to biofilms behavior. This hypothesis is investigated using a backward facing step incorporated into a flow cell under steady and pulsatile flow regimes to study the growth of methicillin resistant Staphylococcus aureus (MRSA) UC18 as the study microorganism.

  3. Flow cytometry analysis of drug transport mechanisms in Haemonchus contortus susceptible or resistant to anthelmintics.

    PubMed

    Kerboeuf, D; Chambrier, P; Le Vern, Y; Aycardi, J

    1999-02-01

    The role of membrane drug-transport mechanisms in resistance to anthelmintics was examined using a flow cytometry method. This method was adapted from assays developed for the study of similar mechanisms in tumor cells. Rhodamine 123, a P-glycoprotein transport probe, associated with the reversal agent verapamil gave a significantly higher level of green fluorescence in Haemonchus contortus-resistant eggs as compared with that of susceptible eggs. In the same way, verapamilbodipy, a new fluorescent probe for the detection of multidrug resistance in cells, showed a significantly higher degree of binding to resistant eggs. The results confirm those obtained with biological drug assays using both anthelmintics and verapamil and provide a quantitative and effective methodology for the functional study of multidrug resistance in nematodes.

  4. Resistance law for a turbulent Taylor-Couette flow at very large Taylor numbers

    NASA Astrophysics Data System (ADS)

    Balonishnikov, A. M.

    2016-11-01

    Based on the semi-empirical model of the transport of the specific rate of turbulence energy dissipation, it has been concluded that the resistance laws are observed for a turbulent Taylor-Couette flow between independently rotating coaxial cylinders for very large Taylor numbers.

  5. Field-derived relationships for flow velocity and resistance in high-gradient streams

    USGS Publications Warehouse

    Comiti, F.; Mao, L.; Wilcox, A.; Wohl, E.E.; Lenzi, M.A.

    2007-01-01

    We measured velocity and channel geometry in 10 reaches (bed gradient = 0.08-0.21) of a predominantly step-pool channel, the Rio Cordon, Italy, over a range of discharges (3-80% of the bankfull discharge). The resulting data were used to compute flow resistance. At-a-station hydraulic geometry relations indicate that in most reaches, the exponent describing the rate of velocity increases with discharge was between 0.48 and 0.6, which is within the range of published values for pool-riffle channels. The Rio Cordon data are also combined with published hydraulics data from step-pool streams to explore non-dimensional relationships between velocity and flow resistance and factors including unit discharge, channel gradient, and step geometry. Multiple regression analysis of this combined field dataset indicated that dimensionless unit discharge (q*) is the most important independent variable overall in explaining variations in velocity and flow resistance, followed by channel slope and the ratio of step height to step length. Empirical equations are provided both for dimensionless velocity and flow resistance, but prediction of the former variable appears more reliable. ?? 2007 Elsevier B.V. All rights reserved.

  6. Acute hypervolaemia increases gastroduodenal resistance to the flow of liquid in the rat.

    PubMed Central

    Xavier-Neto, J; dos Santos, A A; Rola, F H

    1990-01-01

    The effect of volume expansion of extracellular fluid on gastroduodenal resistance to the flow of isotonic saline was assessed in three groups of rats using intravenous infusions of isotonic, isotonic-isoncotic, and isotonic-isoncotic-isohaemic solutions. The gastroduodenal segment of 29 male Wistar rats was barostatically perfused at a constant pressure gradient of 4 cm H2O and changes in flow (ml/minute) were taken as a reflection of changes in gastroduodenal resistance. Isotonic expansion led to a 33% drop in gastroduodenal flow compared with the normovolaemic period in the same animals (p less than 0.01). Extracellular fluid expansion with isotonic-isoncotic and isotonic-isoncotic-isohaemic solutions was associated with reductions in gastroduodenal flow of 29% (p less than 0.05) and 31% (p less than 0.01) respectively. The increase in gastroduodenal resistance is due to hypervolaemia per se and not to haemodilution, decreases in plasma oncotic pressure, or electrolyte imbalance. The effect of hypervolaemia on gastroduodenal resistance, which was reversed by small haemorrhages (0.5-1.0 ml per 100 g body weight), may be due to changes in tonus or phasic motor activity, or both, and may be part of the homeostatic processes that help the organism minimise liquid volume excess. PMID:2210444

  7. Effects of hypercapnia and inspiratory flow-resistive loading on respiratory activity in chronic airways obstruction.

    PubMed Central

    Altose, M D; McCauley, W C; Kelsen, S G; Cherniack, N S

    1977-01-01

    The respiratory responses to hypercapnia alone and to hypercapnia and flow-resistive loading during inspiration were studied in normal individuals and in eucapnic and hypercapnic patients with chronic airways obstruction. Responses were assessed in terms of minute ventilation and occlusion pressure (mouth pressure during airway occlusion 100 ms after the onset of inspiration). Ventilatory responses to CO2 (deltaV/deltaPCO2) were distinctly subnormal in both groups of patients with airways obstruction. The two groups of patients, however, showed different occlusion pressure responses to CO2 (deltaP100/deltaPCO2): deltaP100/deltaPCO2 was normal in the eucapnic patients but subnormal in the hypercapnic patients. Flow-resistive loading during inspiration reduced deltaV/deltaPCO2 both in normal subjects and in patients with airways obstruction. The occlusion pressure response to CO2 increased in normal subjects during flow-resistive loading but remained unchanged in both groups of patients with chronic airways obstruction. These results indicate that while chemosensitivity as determined by deltaP100/deltaPCO2 is impaired only in hypercapnic patients with chronic airways obstruction, an acute increase in flow resistance elicits a subnormal increase in respiratory efferent activity in both eucapnic and hypercapnic patients. PMID:838862

  8. Field-derived relationships for flow velocity and resistance in high-gradient streams

    NASA Astrophysics Data System (ADS)

    Comiti, Francesco; Mao, Luca; Wilcox, Andrew; Wohl, Ellen E.; Lenzi, Mario A.

    2007-06-01

    SummaryWe measured velocity and channel geometry in 10 reaches (bed gradient = 0.08-0.21) of a predominantly step-pool channel, the Rio Cordon, Italy, over a range of discharges (3-80% of the bankfull discharge). The resulting data were used to compute flow resistance. At-a-station hydraulic geometry relations indicate that in most reaches, the exponent describing the rate of velocity increases with discharge was between 0.48 and 0.6, which is within the range of published values for pool-riffle channels. The Rio Cordon data are also combined with published hydraulics data from step-pool streams to explore non-dimensional relationships between velocity and flow resistance and factors including unit discharge, channel gradient, and step geometry. Multiple regression analysis of this combined field dataset indicated that dimensionless unit discharge ( q∗) is the most important independent variable overall in explaining variations in velocity and flow resistance, followed by channel slope and the ratio of step height to step length. Empirical equations are provided both for dimensionless velocity and flow resistance, but prediction of the former variable appears more reliable.

  9. Finite difference time domain electroacoustic model for synthetic jet actuators including nonlinear flow resistance.

    PubMed

    Kooijman, Gerben; Ouweltjes, Okke

    2009-04-01

    A lumped element electroacoustic model for a synthetic jet actuator is presented. The model includes the nonlinear flow resistance associated with flow separation and employs a finite difference scheme in the time domain. As opposed to more common analytical frequency domain electroacoustic models, in which the nonlinear resistance can only be considered as a constant, it allows the calculation of higher harmonics, i.e., distortion components, generated as a result of this nonlinear resistance. Model calculations for the time-averaged momentum flux of the synthetic jet as well as the radiated sound power spectrum are compared to experimental results for various configurations. It is shown that a significantly improved prediction of the momentum flux-and thus flow velocity-of the jet is obtained when including the nonlinear resistance. Here, the current model performs slightly better than an analytical model. For the power spectrum of radiated sound, a reasonable agreement is obtained when assuming a plausible slight asymmetry in the nonlinear resistance. However, results suggest that loudspeaker nonlinearities play a significant role as well in the generation of the first few higher harmonics.

  10. Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks

    SciTech Connect

    Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

    2003-01-14

    Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  11. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    PubMed Central

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  12. Graded alterations of RBC aggregation influence in vivo blood flow resistance.

    PubMed

    Yalcin, Ozlem; Uyuklu, Murat; Armstrong, Jonathan K; Meiselman, Herbert J; Baskurt, Oguz K

    2004-12-01

    Although the effects of red blood cell (RBC) aggregation on low-shear rate blood viscosity are well known, the effects on in vivo flow resistance are still not fully resolved. The present study was designed to explore the in vivo effects of RBC aggregation on flow resistance using a novel technique to enhance aggregation: cells are covalently coated with a block copolymer (Pluronic F-98) and then suspended in unaltered plasma. RBC aggregation was increased in graded steps by varying the Pluronic concentration during cell coating and was verified by microscopy and erythrocyte sedimentation rate (ESR), which increased by 200% at the highest Pluronic level. RBC suspensions were perfused through an isolated in situ guinea pig hindlimb preparation while the arterial perfusion pressure was held constant at 100 mmHg via a pressure servo-controlled pump. No significant effects of enhanced RBC aggregation were observed when studies were conducted in preparations with intact vascular control mechanisms. However, after inhibition of smooth muscle tone (using 10(-4) M papaverin), a significant change in flow resistance was observed in a RBC suspension with a 97% increase of ESR. Additional enhancements of RBC aggregation (i.e., 136 and 162% increases of ESR) decreased flow resistance almost to control values. This was followed by another significant increase in flow resistance during perfusion with RBC suspensions with a 200% increase of ESR. This triphasic effect of graded increases of RBC aggregation is most likely explained by an interplay of several hemodynamic mechanisms that are triggered by enhanced RBC aggregation.

  13. Anomalous flux flow resistivity in the two-gap superconductor MgB2

    NASA Astrophysics Data System (ADS)

    Shibata, A.; Matsumoto, M.; Izawa, K.; Matsuda, Y.; Lee, S.; Tajima, S.

    2003-08-01

    The flux flow resistivity ρf associated with purely viscous motion of vortices in high-quality MgB2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is markedly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different ρf slopes was clearly observed in H‖ab plane. The unusual H dependence indicates that two very differently sized superconducting gaps in MgB2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat-capacity and thermal-conductivity results.

  14. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    SciTech Connect

    Wu, L. N.; Ma, Z. W.

    2014-07-15

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β < β{sub s}, but decreases if β > β{sub s}. The existence of the specific value β{sub s} can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β{sub s} increases with increase of the streaming flow strength.

  15. Detection of macropore flow at field scales using electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2008-12-01

    Even though macropores make up a very small portion of the pore space in a soil, their high connectivity allows them to carry large fluxes of flow to the subsurface. As a result, macropores can be a critical factor in determining groundwater recharge and contaminant transport. Despite their importance, there is a lack of field-scale methodologies for detecting the existence and activation of macropores in watersheds. The connectivity that makes macropores good conductors of fluid flow suggests that they may also be good conductors of electrical current when filled with water and could therefore be monitored using electrical resistivity measurements. To test this hypothesis and evaluate whether the resulting electrical response could be detected with field-scale dipole-dipole resistivity measurements this work combines hydrologically- driven equivalent medium models with anisotropic 3D numerical models of electrical current flow. The equivalent medium models are based on a dual-domain concept where the bulk electrical conductivity of the soil matrix is governed by water content and pore-water solute concentration, whereas macropore conductivity is directly related to the solute concentration of the filling fluid. Therefore, vertical and horizontal electrically conductivity values have dynamic responses depending on the soil saturation characteristics, evaporation and precipitation history, and activation of macropore flow. The resulting equivalent bulk electrical conductivity for the dual-domain is then used in a numerical model to determine the apparent resistivity response for a dipole-dipole array located on the ground surface. For conditions typical of watersheds near Clemson, i.e., runoff TDS values of about 50mg/L, the results of the model indicate that apparent resistivity measurements drop by 40% when macroporosity represents only 0.5% of the sample volume and by 80% when macroporosity is increased to 5% of the sample volume. This result represents the

  16. Flow resistance of flexible and stiff vegetation: a flume study with natural plants

    NASA Astrophysics Data System (ADS)

    Järvelä, Juha

    2002-12-01

    Flow resistance of natural grasses, sedges and willows was studied in a laboratory flume. The objective was to investigate, how type, density and placement of vegetation, flow depth and velocity influence friction losses. The plants were studied in various combinations under nonsubmerged and submerged conditions in a total of 350 test runs. The results show large variations in the friction factor, f, with depth of flow, velocity, Reynolds number, and vegetative density. The friction factor was dependent mostly on (1) the relative roughness in the case of grasses; (2) the flow velocity in the case of willows and sedges/grasses combined; and (3) the flow depth in the case of leafless willows on bare bottom soil. Leaves on willows seemed to double or even triple the friction factor compared to the leafless case despite the fact that the bottom was growing sedges in both cases. For the leafless willows, f appeared to increase with depth almost linearly and independently of velocity. Unexpectedly, different spacing of the same number of leafless willows with grasses did not have any significant effect on f. Based on the experimental work, a better understanding of flow resistance due to different combinations of natural stiff and flexible vegetation under nonsubmerged and submerged conditions was gained.

  17. Evaluation of multidrug resistant phenotype by flow cytometry with monoclonal antibodies and functional tests.

    PubMed

    Lizard, G; Maynadié, M; Roignot, P; Lizard-Nacol, S; Poupon, M F

    1995-03-01

    Multidrug resistant (MDR) phenotype is characterized by a defect in drug accumulation caused by overexpression of a transmembrane glycoprotein, the P-glycoprotein (P-gp). MDR phenotype can be characterized either with monoclonal antibodies raised against P-gp or with functional tests, most often based on the incorporation of fluorescent compounds. In the present study, data obtained with the monoclonal antibodies C219, JSB1 and MRK16 are compared to those of functional tests performed by flow cytometry including uptake of daunorubicin (DNR), Rhodamine 123 (Rh 123) or Hoechst 33342. Sensitive and resistant cell lines K562S, K562R, KBA1 and KB31, derived either from a human chronic myeloid leukemia or from a human epithelial carcinoma, were used. In resistant cells, P-gp expression was revealed with either the monoclonal antibodies C219, JSB1 or MRK-16. The most specific results were obtained with MRK-16. With functional tests, no matter which dyes were used, the fluorescence was always stronger in sensitive than in resistant cells. However, with DNR and Hoechst 33342, an incorporation of these dyes was exhibited in resistant cells. This phenomenon was not observed with Rh 123, which makes it possible to distinguish clearly between sensitive and resistant cells and to detect as few as 1% of resistant cells. Because of its high sensitivity, the functional test involving incorporation of Rh 123 was successfully used in acute myeloid leukemia to detect multichemoresistant cells.

  18. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    USGS Publications Warehouse

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  19. Microvascular endothelial cells exhibit optimal aspect ratio for minimizing flow resistance.

    PubMed

    Sumagin, Ronen; Brown, Carl W; Sarelius, Ingrid H; King, Michael R

    2008-04-01

    A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 microm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance.

  20. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    SciTech Connect

    Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad

    2015-03-15

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and to show approximately the shape and position of the water front even if the flow is nonuniform.

  1. MHD Stagnation point flows in the presence of resistivity and viscosity

    SciTech Connect

    Gratton, F.T.; Heyn, M.F.; Biernat, H.K.; Rijnbeek, R.P.; Gnavi, G. )

    1988-07-01

    The authors analyze the steady state situation in which two separate and counterstreaming plasmas (assumed to be incompressible) carrying antiparallel magnetic fields are separated by a resistive current layer. Exact solutions are presented which describe the stagnation point flow pattern and magnetic field behavior which result. They incorporate the effects of viscosity, which enables us to model flows with vorticity. The uniform plasma flow which is obtained at large distances from the current layer allows us to specify finite values of the asymptotic magnetic field. The exact solutions complement those of a different type obtained by B.U.O. Sonnerup and E.R. Priest (1975) which assume potential flow, i.e., zero vorticity. The results they obtain are discussed in relation to observational features at the Earth's magnetopause.

  2. The effect of grazing flow on the steady state resistance of square-edged orifices

    NASA Technical Reports Server (NTRS)

    Rogers, T.; Hersh, A. S.

    1975-01-01

    A simple inviscid interaction model has been developed which uses thin airfoil theory to account for pressure forces exerted at the interface between the orifice and grazing flow together with a one-dimensional discharge coefficient concept. The effect of grazing flow boundary layer thickness was also included in the model. Resistance measurements for a wide range of grazing flow speeds and orifice flow rates collapse into a single curve when plotted in terms of effective discharge coefficient versus orifice-to-grazing velocity ratio. The correlation curves for inflow and outflow are different. Data for clustered orifices collapse in the same way as the single orifice. The effect of boundary layer thickness is compared with model predictions. The effect of orifice length-diameter ratio is shown to be significant for inflow but negligible for outflow.

  3. Experimental investigations of single-phase and two-phase flow resistance in narrow rectangular duct under rolling condition

    NASA Astrophysics Data System (ADS)

    Xing, Dianchuan; Yan, Changqi; Sun, Licheng; Wang, Yang

    2013-07-01

    Effects of rolling motion on single-phase and two-phase flow resistance were compared experimentally under ambient temperature and pressure. In the single-phase flow experiments, the different pump head was obtained by a variable speed electromotor, and the flow rate was adjusted combining with a regulating valve. However, for the two-phase pressure drop measurements, the pump delivering water operated with an invariable pressure head of 48m, in order to neglect the effect of pump head on flow fluctuation. The results indicated that effects of rolling motion on single-phase flow resistance depend on the pump head. The fluctuation amplitude of flow rate and frictional pressure drop decreases rapidly as the pump head increases, finally, the flow will tend to be steady if the pump head dramatically exceeds the additional pressure drop. Different from the case of single-phase flow, transient frictional pressure drop of two-phase flow fluctuates synchronously with the rolling motion when liquid Reynolds number is less than 1400, whereas keeps a stable steady state without obvious oscillation for other cases. The fluctuation amplitude is independent of rolling period and amplitude and decreases with the increase of flow rate. The inclination angle and phase interface distribution is taken into account in analyzing the influence of rolling motion on two-phase flow resistance. Comparing with the vertical condition, rolling motion nearly has no effects on time-averaged frictional resistance for both the single-phase and two-phase flow.

  4. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    NASA Astrophysics Data System (ADS)

    Kolokolov, I. V.

    2017-03-01

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  5. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem

    NASA Astrophysics Data System (ADS)

    Västilä, Kaisa; Järvelä, Juha

    2014-01-01

    Both the foliage and stem essentially influence the flow resistance of woody plants, but their different biomechanical properties complicate the parameterization of foliated vegetation for modeling. This paper investigates whether modeling of flow resistance caused by natural woody vegetation can be improved using explicit description of both the foliage and stem. For this purpose, we directly measured the drag forces of Alnus glutinosa, Betula pendula, Salix viminalis, and Salix x rubens twigs in a laboratory flume at four foliation levels, parameterized with the leaf-area-to-stem-area ratio AL/AS. The species differed in the foliage drag but had approximately equal stem drag. For the foliated twigs, increasing AL/AS was found to increase the reconfiguration and the share of the foliage drag to the total drag. The experiments provided new insight into the factors governing the flow resistance of natural woody vegetation and allowed us to develop a model for estimating the vegetative friction factor using the linear superposition of the foliage and stem drag. The model is novel in that the foliage and stem are separately described with physically based parameters: drag coefficients, reconfiguration parameters, and leaf area and frontal-projected stem area per ground area. The model could satisfactorily predict the flow resistance of twig to sapling-sized specimens of the investigated species at velocities of 0.05-1 m/s. As a further benefit, the model allows exploring the variability in drag and reconfiguration associated with differing abundance of the foliage in relation to the stem.

  6. Heat Transfer and Hydraulic Flow Resistance for Streams of High Velocity

    NASA Technical Reports Server (NTRS)

    Lelchuk, V. L.

    1943-01-01

    Problems of hydraulic flow resistance and heat transfer for streams with velocities comparable with acoustic have present great importance for various fields of technical science. Especially, they have great importance for the field of heat transfer in designing and constructing boilers.of the "Velox" type. In this article a description of experiments and their results as regards definition of the laws of heat transfer in differential form for high velocity air streams inside smooth tubes are given.

  7. Reduced coronary flow and resistance reserve in primary scleroderma myocardial disease

    SciTech Connect

    Nitenberg, A.; Foult, J.M.; Kahan, A.; Perennec, J.; Devaux, J.Y.; Menkes, C.J.; Amor, B.

    1986-08-01

    The maximum coronary vasodilator capacity after intravenous dipyridamole (0.14 mg X kg-1 X min-1 X 4 minutes) was studied in seven patients with primary scleroderma myocardial disease and compared to that of seven control subjects. Hemodynamic data and left ventricular angiographic data were not different in the two groups. The coronary flow reserve was evaluated by the dipyridamole/basal coronary sinus blood flow ratio (D/B CSBF) and the coronary resistance reserve by the dipyridamole/basal coronary resistance ratio (D/B CR). Coronary reserve was greatly impaired in the group with primary scleroderma myocardial disease: D/B CSBF was lower than in the control group (2.54 +/- 1.37 vs 4.01 +/- 0.56, respectively; p less than 0.05) and D/B CR was higher than in the control group (0.47 +/- 0.25 vs 0.23 +/- 0.04, respectively; p less than 0.05). Such a decreased coronary flow and resistance reserve in patients with primary scleroderma myocardial disease was not explained by an alteration of left ventricular function. It may be an important contributing factor in the pathogenesis of primary scleroderma myocardial disease.

  8. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  9. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    NASA Astrophysics Data System (ADS)

    Falakzaadeh, F.; Mehryar, R.

    2017-01-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  10. Different bed surface and flow resistance characteristics for gravel and sand bed

    NASA Astrophysics Data System (ADS)

    Fan, N.; Yang, K.; Nie, R.; Liu, X.

    2014-12-01

    Bed forms affect both bed load transport and flow resistance strongly and change their shapes and sizes depending on underlying grain size distribution and shear stress. A series of flume experiments were conducted at the Saint Anthony Falls Laboratory to study the effect of bed form dynamics on flow turbulence and sediment transport with both gravel and sand as bed material and different flow conditions. From the experimental data, the spectrum of bed elevation time series, the PDFs of bed elevation increments and the flow resistance characteristics are all analyzed. The wavelet-based spectral analysis shows that the slopes of the elevation spectrums are -2 and -3 for gravel and sand bed surfaces, respectively. The slope -3 indicates that the surface is self-similar, in another words, the ratios of bed form heights and lengths for different bed forms are the same; however, the slope of -2 indicates that the surface is self-affine, and in such case (-2) the ratios of bed form heights and lengths for different bed forms are not correlated at all. We interpret that the relative size of grain and boundary layer affects the bed form characteristics significantly, e.g., grain size of sand is of the same scale as the thickness of boundary layer, but both are much smaller than the grain size of gravel. Our results suggest that the PDFs of bed elevation increments for both gravel and sand beds can be fitted well with two-sided asymmetric exponential function. Furthermore, we show that the flow resistance (Darcy-Weisbach coefficients f) are much higher for sand bed than gravel bed, and the former is contributed by form drags, which is much larger than grain drags. For gravel bed, f and the skewness of bed elevation increments increases with flow discharge whereas for the sand bed, both f and the skewness of bed elevation increments decreases which corresponds to the transition in hydraulic conditions for dune to dynamic flat surface in our experiments. The analysis

  11. [Removal and accumulation of the tetracycline resistance gene in vertical flow constructed wetland].

    PubMed

    Zheng, Jia-Yu; Liu, Lin; Gao, Da-Wen; Liu, Chao-Xiang

    2013-08-01

    This paper investigated the efficiency and accumulation of vertical flow constructed wetland on removing tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that all three tet genes were detected in raw wastewater, average absolute abundances of tetW, tetM, and tetO were 1.07 x 10(10), 4.03 x 10(10) and 4.92 x 10(10) gene copies per litre, respectively. Vertical flow constructed wetland could significantly reduce the content of wastewater antibiotics resistance genes, and average elimination rates were 95.73%, 92.21% and 95.05%, respectively. Compare to the content of antibiotics resistance genes in unpolluted soil, the content of that in soil of the system had an obvious increase at the end stage of this study. Meanwhile, absolute abundances and relative abundances of three tet genes in surface layer of soil were higher than that in basement soil. The control condition and structure of construct wetlands would affect the accumulation of tetracycline resistance genes in the system.

  12. The effects of differential flow between rational surfaces on toroidal resistive MHD modes

    NASA Astrophysics Data System (ADS)

    Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John

    2016-10-01

    Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.

  13. Comparison of shear flow formation between resonant and non-resonant resistive interchange modes

    NASA Astrophysics Data System (ADS)

    Unemura, T.; Hamaguchi, S.; Wakatani, M.

    1999-11-01

    It is known that the poloidal shear flow is produced from the nonlinear resistive interchange modes(A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59) 1581 (1987)(B.A. Carreras and V. E. Lynch, Phys. Fluids B 5) 1795 (1993). Since the non-resonant resistive modes also become unstable(K. Ichiguchi, Y. Nakamura and M. Wakatani, Nucl. Fusion 31) 2073 (1991), the nonlinear behavior is compared between the resonant and non-resonant modes from the point of view of poloidal flow formation. For understanding the difference, we studied single helicity (m,n)=(3,2) mode in a cylindrical geometry.Rotational transform profile, ι(r), was changed. First, we assumed ι(r)=0.51+0.39r^2, and increased ι(0). This change represents a finite beta effect in currentless stellarators. When the resonant surface exists with ι(r_s)=2/3, the poloidal flow are created near the resonant surface. And, in the case when no resonant surface exists but ι_min ~ 2/3, the non-resonant (3,2) mode grows and poloidal shear flow is also generated; however, the magnitude decreases sharply with the increase of ι_min.

  14. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  15. Toroidal modeling of interaction between resistive wall mode and plasma flow

    SciTech Connect

    Liu Yueqiang

    2013-02-15

    The non-linear interplay between the resistive wall mode (RWM) and the toroidal plasma flow is numerically investigated in a full toroidal geometry, by simultaneously solving the initial value problems for the n = 1 RWM and the n = 0 toroidal force balance equation. Here, n is the toroidal mode number. The neoclassical toroidal viscous torque is identified as the major momentum sink that brakes the toroidal plasma flow during the non-linear evolution of the RWM. This holds for a mode that is initially either unstable or stable. For an initially stable RWM, the braking of the flow, and hence the eventual growth of the mode, depends critically on the initial perturbation amplitude.

  16. Mechanical resistance properties of gravel used in subsurface flow constructed wetlands: implications for clogging.

    PubMed

    Pedescoll, Anna; Passos, Fabiana; Alba, Elisenda; García, Joan; Puigagut, Jaume

    2011-01-01

    Gravel constitutes the filter medium in subsurface flow constructed wetlands (SSF CWs) and its porosity and hydraulic conductivity decrease over time (clogging), limiting the lifespan of the systems. Using gravel of poor quality accelerates clogging in wetlands. In this study, gravel samples from six different wetland systems were compared with regards to their mineral composition and mechanical resistance properties. Results showed that both mineralogy and texture are related to mechanical resistance. Accordingly, gravel with high content of quartz (> 80%) showed a lower percentage of broken particles (0.18-1.03%) than those with lower content of quartz (2.42-4.56% media broken). Although granite is formed by high durability minerals, its non-uniform texture results in a lower resistance to abrasion (ca. 10% less resistance than calcareous gravel). Therefore, it is recommended to use gravels composed mainly of quartz or, when it is not available, limestone gravels (rounded and uniform) are recommended instead. The resistance to abrasion (LAA test) seems to be a good indicator to determine the mechanical properties of gravels used in CWs. It is recommended to use gravels with LAA below 30% in order to avoid a rapid clogging due to gravel crumbling and subsequent mineral solids accumulation.

  17. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    NASA Astrophysics Data System (ADS)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  18. Vadose Zone Flow Model Parameterisation Using Cross-Borehole Radar and Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Binley, A.; Cassiani, G.; Middleton, R.; Winship, P.

    2001-12-01

    Cross-borehole geoelectrical imaging, in particular electrical resistivity tomography and transmission radar tomography, can provide high resolution images of hydrogeological structures and, in some cases, detailed assessment of dynamic processes in the subsurface environment. Through appropriate petrophysical relationships, these tools offer data suitable for parameterizing and constraining models of groundwater flow. This is demonstrated using cross-borehole radar and resistivity measurements collected during a controlled vadose zone tracer test, performed at a field site in the UK Sherwood Sandstone. Both methods show clearly the vertical migration of the tracer over a 200 hour monitoring period. By comparing first and second spatial moments of changes in moisture content predicted from a numerical simulation of vadose zone flow with equivalent statistics from 2- and 3-D electrical resistivity tomography and cross-borehole radar profiles the effective hydraulic conductivity is estimated to be approximately 0.4 m d-1. Such a value is comparable to field estimates from borehole hydraulic tests carried out in the saturated zone at the field site and provides valuable information that may be utilized to parameterise pollutant transport models of the site.

  19. Correction of Flow Resistances of Plants Measured From Covered and Exposed Leaves

    PubMed Central

    Turner, Neil C.

    1981-01-01

    The difference in water potential between an enclosed nontranspiring leaf and an adjacent exposed transpiring leaf, and the transpiration rate of a similarly exposed leaf, were used to calculate the change in hydraulic resistance of sorghum (Sorghum bicolor [L.] Moench) and sunflower (Helianthus annuus L.) leaves throughout the day and at various rates of transpiration. Since cotton (Gossypium hirsutum L.) leaves enclosed in aluminum foil alone had enclosed leaf water potentials about 0.06 megapascals lower than similar leaves enclosed in a polyethylene bag shielded with aluminum foil, the sorghum and sunflower leaves were enclosed in polyethylene bags shielded with aluminum foil. Enclosing the exposed leaf in a plastic sheath just prior to excision led to the water potential measured by the pressure chamber technique being 0.3 to 0.4 megapascals higher at rapid transpiration rates than in exposed leaves not sheathed just prior to excision. This error, previously shown to arise from rapid water loss after excision, led to an overestimation of the leaf hydraulic resistance in both species. Correction of the error reduced the resistance by 40 to 90% in irrigated sorghum and by about 40% in irrigated and unirrigated sunflower. After correction, the hydraulic resistances were still flow-dependent, but the dependency was markedly reduced in sorghum. PMID:16662056

  20. Hemodynamic Responses to Blood Flow Restriction and Resistance Exercise to Muscular Failure.

    PubMed

    Libardi, Cleiton Augusto; Catai, Aparecida Maria; Miquelini, Maiara; Borghi-Silva, Audrey; Minatel, Vinicius; Alvarez, Ieda Fernanda; Milan-Mattos, Juliana Cristina; Roschel, Hamilton; Tricoli, Valmor; Ugrinowitsch, Carlos

    2017-02-01

    The aim of the present study was to compare hemodynamic responses between blood flow-restricted resistance exercise (BFR-RE), high-intensity resistance exercise (HI-RE) and low-intensity resistance exercise (LI-RE) performed to muscular failure. 12 men (age: 20±3 years; body mass: 73.5±9 kg; height: 174±6 cm) performed 4 sets of leg press exercises using BFR-RE (30% of 1-RM), HI-RE (80% of 1-RM) and LI-RE (30% of 1-RM) protocols. Systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR), stroke volume (SV), cardiac output (CO) and total peripheral vascular resistance (TPR) were measured on a beat-to-beat continuous basis by a noninvasive photoplethysmographic arterial pressure device. The HI-RE and LI-RE showed higher values (P<0.05) in all of the sets than the BFR-RE for SBP, DBP, HR. Additionally, HI-RE showed higher SBP (4(th) set) and DBP (all sets) (P<0.05) values than the LI-RE. However, the SV, CO and TPR showed significantly greater values for LI-RE compared to HI-RE and BFR-RE (P<0.05). In conclusion, the results of this study indicate that the BFR-RE promotes a lower hemodynamic response compared to the HI-RE and LI-RE performed to muscular failure.

  1. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction.

    PubMed

    Wernbom, Mathias; Paulsen, Gøran; Nilsen, Tormod S; Hisdal, Jonny; Raastad, Truls

    2012-06-01

    Conflicting findings have been reported regarding muscle damage with low-intensity resistance exercise with blood flow restriction (BFR) by pressure cuffs. This study investigated muscle function and muscle fibre morphology after a single bout of low-intensity resistance exercise with and without BFR. Twelve physically active subjects performed unilateral knee extensions at 30% of their one repetition maximum (1RM), with partial BFR on one leg and the other leg without occlusion. With the BFR leg, five sets were performed to concentric torque failure, and the free-flow leg repeated the exact same number of repetitions and sets. Biopsies were obtained from vastus lateralis before and 1, 24 and 48 h after exercise. Maximum isometric torque (MVC) and resting tension were measured before and after exercise and at 4, 24, 48, 72, 96 and 168 h post-exercise. The results demonstrated significant decrements in MVC (lasting ≥48 h) and delayed onset muscle soreness in both legs, and increased resting tension for the occluded leg both acutely and at 24 h post-exercise. The percentage of muscle fibres showing elevated intracellular staining of the plasma protein tetranectin, a marker for sarcolemmal permeability, was significantly increased from 9% before exercise to 27-38% at 1, 24 and 48 h post-exercise for the BFR leg. The changes in the free-flow leg were significant only at 24 h (19%). We conclude that an acute bout of low-load resistance exercise with BFR resulted in changes suggesting muscle damage, which may have implications both for safety aspects and for the training stimulus with BFR exercise.

  2. Passive microfluidic control of two merging streams by capillarity and relative flow resistance.

    PubMed

    Kim, Sung-Jin; Lim, Yong Taik; Yang, Haesik; Shin, Yong Beom; Kim, Kyuwon; Lee, Dae-Sik; Park, Se Ho; Kim, Youn Tae

    2005-10-01

    In the progress of microfluidic devices, a simple and precise control of multiple streams has been essential for complex microfluidic networks. Consequently, microfluidic devices, which have a simple structure, typically use external energy sources to control the multiple streams. Here, we propose a pure passive scheme that uses capillarity without using external force or external regulation to control the merging of two streams and even to regulate their volumetric flow rate (VFR). We accomplish this process by controlling the geometry of two inlets and a junction, and by regulating the hydrophilicity of a substrate. Additionally, we use the relative flow resistance to control the VFR ratio of the merged two streams. Our results will significantly simplify the control of multiple streams without sacrificing precision.

  3. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study.

    PubMed

    Kaufmann, Tim A S; Wong, Kai C; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2012-04-01

    Understanding circulatory autoregulation is essential for improving physiological control of rotary blood pumps and support conditions during cardiopulmonary bypass (CPB). Cerebral autoregulation (CAR), arguably the most critical, is the body's intrinsic ability to maintain sufficient cerebral blood flow (CBF) despite changes in aortic perfusion pressure. It is therefore imperative to include this mechanism into computational fluid dynamics (CFD), particle image velocimetry (PIV), or mock circulation loop (MCL) studies. Without such inclusions, potential losses of CBF are overestimated. In this study, a mathematical model to mimic CAR is implemented in a MCL- and PIV-validated CFD model. A three-dimensional model of the human vascular system was created from magnetic resonance imaging records. Numerical flow simulations were performed for physiological conditions and CPB. The inlet flow was varied between 4.5 and 6 L/min. Arterial outlets were modeled using vessel-specific, flow-dependent cerebrovascular resistances (CVRs), resulting in a variation of the pressure drop between 0 and 80mmHg. CBF is highly dependent on the level of CAR during CPB. By varying the CVR parameters up to the beginning of plateau phase, it can be regulated between 0 and 80% of physiological CBF. So while implementing autoregulation, CBF remains unchanged during a simulated native cardiac output of 5L/min or CPB support of 6L/min. Neglecting CAR, constant backflow from the brain occurs for some cannula positions. Using flow-dependent CVR, CBF returns to its baseline at a rate of recovery of 0.25s. Results demonstrate that modeling of CAR by flow-dependent CVR delivers feasible results. The presented method can be used to optimize physiological control of assist devices dependent upon different levels of CAR representing different patients.

  4. Correlations between flow resistance and geometry in a model of the human nose.

    PubMed

    Schreck, S; Sullivan, K J; Ho, C M; Chang, H K

    1993-10-01

    The relationship between the pressure losses within the nasal airways and nasal geometry were studied in a 3:1 scale model. The geometry of the model was based on magnetic resonance images of the skull of a healthy male subject. Pressure measurements, flow visualization, and hot-wire anemometry studies were performed at flow rates that, in vivo, corresponded to flows of between 0.05 and 1.50 l/s. The influence of nasal congestion and the collapse of the external nares were examined by using modeling clay to simulate local constrictions in the cross section. A dimensionless analysis of the pressure losses within three sections of the airway revealed the influence of various anatomic dimensions on nasal resistance. The region of the exterior nose behaves as a contraction-expansion nozzle in which the pressure losses are a function of the smallest cross-sectional area. Losses in the interior nose resemble those associated with channel flow. The nasopharynx is modeled as a sharp bend in a circular duct. Good correspondence was found between the predicted and actual pressure losses in the model under conditions that stimulated local obstructions and congestion.

  5. Generation of rotational flows in toroidally confined visco-resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Morales, Jorge; Bos, Wouter; Schneider, Kai; Montgomery, David

    2015-11-01

    We investigate by numerical simulation the generation of rotational flows in a toroid confining a conducting magnetofluid. A current is driven by the application of externally supported electric and magnetic fields. We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described. Two different toroidal geometries are considered, one with an up-down symmetric and the other with an asymmetric cross section. We show that there exists a fundamental difference between both studied cases: the volume-averaged angular momentum is zero for the symmetric case, while for the asymmetric cross section a finite volume-averaged angular momentum appears. We observe a breaking in the up-down symmetry of the flow and a toroidal preferred direction emerges.

  6. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes

    PubMed Central

    Sarangi, Debalin; Tyre, Andrew J.; Patterson, Eric L.; Gaines, Todd A.; Irmak, Suat; Knezevic, Stevan Z.; Lindquist, John L.; Jhala, Amit J.

    2017-01-01

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States. PMID:28327669

  7. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay.

    PubMed

    Kamphee, Hatairat; Chaiprasert, Angkana; Prammananan, Therdsak; Wiriyachaiporn, Natpapas; Kanchanatavee, Airin; Dharakul, Tararaj

    2015-01-01

    Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.

  8. Measurement and mathematical modelling of elastic and resistive lung mechanical properties studied at sinusoidal expiratory flow.

    PubMed

    Bitzén, Ulrika; Niklason, Lisbet; Göransson, Ingegerd; Jonson, Björn

    2010-11-01

    Elastic pressure/volume (P(el) /V) and elastic pressure/resistance (P(el) /R) diagrams reflect parenchymal and bronchial properties, respectively. The objective was to develop a method for determination and mathematical characterization of P(el) /V and P(el) /R relationships, simultaneously studied at sinusoidal flow-modulated vital capacity expirations in a body plethysmograph. Analysis was carried out by iterative parameter estimation based on a composite mathematical model describing a three-segment P(el) /V curve and a hyperbolic P(el) /R curve. The hypothesis was tested that the sigmoid P(el) /V curve is non-symmetric. Thirty healthy subjects were studied. The hypothesis of a non-symmetric P(el) /V curve was verified. Its upper volume asymptote was nearly equal to total lung capacity (TLC), indicating lung stiffness increasing at high lung volume as the main factor limiting TLC at health. The asymptotic minimal resistance of the hyperbolic P(el) /R relationship reflected lung size. A detailed description of both P(el) /V and P(el) /R relationships was simultaneously derived from sinusoidal flow-modulated vital capacity expirations. The nature of the P(el) /V curve merits the use of a non-symmetric P(el) /V model.

  9. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging

    NASA Astrophysics Data System (ADS)

    Binley, Andrew; Cassiani, Giorgio; Middleton, Roy; Winship, Peter

    2002-10-01

    Cross-borehole geoelectrical imaging, in particular electrical resistivity tomography (ERT) and transmission radar tomography, can provide high-resolution images of hydrogeological structures and, in some cases, detailed assessment of dynamic processes in the subsurface environment. Through appropriate petrophysical relationships, these tools offer data suitable for parameterising and constraining models of groundwater flow. This is demonstrated using cross-borehole radar and resistivity measurements collected during a controlled vadose zone tracer test, performed at a field site in the UK Sherwood Sandstone. Both methods show clearly the vertical migration of the tracer over a 200 h monitoring period. By comparing first and second spatial moments of changes in moisture content predicted from a numerical simulation of vadose zone flow with equivalent statistics from two- and three-dimensional ERT and cross-borehole radar profiles the effective hydraulic conductivity is estimated to be approximately 0.4 m/d. Such a value is comparable to field estimates from borehole hydraulic tests carried out in the saturated zone at the field site and provides valuable information that may be utilised to parameterise pollutant transport models of the site.

  10. Focused subsurface flow in the Amargosa Desert characterized by direct-current resistivity profiling

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Abraham, J. D.; Lucius, J. E.; Prudic, D. E.

    2003-12-01

    Environmental-tracer studies have shown that ground-water recharge in the thick alluvial fill of the Amargosa Desert is localized beneath ephemeral stream channels and anthropogenic sources of water, with little recharge beneath native vegetation on interfluvial areas under current climatic conditions. These borehole-based studies provided relatively robust but limited, one-dimensional (vertical) information that can be only tentatively regionalized using geomorphologic, pedologic, and vegetational mapping. The ability of direct-current (DC) resistivity profiling to complement and extend studies of the spatial distribution of subsurface flow was examined by making surface-based measurements ("soundings") along one transect normal to the depositional fabric in each of three geomorphologically distinct settings: a well-incised ephemeral channel system, a poorly incised (distributory) ephemeral channel system, and an interfluvial upland. Linear arrays of 32 to 80 electrodes were deployed with a uniform 2 to 5-m spacing between adjacent electrodes. A multiplexing 8-channel resistivity instrument made automated inverse-Schlumberger-array soundings along the deployed line, using up to 10 electrodes at a time. The line was shifted piecemeal until composite transects consisted of 168 to 232 electrode positions. This approach allowed rapid profiling of long transects at high resolution. Numerical inversions assumed horizontal constancy normal to the vertical slices being imaged, producing solution sets of optimized resistivity values for several thousand points within each modeled slice. Imaged slices were ˜30 to 80 m deep and ˜1 km wide. RMS errors between apparent resistivities in the model inversions and field-measured apparent resistivities were ˜10%. On the basis of borehole studies, inverted resistivity (ρ ) values denoted three categories of alluvium: (1) low-water-content coarse gravel and highly desiccated surface materials, with ρ > ˜200 Ω -m, (2) vertical

  11. Overland flow resistances on varying slope gradients and partitioning on grassed slopes under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Pan, Chengzhong; Ma, Lan; Wainwright, John; Shangguan, Zhouping

    2016-04-01

    It is still unclear how slope steepness (S) and revegetation affect resistance (f) to overland flow. A series of experiments on runoff hydraulics was conducted on granular surfaces (bare soil and sandpaper) and grassed surfaces, including grass plots (GP), GP with litter (GL), and GP without leaves (GS) under simulated rainfall and inflow (30flow rate, or Re (Reynolds number), with downward cross sections and a good f-Re relation (f = KRe-1). There exists a good f-Re relation for granular surfaces and a good f-Fr relation (Fr, Froude number) for grass plots. A greater f occurred at the gentle and steep slopes for the granular surfaces, while f decreased with increasing slopes for the grass treatments. The different f-S relations suggest that f is not a simple function of S. When Re≈1000, the sowing rye grass with level lines increased f by approximately 100 times and decreased bed shear stress to approximately 5%. The contribution of grass leaves, stems, litter, and grain surface to total resistance in the grass plots were averagely 52%, 32%, 16%, and 1%. The greater resistance from leaves may result from the leaves lying at the plot surface impacted by raindrop impact. These results are beneficial to understand the dynamics of runoff and erosion on hillslopes impacted by vegetation restoration.

  12. The influence of insulin resistance, obesity, and diabetes mellitus on vascular tone and myocardial blood flow.

    PubMed

    Valenta, Ines; Dilsizian, Vasken; Quercioli, Alessandra; Schelbert, Heinrich R; Schindler, Thomas H

    2012-04-01

    Among individuals with cardiovascular risk factors, reductions in coronary vasodilator capacity with or without diabetes mellitus (DM) carry important diagnostic and prognostic information. Positron emission tomography (PET) myocardial perfusion imaging in concert with tracer kinetic modeling allows the assessment of absolute regional myocardial blood flow (MBF) at rest and its response to various forms of vasomotor stress. Such noninvasive evaluation of myocardial flow reserve (MFR) or the vasodilator capacity of the coronary circulation expands the possibilities of conventional scintigraphic myocardial perfusion imaging from identifying flow-limiting epicardial coronary artery lesions to understanding the underlying pathophysiology of diabetic vasculopathy, microcirculatory dysfunction, and its atherothrombotic sequelae. Invaluable mechanistic insights were recently reported with PET by unraveling important effects of insulin resistance, obesity, and DM on the function of the coronary circulation. Such noninvasive assessment of coronary circulatory dysfunction enables monitoring its response to antidiabetic medication and/or behavioral interventions related to weight, diet, and physical activity that may evolve as a promising tool for an image-guided and personalized preventive diabetic vascular care. Whether PET-guided improvement or normalization of hyperemic MBF and/or MFR will translate into improved patient outcome in DM is a laudable goal to pursue next.

  13. Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise.

    PubMed

    May, Anthony K; Brandner, Christopher R; Warmington, Stuart A

    2017-02-01

    The hemodynamics of light-load exercise with an applied blood-flow restriction (BFR) have not been extensively compared between light-intensity, BFR, and high-intensity forms of both resistance and aerobic exercise in the same participant population. Therefore, the purpose of this study was to use a randomized crossover design to examine the hemodynamic responses to resistance and aerobic BFR exercise in comparison with a common high-intensity and light-intensity non-BFR exercise. On separate occasions participants completed a leg-press (resistance) or treadmill (aerobic) trial. Each trial comprised a light-intensity bout (LI) followed by a light-intensity bout with BFR (80% resting systolic blood pressure (LI+BFR)), then a high-intensity bout (HI). To characterize the hemodynamic response, measures of cardiac output, stroke volume, heart rate and blood pressure were taken at baseline and exercise for each bout. Exercising hemodynamics for leg-press LI+BFR most often resembled those for HI and were greater than LI (e.g. for systolic blood pressure LI+BFR = 152 ± 3 mmHg; HI = 153 ± 3; LI = 143 ± 3 P < 0.05). However, exercising hemodynamics for treadmill LI+BFR most often resembled those for LI and were lower than HI (e.g. for systolic pressure LI+BFR = 124 ± 2 mmHg; LI = 123 ± 2; HI = 140 ± 3 P < 0.05). In conclusion, the hemodynamic response for light aerobic (walking) BFR exercise suggests this mode of BFR exercise may be preferential for chronic use to develop muscle size and strength, and other health benefits in certain clinical populations that are contraindicated to heavy-load resistance exercise.

  14. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology

    PubMed Central

    Ramsey, Michael W.; Stabley, John N.; Dominguez, James M.; Davis, Robert T.; McCullough, Danielle J.; Muller-Delp, Judy M.; Delp, Michael D.

    2012-01-01

    With old age, blood flow to the high-oxidative red skeletal muscle is reduced and blood flow to the low-oxidative white muscle is elevated during exercise. Changes in the number of feed arteries perforating the muscle are thought to contribute to this altered hyperemic response during exercise. We tested the hypothesis that exercise training would ameliorate age-related differences in blood flow during exercise and feed artery structure in skeletal muscle. Young (6–7 mo old, n = 36) and old (24 mo old, n = 25) male Fischer 344 rats were divided into young sedentary (Sed), old Sed, young exercise-trained (ET), and old ET groups, where training consisted of 10–12 wk of treadmill exercise. In Sed and ET rats, blood flow to the red and white portions of the gastrocnemius muscle (GastRed and GastWhite) and the number and luminal cross-sectional area (CSA) of all feed arteries perforating the muscle were measured at rest and during exercise. In the old ET group, blood flow was greater to GastRed (264 ± 13 and 195 ± 9 ml·min−1·100 g−1 in old ET and old Sed, respectively) and lower to GastWhite (78 ± 5 and 120 ± 6 ml·min−1·100 g−1 in old ET and old Sed, respectively) than in the old Sed group. There was no difference in the number of feed arteries between the old ET and old Sed group, although the CSA of feed arteries from old ET rats was larger. In young ET rats, there was an increase in the number of feed arteries perforating the muscle. Exercise training mitigated old age-associated differences in blood flow during exercise within gastrocnemius muscle. However, training-induced adaptations in resistance artery morphology differed between young (increase in feed artery number) and old (increase in artery CSA) animals. The altered blood flow pattern induced by exercise training with old age would improve the local matching of O2 delivery to consumption within the skeletal muscle. PMID:23042906

  15. Impact of the postpump resistance on pressure-flow waveform and hemodynamic energy level in a neonatal pulsatile centrifugal pump.

    PubMed

    Wang, Shigang; Haines, Nikkole; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    This study tested the impact of different postpump resistances on pulsatile pressure-flow waveforms and hemodynamic energy output in a mock extracorporeal system. The circuit was primed with a 40% glycerin-water mixture, and a PediVAS centrifugal pump was used. The pre- and postpump pressures and flow rates were monitored via a data acquisition system. The postpump resistance was adjusted using a Hoffman clamp at the outlet of the pump. Five different postpump resistances and rotational speeds were tested with nonpulsatile (NP: 5000 RPM) and pulsatile (P: 4000 RPM) modes. No backflow was found when using pulsatile flow. With isoresistance, increased arterial resistances decreased pump flow rates (NP: from 1,912 ml/min to 373 ml/min; P: from 1,485 ml/min to 288 ml/min), increased postpump pressures (NP: from 333 mm Hg to 402 mm Hg; P: from 223 mm Hg to 274 mm Hg), and increased hemodynamic energy output with pulsatile mode. Pump flow rate correlated linearly with rotational speed (RPMs) of the pump, whereas postpump pressures and hemodynamic energy outputs showed curvilinear relationships with RPMs. The maximal pump flow rate also increased from 618 ml/min to 4,293 ml/min with pulsatile mode and from 581 ml/min to 5,665 ml/min with nonpulsatile mode. Results showed that higher postpump resistance reduced the pump flow range, and increased postpump pressure and surplus hemodynamic energy output with pulsatile mode. Higher rotational speeds also generated higher pump flow rates, postpump pressures, and increased pulsatility.

  16. Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels - Data on Flow Resistance and Interfacial Friction Coefficients for the Cross-Flow

    SciTech Connect

    Tatsuya Higuchi; Akimaro Kawahara; Michio Sadatomi; Hiroyuki Kudo

    2006-07-01

    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity. (authors)

  17. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species.

    PubMed

    Chen, Jun; Ying, Guang-Guo; Wei, Xiao-Dong; Liu, You-Sheng; Liu, Shuang-Shuang; Hu, Li-Xin; He, Liang-Ying; Chen, Zhi-Feng; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-11-15

    This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants.

  18. Effect of wall edge suction on the performance of a short annular dump diffuser with exit passage flow resistance

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1975-01-01

    The effect of wall edge suction on the performance of a short annular dump diffuser having a perforated plate flow resistance device in the exit passage was evaluated. Testing was conducted with air at near ambient pressure and temperature at inlet Mach numbers of 0.18 and 0.27 with suction rates up to 13.5 percent. Results show that pressure recovery downstream of the perforated plate was improved significantly by suction. Optimum performance was obtained with the flow resistance plate located at one inlet passage height downstream of the dump plane.

  19. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  20. Effects of 24-week resistance exercise training on carotid peak systolic and end diastolic flow velocity in healthy older adults

    PubMed Central

    Park, Jinkee

    2016-01-01

    [Purpose] The aim of this study was to examine the effect of resistance exercise on carotid intima-media thickness, luminal diameter, peak systolic flow velocity, end diastolic flow velocity, and wall shear rate in healthy elderly men. [Subjects and Methods] Thirty healthy elderly men (age ≥65 years) were randomly divided into a control (n=15) and resistance exercise (n=15) groups. The 24-week exercise intervention consisted of 3 days of resistance exercise per week using an elastic band per week. Body composition, physical function, blood pressure, and carotid variables were measured at baseline and after 24 weeks. [Results] Body fat percent, skeletal muscle mass, systolic blood pressure, grip strength, arm curl, chair stand up, sit and reach, maximum walking speed, time up and go, and two-minute step test showed significant interaction. Peak systolic flow velocity, end diastolic flow velocity, and wall shear rate also showed significant interaction. [Conclusion] A 24-week resistance exercise program, using elastic bands, effectively improves carotid flow velocity and wall shear rate in healthy elderly men. PMID:27821937

  1. Longitudinal Hydraulic Resistance Parameters of Cryocooler and Stirling Regenerators in Periodic Flow

    NASA Astrophysics Data System (ADS)

    Cha, J. S.; Ghiaasiaan, S. M.; Kirkconnell, C. S.

    2008-03-01

    The results of an on going research program aimed at the measurement and correlation of anisotropic hydrodynamic parameters of widely-used cryocooler regenerator fillers are presented. The hydrodynamic parameters associated with longitudinal periodic flow are addressed in this paper. An experimental apparatus consisting of a cylindrical test section packed with regenerator fillers is used for the measurement of axial permeability and Forchheimer coefficients, with pure helium as the working fluid. The regenerator fillers that are tested include stainless steel 400-mesh screens with 69.2% porosity, stainless steel 325-mesh screens with 69.2% porosity, stainless steel 400-mesh sintered filler with 62% porosity, stainless steel sintered foam metal with 55.47% porosity, and nickel micro-machined disks with 26.8% porosity. The test section is connected to a Stirling type compressor on one end and to a constant volume chamber on the other end. The instrumentation includes piezoelectric pressure transducers at both ends of the regenerator and a hot wire anemometer at the inlet of the regenerator. For each filler material, time histories of local pressures at both ends of the regenerator are measured under steady periodic conditions over a wide range of oscillation frequencies (5—60 Hz). A CFD assisted methodology is then used for the analysis and interpretation of the measured data. The viscous resistance coefficient and the inertial resistance coefficient values obtained in this way are correlated in terms of the relevant dimensionless parameters.

  2. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.

    PubMed

    Leslie, Daniel C; Melnikoff, Brett A; Marchiarullo, Daniel J; Cash, Devin R; Ferrance, Jerome P; Landers, James P

    2010-08-07

    Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.

  3. A computational study of the effect of windscreen shape and flow resistivity on turbulent wind noise reduction.

    PubMed

    Xu, Ying; Zheng, Z C; Wilson, D K

    2011-04-01

    In this paper, numerical simulations are used to study the turbulent wind noise reduction effect of microphone windscreens with varying shapes and flow resistivities. Typical windscreen shapes consisting of circular, elliptical, and rectangular cylinders are investigated. A turbulent environment is generated by placing a solid circular cylinder upstream of the microphone. An immersed-boundary method with a fifth-order weighted essentially non-oscillatory scheme is implemented to enhance the simulation accuracy for high-Reynolds number flow around the solid cylinder as well as at the interface between the open air and the porous material comprising the windscreen. The Navier-Stokes equations for incompressible flow are solved in the open air. For the flow inside the porous material, a modified form of the Zwikker-Kosten equation is solved. The results show that, on average, the circular and horizontal ellipse windscreens have similar overall wind noise reduction performance, while the horizontal ellipse windscreen with medium flow resistivity provides the most effective wind noise reduction among all the considered cases. The vertical ellipse windscreen with high flow resistivity, in particular, increases the wind noise because of increased self-generation of turbulence.

  4. The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder.

    PubMed

    Yang, Michael Y; Verschuer, Jordan; Shi, Yuyu; Song, Yang; Katsifis, Andrew; Eberl, Stefan; Wong, Keith; Brannan, John D; Cai, Weidong; Finlay, Warren H; Chan, Hak-Kim

    2016-11-20

    The present study investigates the effect of DPI resistance and inhalation flow rates on the lung deposition of orally inhaled mannitol dry powder. Mannitol powder radiolabeled with (99m)Tc-DTPA was inhaled from an Osmohaler™ by healthy human volunteers at 50-70L/min peak inhalation flow rate (PIFR) using both a low and high resistance Osmohaler™, and 110-130L/min PIFR using the low resistance Osmohaler™ (n=9). At 50-70L/min PIFR, the resistance of the Osmohaler™ did not significantly affect the total and peripheral lung deposition of inhaled mannitol [for low resistance Osmohaler™, 20% total lung deposition (TLD), 0.3 penetration index (PI); for high resistance Osmohaler™, 17% TLD, 0.23 PI]. Increasing the PIFR 50-70L/min to 110-130L/min (low resistance Osmohaler™) significantly reduced the total lung deposition (10% TLD) and the peripheral lung deposition (PI 0.21). The total lung deposition showed dependency on the in vitro FPF (R(2)=1.0). On the other hand, the PI had a stronger association with the MMAD (R(2)=1.0) than the FPF (R(2)=0.7). In conclusion the resistance of Osmohaler™ did not significantly affect the total and regional lung deposition at 50-70L/min PIFR. Instead, the total and regional lung depositions are dependent on the particle size of the aerosol and inhalation flow rate, the latter itself affecting the particle size distribution.

  5. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  6. Two-cell theory to measure membrane resistance based on proton flow: Theory development and experimental validation

    NASA Astrophysics Data System (ADS)

    Das, Susanta K.; Berry, K. J.

    A two-cell theory is developed to measure proton exchange membrane (PEM) resistance to proton flow during conduction through a PEM fuel cell. The theoretical framework developed herein is based upon fundamental thermodynamic principles and engineering laws. We made appropriate corrections to develop the theoretical model previously proposed by Babu and Nair (B.V. Babu, N. Nair, J. Energy Edu. Sci. Technol. 13 (2004) 13-20) for measuring membrane resistance to the flow of protons, which is the only ion that travels from one electrode to the other through the membrane. A simple experimental set-up and procedure are also developed to validate the theoretical model predictions. A widely used commercial membrane (Nafion ®) and several in-house membranes are examined to compare relative resistance among membranes. According to the theory, resistance of the proton exchange membrane is directly proportional to the time taken for a specific amount of protons to pass through the membrane. A second order differential equation describes the entire process. The results show that theoretical predictions are in excellent agreement with experimental observations. It is our speculation that the investigation results will open up a route to develop a simple device to measure resistance during membrane manufacturing since electrolyte resistance is one of the key performance drivers for the advancement of fuel cell technology.

  7. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females.

    PubMed

    Kim, Eonho; Gregg, Lee D; Kim, Ldaeyeol; Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2014-01-01

    The purpose of this study was to determine whether the acute hormone response to exercise differed between low intensity blood flow restricted resistance exercise and traditional high-intensity resistance exercise in college-aged women. A total of 13 healthy women (aged 18-25 yrs), who were taking oral contraceptives, volunteered for this randomized crossover study. Subjects performed a session of low intensity blood flow restricted resistance exercise (BFR) (20% of 1-RM, 1 set 30 reps, 2 sets 15 reps) and a session of traditional high intensity resistance exercise without blood flow restriction (HI) (3 sets of 10 repetitions at 80% of 1-RM) on separate days. Fasting serum cortisol and growth hormone (GH) and blood lactate responses were measured in the morning pre and post exercise sessions. GH (Change: HI: 6.34 ± 1.72; BFR: 4.22 ± 1.40 ng·mL(-1)) and cortisol (Change: HI: 4.46 ± 1.53; BFR: 8.10 ± 2.30 ug·dL(-1)) significantly (p < 0.05) increased immediately post exercise for both protocols compared to baseline and there were no significant differences between the protocols for these responses. In contrast, blood lactate levels (HI: 7.35 ± 0.45; BFR: 4.02 ± 0.33 mmol·L(-1)) and ratings of perceived exertion were significantly (p < 0.01) higher for the HI protocol. In conclusion, acute BFR restricted resistance exercise stimulated similar increases in anabolic and catabolic hormone responses in young women. Key PointsGrowth hormone and cortisol levels significantly increased after a single bout of low intensity blood flow restricted resistance exercise in young women.There were no significant differences in hormone responses between the low intensity blood flow restricted protocol and the traditional high intensity higher total workload protocol.Low intensity blood flow restricted resistance exercise provides a sufficient stimulus to elicit anabolic and catabolic hormone responses in young women.

  8. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults.

    PubMed

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G; Bendlin, Barbara B

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife.

  9. Acute Cardiovascular and Hemodynamic Responses to Low Intensity Eccentric Resistance Exercise with Blood Flow Restriction

    PubMed Central

    Bazgir, Behzad; Rezazadeh Valojerdi, Mojtaba; Rajabi, Hamid; Fathi, Rouhollah; Ojaghi, Seyed Mojtaba; Emami Meybodi, Mohammad Kazem; Neto, Gabriel R.; Rahimi, Mostafa; Asgari, Alireza

    2016-01-01

    Background Recently it has been suggested that low intensity (LI) resistance exercise (RE) alone or in combination with blood flow restriction (BFR) can be applied for cardiovascular function improvement or rehabilitation. Objectives The aim of the present study was to investigate the acute effects of LI eccentric RE with and without BFR on heart rate (HR), rate pressure product (RPP), blood pressure (BP) parameters [systolic, diastolic, and mean arterial pressure (MAP)], oxygen saturation (SpO2) and rate of perceived exertion (RPE). Methods In a semi-experimental study 16 young adults (26.18 ± 3.67 years) volunteered and performed LI (30% maximum voluntary contraction) eccentric RE alone or combined with BFR. Results The results indicated that HR, RPP, and RPE increased significantly within both groups (P < 0.05); SBP and DBP increased significantly only with BFR (P < 0.05); MAP increased significantly during exercise without BFR (P < 0.05); and no change was observed in SpO2 in either groups (P > 0.05). Furthermore, studied parameters did not vary amongst different groups (P > 0.05). Conclusions It is concluded that LI eccentric RE with BFR positively regulated the hemodynamic and cardiovascular responses. Therefore, the eccentric RE combined with BFR seems to be a good option for future studies with the aim of time efficacy, since it alters these parameters within normal values. PMID:28144415

  10. Similar hypotensive responses to resistance exercise with and without blood flow restriction

    PubMed Central

    Moriggi, R; Mauro, HS Di; Dias, SC; Matos, JM; Camarço, NF; Neto, IV Sousa; Nascimento, DC; Tibana, RA; Assumpção, CO; Prestes, J; Urtado, CB

    2015-01-01

    Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances. PMID:26681830

  11. Effects of resistance training with blood flow restriction on haemodynamics: a systematic review.

    PubMed

    Neto, Gabriel R; Novaes, Jefferson S; Dias, Ingrid; Brown, Amanda; Vianna, Jeferson; Cirilo-Sousa, Maria S

    2016-04-20

    This study systematically reviewed the available scientific evidence on the changes promoted by low-intensity (LI) resistance training (RT) combined with blood flow restriction (BFR) on blood pressure (BP), heart rate (HR) and rate-pressure product (RPP). Searches were performed in databases (PubMed, Web of Science(™) , Scopus and Google Scholar), for the period from January 1990 to May 2015. The study analysis was conducted through a critical review of contents. Of the 1 112 articles identified, 1 091 were excluded and 21 met the selection criteria, including 16 articles evaluating BP, 19 articles evaluating HR and four articles evaluating RPP. Divergent results were found when comparing the LI protocols with BFR versus LI versus high intensity (HI) on BP, HR and RPP. The evidence shows that the protocols using continuous BFR following a LIRT session apparently raise HR, BP and RPP compared with LI protocols without BFR, although increases significantly in BP seem to exist between the HI protocols when compared to LI protocols. Haemodynamic changes (HR, SBP, DBP, MBP, RPP) promoted by LIRT with BFR do not seem to differ between ages and body segments (upper or lower), although they are apparently affected by the width of the cuff and are higher with continuous BFR. However, these changes are within the normal range, rendering this method safe and feasible for special populations.

  12. Effect of enhanced red blood cell aggregation on blood flow resistance in an isolated-perfused guinea pig heart preparation.

    PubMed

    Yalcin, Ozlem; Meiselman, Herbert J; Armstrong, Jonathan K; Baskurt, Oguz K

    2005-01-01

    The role of red blood cell (RBC) aggregation as a determinant of in vivo blood flow is still unclear. This study was designed to investigate the influence of a well-controlled enhancement of RBC aggregation on blood flow resistance in an isolated-perfused heart preparation. Guinea pig hearts were perfused through a catheter inserted into the root of the aorta using a pressure servo-controlled pump system that maintained perfusion pressures of 30 to 100 mmHg. The hearts were beating at their intrinsic rates and pumping against the perfusion pressure. RBC aggregation was increased by Pluronic (F98) coating of RBC at a concentration 0.025 mg/ml, corresponding to about a 100% increment in RBC aggregation as measured by erythrocyte sedimentation rate. Isolated heart preparations were perfused with 0.40 l/l hematocrit unmodified guinea pig blood and with Pluronic-coated RBC suspensions in autologous plasma. At high perfusion pressures there were no significant differences between the flow resistance values for the two perfusates, with differences in flow resistance only becoming significant at lower perfusion pressures. These results can be interpreted to reflect the shear dependence of RBC aggregation: higher shear forces associated with higher perfusion pressures should have dispersed RBC aggregates resulting in blood flow resistances similar to control values. Experiments repeated in preparations in which the smooth muscle tone was inhibited by pre-treatment with papaverine indicated that significant effects of enhanced RBC aggregation could be detected at higher perfusion pressures, underlining the compensatory role of vasomotor control mechanisms.

  13. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  14. Effects of Respiratory Resistance Training With a Concurrent Flow Device on Wheelchair Athletes

    PubMed Central

    Litchke, Lyn G; Russian, Christopher J; Lloyd, Lisa K; Schmidt, Eric A; Price, Larry; Walker, John L

    2008-01-01

    Background/Objective: To determine the effect of respiratory resistance training (RRT) with a concurrent flow respiratory (CFR) device on respiratory function and aerobic power in wheelchair athletes. Methods: Ten male wheelchair athletes (8 with spinal cord injuries, 1 with a neurological disorder, and 1 with postpolio syndrome), were matched by lesion level and/or track rating before random assignment to either a RRT group (n = 5) or a control group (CON, n = 5). The RRT group performed 1 set of breathing exercises using Expand-a-Lung, a CFR device, 2 to 3 times daily for 10 weeks. Pre/posttesting included measurement of maximum voluntary ventilation (MVV), maximum inspiratory pressure (MIP), and peak oxygen consumption ( ). Results: Repeated measures ANOVA revealed a significant group difference in change for MIP from pre- to posttest (P < 0.05). The RRT group improved by 33.0 cm H2O, while the CON group improved by 0.6 cm H2O. Although not significant, the MVV increased for the RRT group and decreased for the CON group. There was no significant group difference between for pre/posttesting. Due to small sample sizes in both groups and violations of some parametric statistical assumptions, nonparametric tests were also conducted as a crosscheck of the findings. The results of the nonparametric tests concurred with the parametric results. Conclusions: These data demonstrate that 10 weeks of RRT training with a CFR device can effectively improve MIP in wheelchair athletes. Further research and a larger sample size are warranted to further characterize the impact of Expand-a-Lung on performance and other cardiorespiratory variables in wheelchair athletes. PMID:18533414

  15. Involvement of erythrocyte aggregation and erythrocyte resistance to flow in acute coronary syndromes.

    PubMed

    Pfafferott, C; Moessmer, G; Ehrly, A M; Bauersachs, R M

    1999-01-01

    The objective of the study was to identify the relative importance of erythrocyte flow resistance and aggregation in acute and chronic coronary syndromes. 117 subjects in five groups were studied: (1) 34 patients shortly after acute myocardial infarction (AMI) before reperfusion therapy; (2) 27 patients with unstable and (3) 21 with stable angina pectoris (AP); (4) 14 age-matched control patients and (5) 21 healthy volunteers. Single erythrocyte transit times were measured using the Cell Transit Analyser. Shear dependent elongation and aggregation was measured by a modified computerized Myrenne aggregometer. Leukocyte count was increased in coronary artery disease (CAD), especially in acute syndromes (mean +/- SD for groups 1-5): 12.2 +/- 4.5; 10.0 +/- 5.4; 8.0 +/- 2.0; 8.0 +/- 3.7; 7.0 +/- 2.0 (pl(-1))). Platelets, hematocrit, fibrinogen, alpha2-macroglobulin did not differ between the groups. Plasma viscosity (mPas) was elevated in AMI and stable AP: 1.34 +/- 0.10; 1.30 +/- 0.09; 1.32 +/- 0.08; 1.27 +/- 0.07; 1.27 +/- 0.05. Erythrocyte filtrability was not different as was the shear dependent deformation. Aggregation parameters such as gammaTmin were elevated in CAD: 180 +/- 70; 159 +/- 60; 166 +/- 59; 115 +/- 43; 113 +/- 51 (s(-1)). Erythrocyte deformability, measured with two independent methods, does not appear to contribute to the pathophysiology of acute coronary syndromes. Erythrocyte aggregation and plasma viscosity were again found increased both in unstable and stable coronary disease. It is unlikely that increased red cell aggregation contributes to emergence of AMI.

  16. Calculations of the flow resistance and heat emission of a sphere in the laminar and high-turbulent gas flows

    NASA Astrophysics Data System (ADS)

    Simakov, N. N.

    2016-12-01

    An early drag crisis can occur at high turbulence of incoming gas flow to a sphere. To study the influence of a crisis on heat transfer from a sphere to gas, a numerical experiment was carried out in which the free gas flow around a sphere with a temperature lower than the sphere temperature was simulated for two cases. The flow was laminar in the first case and highly turbulent in the second case. To take into account turbulence, the kinematic coefficient of turbulent viscosity with a value, which is much higher (up to 2000 times) than that for physical viscosity, was introduced. The results of calculations show that the early drag crisis occurs at Reynolds numbers of about 100 and results in considerable (by four to seven times) decrease in the hydrodynamic force and sphere drag coefficient C d . The early drag crisis is also accompanied by the crisis of heat transfer from a sphere to gas with a decrease in Nusselt numbers Nu by three to six times.

  17. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    PubMed

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  18. Fast dynamos with finite resistivity in steady flows with stagnation points

    NASA Technical Reports Server (NTRS)

    Lau, Yun-Tung; Finn, John M.

    1993-01-01

    Results are presented of a kinematic fast dynamo problem for two classes of steady incompressible flows: the ABC flow and the spatially aperiodic flow of Lau and Finn (1992). The numerical method used to find the solutions is described, together with convergence studies with respect to the time step and the number of points N of the spatial grid. It is shown that the growth rate and frequency can be extrapolated to N = infinity. Results are presented indicating that fast kinematic dynamos can exist in both these flows and that chaotic flow is a necessary condition. It was found that, for the ABC flow with A = B = C, there are two dynamo modes: an oscillating mode and a purely growing mode.

  19. Hydrodynamic resistance parameters for ErPr rare-earth regenerator material under steady and periodic flow conditions

    NASA Astrophysics Data System (ADS)

    Pathak, M. G.; Helvensteijn, B. P.; Patel, V. C.; Ghiaasiaan, S. M.; Mulcahey, T. I.; Kashani, A.; Feller, J. R.

    2014-01-01

    The regenerator, typically a microporous structure that is subject to periodic flow of a cryogenic fluid, is a critical component of pulse tube or Stirling cryocoolers, which are widely used for high-demand aerospace and defense applications. In this investigation, experiments were conducted in which steady and oscillatory flows of helium were imposed on ErPr rare-Earth regenerator filler material and mass flow and pressure drop data were recorded under ambient temperature conditions. A computational fluid dynamics (CFD)-assisted method was applied for the analysis and interpretation of the experimental data. The permeability and inertial coefficients that lead to agreement between the experimental data and computational simulations were iteratively obtained. The Darcy permeability and Forchheimer inertial coefficients were obtained and were found to be functions of the system charge pressure, operating frequency, and compressor piston stroke within the studied range of interest. The results also exhibit that the periodic flow hydrodynamic resistance parameters are in general different than steady flow parameters.

  20. Risk assessment of gene flow from genetically engineered virus resistant cassava to wild relatives in Africa: an expert panel report.

    PubMed

    Hokanson, Karen E; Ellstrand, Norman C; Dixon, Alfred G O; Kulembeka, Heneriko P; Olsen, Kenneth M; Raybould, Alan

    2016-02-01

    The probability and consequences of gene flow to wild relatives is typically considered in the environmental risk assessment of genetically engineered crops. This is a report from a discussion by a group of experts who used a problem formulation approach to consider existing information for risk assessment of gene flow from cassava (Manihot esculenta) genetically engineered for virus resistance to the 'wild' (naturalized) relative M. glaziovii in East Africa. Two environmental harms were considered in this case: (1) loss of genetic diversity in the germplasm pool, and (2) loss of valued species, ecosystem resources, or crop yield and quality due to weediness or invasiveness of wild relatives. Based on existing information, it was concluded that gene flow will occur, but it is not likely that this will reduce the genetic diversity in the germplasm pool. There is little existing information about the impact of the virus in natural populations that could be used to inform a prediction about whether virus resistance would lead to an increase in reproduction or survival, hence abundance of M. glaziovii. However, an increase in the abundance of M. glaziovii should be manageable, and would not necessarily lead to the identified environmental harms.

  1. Linear and nonlinear effect of sheared plasma flow on resistive tearing modes

    SciTech Connect

    Hu, Qiming Hu, Xiwei; Yu, Q.

    2014-12-15

    The effect of sheared plasma flow on the m/n = 2/1 tearing mode is studied numerically (m and n are the poloidal and toroidal mode numbers). It is found that in the linear phase the plasma flow with a weak or moderate shear plays a stabilizing effect on tearing mode. However, the mode is driven to be more unstable by sufficiently strong sheared flow when approaching the shear Alfvén resonance (AR). In the nonlinear phase, a moderate (strong) sheared flow leads to a smaller (larger) saturated island width. The stabilization of tearing modes by moderate shear plasma flow is enhanced for a larger plasma viscosity and a lower Alfvén velocity. It is also found that in the nonlinear phase AR accelerates the plasma rotation around the 2/1 rational surface but decelerates it at the AR location, and the radial location satisfying AR spreads inwards towards the magnetic axis.

  2. Intraocular Pressure and the Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular Meshwork Outflow Pathways.

    PubMed

    Tamm, Ernst R; Braunger, Barbara M; Fuchshofer, Rudolf

    2015-01-01

    Intraocular pressure (IOP), the critical risk factor for glaucoma, is generated and maintained by the aqueous humor circulation system. Aqueous humor is secreted from the epithelial layers of the ciliary body and exits the eye through the trabecular meshwork or the uveoscleral outflow pathways. IOP builds up in response to a resistance to aqueous humor flow in the trabecular outflow pathways. The trabecular outflow resistance is localized in the inner wall region, which comprises the juxtacanalicular connective tissue (JCT) and the inner wall endothelium of Schlemm's canal (SC). Outflow resistance in this region is lowered through the relaxation of contractile myofibroblast-like cells in trabecular meshwork and the adjacent scleral spur, or the contraction of the ciliary muscle. In primary open-angle glaucoma, the most frequent form of glaucoma, outflow resistance of the inner wall region is typically higher than normal. There is evidence that the increase in resistance is related to characteristic biological changes in the resident cells of the JCT, which more and more acquire the structural and functional characteristics of contractile myofibroblasts. The changes involve an augmentation of their actin cytoskeleton and of their surrounding fibrillary extracellular matrix, which connects to JCT cells via integrins. This scenario leads to an overall stiffening of the inner wall region, and is modulated by transforming growth factor-β/connective tissue growth factor signaling. Essentially comparable changes appear to occur in SC endothelial cells. Stiffening of JCT and SC cells is very likely a critical causative factor for the increase in trabecular outflow resistance in POAG.

  3. A flow cytometric method for enumeration of lymphocyte sub-populations in sample containing lysis-resistant red blood cells.

    PubMed

    Kasinrerk, Watchara

    2003-05-01

    Determination of lymphocyte sub-populations is usually carried out by flow cytometry using two-color immunophenotyping reagent. By this technique, however, the combination of FSC and SSC with CD45-FITC/CD14-PE is unable to identify the lymphocyte population in a sample containing lysis-resistant red blood cells (RBC). The actual values of lymphocyte sub-populations, therefore, cannot be determined in these RBC contaminated samples. To overcome this problem, we describe here the use of 7-aminoactinomycin D (7-AAD) to exclude lysis-resistant RBC from white blood cells (WBC). By adding 7-AAD, lymphocytes of samples containing RBC could be identified by using FL3/SSC, therefore, the actual number of lymphocyte sub-populations of the stained cells was obtained. We have proved that 7-AAD can be used to exclude contaminated RBC and has no effect on the measurement of lymphocyte sub-populations by using two-color immunophenotyping reagent. In routine blood samples that contain lysis-resistant RBC, 7-AAD markedly increased the purity of lymphocytes in the lymphocyte gate to >95% and the lymphocyte sub-populations therefore could be correctly determined. The described method is inexpensive, simple and gives successful analysis of lymphocyte sub-populations in a sample containing lysis-resistant RBC.

  4. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.

  5. Flow cytometry-based analysis of artemisinin-resistant Plasmodium falciparum in the ring-stage survival assay.

    PubMed

    Amaratunga, Chanaki; Neal, Aaron T; Fairhurst, Rick M

    2014-08-01

    The ring-stage survival assay (RSA) is a powerful tool for phenotyping artemisinin-resistant Plasmodium falciparum but requires experienced microscopists to count viable parasites among 10,000 erythrocytes in Giemsa-stained thin blood smears. Here we describe a rapid flow cytometric assay that accurately counts viable parasites among 250,000 erythrocytes in suspension. This method performs as well as light microscopy and can be used to standardize the collection of RSA data between research groups in laboratory and field settings.

  6. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk

  7. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Cheng, J. J.; Zuo, Q.; Chen, C. F.

    2016-04-01

    Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s-1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy ( Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the "material constants" in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

  8. Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers

    USGS Publications Warehouse

    Bjerklie, D.M.; Dingman, S.L.; Bolster, C.H.

    2005-01-01

    [1] A set of conceptually derived in-bank river discharge-estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site-specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope-area discharge estimates, and (3) large-scale river modeling. Copyright 2005 by the American Geophysical Union.

  9. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands.

    PubMed

    Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu

    2013-05-01

    This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment.

  10. Restriction to gene flow is associated with changes in the molecular basis of pyrethroid resistance in the malaria vector Anopheles funestus

    PubMed Central

    Barnes, Kayla G.; Irving, Helen; Chiumia, Martin; Mzilahowa, Themba; Coleman, Michael; Hemingway, Janet; Wondji, Charles S.

    2017-01-01

    Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus. Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region. PMID:28003461

  11. Low Intensity Resistance Exercise Training with Blood Flow Restriction: Insight into Cardiovascular Function, and Skeletal Muscle Hypertrophy in Humans

    PubMed Central

    Kwak, Yi Sub; Harveson, Andrew; Weavil, Joshua C; Seo, Kook E.

    2015-01-01

    Attenuated functional exercise capacity in elderly and diseased populations is a common problem, and stems primarily from physical inactivity. Decreased function and exercise capacity can be restored by maintaining muscular strength and mass, which are key factors in an independent and healthy life. Resistance exercise has been used to prevent muscle loss and improve muscular strength and mass. However, the intensities necessary for traditional resistance training to increase muscular strength and mass may be contraindicated for some at risk populations, such as diseased populations and the elderly. Therefore, an alternative exercise modality is required. Recently, blood flow restriction (BFR) with low intensity resistance exercise (LIRE) has been used for such special populations to improve their function and exercise capacity. Although BFR+LIRE has been intensively studied for a decade, a comprehensive review detailing the effects of BFR+LIRE on both skeletal muscle and vascular function is not available. Therefore, the purpose of this review is to discuss previous studies documenting the effects of BFR+LIRE on hormonal and transcriptional factors in muscle hypertrophy and vascular function, including changes in hemodynamics, and endothelial function. PMID:25954122

  12. Abnormalities of CSF flow patterns in the cerebral aqueduct in treatment-resistant late-life depression: a potential biomarker of microvascular angiopathy.

    PubMed

    Naish, Josephine H; Baldwin, Robert C; Patankar, Tufail; Jeffries, Suzanne; Burns, Alistair S; Taylor, Christopher J; Waterton, John C; Jackson, Alan

    2006-09-01

    There is growing evidence that microvascular angiopathy (MVA) plays an important role in the development of dementia and affective disorders in older people. At currently available image resolutions it is not possible to image directly the vascular changes associated with MVA, but the effects on blood and cerebrospinal fluid (CSF) flow may be detectable. The aim of this study was to investigate a potential biomarker for MVA based on MRI of abnormalities in CSF flow. Since there is considerable indirect evidence that treatment resistance in late-onset depressive disorder is related to MVA, we assessed the method in a group of 22 normal volunteers and 29 patients with responsive (N=21) or treatment-resistant (N=8) late-onset depressive disorder. Single-slice quantified phase-contrast (PC) images of cerebral blood and CSF flow were collected at 15 points over a cardiac cycle, and the resulting flow curves were parameterized. Significant differences in the CSF flow (width of systolic flow peak and diastolic flow volume, both P<0.01) through the cerebral aqueduct were observed for the group of treatment-resistant patients when compared to age matched controls. No significant difference was observed for a group of 21 patients with treatment-responsive depression. The findings support the hypothesis that MR measurement of CSF flow abnormalities provides a biomarker of MVA, and thus could have application in a wide range of age-related diseases.

  13. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    PubMed

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E-J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  14. Electrical Resistivity, Seismic Refraction Tomography and Drilling Logs to Identify the Heterogeneity and the Preferential Flow in a Shallow Aquifer

    NASA Astrophysics Data System (ADS)

    Lachhab, A.

    2015-12-01

    The study site is located at the Center for Environmental Education and Research (CEER) at Susquehanna University. Electrical Resistivity and Seismic Refraction Tomography (ERT and SRT), as well as several pumping tests were performed to identify zones of heterogeneities and hydrogeophysical characteristics of a shallow unconfined aquifer. The combination of these methods was selected to study the local geology and the subsurface preferential pathways of groundwater flow. 22 Dipole-Dipole ERT transects with 56 electrodes each and 11 SRT transects with 24 geophones each were performed. Drilling logs of 5 observation wells located within the site were also used. All drilling logs showed clearly the heterogeneity of the aquifer when compared to each other. The combination of ERT and SRT indicated that a potential zone of preferential flow is present within the aquifer and can be accurately identified based on the approach adopted in this study. The drilling logs served to specifically identify the soil and the geological formations making the heterogeneity of the aquifer. 3D ERT and SRT block diagrams were generated to connect all formations shown in the 2D tomography profiles to visualize the pathways of preferential flow and non-conductive formations. While ERT has proven to show saturated areas of the subsurface, SRT was more effective in identifying the bedrock-soil discontinuity and other near surface formations contributing to the local heterogeneity.

  15. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species.

    PubMed

    Schulte, Paul J; Hacke, Uwe G; Schoonmaker, Amanda L

    2015-10-01

    The flow of xylem sap in conifers is strongly dependent on the presence of a low resistance path through bordered pits, particularly through the pores present in the margo of the pit membrane. A computational fluid dynamics approach was taken, solving the Navier-Stokes equation for models based on the geometry of pits observed in tracheids from stems and roots of Picea mariana (black spruce) and Picea glauca (white spruce). Model solutions demonstrate a close, inverse relationship between the total resistance of bordered pits and the total area of margo pores. Flow through the margo was dominated by a small number of the widest pores. Particularly for pits where the margo component of flow resistance was low relative to that of the torus, pore location near the inner edge of the margo allowed for greater flow than that occurring through similar-sized pores near the outer edge of the margo. Results indicate a surprisingly large variation in pit structure and flow characteristics. Nonetheless, pits in roots have lower resistance to flow than those in stems because the pits were wider and consisted of a margo with a larger area in pores.

  16. The Acute Effect of Resistance Exercise with Blood Flow Restriction with Hemodynamic Variables on Hypertensive Subjects

    PubMed Central

    Araújo, Joamira P.; Silva, Eliney D.; Silva, Julio C. G.; Souza, Thiago S. P.; Lima, Eloíse O.; Guerra, Ialuska; Sousa, Maria S. C.

    2014-01-01

    The purpose of this study was to analyze systolic blood pressure (SBP), diastolic blood pressure (DBP) and the heart rate (HR) before, during and after training at moderate intensity (MI, 50%-1RM) and at low intensity with blood flow restriction (LIBFR). In a randomized controlled trial study, 14 subjects (average age 45±9,9 years) performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA) were used to identify significant variables (2 × 5; group × time). The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity. PMID:25713647

  17. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects.

    PubMed

    Araújo, Joamira P; Silva, Eliney D; Silva, Julio C G; Souza, Thiago S P; Lima, Eloíse O; Guerra, Ialuska; Sousa, Maria S C

    2014-09-29

    The purpose of this study was to analyze systolic blood pressure (SBP), diastolic blood pressure (DBP) and the heart rate (HR) before, during and after training at moderate intensity (MI, 50%-1RM) and at low intensity with blood flow restriction (LIBFR). In a randomized controlled trial study, 14 subjects (average age 45±9,9 years) performed one of the exercise protocols during two separate visits to the laboratory. SBP, DBP and HR measurements were collected prior to the start of the set and 15, 30, 45 and 60 minutes after knee extension exercises. Repeated measures of analysis of variance (ANOVA) were used to identify significant variables (2 × 5; group × time). The results demonstrated a significant reduction in SBP in the LIBFR group. These results provide evidence that strength training performed acutely alters hemodynamic variables. However, training with blood flow restriction is more efficient in reducing blood pressure in hypertensive individuals than training with moderate intensity.

  18. Reply to Comment on ``Maxwell, Electromagnetism, and Fluid Flow in Resistive Media''

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2004-04-01

    Glenn Brown takes issue with my statement, ``It is hoped that Maxwell's contribution to the foundations of fluids in porous media will receive due attention, and that his novel approach will lead to new insights.'' He considers that, because Maxwell did not explicitly develop his theory for fluid flow in porous media, his ideas should not be treated as a contribution in that area. Brown contends that doing so is a disservice to Darcy, and is revisionist. Brown and I differ in the way we perceive science. He looks at the material I have presented from an ideological perspective of upholding Darcy's position in history. On the other hand, I do not question Darcy's valid contribution. Rather, I presented some of Maxwell's fascinating ideas that are relevant to the study of fluid flow in porous media, published in the same year Darcy published his seminal work. I have shown that the relevance of Maxwell's ideas to flow in porous media has gone unnoticed in the literature. Scientists are fallible human beings, and important ideas and thoughts are occasionally overlooked. When, on a rare occasion, we chance upon such an oversight, it is part of our scientific enterprise to bring the finding to the attention of the scientific community. It is up to the community to judge the historical significance of the new information.

  19. Efficacy of Blood Flow Restricted Low-Load Resistance Training in Women with Risk Factors for Symptomatic Knee Osteoarthritis

    PubMed Central

    Segal, Neil A.; Williams, Glenn N.; Davis, Maria; Wallace, Robert B.; Mikesky, Alan

    2014-01-01

    Objective: To assess whether concurrent blood flow restriction (BFR) during low-load resistance training is an efficacious and tolerable means of improving quadriceps strength and volume in women with risk factors for symptomatic knee osteoarthritis (OA). Design: Randomized, double-blinded, controlled trial Setting: Exercise training clinical research laboratory Participants: Women over age 45 years with risk factors for symptomatic knee OA. Methods: Participants were randomized to either low-load resistance training (30% 1RM) alone (control) or with concurrent BFR and completed 4 weeks of 3 times per week leg-press resistance training. Those randomized to BFR wore a cuff that progressively restricted femoral blood flow over the weeks of training. Inter-group differences in outcome measures were compared using regression methods, while adjusting for BMI. Main Outcome Measures: Isotonic bilateral leg press strength, isokinetic knee extensor strength, and quadriceps volume by MRI were assessed before and after participation. Secondary measures included lower limb muscle power (leg press and stair climb). Knee pain was assessed to determine tolerance. Results: Forty women completed the program out of 45 who consented. There were no significant inter-group differences in baseline characteristics except that BMI was lower in the BFR group (p=.0223). Isotonic 1RM improved significantly more in the BFR group (28.3±4.8 kg) than in the control group (15.6±4.5 kg) (p=.0385). Isokinetic knee extensor strength scaled to body mass increased significantly more in the BFR group (0.07±0.03 Nm/kg) than in the control group (-0.05±0.03 Nm/kg) (p=.0048). Changes in quadriceps volume, leg press power, and knee-related pain did not significantly differ between groups. Conclusions: Addition of BFR to a 30% 1RM resistance training program was effective in increasing leg press and knee extensor strength in women at risk for knee OA, in comparison with the same program without BFR

  20. Flow Shear Effects in the Onset Physics of Resistive MHD Instabilities in Tokamaks. Final report

    SciTech Connect

    Brennan, Dylan P.

    2013-04-24

    The progress in this research centers around the computational analysis of flow shear effects in the onset of a 3/2 mode driven by a 1/1 mode in DIII-D equilibria. The initial idea was to try and calculate, via nonlinear simulations with NIMROD, the effects of rotation shear on driven 3/2 and 2/1 seed island physics, in experimentally relevant DIIID equilibria. The simulations indicated that very small seed islands were directly driven, as shielding between the sawtooth and the surfaces is significant at the high Lundquist numbers of the experiment. Instead, long after the initial crash the difference in linear stability of the 3/2, which remained prevalent despite the flattening of the core profiles from the sawtooth, contributed to a difference in the eventual seed island evolution. Essentially the seed islands grew or decayed long after the sawtooth crash, and not directly from it. Effectively the dominant 1/1 mode was found to be dragging the coupled modes surrounding it at a high rate through the plasma at their surfaces. The 1/1 mode is locked to the local frame of the plasma in the core, where the flow rate is greatest. The resonant perturbations at the surrounding surfaces propagate in the 'high slip regime' in the language of Fitzpatrick. Peaked flux averaged jxb forces (see Figs. 1 and 2) agree with localized flow modifications at the surfaces in analogy with Ebrahimi, PRL 2007. We track the mode into nonlinear saturation and have found oscillatory states in the evolution. During a visit (11/09) to Tulsa by R.J. LaHaye (GA), it became clear that similar oscillatory states are observed in DIII-D for these types of discharges.

  1. Biomass and vegetative characteristics of sawgrass grown in a tilting flume as part of a study of vegetative resistance to flow

    USGS Publications Warehouse

    Rybicki, N.B.; Reel, J.T.; Ruhl, H.A.; Gammon, P.T.; Carter, Virginia; Lee, J.K.

    1999-01-01

    The U.S. Geological Survey is studying vegetative resistance to flow in the south Florida Everglades as part of a multidisciplinary effort to restore the South Florida Ecosystem. In order to test the flow resistance of sawgrass, one of the dominant species in the Everglades, uniform, dense stands of sawgrass were grown in a tilting flume at Stennis Space Center, Mississippi. Depth of water in the flume was controlled by adding or removing metal plates at the downstream end of the flume. A series of experiments were conducted at various flow depths, and the velocity, flow depth, and water-surface slope were measured. During each set of experiments, the sawgrass was sampled in layers from the sediment water interface for vegetative characteristics, biomass, and leaf area index. The results of the vegetation sampling are summarized in a series of tables.

  2. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb-15.7Li

    NASA Astrophysics Data System (ADS)

    Krauss, Wolfgang; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-01

    In the HCLL blanket design, ferritic-martensitic steels are in direct contact with the flowing liquid breeder Pb-15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb-15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  3. Vortex motion and flux-flow resistivity in dirty multiband superconductors

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Vargunin, Artjom

    2016-12-01

    The conductivity of vortex lattices in multiband superconductors with high concentration of impurities is calculated based on microscopic kinetic theory at temperatures significantly smaller than the critical one. Both the limits of high and low fields are considered, when the magnetic induction is close to or much smaller than the critical field strength Hc 2, respectively. It is shown that in contrast to single-band superconductors, the resistive properties are not universal but depend on the pairing constants and ratios of diffusivities in different bands. The low-field magnetoresistance can strongly exceed the Bardeen-Stephen estimation in a quantitative agreement with experimental data for the two-band superconductor MgB2.

  4. Controls of channel morphology and sediment concentration on flow resistance in a large sand-bed river: A case study of the lower Yellow River

    NASA Astrophysics Data System (ADS)

    Ma, Yuanxu; Huang, He Qing

    2016-07-01

    Accurate estimation of flow resistance is crucial for flood routing, flow discharge and velocity estimation, and engineering design. Various empirical and semiempirical flow resistance models have been developed during the past century; however, a universal flow resistance model for varying types of rivers has remained difficult to be achieved to date. In this study, hydrometric data sets from six stations in the lower Yellow River during 1958-1959 are used to calibrate three empirical flow resistance models (Eqs. (5)-(7)) and evaluate their predictability. A group of statistical measures have been used to evaluate the goodness of fit of these models, including root mean square error (RMSE), coefficient of determination (CD), the Nash coefficient (NA), mean relative error (MRE), mean symmetry error (MSE), percentage of data with a relative error ≤ 50% and 25% (P50, P25), and percentage of data with overestimated error (POE). Three model selection criterions are also employed to assess the model predictability: Akaike information criterion (AIC), Bayesian information criterion (BIC), and a modified model selection criterion (MSC). The results show that mean flow depth (d) and water surface slope (S) can only explain a small proportion of variance in flow resistance. When channel width (w) and suspended sediment concentration (SSC) are involved, the new model (7) achieves a better performance than the previous ones. The MRE of model (7) is generally < 20%, which is apparently better than that reported by previous studies. This model is validated using the data sets from the corresponding stations during 1965-1966, and the results show larger uncertainties than the calibrating model. This probably resulted from the temporal shift of dominant controls caused by channel change resulting from varying flow regime. With the advancements of earth observation techniques, information about channel width, mean flow depth, and suspended sediment concentration can be

  5. Changes of renal blood flow after ESWL: assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index.

    PubMed

    Abd Ellah, Mohamed; Kremser, Christian; Pallwein, Leo; Aigner, Friedrich; Schocke, Michael; Peschel, Reinhard; Pedross, Florian; Pinggera, Germar-Michael; Wolf, Christian; Alsharkawy, Mostafa A M; Jaschke, Werner; Frauscher, Ferdinand

    2010-10-01

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12h before and 12h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p<0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p<0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  6. Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces.

    PubMed

    Edelblute, C M; Malik, M A; Heller, L C

    2016-12-01

    The use of nonthermal plasma in the clinic has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel plasma reactor based on a high current version of sliding discharge and operated by nanosecond voltage pulses without an applied gas flow. This modification is advantageous for both portability and convenience. Bacterial inactivation was determined within a chamber by direct quantification of colony Jing units. Plasma exposure significantly inhibited the growth of Escherichia coli and Staphylococcus epidermidis following a 1-min application (p<0.001). S. epidermidis was more susceptible to the plasma after a 5-min exposure compared to E. coli. Temperature and pH measurements taken immediately before and after plasma exposure determined neither heat nor pH changes play a role in bacterial inactivation. Because of the notable effect on S. epidermidis, the effect of plasma exposure on several isolates and strains of the related opportunistic pathogen Staphylococcus aureus was quantified. While S. aureus isolates and strains were efficiently inactivated on an agar surface, subsequent testing on other clinically relevant surfaces demonstrated that the inactivation level, although significant, was reduced. This reduction appeared to depend on both the surface texture and the surface moisture content. These findings suggest this novel plasma source lacking an applied gas flow has potential application for surface bacterial decontamination.

  7. Gas-Liquid flow characterization in bubble columns with various gas-liquid using electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Jin, Haibo; Yuhuan, Han; Suohe, Yang

    2009-02-01

    Electrical resistance tomography (ERT) is an advanced and new detecting technique that can measure and monitor the parameters of two-phase flow on line, such as gas-liquid bubble column. It is fit for the industrial process where the conductible medium serves as the disperse phase to present the key bubble flow characteristics in multi-phase medium. Radial variation of the gas holdup and mean holdups are investigated in a 0.160 m i. d. bubble column using ERT with two axial locations (Plane 1 and Plane 2). In all the experiments, air was used as the gas phase, tap water as liquid phase, and a series of experiments were done by adding KCl, ethanol, oil sodium, and glycerol to change liquid conductivity, liquid surface tension and viscosity. The superficial gas velocity was varied from 0.02 to 0.2 m/s. The effect of conductivity, surface tension, viscosity on the mean holdups and radial gas holdup distribution is discussed. The results showed that the gas holdup decrease with the increase of surface tension and increase with the increase of viscosity. Meanwhile, the settings of initial liquid conductivity slightly influence the gas holdup values, and the experimental data increases with the increase of the initial setting values in the same conditions.

  8. Fractal Analysis of Flow Resistance in Tree-Like Branching Networks with Roughened Microchannels

    NASA Astrophysics Data System (ADS)

    Yang, Shanshan; Fu, Huahua; Yu, Boming

    In this work, the effective average height of the roughness elements, the relative increase of the pressure gradients, the relative decrease of the permeability are derived based on the fractal geometry theory and technique for laminar flow through tree-like branching networks with roughened channels. The relationships among the effective average height, the structural parameters and pressure drops as well as permeability are studied. It is found that the total pressure drop across a tree-like branching network with roughened channels is increased by a factor of 1/(1 ‑ ɛ)4, and the permeability for the network with roughened channels is decreased by a factor of (1 ‑ ɛ)2, where ɛ is the relative roughness of surfaces of channels, compared to those with smooth channels.

  9. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance

    PubMed Central

    Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A

    2015-01-01

    Distinct microbial ecosystems have evolved to meet the challenges of indoor environments, shaping the microbial communities that interact most with modern human activities. Microbial transmission in food-processing facilities has an enormous impact on the qualities and healthfulness of foods, beneficially or detrimentally interacting with food products. To explore modes of microbial transmission and spoilage-gene frequency in a commercial food-production scenario, we profiled hop-resistance gene frequencies and bacterial and fungal communities in a brewery. We employed a Bayesian approach for predicting routes of contamination, revealing critical control points for microbial management. Physically mapping microbial populations over time illustrates patterns of dispersal and identifies potential contaminant reservoirs within this environment. Habitual exposure to beer is associated with increased abundance of spoilage genes, predicting greater contamination risk. Elucidating the genetic landscapes of indoor environments poses important practical implications for food-production systems and these concepts are translatable to other built environments. DOI: http://dx.doi.org/10.7554/eLife.04634.001 PMID:25756611

  10. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.

  11. Effect of Convergent and Divergent Boundaries on Flow Resistance through Porous Media

    NASA Astrophysics Data System (ADS)

    Bhanu Prakasham Reddy, N.; Krishnaiah, S.; Ramakrishna Reddy, M.

    2015-12-01

    An experimental investigation on the effect of convergent and divergent streamlines on the total energy loss in the porous medium and the effect on linear parameter, a, and non-linear parameter, b, for different ratios of radii of the test section was studied in a convergent and divergent permeameter. This paper presents the results of applying dimensional analysis to obtain a relationship between friction factor (fd) and Reynolds number (Rd) for flow in porous media with convergent and divergent boundaries, using pore size of the media (d) as characteristic length. Using friction factor (fd) and Reynolds number (Rd) relationship, theoretical curves, are developed and verified with the help of existing experimental data. In the present case, Mc Corquodale data of size 1.66 cm was used as media and water as fluid, to develop curves relating friction factor (fd) and Reynolds number (Rd) for different ratios of radii of the test section of convergent permeameter and divergent permeameter with the same convergent and divergent angle of 0.328 rad.

  12. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor.

    PubMed

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.

  13. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor

    PubMed Central

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow. PMID:26975052

  14. Vegetative resistance to flow in south Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, November, 1996

    USGS Publications Warehouse

    Carter, Virginia; Reel, J.T.; Rybicki, N.B.; Ruhl, H.A.; Gammon, P.T.; Lee, J.K.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the South Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetation sampling are (1) to provide detailed information on species composition, vegetation characteristics, vegetation structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetation was sampled at two sites in the Shark River Slough in November, 1996. The data collected and presented here include those for live and dead standing sawgrass, other dead material, periphyton biomass, vegetation characteristics and structure, and leaf area index.

  15. Vegetative resistance to flow in South Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, April 1996

    USGS Publications Warehouse

    Carter, Virginia; Ruhl, H.A.; Rybicki, N.B.; Reel, J.T.; Gammon, P.T.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the south Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetative sampling are (1) to provide detailed information on species composition, vegetative characteristics, vegetative structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetative sampling was conducted in the Shark River Slough in April, 1996. The data collected and presented here include live, dead, and periphyton biomass, vegetation characteristics and structure, and leaf area index.

  16. Brachial artery flow-mediated dilatation and carotid intima-media thickness in young ED patients with insulin resistance.

    PubMed

    Chen, S-F; Yao, F-J; Sun, X-Z; Wu, R-P; Huang, Y-P; Zheng, F-F; Yang, Q-Y; Han, D-Y; Xie, M-Q; Ding, M; Zhang, Y; Liu, G-H; Deng, C-H

    2016-09-01

    The evidence of a close relationship between cardiovascular disease and erectile dysfunction (ED) is well documented. The aim of this study is to investigate whether there is an early asymptomatic impairment of the peripheral vasculature in young ED patients without obvious cardiovascular disease. We studied a total of 261 ED patients (19-40 years old) and 40 age-matched healthy controls. All participants received questionnaires of cardiovascular risk factors and erectile function assessment, were subjected to lab tests of fasting blood sample, and underwent the ultrasonographic examination of brachial artery flow-mediated dilation (FMD) and carotid intima-media thickness (c-IMT). Insulin resistance (IR) was measured by the homeostasis model assessment of insulin resistance (HOMA-IR). Compared with normal human controls, FMD was significantly lower, whereas the average c-IMT was significantly greater in ED patients. An inverse correlation was found between FMD and mean c-IMT. The ED patients had significantly higher levels of fasting glucose, fasting insulin and HOMA-IR index, but showed relatively lower total testosterone and prolactin levels than the controls. Both FMD and c-IMT showed a significant correlation with International Index of Erectile Function-5 questionnaire (IIEF-5) score, age and HOMA-IR. Multivariate stepwise regression analysis demonstrated that age, HOMA-IR and IIEF-5 score were the risk factors associated with FMD and c-IMT. In conclusion, young ED patients in association with IR display diminished FMD and increased c-IMT. Furthermore, ED, HOMA-IR and age are independent predictors of the two subclinical atherosclerotic markers.

  17. Rapid detection of methicillin-resistant Staphylococcus aureus in pork using a nucleic acid-based lateral flow immunoassay.

    PubMed

    Zhang, Hongwei; Ma, Luyao; Ma, Lina; Hua, Marti Z; Wang, Shuo; Lu, Xiaonan

    2017-02-21

    Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the leading causes of food poisonings worldwide. Due to the high prevalence and extensive challenges in clinical treatment, a rapid and accurate detection method is required to differentiate MRSA from other S. aureus isolated from foods. Since the methicillin resistance of S. aureus is due to the acquisition of the mecA gene from staphylococcal chromosome cassette, the presence of the mecA gene is interpreted as a marker for the identification of MRSA. In this study, a low-cost lateral flow immunoassay (LFI) strip was used to detect the mecA amplicons subsequent to polymerase chain reaction (PCR). The specificity of this PCR-LFI assay was tested between MRSA and methicillin-susceptive S. aureus. Both the test line and control line were shown up on the LFI strip for MRSA, whereas only the control line developed for methicillin-susceptive S. aureus. The detection limit of PCR-LFI assay was 20fg for genomic DNA (100 times more sensitive than gel electrophoresis) and 2×10(0)CFU per 100g of pork products after enrichment at 37°C for 48h. The total detection time of using LFI was 3min, which was faster than the conventional electrophoresis (~45min). With the performance of PCR-LFI, 7 out of 42 S. aureus isolates were identified to be MRSA from imported pork products, which was consistent to the standardized minimum inhibitory concentration assay. This mecA-based PCR-LFI strip can be used for rapid and accurate detection of MRSA isolated from commercial pork products.

  18. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion.

    PubMed

    Neto, Gabriel R; Sousa, Maria S C; Costa e Silva, Gabriel V; Gil, Ana L S; Salles, Belmiro F; Novaes, Jefferson S

    2016-01-01

    The aim of this study was to compare the acute effect of resistance exercise (RE) with and without blood flow restriction (BFR) on heart rate (HR), double product (DP), oxygen saturation (SpO2 ) and rating of perceived exertion (RPE). Twenty-four men (21·79 ± 3·21 years) performed three experimental protocols in a random order (crossover): (i) high-intensity RE at 80% of 1RM (HI), (ii) low-intensity RE at 20% of 1RM (LI) and (iii) low-intensity RE at 20% of 1RM combined with partial blood flow restriction (LI+BFR). HR, blood pressure, SpO2 and RPE were assessed. The data were analysed using repeated measures analysis of variance and the Wilcoxon test for RPE. The results indicated that all protocols significantly increased HR, both immediately postexercise and during the subsequent 60 min (P<0·05), and postexercise DP (P<0·05), but there were no differences between protocols. The protocols of LI and LI+BFR reduced postexercise SpO2 (P = 0·033, P = 0·007), and the LI+BFR protocol presented a perception of greater exertion in the lower limbs compared with HI (P = 0·022). We conclude that RE performed at low intensity combined with BFR seems to reduce the SpO2 after exercise and increase HR and DP while maintaining a perception of greater exertion on the lower limbs.

  19. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland.

    PubMed

    Fang, Hansun; Zhang, Qin; Nie, Xiangping; Chen, Baowei; Xiao, Yuandong; Zhou, Qiubai; Liao, Wei; Liang, Ximei

    2017-04-01

    Wetland construction is a recommended domestic sewage treatment technique, owing to its simplicity and cost efficiency. Concentrations of 14 antibiotic resistance genes (ARGs) in an integrated surface flow constructed wetland (ICW) steadily operated over 10 years were investigated in the winter and summer. Domestic sewage was observed to be the primary source of ARGs in the ICW, and 77.8% and 59.5% removal rates of total targeted ARGs in the ICW were achieved in the winter and summer, respectively. Concentrations of five ARGs (sul1, tetA, tetC, tetE, and qnrS) in the winter and of six ARGs (sul1, sul3, tetA, tetC, tetE, and qnrS) in the summer were increased throughout the treatment process. Strong correlations were found between ARGs in water and those found in sediments, especially in the summer, indicating that ARGs may be exchanged between water and sediment. Strong positive correlations were also observed between concentrations of intI1 and several ARGs, implying that mobile genetic elements may play a key role in the dissemination of ARGs in an ICW. Our study results suggest aqueous ARGs could be effectively removed via an ICW and that ICWs can also act as reservoirs of specific ARGs.

  20. Impact of alpha- and beta-adrenergic receptor blockers on fractional flow reserve and index of microvascular resistance.

    PubMed

    Barbato, Emanuele; Sarno, Giovanna; Berza, Catalina Trana; Di Gioia, Giuseppe; Bartunek, Jozef; Vanderheyden, Marc; Di Serafino, Luigi; Wijns, William; Trimarco, Bruno; De Bruyne, Bernard

    2014-12-01

    We investigated the effect of β- and α-adrenergic blockers on fractional flow reserve (FFR) and index of microvascular resistance (IMR). In 43 patients (pts) with intermediate stenoses, we measured FFR and IMR before and after nonselective β-blocker propranolol (30 μg/kg, n = 20) and selective β1-blocker metoprolol (40 μg/kg, n = 23) IC; (b) In additional 21 pts after percutaneous coronary intervention (PCI), FFR and IMR were measured before and after α-blocker phentolamine (3 mg) IC. Neither propranolol nor metoprolol changed values of FFR and IMR. Phentolamine slightly decreased FFR (from 0.88 ± 0.05 to 0.87 ± 0.06, p = 0.025) but did not change IMR. FFR decreased from >0.80 to ≤0.80 in 3 pts (14%), but in none, the value decreased to <0.75. β-blockers do not affect FFR and IMR in intermediate stenoses. After PCI, a mild decrease in FFR occurs after α-blockers, though of limited clinical impact.

  1. Superfluid Density and Flux-Flow Resistivity Measurements of Multiple-Band Superconductor β-PdBi2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsunori; Imai, Yoshinori; Maeda, Atsutaka

    β -PdBi2 (Tcmax = 5 . 4 K) is a newcomer of the multiple-band superconductors, revealed by the specific heat and the upper critical field measurements, and the angle-resolved photoemission spectroscopy. In addition, authors of ref. observed the spin-polarized band dispersion and proposed that β-PdBi2 is a candidate of topological superconductor. However, there is less information on superconducting properties so far. In order to clarify the superconducting gap function, we measured the temperature (T) and magnetic field (B) dependence of microwave complex conductivity of β-PdBi2 single crystals. We found that the superfluid density exhibits the thermally activated T dependence, manifesting the absence of nodes in the superconducting gaps. We also found that the flux-flow resistivity increased with B with downward-convex shape. Based on some theories, we considered that such a behavior originated from the backflow of supercurrents around vortices reflecting rather small Ginzburg-Landau parameter (κ ~= 5). This work was supported by the JSPS KAKENHI (Grant Numbers 15K17697 and 26-9315), and the JSPS Research Fellowship for Young Scientists.

  2. Relations among Adiposity and Insulin Resistance with Flow-Mediated Dilation, Carotid Intima-Media Thickness, and Arterial Stiffness in Children

    PubMed Central

    Ryder, Justin R.; Dengel, Donald R.; Jacobs, David R.; Sinaiko, Alan; Kelly, Aaron S.; Steinberger, Julia

    2015-01-01

    Objective To determine the associations of adiposity and insulin resistance with measures of vascular structure and function in children. Study design A cross-sectional study included 252 children (age 15.1±2.4 yrs; body mass index (BMI)-percentile 68.2±26.5%; Tanner 2–5). Measurements of body fat percentage (BF%) were obtained with dual-energy X-ray absorptiometry (DXA) and visceral fat (VAT) with computed tomography (CT). Insulin resistance was measured with hyperinsulinemic euglycemic clamp. Vascular measurements for endothelial function (brachial artery flow-mediated dilation [FMD]), vascular structure (carotid intima-media thickness [cIMT]), vascular stiffness (carotid incremental elastic modulus [cIEM]), and pulse wave velocity (PWV) were analyzed by tertiles of adiposity and insulin resistance. Additional analyses with ANCOVA and linear regression, were adjusted for Tanner, sex, race, and family relationship; FMD was also adjusted for baseline artery diameter. Results FMD was positively associated with high adiposity (BMI, BF%, and VAT) (p<0.01 all). Insulin resistance was not associated with FMD. cIMT was significantly, positively related to obesity, VAT, and insulin resistance (p<0.05 all). No differences in cIEM and PWV were observed in relation to adiposity or insulin resistance. Conclusions The findings suggest that adiposity is associated with higher FMD, and insulin resistance and VAT are associated with higher cIMT in children. Further research is needed to clarify the progression of these relations. PMID:26427963

  3. A Method for Partitioning Surface and Subsurface Flow Using Rainfall Simulaton and Two-Dimensional Surface Electrical Resistivity Imaging

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Miller, S. N.; Carr, B. J.; Holbrook, W. S.

    2014-12-01

    In semi-arid rangeland environments understanding how surface and subsurface flow processes and their interactions are influenced by watershed and rainfall characteristics is critical. However, it is difficult to resolve the temporal variations between mechanisms controlling these processes and challenging to obtain field measurements that document their interactions. Better insight into how these complex systems respond hydrologically is necessary in order to refine hydrologic models and decision support tools. We are conducting field studies integrating high resolution, two-dimensional surface electrical resistivity imaging (ERI) with variable intensity rainfall simulation, to quantify real-time partitioning of rainfall into surface and subsurface response. These studies are being conducted at the hillslope scale on long-term runoff plots on four different ecological sites in the Upper Crow Creek Watershed in southeastern Wyoming. Variable intensity rainfall rates were applied using the Walnut Gulch Rainfall Simulator in which intensities were increased incrementally from 49 to 180 mm hr-1 and steady-state runoff rates for each intensity were measured. Two 13.5 m electrode arrays at 0.5 m spacing were positioned on the surface perpendicular to each plot and potentials were measured at given time intervals prior to, during and following simulations using a dipole-dipole array configuration. The configuration allows for a 2.47 m depth of investigation in which magnitude and direction of subsurface flux can be determined. We used the calculated steady state infiltration rates to quantify the variability in the partial area runoff response on the ecological sites. Coupling this information with time-lapse difference inversions of ERI data, we are able to track areas of increasing and decreasing resistivity in the subsurface related to localized areas of infiltration during and following rainfall events. We anticipate implementing this method across a variety of

  4. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress?

    PubMed

    Neto, Gabriel R; Novaes, Jefferson S; Salerno, Verônica P; Gonçalves, Michel M; Batista, Gilmário R; Cirilo-Sousa, Maria S

    2017-01-31

    The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72-96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.

  5. Flow motion dynamics of microvascular blood flow and oxygenation: Evidence of adaptive changes in obesity and type 2 diabetes mellitus/insulin resistance.

    PubMed

    Clough, Geraldine F; Kuliga, Katarzyna Z; Chipperfield, Andrew J

    2017-02-01

    An altered spatial heterogeneity and temporal stability of network perfusion can give rise to a limited adaptive ability to meet metabolic demands. Derangement of local flow motion activity is associated with reduced microvascular blood flow and tissue oxygenation, and it has been suggested that changes in flow motion activity may provide an early indicator of declining, endothelial, neurogenic, and myogenic regulatory mechanisms and signal the onset and progression of microvascular pathophysiology. This short conference review article explores some of the evidence for altered flow motion dynamics of blood flux signals acquired using laser Doppler fluximetry in the skin in individuals at risk of developing or with cardiometabolic disease.

  6. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  7. Acute Effects of Resistance Exercise With Continuous and Intermittent Blood Flow Restriction on Hemodynamic Measurements and Perceived Exertion.

    PubMed

    Neto, Gabriel R; Novaes, Jefferson S; Salerno, Verônica P; Gonçalves, Michel M; Piazera, Bruna K L; Rodrigues-Rodrigues, Thais; Cirilo-Sousa, Maria S

    2016-11-11

    This study compared the acute effects of low-intensity resistance exercise (RE) sessions for the upper limb with continuous and intermittent blood flow restriction (BFR) and high-intensity RE with no BFR on lactate, heart rate, double product (DP; heart rate times systolic blood pressure), and perceived exertion (RPE). Ten recreationally trained men (1-5 years strength training; age mean = 19 ± 0.82 years) performed three experimental protocols in random order: (a) low-intensity RE at 20% one-repetition maximum (1RM) with intermittent BFR (LI + IBFR), (b) low-intensity RE at 20% 1RM with continuous BFR (LI + CBFR), and (c) high-intensity RE at 80% 1RM. The three RE protocols increased lactate and DP at the end of the session (p < .05) and increased heart rate at the end of each exercise (p < .05). However, greater local and general RPE was observed in the high-intensity protocol compared with LI + IBFR and LI + CBFR in the lat pull-down, triceps curl, and biceps curl exercises (p < .05). A greater percentage change in DP and lactate was observed for continuous BFR compared with intermittent BFR; however, RPE was lower for intermittent BFR. In conclusion, intermittent BFR appears to be an excellent option for physical training because it did not differ significantly from continuous BFR in any variable and promoted a lower percentage change in DP and RPE.

  8. A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds.

    PubMed

    Gressel, Jonathan; Valverde, Bernal E

    2009-07-01

    Transgenic herbicide-resistant rice is needed to control weeds that have evolved herbicide resistance, as well as for the weedy (feral, red) rice problem, which has been exacerbated by shifting to direct seeding throughout the world-firstly in Europe and the Americas, and now in Asia, as well as in parts of Africa. Transplanting had been the major method of weedy rice control. Experience with imidazolinone-resistant rice shows that gene flow to weedy rice is rapid, negating the utility of the technology. Transgenic technologies are available that can contain herbicide resistance within the crop (cleistogamy, male sterility, targeting to chloroplast genome, etc.), but such technologies are leaky. Mitigation technologies tandemly couple (genetically link) the gene of choice (herbicide resistance) with mitigation genes that are neutral or good for the crop, but render hybrids with weedy rice and their offspring unfit to compete. Mitigation genes confer traits such as non-shattering, dwarfism, no secondary dormancy and herbicide sensitivity. It is proposed to use glyphosate and glufosinate resistances separately as genes of choice, and glufosinate, glyphosate and bentazone susceptibilities as mitigating genes, with a six-season rotation where each stage kills transgenic crop volunteers and transgenic crop x weed hybrids from the previous season.

  9. Determining resistivity of a formation adjacent to a borehole having casing by generating constant current flow in portion of casing and using at least two voltage measurement electrodes

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.

  10. Exceptional suppression of flux-flow resistivity in FeSe0.4Te0.6 by back-flow from excess Fe atoms and Se /Te substitutions

    NASA Astrophysics Data System (ADS)

    Okada, Tatsunori; Nabeshima, Fuyuki; Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2015-02-01

    We measured the microwave surface impedance of FeSe0.4Te0.6 single crystals with and without external magnetic fields. The superfluid density exhibited a quadratic temperature dependence, indicating a strong pair-breaking effect. The flux-flow resistivity behaved as ρf(B ≪Bc 2) /ρn=α B /Bc 2 . The observed α value of ≈0.66 was considerably smaller than that of other Fe-based materials (α ≥1 ) and was attributed to a back-flow of superfluids remarkable in disordered superconductors. This is an observation of the back-flow phenomenon caused by an origin other than the vortex pinning in multiple-band systems.

  11. A Laboratory Approach Relating Complex Resistivity Observations to Flow and Transport in Saturated and Unsaturated Hydrologic Regimes

    SciTech Connect

    Martins, S A; Daily, W D; Ramirez, A L

    2002-01-31

    Subsurface imaging technology, such as electric resistance tomography (ERT), is rapidly improving as a means for characterizing some soil properties of the near-surface hydrologic regime. While this information can be potentially useful in developing hydrologic models of the subsurface that are required for contaminant transport investigations, an image alone of the subsurface soil regime gives little or no information about how the site will respond to groundwater flow or contaminant transport. In fact, there is some question that tomographic imaging of soils alone can even provide meaningful values of hydraulic properties, such as the permeability structure, which is critical to estimates of contaminant transport at a site. The main objective of this feasibility study was to initiate research on electrical imaging not just as a way to characterize the soil structure by mapping different soil types at a site but as a means of obtaining quantitative information about how a site will respond hydrologically to an infiltration event. To this end, a scaled system of electrode arrays was constructed that simulates the subsurface electrode distribution used at the LLNL Vadose Zone Observatory (VZO) where subsurface imaging of infiltration events has been investigated for several years. The electrode system was immersed in a 10,000-gallon tank to evaluate the fundamental relationship between ERT images and targets of a given volume that approximate infiltration-induced conductivity anomalies. With LDRD funds we have explored what can be initially learned about porous flow and transport using two important electrical imaging methods--electric resistance tomography (ERT) and electric impedance tomography (EIT). These tomographic methods involve passing currents (DC or AC) between two electrodes within or between electrode arrays while measuring the electric potential at the remaining electrodes. With the aid of a computer-based numerical inversion scheme, the potentials are

  12. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

    PubMed

    Nauen, Ralf; Wölfel, Katharina; Lueke, Bettina; Myridakis, Antonis; Tsakireli, Dimitra; Roditakis, Emmanouil; Tsagkarakou, Anastasia; Stephanou, Euripides; Vontas, John

    2015-06-01

    Cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is a major sucking pest in many agricultural and horticultural cropping systems globally. The frequent use of insecticides of different mode of action classes resulted in populations resisting treatments used to keep numbers under economic damage thresholds. Recently it was shown that resistance to neonicotinoids such as imidacloprid is linked to the over-expression of CYP6CM1, a cytochrome P450 monooxygenase detoxifying imidacloprid and other neonicotinoid insecticides when recombinantly expressed in insect cells. However over-expression of CYP6CM1 is also known to confer cross-resistance to pymetrozine, an insecticide not belonging to the chemical class of neonicotinoids. In addition we were able to demonstrate by LC-MS/MS analysis the metabolisation of pyriproxyfen by recombinantly expressed CYP6CM1. Based on our results CYP6CM1 is one of the most versatile detoxification enzymes yet identified in a pest of agricultural importance, as it detoxifies a diverse range of chemical classes used to control whiteflies. Therefore we developed a field-diagnostic antibody-based lateral flow assay which detects CYP6CM1 protein at levels providing resistance to neonicotinoids and other insecticides. The ELISA based test kit can be used as a diagnostic tool to support resistance management strategies based on the alternation of different modes of action of insecticides.

  13. Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry

    SciTech Connect

    Bonaly, J.; Brochiero, E.

    1994-01-01

    Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

  14. Increase in bile flow and biliary excretion of glutathione-derived sulfhydryls in rats by drug-metabolizing enzyme inducers is mediated by multidrug resistance protein 2.

    PubMed

    Johnson, David R; Habeebu, Sultan S M; Klaassen, Curtis D

    2002-03-01

    Glutathione (GSH) is an important cellular constituent for normal liver homeostasis. Certain drug-metabolizing enzyme inducers (i.e., phenobarbital [PB] and pregnenolone-16alpha-carbonitrile [PCN]) increase biliary excretion of GSH-derived sulfhydryls (SH) as well as bile flow, whereas other drug-metabolizing enzyme inducers (i.e., 3-methylcholanthrene [3MC] and benzo(a)pyrene [BaP]), do not. The purpose of the study was to determine whether rat multidrug resistance protein 2 (Mrp2) is the inducible transporter responsible for increasing biliary SH excretion and bile flow. Sprague-Dawley (SD) rats were injected ip daily for 4 days with PB, PCN, 3MC, BaP, or vehicle; Mrp2-null Eisai hyperbilirubinemic (EHBR) rats were injected ip daily for 4 days with PCN or vehicle. Although no drug-metabolizing enzyme inducer altered hepatic GSH in SD rats, PB and PCN significantly increased the rate of biliary SH excretion and bile flow. Neither 3MC nor BaP affected the biliary SH excretion rate or bile flow. In control EHBR rats, despite elevated hepatic GSH, the rate of biliary SH excretion was almost completely eliminated and bile flow was dramatically reduced compared with SD rats. Furthermore, PCN treatment did not affect bile flow or the biliary SH excretion rate in EHBR rats. PB and PCN also increased Mrp2 protein levels, but 3MC and BaP did not. None of the drug-metabolizing enzyme inducers tested significantly increased Mrp2 mRNA levels. PCN increased Mrp2 protein, but not Mrp2 mRNA, in a time-dependent manner. In conclusion, Mrp2 is the inducible efflux transporter responsible for increased biliary SH excretion and bile flow after administration of some drug-metabolizing enzyme inducers.

  15. Fasciola hepatica demonstrates high levels of genetic diversity, a lack of population structure and high gene flow: possible implications for drug resistance.

    PubMed

    Beesley, Nicola J; Williams, Diana J L; Paterson, Steve; Hodgkinson, Jane

    2017-01-01

    Fasciola hepatica, the liver fluke, is a trematode parasite of considerable economic importance to the livestock industry and is a re-emerging zoonosis that poses a risk to human health in F. hepatica-endemic areas worldwide. Drug resistance is a substantial threat to the current and future control of F. hepatica, yet little is known about how the biology of the parasite influences the development and spread of resistance. Given that F. hepatica can self-fertilise and therefore inbreed, there is the potential for greater population differentiation and an increased likelihood of recessive alleles, such as drug resistance genes, coming together. This could be compounded by clonal expansion within the snail intermediate host and aggregation of parasites of the same genotype on pasture. Alternatively, widespread movement of animals that typically occurs in the UK could promote high levels of gene flow and prevent population differentiation. We identified clonal parasites with identical multilocus genotypes in 61% of hosts. Despite this, 84% of 1579 adult parasites had unique multilocus genotypes, which supports high levels of genotypic diversity within F. hepatica populations. Our analyses indicate a selfing rate no greater than 2%, suggesting that this diversity is in part due to the propensity for F. hepatica to cross-fertilise. Finally, although we identified high genetic diversity within a given host, there was little evidence for differentiation between populations from different hosts, indicating a single panmictic population. This implies that, once those emerge, anthelmintic resistance genes have the potential to spread rapidly through liver fluke populations.

  16. Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1979-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  17. Elevated-temperature flow strength, creep resistance and diffusion welding characteristics of Ti-gAl-2Nb-1Ta-0.8Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Moore, T. J.

    1977-01-01

    A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.

  18. The effect of vitamin C and/or warmth on forearm blood flow and vascular resistance in sickle cell anaemia subjects.

    PubMed

    Jaja, S I; Aisuodionwe, S I; Kehinde, M O; Gbenebitse, S

    2002-06-01

    This study seeks to examine the effects of vitamin C supplementation or/and warmth on forearm blood flow (FBF) and forearm vascular resistance (FVR) in sickle cell anaemia (SCA) subjects in the steady state. Sixteen (16) SCA subjects of both sexes (mean age, 23.4+/-1.5 yrs.) were studied. Blood pressure (BP, mm Hg) and FBF (ml/min) measurements were made at rest, with warmth stimulation, after vitamin C supplementation for 6 weeks at 300 mg per day and with warmth stimulation after vitamin C supplementation. Warmth stimulation was induced by immersing the left foot in a bowl of water at a temperature of 40 degrees C for 2 minutes. Forearm blood flow (FBF) [corrected] was measured by means of a forearm plethysmograph. Forearm vascular resistance (FVR, arbitrary units) was calculated by dividing mean arterial pressure (MAP) with FBF. Warmth stimulation at 40 C significantly decreased systolic blood pressure (SBP) (p<0.05), diastolic blood pressure (DBP) (p<0.01), MAP (p<0.01) and FVR (p<0.01) but significantly increased FBF (p<0.01). Vitamin C supplementation also significantly reduced SBP (p<0.001), DBP (p<0.01), MAP (p<0.01) and FVR (p<0.05) but significantly increased FBF (p<0.01). After vitamin C supplementation, warmth stimulation potentiated the reduction in SBP (p<0.001), DBP (p<0.01), FVR (p <0.01) and increase in FBF (p<0.01). In conclusion, warmth stimulation at 40 [corrected] degrees C or vitamin C supplementation caused a decrease in arterial blood pressure, forearm vascular resistance and increase in forearm blood flow in sickle cell anaemia subjects. Pretreatment with vitamin C enhanced the vasodilator effect of warmth.

  19. Comment on Measuring the flow resistance of submerged grass by C. A. M. E. Wilson and M. S. Horritt, Hydrological Processes 16: 2589-2598

    NASA Astrophysics Data System (ADS)

    Carollo, Francesco Giuseppe; Ferro, Vito

    2005-02-01

    In this short note, the experimental data of Wilson and Horritt (2002. Hydrological Processes 16: 2589-2598), jointly with the measurements by Kouwen et al. (1969. Journal of Irrigation and Drainage Division, ASCE 95: 329-342) and by Raffaelli et al. (2002 In Proceedings XXVIII Convegno di Idraulica e Costruzioni Idrauliche, Cosenza, Italy; 223-230), are firstly used to test Kouwen's approach. All experimental data are then used to calibrate a flow resistance equation that was theoretically deduced by dimensional analysis and self-similarity theory.

  20. Nitrogen-rich plasma-polymerized coatings on PET and PTFE surfaces improve endothelial cell attachment and resistance to shear flow.

    PubMed

    Gigout, Anne; Ruiz, Juan-Carlos; Wertheimer, Michael R; Jolicoeur, Mario; Lerouge, Sophie

    2011-08-11

    Low seeding efficiency and poor cell retention under flow-induced shear stress limit the effectiveness of in vitro endothelialization strategies for small-diameter vascular grafts. Primary-amine-rich plasma-polymerized coatings (PPE:N) deposited using low- and atmospheric-pressure plasma discharges on PET and PTFE are evaluated for their ability to improve endothelial cells' kinetics and strength of attachment. PPE:N coatings increase cell adhesion and adhesion rate, spreading, focal adhesion, and resistance to flow-induced shear compared with bare and gelatin-coated PET and PTFE. In particular, about 90% of the cells remain on coated surfaces after 1 h exposure to shear. These coatings, therefore, appear as a promising versatile approach to improve cell seeding strategies for vascular grafts.

  1. Increased Resistance to Flow and Ventilator Failure Secondary to Faulty CO2 Absorbent Insert Not Detected During Automated Anesthesia Machine Check: A Case Report.

    PubMed

    Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman

    2017-02-01

    Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.

  2. Integration of Electric Resistivity Profile and Infiltrometer Measurements to Calibrate a Numerical Model of Vertical Flow in Fractured and Karstic Limestone.

    NASA Astrophysics Data System (ADS)

    Caputo, M. C.; de Carlo, L.; Masciopinto, C.; Nimmo, J. R.

    2007-12-01

    Karstic and fractured aquifers are among the most important drinking water resources. At the same time, they are particularly vulnerable to contamination. A detailed scientific knowledge of the behavior of these aquifers is essential for the development of sustainable groundwater management concepts. Due to their special characteristics of extreme anisotropy and heterogeneity, research aimed at a better understanding of flow, solute transport, and biological processes in these hydrogeologic systems is an important scientific challenge. This study integrates a geophysical technique with an infiltrometer test to better calibrate a mathematical model that quantifies the vertical flow in karstic and fractured limestone overlying the deep aquifer of Alta Murgia (Southern Italy). Knowledge of the rate of unsaturated zone percolation is needed to investigate the vertical migration of pollutants and the vulnerability of the aquifer. Sludge waste deposits in the study area have caused soil-subsoil contamination with toxics. The experimental test consisted of infiltrometer flow measurements, more commonly utilized for unconsolidated granular porous media, during which subsoil electric resistivity data were collected. A ring infiltrometer 2 m in diameter and 0.3 m high was sealed to the ground with gypsum. This large diameter yielded infiltration data representative of the anisotropic and heterogeneous rock, which could not be sampled adequately with a small ring. The subsurface resistivity was measured using a Wenner-Schlumberger electrode array. Vertical movement of water in a fracture plane under unsaturated conditions has been investigated by means of a numerical model. The finite difference method was used to solve the flow equations. An internal iteration method was used at every time step to evaluate the nodal value of the pressure head, in agreement with the mass- balance equation and the characteristic functional relationships of the coefficients.

  3. Calibrating remotely sensed river bathymetry in the absence of field measurements: Flow REsistance Equation-Based Imaging of River Depths (FREEBIRD)

    NASA Astrophysics Data System (ADS)

    Legleiter, Carl J.

    2015-04-01

    Remote sensing could enable high-resolution mapping of long river segments, but realizing this potential will require new methods for inferring channel bathymetry from passive optical image data without using field measurements for calibration. As an alternative to regression-based approaches, this study introduces a novel framework for Flow REsistance Equation-Based Imaging of River Depths (FREEBIRD). This technique allows for depth retrieval in the absence of field data by linking a linear relation between an image-derived quantity X and depth d to basic equations of open channel flow: continuity and flow resistance. One FREEBIRD algorithm takes as input an estimate of the channel aspect (width/depth) ratio A and a series of cross-sections extracted from the image and returns the coefficients of the X versus d relation. A second algorithm calibrates this relation so as to match a known discharge Q. As an initial test of FREEBIRD, these procedures were applied to panchromatic satellite imagery and publicly available aerial photography of a clear-flowing gravel-bed river. Accuracy assessment based on independent field surveys indicated that depth retrieval performance was comparable to that achieved by direct, field-based calibration methods. Sensitivity analyses suggested that FREEBIRD output was not heavily influenced by misspecification of A or Q, or by selection of other input parameters. By eliminating the need for simultaneous field data collection, these methods create new possibilities for large-scale river monitoring and analysis of channel change, subject to the important caveat that the underlying relationship between X and d must be reasonably strong.

  4. Impact of accuracy of fractional flow reserve to reduction of microvascular resistance after intracoronary adenosine in patients with angina pectoris or non-ST-segment elevation myocardial infarction.

    PubMed

    Niccoli, Giampaolo; Falcioni, Elena; Cosentino, Nicola; Fracassi, Francesco; Roberto, Marco; Fabretti, Alessandro; Panebianco, Mario; Scalone, Giancarla; Burzotta, Francesco; Trani, Carlo; Leone, Antonio Maria; Davies, Justin; Crea, Filippo

    2014-05-01

    Our study aimed to elucidate mechanisms underlying discordance between fractional flow reserve (FFR) and hyperemic stenosis resistance (hSR) in some patient subsets. To do this, we enrolled 30 consecutive patients with stable angina or non-ST elevation myocardial infarction (non-STEMI) and with a nonculprit intermediate coronary lesion (40% to 70%) by coronary angiography. We measured aortic pressure, flow velocity, and pressure distal to lesion simultaneously at basal level and during adenosine-induced (fixed intracoronary dose of 120 μg) hyperemia using a dual-sensor-equipped guidewire. Microvascular resistance (MR; pressure distal to lesion/flow velocity, mm Hg/cm/s) and variation (Δ) in MR levels were calculated both at baseline and after hyperemia, whereas FFR (cutoff <0.80) and hSR [(aortic pressure - pressure distal to lesion)/flow velocity, cutoff >0.80 mm Hg/cm/s] were assessed after intracoronary adenosine. Twenty-three patients (76.7%) showed concordance and 7 patients (23.3%) showed discordance between FFR and hSR (all cases with FFR >0.80 and hSR >0.80). Discordant patients presented more frequently with non-STEMI (85.7% vs 39.1%, p = 0.04), significantly higher C-reactive protein serum levels (median [interquartile range] 5.9 [5.1 to 6.8] vs 4.9 [3.7 to 6.2] mg/L, p = 0.007), and lower ΔMR (p = 0.03) values compared with concordant patients. In conclusion, patients with non-STEMI and those with increased C-reactive protein levels show a lower reduction in MR after intracoronary adenosine-induced hyperemia, leading to FFR underestimation.

  5. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries.

    PubMed

    Liu, Yanping; Zhao, Hongtao; Li, Hongwei; Kalyanaraman, B; Nicolosi, Alfred C; Gutterman, David D

    2003-09-19

    We previously showed that hydrogen peroxide (H2O2) contributes to flow-induced dilation in human coronary resistance arteries (HCRAs); however, the source of this H2O2 is not known. We hypothesized that the H2O2 is derived from superoxide (O2*-) generated by mitochondrial respiration. HCRAs were dissected from right atrial appendages obtained from patients during cardiac surgery and cannulated with micropipettes. H2O2-derived radicals and O2*- were detected by electron spin resonance (ESR) using BMPO as the spin trap and by histofluorescence using hydroethidine (HE, 5 micromol/L) and dichlorodihydrofluorescein (DCFH, 5 micromol/L). Diameter changes to increases in pressure gradients (20 and 100 cm H2O) were examined in the absence and the presence of rotenone (1 micromol/L), myxothiazol (100 nmol/L), cyanide (1 micromol/L), mitochondrial complex I, III, and IV inhibitors, respectively, and apocynin (3 mmol/L), a NADPH oxidase inhibitor. At a pressure gradient of 100 cm H2O, ubisemiquinone and hydroxyl radicals were detected from effluents of vessels. Including superoxide dismutase and catalase in the perfusate reduced the ESR signals. Relative ethidium and DCFH fluorescence intensities in HCRAs exposed to flow were enhanced (1.45+/-0.15 and 1.57+/-0.12, respectively compared with no-flow) and were inhibited by rotenone (0.87+/-0.17 and 0.95+/-0.07). Videomicroscopic studies showed that rotenone and myxothiazol blocked flow-induced dilation (% max. dilation at 100 cm H2O: rotenone, 74+/-3% versus 3+/-13%; myxothiazol, 67+/-3% versus 28+/-4%; P<0.05). Neither cyanide nor apocynin altered flow-induced dilation. These results suggest that shear stress induced H2O2 formation, and flow-induced dilation is derived from O2*- originating from mitochondrial respiration.

  6. Transfer of tylosin resistance between Enterococcus spp. during continuous-flow culture of feral or domestic porcine gut microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed populations of domesticated and feral pig gut microbes (RPCF and FC, respectively) were grown in continuous culture to investigate the effects of tylosin on antimicrobial resistance. Cultures established in steady state were inoculated with 9.7 log10 colony forming units (CFU) of a tylosin-re...

  7. Fracture Network and Fluid Flow Imaging for Enhanced Geothermal Systems Applications from Multi-Dimensional Electrical Resistivity Structure

    SciTech Connect

    Wannamaker, Philip E.

    2016-03-26

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problem and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.

  8. The Effect of Small Bubbles on Resistance Reduction of Water Flow in Co-axial Cylinders with an Inner Rotating Cylinder

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Farahat, S.; Poor, M. J.

    2015-04-01

    Drawing on effective experiments and measurement technology, the present study seeks to discuss the interaction between liquid turbulent boundary layer and a crowded group of small bubbles. Experiments are carried out using a circulating water Couette-Taylor system especially designed for small bubble experiments. Couette-Taylor system has a detailed test section, which allows measuring the effect of persistent head resistance reduction caused by small bubbles in the streamwise direction. Pressure difference is measured using sensors which are mounted at the bottom and top of the system to calculate head resistance. Pressure difference and bubble behavior are measured as a function of rotational Reynolds number up to 67.8 × 103. Small bubbles are injected constantly into annulus gap using two injectors installed at the bottom of the system and they are lifted through an array of vertical cells. Water is used to avoid uncertain interfacial property of bubbles and to produce relatively mono-sized bubble distributions. The bubble sizes range approximately from 0.9 to 1.4 mm, which are identified by the image processing method. The results suggest that head resistance is decreased after the injection of small bubble in all rotational Reynolds number under study, changing from 7,000 to 67.8 × 103. Moreover, void fraction is increased from 0 to 10.33 %. A head resistance reduction greater than 75 % was achieved in this study after the maximum measured volume of air fraction was injected into fluid flow while bubbles were distinct without making any gas layer.

  9. Effect of Erbium substitution on temperature and field dependence of thermally activated flux flow resistance in Bi-2212 superconductor

    NASA Astrophysics Data System (ADS)

    Paladhi, D.; Mandal, P.; Sahoo, R. C.; Giri, S. K.; Nath, T. K.

    2016-12-01

    Thermally activated flux flow (TAFF) regime of Er doped Bi2Sr2Ca1-xErxCu2O8+δ (x=0.0, 0.1, 0.3) polycrystalline systems have been investigated using magneto-transport measurements up to 70 kOe magnetic field. High quality single phase samples have been prepared by standard solid state reaction method. The activation energy or pinning strength (U0) have been calculated using thermally activated flux flow (TAFF) model by linear fitting from the semi-logarithmic curve of ln ρ vs 1/T. It has been observed that activation energy (U0) decreases with Er substitution and U0 follows power law dependence with magnetic field for all three samples. Irreversibility lines (IL) have been drawn from the magneto-transport data for all three samples and it is observed that IL shifts to lower temperature with higher Er concentration. It is confirmed from the above results that pinning strength becomes weaker with Er doping. Finally, the variation of U0 have been shown with temperature by re-plotting -T(ln (ρ/ρ100)) vs T for three samples showing non-linear dependence with temperature.

  10. Field testing, gene flow assessment and pre-commercial studies on transgenic Solanum tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina.

    PubMed

    Bravo-Almonacid, Fernando; Rudoy, Valeria; Welin, Bjorn; Segretin, María Eugenia; Bedogni, María Cecilia; Stolowicz, Fabiana; Criscuolo, Marcelo; Foti, Marcelo; Gomez, Maximiliano; López, Mariana; Serino, Germán; Cabral, Silvia; Dos Santos, Cristina; Huarte, Marcelo; Mentaberry, Alejandro

    2012-10-01

    Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.

  11. Berberine Antifungal Activity in Fluconazole-Resistant Pathogenic Yeasts: Action Mechanism Evaluated by Flow Cytometry and Biofilm Growth Inhibition in Candida spp.

    PubMed Central

    da Silva, Anderson Ramos; de Andrade Neto, João Batista; da Silva, Cecília Rocha; Campos, Rosana de Sousa; Costa Silva, Rose Anny; Freitas, Daniel Domingues; do Nascimento, Francisca Bruna Stefany Aires; de Andrade, Larissa Nara Dantas; Sampaio, Letícia Serpa; Grangeiro, Thalles Barbosa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico

    2016-01-01

    The incidence of fungal infections and, in particular, the incidence of fungal antibiotic resistance, which is associated with biofilm formation, have significantly increased, contributing to morbidity and mortality. Thus, new therapeutic strategies need to be developed. In this context, natural products have emerged as a major source of possible antifungal agents. Berberine is a protoberberine-type isoquinoline alkaloid isolated from the roots, rhizomes, and stem bark of natural herbs, such as Berberis aquifolium, Berberis vulgaris, Berberis aristata, and Hydrastis canadensis, and of Phellodendron amurense. Berberine has been proven to have broad antibacterial and antifungal activity. In the present study, the potential antifungal effect of berberine against fluconazole-resistant Candida and Cryptococcus neoformans strains, as well as against the biofilm form of Candida spp., was assessed. The antifungal effect of berberine was determined by a broth microdilution method (the M27-A3 method of the Clinical and Laboratory Standards Institute) and flow cytometry techniques, in which the probable mechanism of action of the compound was also assessed. For biofilm assessment, a colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine the susceptibility of sessile cells. The isolates used in the study belonged to the Laboratory of Bioprospection and Experiments in Yeast (LABEL) of the Federal University of Ceará. After 24 and 72 h, fluconazole-resistant Candida and Cryptococcus neoformans strains showed berberine MICs equal to 8 μg/ml and 16 μg/ml, respectively. Cytometric analysis showed that treatment with berberine caused alterations to the integrity of the plasma and mitochondrial membranes and DNA damage, which led to cell death, probably by apoptosis. Assessment of biofilm-forming isolates after treatment showed statistically significant reductions in biofilm cell activity (P < 0.001). PMID:27021328

  12. Patient-Specific Detection of Cerebral Blood Flow Alterations as Assessed by Arterial Spin Labeling in Drug-Resistant Epileptic Patients

    PubMed Central

    Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo

    2015-01-01

    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055

  13. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling

    PubMed Central

    Zhao, Lin; Fan, Chongxi; Zhang, Yu; Yang, Yang; Wang, Dongjin; Deng, Chao; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Di, Shouyi; Qin, Zhigang; Lv, Jianjun; Sun, Yang; Yi, Wei

    2016-01-01

    Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling. PMID:27418435

  14. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction.

    PubMed

    Nielsen, Jakob Lindberg; Aagaard, Per; Bech, Rune Dueholm; Nygaard, Tobias; Hvid, Lars Grøndahl; Wernbom, Mathias; Suetta, Charlotte; Frandsen, Ulrik

    2012-09-01

    Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years)performed four sets of knee extensor exercise (20% 1RM) to concentric failure during bloodflow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls(21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention(Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12)(P <0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35 – 37%(Post3) and 31 – 32% (Post10) (P <0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P <0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22(Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P<0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.

  15. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  16. The effect of warmth or/and vitamin E supplementation on forearm blood flow and forearm vascular resistance in sickle cell and non sickle cell anaemia subjects.

    PubMed

    Jaja, S I; Gbadamosi, T A; Kehinde, M O; Gbenebitse, S

    2003-03-01

    The effects of warmth stimulation and/or supplementation with vitamin E (300 mg/day for 6 weeks) on forearm blood flow (FBF) and forearm vascular resistance (FVR) were measured in 8 sickle cell anaemia (SCA) (mean age = 22.8 + 0.8 years) and 11 non sickle cell anaemia (NSCA) subjects (mean age = 23.2 + 1.1 years) of both sexes. Warmth stimulation was induced by immersing the left foot in warm water at 400C for 2 minutes. Forearm blood flow was measured with the venous occlusion plethysmography method. Warmth increased FBF (p <0.01 in each group) and reduced FVR (p <0.05) in NSCA subjects. The change in FBF was greater (p < 0.05) in the NSCA subjects than in the SCA subjects. Supplementation with vitamin E reduced systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) (p < 0.001 in each case) in the NSCA subjects but had little or no effect on the SCA subjects. Vitamin E increased FBF in NSCA subjects (p < 0.05) and SCA subjects (p < 0.01) and decreased FVR in both groups (p < 0.05 in NSCA and p < 0.01 in SCA subjects). The change in FVR seen in the NSCA subjects was less (p < 0.01) than the change in SCA subjects. After supplementation with vitamin E, warmth further decreased SBP (p < 0.01 in each group) and FVR (p < 0.01 in each case) and increased FBF in both groups (p < 0.01 respectively). The changes caused by warmth after vitamin E supplementation on the blood pressure parameters, FBF and FVR were similar in the two groups of subjects.

  17. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis.

    PubMed

    Jeyanthi, Venkadapathi; Velusamy, Palaniyandi

    2016-06-01

    The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.

  18. Flow-force relationships in lettuce thylakoids. 2. Effect of the uncoupler FCCP on local proton resistances at the ATPase level.

    PubMed

    Sigalat, C; de Kouchkovsky, Y; Haraux, F

    1993-09-28

    The relationship between the steady-state proton gradient (delta pH) and the rate of phosphorylation was investigated in thylakoids under various conditions. Under partial uncoupling by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), the rate of ATP synthesis was reduced by less than expected from the decrease of delta pH. This was observed in the case of the pyocyanine-mediated cyclic electron flow around photosystem 1, but not with the H2O-->photosystem 2-->cytochrome b6f-->photosystem 1-->methyl viologen system. In state 4, a unique relation was found between delta pH and the "phosphate potential", delta Gp, regardless of whether the energy level was controlled by light input or FCCP. The anomalous effect of FCCP on the rate of ATP synthesis disappeared when the ATPase was partially blocked by the reversible inhibitor venturicidin, but not in the presence of tentoxin, an irreversible inhibitor. These results are consistent with the existence of a small kinetic barrier for protons, limiting their access to the ATPase. This resistance would be collapsed by FCCP.

  19. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure.

    PubMed

    Matthews, Evan L; Brian, Michael S; Ramick, Meghan G; Lennon-Edwards, Shannon; Edwards, David G; Farquhar, William B

    2015-06-15

    Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR -0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP.

  20. Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats

    PubMed Central

    Sánchez-Martín, Javier; Montilla-Bascón, Gracia; Mur, Luis A. J.; Rubiales, Diego; Prats, Elena

    2016-01-01

    Stomatal dysfunction known as “locking” has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa) and the possible involvement of hydrogen peroxide (H2O2) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e., penetration resistance, early and late HR) to powdery mildew (Blumeria graminis f. sp. avenae, Bga) were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm) of photosystem II were compromised in most Bga–oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defense induced photosynthetic disruption. PMID:27877184

  1. Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats.

    PubMed

    Sánchez-Martín, Javier; Montilla-Bascón, Gracia; Mur, Luis A J; Rubiales, Diego; Prats, Elena

    2016-01-01

    Stomatal dysfunction known as "locking" has been linked to the elicitation of a hypersensitive response (HR) following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa) and the possible involvement of hydrogen peroxide (H2O2) in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e., penetration resistance, early and late HR) to powdery mildew (Blumeria graminis f. sp. avenae, Bga) were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm) of photosystem II were compromised in most Bga-oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defense induced photosynthetic disruption.

  2. Diagnosing Hydrologic Flow Paths in Forest and Pasture Land Uses within the Panama Canal Watershed Using Simulated Rainfall and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Kempema, E. W.; Briceno, J. C.; Regina, J. A.

    2014-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and use across the Panama Canal Watershed. In this study we used an ARS-type rainfall simulator to apply rainfall rates up to 200 mm per hour over a 2m by 6m area on deep saprolitic soils in forest and pasture land covers. A salinity contrast added to the applied rainwater allowed observation of bulk flow paths and velocities in the subsurface. The observed effects of land cover and land use on hydrological response were striking. In the forest site, we were unable to produce surface runoff even after the application of 600 mm of rainfall in three hours, and observed flow in soils down to approximately 2 m depth, and no downslope macropore flow. In the pasture site, surface runoff was produced, and we measured the permeability of the area with applied rainfall. Observed flow paths were much shallower, less than 1 m depth, with significant macropore flow observed at downslope positions. We hypothesize that land use and land cover have significant impacts on flow paths as they affect creation, connectivity, and function of biologically created macropores in the soil.

  3. Resistance-resistant antibiotics.

    PubMed

    Oldfield, Eric; Feng, Xinxin

    2014-12-01

    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  4. Assessment of gene flow from a herbicide-resistant indica rice (Oryza sativa L.) to the Costa Rican weedy rice (Oryza sativa) in Tropical America: factors affecting hybridization rates and characterization of F1 hybrids.

    PubMed

    Olguin, Elena R Sanchez; Arrieta-Espinoza, Griselda; Lobo, Jorge A; Espinoza-Esquivel, Ana M

    2009-08-01

    Herbicide-resistant rice cultivars allow selective weed control. A glufosinate indica rice has been developed locally. However, there is concern about weedy rice becoming herbicide resistant through gene flow. Therefore, assessment of gene flow from indica rice cultivars to weedy rice is crucial in Tropical America. A field trial mimicking crop-weed growing patterns was established to assess the rate of hybridization between a Costa Rican glufosinate-resistant rice line (PPT-R) and 58 weedy rice accessions belonging to six weedy rice morphotypes. The effects of overlapping anthesis, morphotype, weedy accession/PPT-R percentage, and the particular weedy accession on hybridization rates were evaluated. Weedy rice accessions with short overlapping anthesis (4-9 days) had lower average hybridization rates (0.1%) than long anthesis overlapping (10-14 days) accessions (0.3%). Hybridization also varied according to weedy rice morphotype and accession. Sativa-like morphotypes (WM-020, WM-120) hybridized more readily than intermediate (WM-023, WM-073, WM-121) and rufipogon-like (WM-329) morphotypes. No hybrids were identified in 11 of the 58 accessions analyzed, 21 accessions had hybridization rates from 0.01% to 0.09%, 21 had rates from 0.1% to 0.9%, and 5 had frequencies from 1% to 2.3%. Another field trial was established to compare the weedy rice-PPT-R F(1) hybrids with their parental lines under noncompetitive conditions. F(1) hybrids had a greater phenotypic variation. They had positive heterosis for vegetative trait and reproductive potential (number of spikelets and panicle length) traits, but negative heterosis for seed set. This study demonstrated the complexity of factors affecting hybridization rates in Tropical America and suggested that the phenotype of F(1) hybrids facilitate their identification in the rice fields.

  5. Rapid Identification of OXA-48 and OXA-163 Subfamilies in Carbapenem-Resistant Gram-Negative Bacilli with a Novel Immunochromatographic Lateral Flow Assay.

    PubMed

    Pasteran, Fernando; Denorme, Laurence; Ote, Isabelle; Gomez, Sonia; De Belder, Denise; Glupczynski, Youri; Bogaerts, Pierre; Ghiglione, Barbara; Power, Pablo; Mertens, Pascal; Corso, Alejandra

    2016-11-01

    We assessed a novel immunochromatographic lateral flow assay for direct identification of OXA-48-like carbapenemases and accurate differentiation of allele variants with distinct substrate profiles (OXA-48 or OXA-163 subfamilies). The assay allowed rapid (less than 4 min) and reliable direct confirmation of OXA-163- and/or OXA-48-like enzymes (with 100% sensitivity and 100% specificity) from cultured colonies that were recovered from both solid medium and spiked blood culture bottles.

  6. Giant suppression of flux-flow resistivity in heavy-ion irradiated Tl2Ba2Ca2Cu3O10 films - Influence of linear defects on vortex transport

    NASA Technical Reports Server (NTRS)

    Budhani, R. C.; Suenaga, M.; Liou, S. H.

    1992-01-01

    A large shift of the onset of flux-flow resistivity and the irreversibility line H(irr)(T) to higher temperatures is observed in Tl2Ba2Ca2Cu3O10 films containing linear defects created by Ag(+21) ion irradiation. The H(irr)(T), which has a characteristic L shape in highly anisotropic Tl and Bi based cuprates, becomes more like that of YBa2Cu3O7 in the presence of these defects. The Jc at 77 K also shows a large increase as a result of flux localization at the defects. The transport data indicate that in the H-T plane above H(irr)(T) of the unirradiated material, an ensemble of unoccupied defects is required for effective pinning of each flux line in the system.

  7. Resistance-Resistant Antibiotics

    PubMed Central

    Oldfield, Eric; Feng, Xinxin

    2014-01-01

    New antibiotics are needed because as drug resistance is increasing, the introduction of new antibiotics is decreasing. Here, we discuss six possible approaches to develop ‘resistance-resistant’ antibiotics. First, multi-target inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy due to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, re-purposing existing drugs can lead to combinations of multi-target therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and in some cases suggest that sensitivity to existing antibiotics may be restored, in otherwise drug resistant organisms. PMID:25458541

  8. Hemoculture and Direct Sputum Detection of mecA-Mediated Methicillin-Resistant Staphylococcus aureus by Loop-Mediated Isothermal Amplification in Combination With a Lateral-Flow Dipstick.

    PubMed

    Nawattanapaiboon, Kawin; Prombun, Photchanathorn; Santanirand, Pitak; Vongsakulyanon, Apirom; Srikhirin, Toemsak; Sutapun, Boonsong; Kiatpathomchai, Wansika

    2016-09-01

    This study reports loop-mediated isothermal amplification (LAMP) for rapid detection of methicillin-resistant Staphylococcus aureus from direct clinical specimens. Four primers including outer and inner primers were specifically designed on the two target sequences-femB to identify S. aureus and mecA to identify antibiotic-resistant gene. Reference strains including various species of gram-positive/gram-negative isolates were used to evaluate and optimize LAMP assays. The optimum LAMP condition was found at 63°C within 70 min assay time (include hybridization with FITC probe for 5 min and further 5 min for reading the results on the lateral flow dipstick). The detection limits of LAMP for mecA was 10 pg of total DNA or 100 CFU/ml. The LAMP assays were applied to a total of 155 samples of direct DNA extraction from sputum and hemoculture bottles. The sensitivity of LAMP for mecA detection in sputum and hemoculture bottles was 93.3% (28/30) and 100% (52/52), respectively. In conclusion, LAMP assay is an alternative technique for rapid detection of MRSA infection with a technical simplicity and cost-effective method in a routine diagnostic laboratory.

  9. Antibiotic Resistance

    MedlinePlus

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  10. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  11. Prediction of DC current flow between the Otjiwarongo and Katima Mulilo regions, using 3D DC resistivity forward modelling and magnetotelluric and audio-magnetotelluric data recorded during SAMTEX

    NASA Astrophysics Data System (ADS)

    Share, P.; Jones, A. G.; Muller, M. R.; Miensopust, M. P.; Khoza, D. T.; Fourie, S.; Webb, S. J.; Thunehed, H.

    2009-12-01

    hypothesized that the return path of DC current, flowing along the path of least resistance between the two electrodes, is most likely to lie somewhere within, or in the vicinity of, the DMB. To obtain a better understanding of the current flow we propose using geological information, previous results of studies of the conductivity of the DMB and surrounding regions and 2D and 3D inversion results from the AMT and MT data recorded during SAMTEX in northern Botswana and Namibia, as input to a 3D DC resistivity forward modelling code, and to try to predict the return path that the DC current will follow.

  12. On the corrosion resistance of AISI 316L-type stainless steel coated with manganese and annealed with flow of oxygen

    NASA Astrophysics Data System (ADS)

    Savaloni, Hadi; Agha-Taheri, Ensieh; Abdi, Fateme

    2016-06-01

    AISI 316L-type stainless steel was coated with 300-nm-thick Mn thin films and post-annealed at 673 K with a constant flow of oxygen (250 cm3/min). The films crystallographic and morphological structures were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behavior of the samples in 0.3, 0.5 and 0.6 M NaCl solutions was investigated by means of potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. Results showed that the corrosion inhibition of annealed Mn/SS316L in all NaCl solutions with different concentrations is higher than that of bare SS316L. A correlation is achieved between the structural variation of the films with the potentiodynamic and EIS corrosion results.

  13. Fire resistant nuclear fuel cask

    DOEpatents

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  14. Shroud leakage flow discouragers

    DOEpatents

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  15. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  16. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  17. Antibiotic Resistance

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More sharing ... these products really help. To Learn More about Antibiotic Resistance Get Smart About Antibiotics (Video) Fact Sheets ...

  18. Antimicrobial Resistance

    MedlinePlus

    ... infections caused by such bacteria untreatable. Resistance in tuberculosis (TB) WHO estimates that, in 2014, there were about 480 000 new cases of multidrug-resistant tuberculosis (MDR-TB), a form of tuberculosis that is ...

  19. Whence Resistance?

    PubMed Central

    Davies, Stephen W.; Metzger, Rosemarie; Swenson, Brian R.; Sawyer, Robert G.

    2015-01-01

    Abstract Background: Antimicrobial resistance results from a complex interaction between pathogenic and non-pathogenic bacteria, antimicrobial pressure, and genes, which together comprise the total body of potential resistance elements. The purpose of this study is to review and evaluate the importance of antimicrobial pressure on the development of resistance in a single surgical intensive care unit. Methods: We reviewed a prospectively collected dataset of all intensive care unit (ICU)-acquired infections in surgical and trauma patients over a 6-y period at a single hospital. Resistant gram-negative pathogens (rGNR) included those resistant to all aminoglycosides, quinolones, penicillins, cephalosporins, or carbapenems; resistant gram-positive infections (rGPC) included methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE). Each resistant infection was evaluated for prior or concomitant antibiotic use, previous treatment for the same (non-resistant) organism, and concurrent infection with the same organism (genus and species, although not necessarily resistant) in another ICU patient. Results: Three hundred and thirty resistant infections were identified: 237 rGNR and 93 rGPC. Infections with rGNR occurred frequently while receiving antibiotic therapy (65%), including the sensitive form of the subsequent resistant pathogen (42.2%). Infections with rGPC were also likely to occur on antimicrobial therapy (50.6%). Treatment of a different patient for an infection with the same resistant pathogen in the ICU at the time of diagnosis, implying potential patient-to-patient transmission occurred more frequently with rGNR infections (38.8%). Conclusion: Antimicrobial pressure exerts a substantial effect on the development of subsequent infection. Our data demonstrate a high estimated rate of de novo emergence of resistance after treatment, which appears to be more common than patient-to-patient transmission. These data support

  20. RESISTIVITY METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistivity methods were among the first geophysical techniques developed. The basic concept originated with Conrad Schlumberger, who conducted the initial resistivity field tests in Normandy, France during 1912. The resistivity method, employed in its earliest and most conventional form, uses an ex...

  1. Resistance mechanisms

    PubMed Central

    Cag, Yasemin; Caskurlu, Hulya; Fan, Yanyan; Cao, Bin

    2016-01-01

    By definition, the terms sepsis and septic shock refer to a potentially fatal infectious state in which the early administration of an effective antibiotic is the most significant determinant of the outcome. Because of the global spread of resistant bacteria, the efficacy of antibiotics has been severely compromised. S. pneumonia, Escherichia coli (E. coli), Klebsiella, Acinetobacter, and Pseudomonas are the predominant pathogens of sepsis and septic shock. It is common for E. coli, Klebsiella, Acinetobacter and Pseudomonas to be resistant to multiple drugs. Multiple drug resistance is caused by the interplay of multiple resistance mechanisms those emerge via the acquisition of extraneous resistance determinants or spontaneous mutations. Extended-spectrum beta-lactamases (ESBLs), carbapenemases, aminoglycoside-modifying enzymes (AMEs) and quinolone resistance determinants are typically external and disseminate on mobile genetic elements, while porin-efflux mechanisms are activated by spontaneous modifications of inherited structures. Porin and efflux mechanisms are frequent companions of multiple drug resistance in Acinetobacter and P. aeruginosa, but only occasionally detected among E. coli and Klebsiella. Antibiotic resistance became a global health threat. This review examines the major resistance mechanisms of the leading microorganisms of sepsis. PMID:27713884

  2. Flow through very porous screens

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Muramoto, K. K.

    1985-01-01

    Flow through and around screens with small resistance coefficient were analyzed. Both steady and oscillatory flows are considered, however, the case of a screen normal to the flow is treated. At second order in the asymptotic expansion the steady flow normal to the screen is nonuniform along the screen, due to components induced by the wake and by tangential drag. The third order pressure drop is nonuniform and the wake contains distributed vorticity, in addition to the vortex sheet along its boundary. The unsteady drag coefficient is found as a function of frequency.

  3. Managing Resistance.

    ERIC Educational Resources Information Center

    Maag, John W.

    2000-01-01

    This article presents some considerations and ideas for managing students' resistance. They are organized around four topics: the impact of context on behavior, the importance of being comprehensive and nonrestrictive in behavior, the adaptive function of resistant behavior, and the benefit of joining children in their frame of reference.…

  4. Resisting HRD's Resistance to Diversity

    ERIC Educational Resources Information Center

    Bierema, Laura L.

    2010-01-01

    Purpose: The purpose of this paper is to empirically illustrate how human resource development (HRD) resists and omits issues of diversity in academic programs, textbooks, and research; analyze the research on HRD and diversity over a ten-year period; discuss HRD's resistance to diversity; and offer some recommendations for a more authentic…

  5. Interface resistance

    NASA Astrophysics Data System (ADS)

    Sinkkonen, Juha

    1983-11-01

    Interface resistance is studied by using the Landauer formula which relates the resistance to the quantum mechanical transmission coefficient. A simple rederivation of the Landauer formula is given. Using a step-like potential barrier as a model for the metal-semiconductor contact an analytical expression for the effective Richardson constant is derived. As an other application the grain boundary resistance in polycrystalline semiconductors is studied. The short-range potential fluctuation associated with the grain boundary is described by a rectangular potential barrier. The results for the grain boundary limited mobility cover both the strong and weak scattering regimes.

  6. Resistivity analysis

    DOEpatents

    Bruce, Michael R.; Bruce, Victoria J.; Ring, Rosalinda M.; Cole, Edward Jr. I.; Hawkins, Charles F.; Tangyungong, Paiboon

    2006-06-13

    According to an example embodiment of the present invention a semiconductor die having a resistive electrical connection is analyzed. Heat is directed to the die as the die is undergoing a state-changing operation to cause a failure due to suspect circuitry. The die is monitored, and a circuit path that electrically changes in response to the heat is detected and used to detect that a particular portion therein of the circuit is resistive. In this manner, the detection and localization of a semiconductor die defect that includes a resistive portion of a circuit path is enhanced.

  7. Rarefied Flow

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Lengrand, Jean-Claude

    1998-01-01

    Rarefaction effects are important for hypersonic applications for a wide spectrum of conditions ranging from low-density (high altitude) situations to relatively high-density flows where the characteristic dimension is small. The present chapter concentrates on two hypersonic flow problems at flow conditions that produce a significant range of rarefaction effects: corner flow with jet interaction and blunt body flow with special emphasis on the near wake, These problems were chosen because they involve complex flow interactions that have significant implications for both spacecraft and re-entry vehicles. In an effort to clarify issues associated with these two general flow problems and to enhance their respective databases, both experimental and computational contributions were executed by an international group of researchers. In some cases, multiple data sources for both experimental and computational contributions are achieved.

  8. Ionic resistance measurements of battery separators

    SciTech Connect

    Danko, T.; Sybeldon, A.

    1997-12-01

    The performance of a battery is affected by the ionic resistance of the separator used to separate the anode from the cathode. If the ionic resistance is too high, the power output from the battery is diminished because the flow of ions is hindered. This paper examines issues that affect the ionic resistance of regenerated cellulose membranes. In particular, changes in the pore size, or molecular weight cut off, of the membranes are correlated with ionic resistance to show that changes in molecular weight cut off do effect ionic resistance.

  9. Antimicrobial Resistance

    MedlinePlus

    ... penicillin was the treatment of choice for Staphylococcus aureus (S. aureus) , a human pathogen that can cause life-threatening ... skin, blood, bone, heart, and other vital organs; S. aureus resistance to penicillin rapidly evolved in the 1950s. ...

  10. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  11. Lantibiotic resistance.

    PubMed

    Draper, Lorraine A; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2015-06-01

    The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.

  12. Lantibiotic Resistance

    PubMed Central

    Draper, Lorraine A.; Ross, R. Paul

    2015-01-01

    SUMMARY The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry. PMID:25787977

  13. Accuracy of flow hoods in residential applications

    SciTech Connect

    Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

    2002-05-01

    To assess whether houses can meet performance expectations, the new practice of residential commissioning will likely use flow hoods to measure supply and return grille airflows in HVAC systems. Depending on hood accuracy, these measurements can be used to determine if individual rooms receive adequate airflow for heating and cooling, to determine flow imbalances between different building spaces, to estimate total air handler flow and supply/return imbalances, and to assess duct air leakage. This paper discusses these flow hood applications and the accuracy requirements in each case. Laboratory tests of several residential flow hoods showed that these hoods can be inadequate to measure flows in residential systems. Potential errors are about 20% to 30% of measured flow, due to poor calibrations, sensitivity to grille flow non-uniformities, and flow changes from added flow resistance. Active flow hoods equipped with measurement devices that are insensitive to grille airflow patterns have an order of magnitude less error, and are more reliable and consistent in most cases. Our tests also show that current calibration procedures for flow hoods do not account for field application problems. As a result, a new standard for flow hood calibration needs to be developed, along with a new measurement standard to address field use of flow hoods. Lastly, field evaluation of a selection of flow hoods showed that it is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement.

  14. Flow chamber

    SciTech Connect

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  15. Flow visualization

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  16. Flow visualization

    NASA Astrophysics Data System (ADS)

    Weinstein, Leonard M.

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities.

  17. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  18. Piezoelectric axial flow microvalve

    DOEpatents

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  19. Capillary flow weld-bonding

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J. (Inventor)

    1976-01-01

    The invention of a weld-bonding technique for titanium plates was described. This involves fastening at least two plates of titanium together using spot-welding and applying a bead of adhesive along the edge of the resistance spot-welded joint which upon heating, flows and fills the separation between the joint components.

  20. Androgen resistance.

    PubMed

    Hughes, Ieuan A; Deeb, Asma

    2006-12-01

    Androgen resistance causes the androgen insensitivity syndrome in its variant forms and is a paradigm of clinical syndromes associated with hormone resistance. In its complete form, the syndrome causes XY sex reversal and a female phenotype. Partial resistance to androgens is a common cause of ambiguous genitalia of the newborn, but a similar phenotype may result from several other conditions, including defects in testis determination and androgen biosynthesis. The biological actions of androgens are mediated by a single intracellular androgen receptor encoded by a gene on the long arm of the X chromosome. Mutations in this gene result in varying degrees of androgen receptor dysfunction and phenotypes that often show poor concordance with the genotype. Functional characterization and three-dimensional modelling of novel mutant receptors has been informative in understanding the mechanism of androgen action. Management issues in syndromes of androgen insensitivity include decisions on sex assignment, timing of gonadectomy in relation to tumour risk, and genetic and psychological counselling.

  1. Network Flows

    DTIC Science & Technology

    1988-12-01

    Researchers have suggested other solution strategies, using ideas from nonlinear progamming for solving this general separable convex cost flow problems. Some...plane methods and branch and bound procedures of integer programming, primal-dual methods of linear and nonlinear programming, and polyhedral methods...Combinatorial Optimization: Networks and Matroids), Bazaraa and Jarvis [1978] (Linear Programming and Network Flows), Minieka [1978] (Optimization Algorithms for

  2. Resistive Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed text on resistive networks was developed under contract with the United States Office of Education as part of a series of materials for use in an electrical engineering sequence. It is to be used in conjunction with other materials and with other short texts in the series, this one being Number 3. (DH)

  3. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  4. Apparatus for measuring semiconductor device resistance

    NASA Technical Reports Server (NTRS)

    Matzen, W. J. (Inventor)

    1980-01-01

    A test structure is described for enabling the accurate measurement of the resistance characteristics of a semiconductor material and includes one or more pairs of electrical terminals disposed on the surface of the material to enable measurements of the resistance encountered by currents passed between the terminals. A pair of terminals includes a first terminal extending in a closed path, such as a circle, around a second terminal, so that all currents flowing between the terminals flow along a region of known width and length. Two or more pairs of concentric terminals can be utilized, wherein the ratio of radii of each pair of terminals is the same as the ratio for all other pairs of terminals, to facilitate the calculation of the contact resistance between each terminal and the semiconductor surface, as well as the calculation of the resistance of the semiconductor material apart from the effect of the terminal to semiconductor contact resistances.

  5. Modeling of Cavitating Flow through Waterjet Propulsors

    DTIC Science & Technology

    2015-02-18

    OCT-11 -31-DEC-14 To) 4. TITLE AND SUBTITLE Modeling of Cavitating Flow through Waterjet Propulsors 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-12...239-18 Modeling of Cavitating Flow through Waterjet Propulsors Jules W. Lindau The Pennsylvania State University, Applied Research Laboratory, State...flow nature, waterjets are expected to maintain resistance to cavitation , are amenable to ad- vanced concepts such as thrust vectoring, should

  6. Stall-Departure-Resistance Enhancer

    NASA Technical Reports Server (NTRS)

    Ross, Holly M.; Johnson, Joseph L., Jr.; Yip, Long P.; Stough, H. Paul, III

    1992-01-01

    Stall-departure-resistance enhancer imposes lesser drag penalty than nortex generators of older types. Increases lift by as much as 30 percent at angles of attack otherwise in poststall region. Device is flat plate wedge with 60 degree sweep angle and attached so it protrudes from leading edge of wing. Tip is sharp point, and edges made thin and sharp to induce good vortical flow. Applications include those intended to increase safety for broad range of aircraft, including trainers, fighters, general-aviation aircraft, and commercial transport aircraft. Nonaerospace applications where flow stall is problem under certain conditions, such as in control of separation in flow diffusers. Other applications in fluid machinery and fluid flow.

  7. Introgression of resistance-conferring ALS mutations in herbicide-resistant weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice (Oryza sativa) competes aggressively with rice, reducing yields and grain quality. Clearfield™ rice, a nontransgenic, herbicide-resistant (HR) rice introduced in 2002 to control weedy rice, has resulted in some ALS-resistant weedy rice apparently due to gene flow. Studies were conduct...

  8. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  9. Pre-resistance-welding resistance check

    DOEpatents

    Destefan, Dennis E.; Stompro, David A.

    1991-01-01

    A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

  10. Cross flow characteristics in a three fuel assemblies

    SciTech Connect

    Bae, J. H.; Euh, D. J.; Park, C. K.; Youn, Y. J.; Kwon, T. S.

    2012-07-01

    To evaluate the reactor thermal margin of APR+, reactor core flow distribution including both axial and lateral directional hydraulic resistances of fuel assemblies should be known. 3-Ch cross flow test facility has been constructed with three full-size fuel assemblies to investigate the cross flow characteristics. Performance tests have been performed. The axial and lateral directional hydraulic resistances of fuel assemblies have been measured. The test results have been compared to the CFD calculation. (authors)

  11. Apparatus for measuring resistance change only in a cell analyzer and method for calibrating it

    DOEpatents

    Hoffman, Robert A.

    1980-01-01

    The disclosure relates to resistance only monitoring and calibration in an electrical cell analyzer. Sample and sheath fluid flows of different salinities are utilized, the sample flow being diameter modulated to produce a selected pattern which is compared to the resistance measured across the flows.

  12. Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Secomb, Timothy W.

    2017-01-01

    The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

  13. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Visitor Information Contact Us Research > NIAID's Role in Research > Antimicrobial (Drug) Resistance > Understanding share with facebook share with twitter ... Prevention, Antimicrobial (Drug) Resistance Antimicrobial (Drug) Resistance Antimicrobial ... To prevent antimicrobial resistance, you and your healthcare ...

  14. Lubrication Flows.

    ERIC Educational Resources Information Center

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  15. Flow cytometer

    DOEpatents

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  16. Flow cytometer

    DOEpatents

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  17. On Flow Stagnation in a Tube Radiator

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Chao, David F.; Sankovic, John M.; Zhang, Nengli

    2007-01-01

    An analysis of the physical process for occurrence of flow stagnation in a space tube-radiator is performed and the mechanism and mathematic description for the flow stagnation are presented. Two causes for pressure drop unbalance between tubes of the radiator are identified: non-uniform cooling environment and different local flow resistances between the tubes. This analysis provides a theoretical basis for experimental simulations of the flow stagnation in a ground-based lab as well as two suggested methods to experimentally simulate flow stagnation. Criteria for the flow stagnation, depending on the viscosity data regressive polynomial, are derived from the extreme condition of the pressure drop in colder tubes. A preliminary numerical calculation is conducted for a space tube-radiator model which confirms the physical and mathematical analyses. The prediction by the criteria for flow stagnation in the tube-radiator model coincides with the numerical calculation result.

  18. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  19. Cerebrospinal fluid flow in adults.

    PubMed

    Bradley, William G; Haughton, Victor; Mardal, Kent-Andre

    2016-01-01

    This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia.

  20. Genotypical Differences in Aluminum Resistance of Maize Are Expressed in the Distal Part of the Transition Zone. Is Reduced Basipetal Auxin Flow Involved in Inhibition of Root Elongation by Aluminum?1

    PubMed Central

    Kollmeier, Malte; Felle, Hubert H.; Horst, Walter J.

    2000-01-01

    Short-term Al treatment (90 μm Al at pH 4.5 for 1 h) of the distal transition zone (DTZ; 1–2 mm from the root tip), which does not contribute significantly to root elongation, inhibited root elongation in the main elongation zone (EZ; 2.5–5 mm from the root tip) to the same extent as treatment of the entire maize (Zea mays) root apex. Application of Al to the EZ had no effect on root elongation. Higher genotypical resistance to Al applied to the entire root apex, and specifically to the DTZ, was expressed by less inhibition of root elongation, Al accumulation, and Al-induced callose formation, primarily in the DTZ. A characteristic pH profile along the surface of the root apex with a maximum of pH 5.3 in the DTZ was demonstrated. Al application induced a substantial flattening of the pH profile moreso in the Al-sensitive than in the Al-resistant cultivar. Application of indole-3-acetic acid to the EZ but not to the meristematic zone significantly alleviated the inhibition of root elongation induced by the application of Al to the DTZ. Basipetal transport of exogenously applied [3H]indole-3-acetic acid to the meristematic zone was significantly inhibited by Al application to the DTZ in the Al-sensitive maize cv Lixis. Our results provide evidence that the primary mechanisms of genotypical differences in Al resistance are located within the DTZ, and suggest a signaling pathway in the root apex mediating the Al signal between the DTZ and the EZ through basipetal auxin transport. PMID:10712559

  1. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    PubMed

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

  2. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  3. Flow Control

    DTIC Science & Technology

    2013-04-08

    capable of simulating multi-input multi-output ( MIMO ) systems. They do have some downsides. Training is extremely sensitive, and tends to get stuck in...the attached bound- ary layers. Recent DES predictions of the flow around complex configurations (all using Cobalt) include the massively separated...and desired reference signal, ey = â−are f . (71) For multi input multi output ( MIMO ) systems, ey and γe are matrices of size nout ×nin. Also, the

  4. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Nemcik, Jan

    2013-01-01

    SummaryThe presence of fracture roughness, isolated contact areas and the occurrence of nonlinear flow complicate the fracture flow process. To experimentally investigate the fluid flow regimes through deformable rock fractures, water flow tests through both mated and non-mated sandstone fractures were conducted in triaxial cell under changing confining stress from 1.0 MPa to 3.5 MPa. For the first time Forchheimer's nonlinear factor b describing flow in non-mated fractures under variable confining stress has been quantified. The results show that linear Darcy's law holds for water flow through mated fracture samples due to high flow resistance caused by the small aperture and high tortuosity of the flow pathway, while nonlinear flow occurs for non-mated fracture due to enlarged aperture. Regression analyses of experimental data show that both Forchheimer equation and Izbash's law provide an excellent description for this nonlinear fracture flow process. Further, the nonlinear flow data indicate that for smaller true transmissivity, the appreciable nonlinear effect occurs at lower volumetric flow rates. The experimental data of both mated and non-mated fracture flow show that the confining stress does not change the linear and nonlinear flow patterns, however, it has a significant effect on flow characteristics. For mated fracture flow, the slope of pressure gradient versus flow rate becomes steeper and the transmissivity decreases hyperbolically with increase of confining stress, while for non-mated fracture flow, the rate of increase of the nonlinear coefficient b used in Forchheimer equation steadily diminishes with the increase of confining stress. Based on Forchheimer equation and taking 10% of the nonlinear effect as the critical state to distinguish between linear and nonlinear flow, the critical Reynolds number was successfully estimated by using a nonlinear effect coefficient E. This method appears effective to determine critical Reynolds numbers for

  5. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  6. Disorders of lymph flow.

    PubMed

    Witte, C L; Witte, M H

    1995-04-01

    Disturbances in blood capillary exchange of fluid, macromolecules, and cells across intact and abnormal microvessels and deranged lymphatic transport are integral, interacting components in disorders of tissue swelling. Lymphedema or low-output failure of the lymph circulation is often indolent for many years before lymphatic insufficiency (failure) and tissue swelling emerge and persist. Superimposed occult or overt infection (lymphangitis) are probably major contributors to progressive limb deformity (elephantiasis). Long-standing lymphedema is characterized by trapping in the skin and subcutaneous tissue of fluid, extravasated plasma proteins, and other macromolecules: impaired immune cell trafficking; abnormal processing of autologous and foreign antigens; heightened susceptibility to superimposed infection; local immunodysregulation; defective lymphatic (lymphangion) propulsion from an imbalance of mediators regulating vasomotion; soft-tissue overgrowth; scarring and hypertrophy; and exuberant angiogenesis occasionally culminating in vascular tumors (Fig. 8). In contrast to the blood circulation, where flow depends primarily on the propulsive force of the myocardium, lymph propulsion depends predominately on intrinsic truncal contraction, a phylogenetic vestige of amphibian lymph hearts. Whereas venous "plasma" flows rapidly (2-3 l/min) against low vascular resistance, lymph flows slowly (1-2 ml/min) against high vascular resistance. On occasion, impaired transport of intestinal lymph may be associated with reflux and accumulation and leakage of intestinal chyle in a swollen leg. Although the term "lymphedema" is usually reserved for extremity swelling, the pathogenesis of a wide variety of visceral disorders also may be traceable to defective tissue fluid and macromolecular circulation and impaired cell trafficking of lymphocytes and macrophages. Thus, lymph stasis, with impaired tissue fluid flow, underlies or complicates an indolent subclinical course with

  7. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect

    Mao, Aohua; Li, Jiquan; Liu, Jinyuan; Kishimoto, Yasuaki

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  8. Anisotropic electric surface resistance of Cu(110)

    SciTech Connect

    Otto, A.; Lilie, P.; Dumas, P.; Hirschmugl, C.; Pilling, M.; Williams, Gwyn P.

    2007-08-01

    The electric surface resistance is measured without contacts by grazing incidence of p-polarized infrared (IR) radiation for the adsorbates CO and C{sub 2}H{sub 4}, which settle on top of the close packed atomic ridges of Cu(110) in the <1, -1, 0> direction. Surface resistance has only been observed for the IR electric currents in this direction. This can be explained by the assumption that IR induced currents in the <001> direction can only flow in the second and deeper layers of Cu(110). Therefore, in this direction, there is no friction with the adsorbates and hence no surface resistance.

  9. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  10. Mechanisms of drug resistance: quinolone resistance.

    PubMed

    Hooper, David C; Jacoby, George A

    2015-09-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.

  11. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  12. Flow Control

    DTIC Science & Technology

    2013-04-08

    system. They are not limited to single input-single output (SISO) systems but are capable of simulating multi-input multi-output ( MIMO ) systems. They do...around complex configurations (all using Cobalt) include the massively separated flow around an F-15E at 65o angle of attack reported by Forsythe et al...multi output ( MIMO ) systems, ey and γe are matrices of size nout ×nin. Also, the gain matrix is of size nin × nout . The derivative must be

  13. Antimicrobial resistance profiles in pathogens isolated from chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial resistance profiles are frequently studied from the perspective of epidemiology and not so often from the perspective of population genetics. The population geneticist assumes that gene flow, vertically (generation to generation), horizontally (individual to individual) or migratory (...

  14. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    SciTech Connect

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  15. Lava Flows

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03658 Lava Flows

    These relatively young lava flows are part of Arsia Mons.

    Image information: VIS instrument. Latitude -22.5N, Longitude 242.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Lava Flows

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03054 Lava Flows

    The lava flows in this image are only a very small part of the voluminous lava erupted from the Arsia Mons volcano.

    Image information: VIS instrument. Latitude 19.1S, Longitude 244.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Mechanics of blood flow in the microcirculation.

    PubMed

    Secomb, T W

    1995-01-01

    The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

  18. Erosion resistance of irrigated soils in the republic of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Babaev, M. P.; Gurbanov, E. A.

    2010-12-01

    It was found that the average size of water-stable aggregates in irrigated soils varies in the range 0.23-2.0 mm, and the eroding flow velocity is 0.03-0.12 m/s. A five-point scale was used for assessing erosion resistance, predicting irrigation erosion, and developing erosion control measures on irrigated soils. According to this system, gray-brown soils and light sierozems were classified as the least erosion-resistant, sierozemic and meadow-sierozemic soils as low erosion-resistant, gray-cinnamonic soils as moderately erosion-resistant, mountain gray-cinnamonic soils as highly erosion-resistant, and steppe mountain cinnamonic soils as very highly erosion-resistant ones. The determination of the erosion resistance of soils is of great importance for assessing the erosion-resistance potential of irrigated areas and developing erosion control measures.

  19. Erosion-Resistant Water-Blast Nozzle

    NASA Technical Reports Server (NTRS)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Design of nozzle reduces erosion of orifice by turbulent high-pressure water flowing through it. Improved performance and resistance to erosion achieved by giving interior nozzle surface long, gradual convergence before exit orifice abrupt divergence after orifice and by machining surface to smooth finish.

  20. Viscosity and density dependence during maximal flow in man.

    PubMed

    Staats, B A; Wilson, T A; Lai-Fook, S J; Rodarte, J R; Hyatt, R E

    1980-02-01

    Maximal expiratory flow curves were obtained from ten healthy subjects white breathing air and three other gas mixtures with different densities and viscosities. From these data, the magnitudes of the dependence of maximal flow on gas density and viscosity were obtained. The scaling laws of fluid mechanics, together with a model for the flow-limiting mechanism, were used to obtain a prediction of the relationship between the density dependence and the viscosity dependence of maximal flow. Although the data for individual subjects were too variable to allow a precise comparison with this prediction, the relationship between the mean density dependence and the mean viscosity dependence of all usbjects agreed with the theoretic prediction. This agreement supports the assumption, which is frequently made, that flow resistance rather than tissue visoelasticity is the dominant contributor to peripheral resistance. Information on the relationships between the pressure drop to the flow-limiting segment and flow, gas density and viscosity, and lung volume were also obtained.

  1. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  2. Antibiotic resistance in Chlamydiae.

    PubMed

    Sandoz, Kelsi M; Rockey, Daniel D

    2010-09-01

    There are few documented reports of antibiotic resistance in Chlamydia and no examples of natural and stable antibiotic resistance in strains collected from humans. While there are several reports of clinical isolates exhibiting resistance to antibiotics, these strains either lost their resistance phenotype in vitro, or lost viability altogether. Differences in procedures for chlamydial culture in the laboratory, low recovery rates of clinical isolates and the unknown significance of heterotypic resistance observed in culture may interfere with the recognition and interpretation of antibiotic resistance. Although antibiotic resistance has not emerged in chlamydiae pathogenic to humans, several lines of evidence suggest they are capable of expressing significant resistant phenotypes. The adept ability of chlamydiae to evolve to antibiotic resistance in vitro is demonstrated by contemporary examples of mutagenesis, recombination and genetic transformation. The isolation of tetracycline-resistant Chlamydia suis strains from pigs also emphasizes their adaptive ability to acquire antibiotic resistance genes when exposed to significant selective pressure.

  3. Environment Flow Assessment with Flow Regime Transition

    NASA Astrophysics Data System (ADS)

    Su, J.; Ho, C. C.; Chang, L. C.

    2015-12-01

    To avoid worsen river and estuarine ecosystems cause by overusing water resources, environmental flows conservation is applied to reduce the impact of river environment. Environmental flows refer to water provided within a river, wetland or coastal zone to sustain ecosystems and benefits to human wellbeing. Environment flow assessment is now widely accepted that a naturally variable flow regime, rather than just a minimum low flow. In this study, we propose four methods, experience method, Tenant method, hydraulic method and habitat method to assess the environmental flow of base flow, flush flow and overbank flow with different discharge, frequency and occurrence period. Dahan River has been chosen as a case to demonstrate the assessment mechanism. The alternatives impact analysis of environment and human water used provides a reference for stakeholders when holding an environmental flow consultative meeting.

  4. Flow through very porous inclined screens

    NASA Technical Reports Server (NTRS)

    Muramoto, K. K.; Durbin, P. A.

    1985-01-01

    The steady, inviscid flow through and around a screen inclined at a uniform angle to the incoming flow was investigated. For a screen placed in an infinite flow field, an asymptotic analysis for small resistance coefficients was performed, and the effects of inclination were determined. The velocity at first order in the asymptotic expansion was nonuniform along the screen. This nonuniformity caused the wake behind the screen to contain distributed vorticity at second order. These effects therefore occurred at one order lower than for normal screens.

  5. Flow distances on open flow networks

    NASA Astrophysics Data System (ADS)

    Guo, Liangzhu; Lou, Xiaodan; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

    2015-11-01

    An open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state mode of an open flow system. Energetic food webs, economic input-output networks, and international trade networks are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. An open flow network is different from a closed flow network because it considers the flows from or to the environment (the source and the sink). For instance, in energetic food webs, species obtain energy not only from other species but also from the environment (sunlight), and species also dissipate energy to the environment. Flow distances between any two nodes i and j are defined as the average number of transition steps of a random walker along the network from i to j. The conventional method for the calculation of the random walk distance on closed flow networks cannot be applied to open flow networks. Therefore, we derive novel explicit expressions for flow distances of open flow networks according to their underlying Markov matrix of the network in this paper. We apply flow distances to two types of empirical open flow networks, including energetic food webs and economic input-output networks. In energetic food webs, we visualize the trophic level of each species and compare flow distances with other distance metrics on the graph. In economic input-output networks, we rank sectors according to their average flow distances and cluster sectors into different industrial groups with strong connections. Other potential applications and mathematical properties are also discussed. To summarize, flow distance is a useful and powerful tool to study open flow systems.

  6. Variable orifice flow regulator

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C. (Inventor)

    1991-01-01

    A flow regulator for high-pressure fluids at elevated temperatures includes a body having a flow passage extending between inlet and outlet openings. First and second orifice members are arranged in the flow passage so at least one of the orifice members can be moved transversely in relation to the flow passage between one operating position where the two orifice openings are aligned for establishing a maximum flow rate of fluids flowing through the flow passage and at least one other operating position in which the two openings are moderately misaligned with one another for establishing a predetermined reduced flow rate of fluids flowing through the flow passage.

  7. Amplification of postwildfire peak flow by debris

    USGS Publications Warehouse

    Kean, Jason W.; Mcguire, Luke; Rengers, Francis; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  8. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  9. Flow direction determination of lava flows.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.; Rhodes, R. C.

    1972-01-01

    The flow direction technique, previously applied to ash-flow sheets, can be used to determine direction of movement and locate eruptive centers for lava flows. The method provides statistically stronger and more consistent flow direction data for lava than ash-flow tuff. The accuracy and reliability of the technique was established on the porphyritic basaltic andesite of Mount Taylor, New Mexico, which erupted from a known center, the Mount Taylor Amphitheater. The technique was then applied to volcanic units with unknown sources: the John Kerr Peak Quartz Latite and mid-Tertiary andesite flows in the Mogollon Mountains, both in southwestern New Mexico. The flow direction technique indicated flow patterns and suggested source areas for each rock unit. In the Mogollon Mountains flow direction measurements were supported by independent directional criteria such as dips of cross beds, stratigraphic thickening, facies changes, and megascopic textures.-

  10. Tunable resistivity of individual magnetic domain walls.

    PubMed

    Franken, J H; Hoeijmakers, M; Swagten, H J M; Koopmans, B

    2012-01-20

    Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.

  11. Petschek reconnection with a nonlocalized resistivity

    SciTech Connect

    Baty, H.; Forbes, T. G.; Priest, E. R.

    2009-01-15

    The impact of using a nonlocalized electrical resistivity having a spatially asymmetric profile is considered on two-dimensional steady-state magnetic reconnection. Starting from an initial Harris current sheet, time-dependent magnetohydrodynamic simulations are carried out over an entire spatial domain without any symmetry assumptions. It is shown that a stationary Petschek-like reconnection is obtained in the half-plane where a uniform resistivity is adopted. The latter configuration is maintained by a coexisting Petschek configuration that is formed in the second half-plane where the resistivity exhibits a classical exponentially decreasing variation. The structure of the central diffusion region is asymmetric, with a stagnation point flow which does not coincide with the X-point. These results suggest conditions under which a Petschek solution can indeed exist in the presence of a small uniform resistivity in the whole domain.

  12. Basic study on hot-wire flow meter in forced flow of liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.

    2014-01-01

    Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.

  13. Influence of debris flow scale on equilibrium bed slope

    NASA Astrophysics Data System (ADS)

    Itoh, T.; Egashira, S.; Papa, M.; Miyamoto, K.

    2003-04-01

    Results obtained from both of flume tests and theory suggest that an equilibrium bed slope in flow over an erodible bed is determined only by sediment discharge rate when the movements of sediment particles are laminar and thus no suspended transportation take place. This means that the static friction force is dominant in debris flow and that sediment concentration is determined by shear stress balance on the bed surface; i.e., the external shear stress must be equal to the resisting static shear stress of sediment particles, as seen in our previous studies. On the other hand, if part of sediment particles in debris flow body is transported in suspension, sediment concentration will be larger in comparison with that in case of laminar motion of sediment particles and the equilibrium bed slope will decrease. These facts are supported Egashira et al.'s experimental data. The present study discusses an influence of flow scales on an equilibrium bed slope and flow structure experimentally and theoretically. Equilibrium bed slopes and velocity profiles are measured for many flow conditions in flume tests. Those results emphasize that the equilibrium bed slope decreases with increasing of flow scale if part of debris flow body is turbulent, and it is predicted corresponding to increase of mass density of fluid phase. Experimental data for velocity profiles are compared to the results predicted by authors' constitutive equations for non-cohesive sediment and water mixture. When no turbulent diffusions take place, flow characteristics such as velocity profiles and flow resistance are predicted very well by our equations. However, the equations will underestimate the flow resistance if a part of the flow body becomes turbulent because of increase of flow scale. These suggest that the changes of equilibrium bed slope and flow structure are caused by phase-shift from solid phase to fluid phase depending on debris flow scale.

  14. Resistance index of penicillin-resistant bacteria to various physicochemical agents.

    PubMed

    Kazemi, M; Kasra Kermanshahi, R; Heshmat Dehkordi, E; Payami, F; Behjati, M

    2012-01-01

    Widespread use of various antimicrobial agents resulted in the emergence of bacterial resistance. Mechanisms like direct efflux, formation, and sequestration of metals and drugs in complexes and antiporter pumps are some examples. This investigation aims to investigate the resistance pattern of penicillin-resistant bacterial strains to some physicochemical agents. Sensitivity/resistance pattern of common bacterial strains to antimicrobial agents were evaluated by disk diffusion assay. Broth and agar dilution method were used for determination of minimum inhibitory concentration and minimal bactericidal concentration. The impact of UV ray on the bacterial growth under laminar flow hood was measured using photonmeter. Our data demonstrates that the most prevalent metal resistance was against arsenate (95.92%), followed by cadmium (52.04%) and mercury (36.73%). There was significant difference between cetrimide resistances among studied microbial strains especially for P. aeruginosa (P < 0.05). High rate of pathogen resistance to various antibacterial agents in our study supports previously published data. This great rate of bacterial resistance is attributed to the emergence of defense mechanisms developed in pathogens. The higher general bacterial resistance rate among Staphylococcus strains rather than E. coli and P. aeruginosa strains draws attention towards focusing on designing newer therapeutic compounds for Staphylococcus strains.

  15. Liquid Bismuth Propellant Flow Sensor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  16. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation.

    PubMed

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-03-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a "Confined Pitot Tube," is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics(®) software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method.

  17. Polymer-based micro flow sensor for dynamical flow measurements in hydraulic systems

    NASA Astrophysics Data System (ADS)

    Ahrens, R.; Festa, M.

    2010-06-01

    In this paper we present a micro flow sensor from a polymer for dynamical flow measurements in hydraulic systems. The flow sensor is based on the thermal anemometric principle and consists of two micro-structured housing shells from polysulfone (PSU) which form a small fluidic channel with a cross-section of 580 µm × 400 µm. In between there is a thin polyimide membrane supporting three gold track structures forming an electrical heater and two resistive thermometers which allows the detection of the flow direction, too. The complete sensor is inserted into the hydraulic system, but only a small bypass flow is directed through the fluidic channel by means of a special splitting system. Due to its small heat capacity, the sensor is suitable to detect flow pulsations up to about 1200 Hz which allows the sensor to be used for the condition monitoring or preventive maintenance of hydraulic systems.

  18. Research Advances: DRPS--Let The Blood Flow!

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  19. Development of the technology for the fabrication of reliable laminar flow control panels

    NASA Technical Reports Server (NTRS)

    Weiss, D. D.; Lindh, D. V.

    1977-01-01

    Various configurations of porous, perforated and slotted materials were flow tested to determine if they would meet the LFC surface smoothness and flow requirements. The candidate materials were then tested for susceptibility to clogging and for resistance to corrosion. Of the materials tested, perforated titanium, porous polyimide, and slotted assemblies demonstrated a much greater resistance to clogging than other porous materials.

  20. Methicillin-resistant staphylococci.

    PubMed Central

    Chambers, H F

    1988-01-01

    Strains of staphylococci resistant to methicillin were identified immediately after introduction of this drug. Methicillin-resistant strains have unusual properties, the most notable of which is extreme variability in expression of the resistance trait. The conditions associated with this heterogeneous expression of resistance are described. Methicillin resistance is associated with production of a unique penicillin-binding protein (PBP), 2a, which is bound and inactivated only at high concentrations of beta-lactam antibiotics. PBP2a appears to be encoded by the mec determinant, which also is unique to methicillin-resistant strains. The relationships between PBP2a and expression of resistance and implications for the mechanism of resistance are discussed. The heterogeneous expression of methicillin resistance by staphylococci poses problems in the detection of resistant strains. Experience with several susceptibility test methods is reviewed and guidelines for performance of these tests are given. Treatment of infections caused by methicillin-resistant staphylococci is discussed. Vancomycin is the treatment of choice. Alternatives have been few because methicillin-resistant strains often are resistant to multiple antibiotics in addition to beta-lactam antibiotics. New agents which are active against methicillin-resistant staphylococci are becoming available, and their potential role in treatment is discussed. Images PMID:3069195

  1. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  2. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  3. Vascular access for extracorporeal circulation. Resistance in double lumen cannulas.

    PubMed

    Stroud, C C; Meyer, S L; Bawkon, M C; Smith, H G; Klein, M D

    1991-01-01

    Double lumen catheters (DLCs) currently are being used for vascular access with extracorporeal circulation. Blood flow studies were done on various DLCs connected to a circuit made of polyvinyl chloride tubing. Sheep's blood was used with all catheters at flows of 200 and 400 ml/min. The inlet and outlet pressures were measured and resistances calculated. Modified versions of the Shiley and Kendall catheters, also were tested. In both catheters, resistance was reduced with the use of perfusion adaptors. Flow through catheters, with a diameter that exceeded the Luer fitting dimension, was compromised. The modified Shiley and unmodified Kendall catheters had the lowest resistance to flow, and they thus are best suited for extracorporeal circulation.

  4. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  5. Regulation of Coronary Blood Flow.

    PubMed

    Goodwill, Adam G; Dick, Gregory M; Kiel, Alexander M; Tune, Johnathan D

    2017-03-16

    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.

  6. Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique

    PubMed Central

    Bassani, Mariana Almada; Caldas, Jamil Pedro Siqueira; Netto, Abimael Aranha; Marba, Sérgio Tadeu Martins

    2016-01-01

    Abstract Objective: To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. Methods: This is an intervention study, which included 40 preterm infants (≤34 weeks) aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5min. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Results: Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50), the end diastolic flow velocity (p=0.17), the mean flow velocity (p=0.07), the resistance index (p=0.41) and the pulsatility index (p=0.67) over time. Conclusions: The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants. PMID:26611888

  7. Pneumococcal resistance to antibiotics.

    PubMed Central

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumococcus of serogroup 6, 19, or 23 or serotype 14, and exposure to antibiotics to which the strain is resistant. At present, the most useful drugs for the management of resistant pneumococcal infections are cefotaxime, ceftriaxone, vancomycin, and rifampin. If the strains are susceptible, chloramphenicol may be useful as an alternative, less expensive agent. Appropriate interventions for the control of resistant pneumococcal outbreaks include investigation of the prevalence of resistant strains, isolation of patients, possible treatment of carriers, and reduction of usage of antibiotics to which the strain is resistant. The molecular mechanisms of penicillin resistance are related to the structure and function of penicillin-binding proteins, and the mechanisms of resistance to other agents involved in multiple resistance are being elucidated. Recognition is increasing of the standard screening procedure for penicillin resistance, using a 1-microgram oxacillin disk. PMID:2187594

  8. Laminar Flow Aircraft Certification

    NASA Technical Reports Server (NTRS)

    Williams, Louis J. (Compiler)

    1986-01-01

    Various topics telative to laminar flow aircraft certification are discussed. Boundary layer stability, flaps for laminar flow airfoils, computational wing design studies, manufacturing requirements, windtunnel tests, and flow visualization are among the topics covered.

  9. The flow around circular cylinders partially coated with porous media

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias

    2012-05-01

    There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.

  10. Power to Resist

    ERIC Educational Resources Information Center

    Crossland, Janice

    1975-01-01

    Transferrable drug resistance has been observed in bacteria for over ten years. Concern now is that livestock that have been fed with grain supplemented with antibiotics for growth stimulation will infect humans with potentially dangerous resistant bacteria. (MA)

  11. Antibiotics and Resistance: Glossary

    MedlinePlus

    ... induced by natural or human activity on the ecology and living organisms. Ecology The study of the relationships and interactions between ... antibiotics The Cost of Resistance Science of Resistance Ecology Antibiotics in Agriculture Antibacterial Agents Glossary References Web ...

  12. Flame-resistant textiles

    NASA Technical Reports Server (NTRS)

    Fogg, L. C.; Stringham, R. S.; Toy, M. S.

    1980-01-01

    Flame resistance treatment for acid resistant polyamide fibers involving photoaddition of fluorocarbons to surface has been scaled up to treat 10 yards of commercial width (41 in.) fabric. Process may be applicable to other low cost polyamides, polyesters, and textiles.

  13. DEVELOPMENT OF MOLECULAR MONITORING TECHNOLOGIES TO MEASURE TRANSGENE FLOW AND INTROGRESSION IN CROP AND NON-CROP PLANT SPECIES

    EPA Science Inventory

    The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...

  14. Relaminarization of fluid flows

    NASA Technical Reports Server (NTRS)

    Narasimha, R.; Sreenivasan, K. R.

    1979-01-01

    The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.

  15. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  16. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  17. All about Insulin Resistance

    MedlinePlus

    Toolkit No. 2 All About Insulin Resistance Insulin resistance is a condition that raises your risk for type 2 diabetes and heart disease. ... Diabetes Association, Inc. 1/15 Toolkit No. 2: All About Insulin Resistance continued J Order the smallest ...

  18. Resisting Mind Control.

    ERIC Educational Resources Information Center

    Anderson, Susan M.; Zimbardo, Philip G.

    1980-01-01

    Provides conceptual analyses of mind control techniques along with practical advice on how to resist these techniques. The authors stress that effective mind control stems more from everyday social relations than from exotic technological gimmicks. Suggestions are given for resisting persuasion, resisting systems, and challenging the system.…

  19. Grafting for disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of grafting vegetables worldwide has been to provide resistance to soilborne diseases. The potential loss of methyl bromide as a soil fumigant combined with pathogen resistance to commonly used pesticides will make resistance to soil born pathogens even more important in the futu...

  20. Grafting for disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of grafting vegetables worldwide has been to provide resistance to soil-borne diseases. The potential loss of methyl bromide as a soil fumigant combined with pathogen resistance to commonly used pesticides will make resistance to soil-borne pathogens even more important in the fu...

  1. Pulsatile Flow Across a Cylinder--An Investigation of Flow in a Total Artificial Lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun

    2005-11-01

    The effect of pulsatility on flow across a single cylinder has been examined experimentally using particle image velocimetry. This work is motivated by the ongoing development of a total artificial lung (TAL), a device which would serve as a bridge to lung transplant. The prototype TAL consists of hollow microfibers through which oxygen-rich gas flows and blood flows around. Flow through the device is provided entirely by right heart and, therefore, is puslatile. The Peclet number of the flow is large and consequently the development of secondary flow affects the resulting gas exchange. The effects of frequency and average flow rate of pulsatile flow around a cylinder were investigated experimentally in a water tunnel and some of the results were compared with preliminary numerical results. Vortices developed behind the cylinder at lower Reynolds numbers in pulsatile flow than steady flow. The results indicate that there are critical values of the Reynolds number between 3 to 5 and Stokes numbers of 0.22, below which vortices were not observed. The findings suggest that higher Stokes and Reynolds numbers within the device could enhance vortex formation. However, this enhanced gas exchange could be at the expense of higher device resistance and increased likelihood of blood trauma. Intelligent TAL design will require consideration of these effects. This work is supported by NIH grant HL69420.

  2. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  3. Two-Phase Quality/Flow Meter

    NASA Technical Reports Server (NTRS)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  4. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  5. Aqueous outflow: Segmental and distal flow

    PubMed Central

    Swaminathan, Swarup S.; Oh, Dong-Jin; Kang, Min Hyung; Rhee, Douglas J.

    2014-01-01

    A prominent risk factor of primary open-angle glaucoma is ocular hypertension, a pathologic state caused by impaired outflow of aqueous humor through the trabecular meshwork within the iridocorneal angle. The juxtacanalicular region of the trabecular meshwork and the inner wall of Schlemm canal have been identified as the main contributors to aqueous outflow resistance, and both extracellular matrix within the trabecular meshwork and trabecular meshwork cell shape have been shown to affect outflow. Overexpression of multiple ECM proteins in perfused cadaveric human eyes has led to increased outflow resistance and elevated IOP. Pharmacologic agents targeting trabecular meshwork cytoskeletal arrangements have been developed after multiple studies demonstrated the importance of cell shape on outflow. Several groups have shown that aqueous outflow occurs only at certain segments of the trabecular meshwork circumferentially, a concept known as segmental flow. This is based on the theory that aqueous outflow is dependent on the presence of discrete pores within the Schlemm canal. Segmental flow has been described in the eyes of multiple species, including primate, bovine, mouse, and human samples. While the trabecular meshwork appears to be the major source of resistance, trabecular meshwork bypass procedures have been unable to achieve the degree of IOP reduction observed with trabeculectomy, reflecting the potential impact of distal flow, or flow through Schlemm canal and collector channels, on outflow. Multiple studies have demonstrated that outflow occurs preferentially near collector channels, suggesting that these distal structures may be more important to aqueous outflow than previously believed. PMID:25088623

  6. Partitioning of vessel resistivity in three liana species.

    PubMed

    Balaz, Milan; Jupa, Radek; Jansen, Steven; Cobb, Alexander; Gloser, Vít

    2016-12-01

    Vessels with simple perforation plates, found in the majority of angiosperms, are considered the evolutionarily most advanced conduits, least impeding the xylem sap flow. Nevertheless, when measured, their hydraulic resistivity (R, i.e., inverse value of hydraulic conductivity) is significantly higher than resistivity predicted using Hagen-Poiseuille equation (RHP). In our study we aimed (i) to quantify two basic components of the total vessel resistivity - vessel lumen resistivity and end wall resistivity, and (ii) to analyze how the variable inner diameter of the vessel along its longitudinal axis affects resistivity. We measured flow rates through progressively shortened stems of hop (Humulus lupulus L.), grapevine (Vitis vinifera L.), and clematis (Clematis vitalba L.) and used elastomer injection for identification of open vessels and for measurement of changing vessel inner diameters along its axis. The relative contribution of end wall resistivity to total vessel resistivity was 0.46 for hop, 0.55 for grapevine, and 0.30 for clematis. Vessel lumen resistivity calculated from our measurements was substantially higher than theoretical resistivity - about 43% for hop, 58% for grapevine, and 52% for clematis. We identified variation in the vessel inner diameter as an important source of vessel resistivity. The coefficient of variation of vessel inner diameter was a good predictor for the increase of the ratio of integral RHP to RHP calculated from the mean value of inner vessel diameter. We discuss the fact that we dealt with the longest vessels in a given stem sample, which may lead to the overestimation of vessel lumen resistivity, which consequently precludes decision whether the variable vessel inner diameter explains fully the difference between vessel lumen resistivity and RHP we observed.

  7. What does airway resistance tell us about lung function?

    PubMed

    Kaminsky, David A

    2012-01-01

    Spirometry is considered the primary method to detect the air flow limitation associated with obstructive lung disease. However, air flow limitation is the end-result of many factors that contribute to obstructive lung disease. One of these factors is increased airway resistance. Airway resistance is traditionally measured by relating air flow and driving pressure using body plethysmography, thus deriving airway resistance (R(aw)), specific airway resistance (sR(aw)), and specific airway conductance (sG(aw)). Other methods to measure airway resistance include the forced oscillation technique (FOT), which allows calculation of respiratory system resistance (R(RS)) and reactance (X(RS)), and the interrupter technique, which allows calculation of interrupter resistance (R(int)). An advantage of these other methods is that they may be easier to perform than spirometry, making them particularly suited to patients who cannot perform spirometry, such as young children, patients with neuromuscular disorders, or patients on mechanical ventilation. Since spirometry also requires a deep inhalation, which can alter airway resistance, these alternative methods may provide more sensitive measures of airway resistance. Furthermore, the FOT provides unique information about lung mechanics that is not available from analysis using spirometry, body plethysmography, or the interrupter technique. However, it is unclear whether any of these measures of airway resistance contribute clinically important information to the traditional measures derived from spirometry (FEV(1), FVC, and FEV(1)/FVC). The purpose of this paper is to review the physiology and methodology of these measures of airway resistance, and then focus on their clinical utility in relation to each other and to spirometry.

  8. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  9. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  10. Blood flow and permeability in microvessels

    NASA Astrophysics Data System (ADS)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  11. Insecticide-resistance

    PubMed Central

    Micks, Don W.

    1960-01-01

    Since the last review of the problem of insecticide-resistance was presented in this journal at the beginning of 1958, resistance has been discovered in 16 new species, and in at least 14 species both the geographical distribution of resistant populations and the types of resistance encountered have increased. In view of the vital importance of finding an answer to this problem, plans were made by WHO early in 1959 for an intensified programme of research. The new review of the situation presented below is a first step in the direction of carrying out this programme. It follows the same plan as the previous review, the first part giving details of the growth of insecticide-resistance, species by species, and the second part outlining the developments that have taken place in research. Fourteen of the species that have newly acquired resistance are anophelines and in thirteen of these resistance is to dieldrin only. Convincing evidence has been obtained in favour of the theory that the emergence of resistance is brought about by selection pressure exerted by the insecticide, and much light has been thrown on the biochemical mechanisms of detoxication. Research on the phenomenon of cross-resistance and on the genes responsible for the inheritance of resistance has continued. In the light of the various findings, it has been possible to make some progress towards the development of new insecticides that are more toxic to the present resistant strains than to normal ones. PMID:20604059

  12. [Rodenticide resistance and consequences].

    PubMed

    Esther, A; Endepols, S; Freise, J; Klemann, N; Runge, M; Pelz, H-J

    2014-05-01

    Resistance to anticoagulant rodenticides, such as warfarin was first described in 1958. Polymorphisms in the vitamin K epoxide reductase complex subunit 1 (VKORC1) gene and respective substitutions of amino acids in the VKOR enzyme are the major cause for rodenticide resistance. Resistant Norway rats in Germany are characterized by the Tyr139Cys genotype, which is spread throughout the northwest of the country. Resistant house mice with the VKOR variants Tyr139Cys, Leu128Ser and Arg12Trp/Ala26Ser/Ala48Thr/Arg61Leu (spretus type) are distributed over a number of locations in Germany. Resistance can reduce management attempts with consequences for stored product protection, hygiene and animal health. Anticoagulants of the first generation (warfarin, chlorophacinone, coumatetralyl) as well as bromadiolone and difenacoum are not an option for the control of resistant Norway rats. The same applies for house mice whereby the tolerance to compounds can be different between local incidences. Due to the higher toxicity and tendency to persist, the most potent anticoagulant rodenticides brodifacoum, flocoumafen and difethialone should be applied but only where resistance is known. In other cases less toxic anticoagulants should be preferred for rodent management in order to mitigate environmental risks. Resistance effects of further VKOR polymorphisms and their combinations, the spread of resistant rats and conditions supporting and reducing resistance should be investigated in order to improve resistance management strategies.

  13. Resistance and Cooling Power of Various Radiators

    NASA Technical Reports Server (NTRS)

    Smith, R H

    1928-01-01

    This reports combines the wind tunnel results of radiator tests made at the Navy Aerodynamical Laboratory in Washington during the summers of 1921, 1925, and 1926. In all, 13 radiators of various types and capacities were given complete tests for figure of merit. Twelve of these were tested for resistance to water flow and a fourteenth radiator was tested for air resistance alone, its heat dissipating capacity being known. All the tests were conducted in the 8 by 8 foot tunnel, or in its 4 by 8 foot restriction, by the writer and under conditions as nearly the same as possible. That is to say, as far as possible, the general arrangement and condition of the apparatus, the observation intervals, the ratio of water flow per unit of cooling surface, the differential temperatures, and the air speeds were the same for all.

  14. What controls aqueous humour outflow resistance?

    PubMed Central

    Johnson, Mark

    2010-01-01

    The bulk of aqueous humour outflow resistance is generated in or near the inner wall endothelium of Schlemm's canal in normal eyes, and probably also in glaucomatous eyes. Fluid flow through this region is controlled by the location of the giant vacuoles and pores found in cells of the endothelium of Schlemm's canal, but the flow resistance itself is more likely generated either in the extracellular matrix of the juxtacanalicular connective tissue or the basement membrane of Schlemm's canal. Future studies utilizing in vitro perfusion studies of inner wall endothelial cells may give insights into the process by which vacuoles and pores form in this unique endothelium and why inner wall pore density is greatly reduced in glaucoma. PMID:16386733

  15. EPA RESISTANCE MONITORING RESEARCH (NCR)

    EPA Science Inventory

    The 2006 resistance management research program was organized around three components: development of resistance monitoring program for Bt corn using remote sensing, standardization of resistance assays, and testing of resistance management models. Each area of research has shown...

  16. Evolution and Flow.

    ERIC Educational Resources Information Center

    Csikszentmihalyi, Mihaly

    1997-01-01

    Presents flow theory in the context of evolution. Defines the elements of "flow" and contends that flow results in an optimal state of inner harmony which improves one's chance for survival. Identifies consequences of flow for creativity, peak performance, talent development, productivity, self-esteem, and stress reduction. Examines the…

  17. [Doppler studies of arterial blood flow in the uterus during labor].

    PubMed

    Fendel, H; Fendel, M; Pauen, A; Liedtke, B; Schonlau, H; Warnking, R

    1984-01-01

    By the pulsed doppler method the arterial uterine blood velocity was studied in 19 patients with contractions before and during labour. It is shown, that uterine contractions reduce blood velocity significantly. Normally there is a low resistance in uterine arteries, so that the diastolic flow is nearly as high as the systolic flow. In uterine contractions the vascular resistance increases. Systolic flow is reduced slightly and diastolic flow severely or completely. But a complete zero-flow couldn't observed in any studied uterine contraction.

  18. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  19. Portable wastewater flow meter

    DOEpatents

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  1. Experimental Impedance of Single Liner Elements with Bias Flow

    NASA Technical Reports Server (NTRS)

    Follet, J. I.; Betts, J. F.; Kelly, Jeffrey J.; Thomas, Russell H.

    2000-01-01

    An experimental investigation was conducted to generate a high quality database, from which the effects of a mean bias flow on the acoustic impedance of lumped-element single-degree-of-freedom liners was determined. Acoustic impedance measurements were made using the standard two-microphone method in the NASA Langley Normal Incidence Tube. Each liner consisted of a perforated sheet with a constant-area cavity. Liner resistance was shown to increase and to become less frequency and sound pressure level dependent as the bias flow was increased. The resistance was also consistently lower for a negative bias flow (suction) than for a positive bias flow (blowing) of equal magnitude. The slope of the liner reactance decreased with increased flow.

  2. Corrosion-resistant ceramic thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.; Levine, S. R.; Miller, R. A.

    1980-01-01

    Two-layer thermal barrier coating, consisting of metal-CrA1Y bond coating and calcium silicate ceramic outer layer, greatly improves resistance of turbine parts to hot corrosion from fuel and air impurities. Both layers can be plasma sprayed, and ceramic layer may be polished to reduce frictional losses. Ceramic provides thermal barrier, so parts operate cooler metal temperatures, coolant flow can be reduced, or gas temperatures increased. Lower grade fuels also can be used.

  3. USE OF ELECTRICAL RESISTIVITY PROBE FOR DETERMINATION OF HYPORHEIC FLOW

    EPA Science Inventory

    The hyporheic zone can play a significant role in nutrient behavior in watersheds. Conceptual models describe the behavior of nutrients and biota for the hyporheic ecotone, but site characterization is needed to quantiiy effects at the restoration reach scale (hundreds of meters)...

  4. Investigation on Online Multiphase Flow Meter in oilfield Based on Open Channel Flow

    NASA Astrophysics Data System (ADS)

    Meng, L. Y.; Wang, W. C.; Li, Y. X.; Zhang, J.; Dong, S. P.

    2010-03-01

    Flow metering of multiphase pipeline is an urgently problem needed to be solved in oilfield producing in China. Based on the principle of multiphase oil and gas flow in the open channel, four liquid metering models(Falling Model I, Falling Model II, Open Channel Model and Element Resistance Model) and one gas model were obtained to calculate the gas and liquid flow rate, in which the water cut was measured by the differential pressure. And then a new type of multiphase meter system was developed based on these models and neural networks were developed to improve the estimating results of gas and liquid flow rate with the new metering system. At last a lot of experiments of multiphase metering were finished in lab and field. According to the experiments, the results of the metering system show that the liquid flow rate error was no more than 10%, and gas flow rate error was no more than 15%, which can meet the demand of the field flow rate measurement. Furthermore the relationship between liquid and gas flow rate and characteristic signals was found out through the experiments so as to deepening the study on multiphase flow metering technology.

  5. Advanced porous electrodes with flow channels for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  6. Laws of Flow in Rough Pipes

    NASA Technical Reports Server (NTRS)

    Nikuradse, J

    1950-01-01

    An experimental investigation is made of the turbulent flow of water in pipes with various degrees of relative roughness. The pipes range in size from 25 to 100 millimeters in diameter and from 1800 to 7050 millimeters in length. Flow velocities permitted Reynolds numbers from about 10 (sup. 4) to 10 (sup. 6). The laws of resistance and velocity distributions were obtained as a function of relative roughness and Reynolds number. Mixing length, as described by Prandtl's mixing-length formula, is discussed in relation to the experimental results.

  7. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  8. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  9. On growth and flow: bacterial biofilms in porous media

    NASA Astrophysics Data System (ADS)

    Durham, William; Leombruni, Alberto; Tranzer, Olivier; Stocker, Roman

    2011-11-01

    Bacterial biofilms often occur in porous media, where they play pivotal roles in medicine, industry and the environment. Though flow is ubiquitous in porous media, its effects on biofilm growth have been largely ignored. Using patterned microfluidic devices that simulate unconsolidated soil, we find that the structure of Escherichia coli biofilms undergoes a self-organization mediated by the interaction of growth and flow. Intriguingly, we find that biofilm productivity peaks at intermediate flow rates, when the biofilm is irrigated by a minimum number of preferential flow channels. At larger and smaller flow rates, fluid flows more uniformly through the matrix, but productivity drops due to removal by shear and reduced nutrient transport, respectively. These dynamics are correctly predicted by a simple network model. The observed tradeoff between growth and flow may have important consequences on biofilm-mediated processes such as biochemical cycling, antibiotic resistance and water filtration.

  10. Open-channel integrating-type flow meter

    USGS Publications Warehouse

    Koopman, K.C.

    1971-01-01

    A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.

  11. Viscous-resistive layer in Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Silveira, F. E. M.; Orlandi, H. I.

    2017-03-01

    In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.

  12. Resistance to antifungal therapies.

    PubMed

    Prasad, Rajendra; Banerjee, Atanu; Shah, Abdul Haseeb

    2017-02-28

    The evolution of antifungal resistance among fungal pathogens has rendered the limited arsenal of antifungal drugs futile. Considering the recent rise in the number of nosocomial fungal infections in immunocompromised patients, the emerging clinical multidrug resistance (MDR) has become a matter of grave concern for medical professionals. Despite advances in therapeutic interventions, it has not yet been possible to devise convincing strategies to combat antifungal resistance. Comprehensive understanding of the molecular mechanisms of antifungal resistance is essential for identification of novel targets that do not promote or delay emergence of drug resistance. The present study discusses features and limitations of the currently available antifungals, mechanisms of antifungal resistance and highlights the emerging therapeutic strategies that could be deployed to combat MDR.

  13. Vancomycin-Resistant Enterococci

    PubMed Central

    Cetinkaya, Yesim; Falk, Pamela; Mayhall, C. Glen

    2000-01-01

    After they were first identified in the mid-1980s, vancomycin-resistant enterococci (VRE) spread rapidly and became a major problem in many institutions both in Europe and the United States. Since VRE have intrinsic resistance to most of the commonly used antibiotics and the ability to acquire resistance to most of the current available antibiotics, either by mutation or by receipt of foreign genetic material, they have a selective advantage over other microorganisms in the intestinal flora and pose a major therapeutic challenge. The possibility of transfer of vancomycin resistance genes to other gram-positive organisms raises significant concerns about the emergence of vancomycin-resistant Staphylococcus aureus. We review VRE, including their history, mechanisms of resistance, epidemiology, control measures, and treatment. PMID:11023964

  14. Azole-resistant aspergillosis.

    PubMed

    Warris, Adilia

    2015-06-01

    Azole-resistance in Aspergillus fumigatus is emerging and is becoming an increasing problem in the management of aspergillosis. Two types of development of resistance have been described; resistance acquired during azole treatment in an individual patient and through environmental exposure to fungicides. The main molecular mechanism of azole resistance in A. fumigatus is explained by mutations in the cyp51A-gene. The environmental route of resistance development is particularly worrying and may affect all patients whether azole exposed or naïve, and whether suffering from acute or chronic aspergillosis. No management guidelines to assist clinicians confronted with azole-resistant aspergillosis are available and pre-clinical and clinical evidence supporting treatment choices is scarce.

  15. Reactive flow in solids

    NASA Astrophysics Data System (ADS)

    Brassart, Laurence; Suo, Zhigang

    2013-01-01

    When guest atoms diffuse into a host solid and react, the host may flow inelastically. Often a reaction can stimulate flow in a host too brittle to flow under a mechanical load alone. We formulate a theory of reactive flow in solids by regarding both flow and reaction as nonequilibrium processes, and placing the driving forces for flow and reaction on equal footing. We construct chemomechanical rate-dependent kinetic models without yield strength. In a host under constant stress and chemical potential, flow will persist indefinitely, but reaction will arrest. We also construct chemomechanical yield surface and flow rule by extending the von Mises theory of plasticity. We show that the host under a constant deviatoric stress will flow gradually in response to ramp chemical potential, and will ratchet in response to cyclic chemical potential.

  16. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  17. Insecticide Resistance Management

    DTIC Science & Technology

    2013-01-01

    been a side effect of insect vector control programs since 1914, and insect disease vectors in over 45 countries are resistant to at least one...the CDC and WHO bioassays can be performed on various insects , the remainder of the guide will focus specifically on how to detect resistance in...mosquito vector populations. For a description of how to develop a bioassay for resistance testing in other groups of insects , refer to the following

  18. [Thyroid hormone resistance syndromes].

    PubMed

    Bernal, Juan

    2011-04-01

    Thyroid hormone resistance syndromes are a group of genetic conditions characterized by decreased tissue sensitivity to thyroid hormones. Three syndromes, in which resistance to hormone action is respectively due to mutations in the gene encoding for thyroid hormone receptor TRβ, impaired T4 and T3 transport, and impaired conversion of T4 to T3 mediated by deiodinases. An updated review of each of these forms of resistance is provided, and their pathogenetic mechanisms and clinical approaches are discussed.

  19. A model for the pressure excitation spectrum and acoustic impedance of sound absorbers in the presence of grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1973-01-01

    The acoustic impedance of sound absorbers in the presence of grazing flow is essential information when analyzing sound propagation within ducts. A unification of the theory of the nonlinear acoustic resistance of Helmholtz resonators including grazing flow is presented. The nonlinear resistance due to grazing flow is considered to be caused by an exciting pressure spectrum produced by the interaction of the grazing flow and the jets flowing from the resonator orifices. With this exciting pressure spectrum the resonator can be treated in the same manner as a resonator without grazing flow but with an exciting acoustic spectrum.

  20. A smart flow measurement system for flow evaluation with multiple signals in different operation modes

    NASA Astrophysics Data System (ADS)

    Kaltsas, G.; Katsikogiannis, P.; Asimakopoulos, P.; Nassiopoulou, A. G.

    2007-11-01

    This paper presents the development and evaluation of a smart flow measurement system based on an integrated thermal flow sensor that implements a heater and two pairs of thermopiles, symmetrically situated on both sides of the heater. A specially designed interface circuit monitors and controls sensor operation, allowing three different operational modes: constant voltage (CV), constant power (CP) and constant temperature (CT). It also simultaneously monitors the heater resistance and the thermopile signal. Communication with a PC is implemented through a USB connection, and a developed Java program controls the system and data representation and storage. Transfer rates in the order of 20 000 sps are achieved, which allow detailed flow monitoring. For system evaluation, flow measurements were performed in both the calorimetric and hot-wire principles with the three different modes of operation and the corresponding results are presented comparatively. Flow velocity was determined by different sensor signals (heater resistance and power, thermopile signal) and the related sensitivities were extracted. Furthermore, it was verified that the system could detect the flow direction as well as the transition point from laminar to turbulent region.

  1. Understanding and managing resistance.

    PubMed

    Berger, D S

    1998-01-01

    As many as 25 to 45 percent of patients using triple therapy with protease inhibitors will develop resistance due to a change in the genetic HIV code. However, patients who develop resistance may still benefit clinically when protease inhibitors are used in combination with other antiretrovirals. These patients may not have undetectable viral loads although they may have stable T4-cell counts. Resistance does not always lead to disease progression. Newer drugs under development or available through compassionate track programs may benefit people with resistance. DMP-266 (Sustiva) is a non-nucleoside reverse transcriptase inhibitor that shows promise for these patients. Other drugs in development include Compound 141, 1592, and adefovir.

  2. Meeting the resistance problem

    PubMed Central

    Brown, A. W. A.

    1963-01-01

    Because resistance to new insecticides may develop rapidly and cross resistance is often encountered, even between insecticides of different classes, there is a continual demand for the development of new compounds toxic to insects. There is at present a choice between chlorinated hydrocarbons, organophosphorus compounds, carbamates, pyrethrins, synthetic pyrethroids and thiocyanates. This paper discusses thoroughly the present status of a large number of insecticides, the cross-resistances between them, and the most effective methods of application. It also examines some of the biochemical mechanisms responsible for resistance and the attempts that have been made to use substances capable of inhibiting these mechanisms as synergists of insecticides.

  3. Effective resist profile control

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu; Wang, Chien-Wei; Huang, Chun-Ching; Chang, Ching-Yu; Ku, Yao-Ching

    2014-03-01

    To meet Moore's law, resist resolution improvement has become more and more important. However, it is difficult to improve resist resolution and keep vertical sidewall profile. For example, a high contrast hole resist may cause trench scum, due to very T-top profile. This paper reports several concepts for resist profile tuning without losing performance for lithographic factor , including mask error enhancement factor (MEEF), depth of focus (DOF), and critical dimension uniformity (CDU). To quantitative analysis the resist profile improvement, we define a new factor, Scum fail ratio (F/R%) for new techniques evaluation. The new techniques, including floatable additive, floatable PAG, and new monomer, are discussed. From X-SEM and CD-SEM data, former three concepts could improve resist sidewall profile quantitatively evaluated by Scum fail F/R% and keep lithographic factors. In addition, another key factor, resist residue defect, is also discussed. The high contrast resist with higher receding contact angle (RCA) easily generates more residue defect after development. With the new monomer composition, RCA of Resist E is decreased from 54 to 48 degree after development. Therefore, the residue defect is improved one order.

  4. Antibiotic / Antimicrobial Resistance Glossary

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  5. Facts about Antibiotic Resistance

    MedlinePlus

    ... National Activities Get Smart: Know When Antibiotics Work Strategies and Plans Related CDC Education Programs Global Activities Measuring Outpatient Antibiotic Prescribing Tracking Antibiotic-Resistant ...

  6. TSH resistance revisited.

    PubMed

    Narumi, Satoshi; Hasegawa, Tomonobu

    2015-01-01

    Genetic defects of hormone receptors are the most common form of end-organ hormone resistance. One example of such defects is TSH resistance, which is caused by biallelic inactivating mutations in the TSH receptor gene (TSHR). TSH, a master regulator of thyroid functions, affects virtually all cellular processes involving thyroid hormone production, including thyroidal iodine uptake, thyroglobulin iodination, reuptake of iodinated thyroglobulin and thyroid cell growth. Resistance to TSH results in defective thyroid hormone production from the neonatal period, namely congenital hypothyroidism. Classically, clinical phenotypes of TSH resistance due to inactivating TSHR mutations were thought to vary depending on the residual mutant receptor activity. Nonfunctional mutations in the two alleles produce severe thyroid hypoplasia with overt hypothyroidism (uncompensated TSH resistance), while hypomorphic mutations in at least one allele produce normal-sized thyroid gland with preserved hormone-producing capacity (compensated TSH resistance). More recently, a new subgroup of TSH resistance (nonclassic TSH resistance) that is characterized by paradoxically high thyroidal iodine uptake has been reported. In this article, the pathophysiology and clinical features of TSH resistance due to inactivating TSHR mutations are reviewed, with particular attention to the nonclassic form.

  7. Insulin resistance and atherosclerosis

    PubMed Central

    Semenkovich, Clay F.

    2006-01-01

    Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel. PMID:16823479

  8. Multidrug Resistant Acinetobacter

    PubMed Central

    Manchanda, Vikas; Sanchaita, Sinha; Singh, NP

    2010-01-01

    Emergence and spread of Acinetobacter species, resistant to most of the available antimicrobial agents, is an area of great concern. It is now being frequently associated with healthcare associated infections. Literature was searched at PUBMED, Google Scholar, and Cochrane Library, using the terms ‘Acinetobacter Resistance, multidrug resistant (MDR), Antimicrobial Therapy, Outbreak, Colistin, Tigecycline, AmpC enzymes, and carbapenemases in various combinations. The terms such as MDR, Extensively Drug Resistant (XDR), and Pan Drug Resistant (PDR) have been used in published literature with varied definitions, leading to confusion in the correlation of data from various studies. In this review various mechanisms of resistance in the Acinetobacter species have been discussed. The review also probes upon the current therapeutic options, including combination therapies available to treat infections due to resistant Acinetobacter species in adults as well as children. There is an urgent need to enforce infection control measures and antimicrobial stewardship programs to prevent the further spread of these resistant Acinetobacter species and to delay the emergence of increased resistance in the bacteria. PMID:20927292

  9. Ecology of antimicrobial resistance: humans, animals, food and environment.

    PubMed

    González-Zorn, Bruno; Escudero, José A

    2012-09-01

    Antimicrobial resistance is a major health problem. After decades of research, numerous difficulties in tackling resistance have emerged, from the paucity of new antimicrobials to the inefficient contingency plans to reduce the use of antimicrobials; consequently, resistance to these drugs is out of control. Today we know that bacteria from the environment are often at the very origin of the acquired resistance determinants found in hospitals worldwide. Here we define the genetic components that flow from the environment to pathogenic bacteria and thereby confer a quantum increase in resistance levels, as resistance units (RU). Environmental bacteria as well as microbiomes from humans, animals, and food represent an infinite reservoir of RU, which are based on genes that have had, or not, a resistance function in their original bacterial hosts. This brief review presents our current knowledge of antimicrobial resistance and its consequences, with special focus on the importance of an ecologic perspective of antimicrobial resistance. This discipline encompasses the study of the relationships of entities and events in the framework of curing and preventing disease, a definition that takes into account both microbial ecology and antimicrobial resistance. Understanding the flux of RU throughout the diverse ecosystems is crucial to assess, prevent and eventually predict emerging scaffolds before they colonize health institutions. Collaborative horizontal research scenarios should be envisaged and involve all actors working with humans, animals, food and the environment.

  10. Dynamic power flow controllers

    DOEpatents

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  11. Unsteady flow volumes

    SciTech Connect

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  12. Magnetic tearing of plasma discharges due to nonuniform resistivity

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1988-01-01

    The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.

  13. Hydrogel control of xylem hydraulic resistance in plants.

    PubMed

    Zwieniecki, M A; Melcher, P J; Michele Holbrook, N M

    2001-02-09

    Increasing concentrations of ions flowing through the xylem of plants produce rapid, substantial, and reversible decreases in hydraulic resistance. Changes in hydraulic resistance in response to solution ion concentration, pH, and nonpolar solvents are consistent with this process being mediated by hydrogels. The effect is localized to intervessel bordered pits, suggesting that microchannels in the pit membranes are altered by the swelling and deswelling of pectins, which are known hydrogels. The existence of an ion-mediated response breaks the long-held paradigm of the xylem as a system of inert pipes and suggests a mechanism by which plants may regulate their internal flow regime.

  14. Numerical flow analysis for axial flow turbine

    NASA Astrophysics Data System (ADS)

    Sato, T.; Aoki, S.

    Some numerical flow analysis methods adopted in the gas turbine interactive design system, TDSYS, are described. In the TDSYS, a streamline curvature program for axisymmetric flows, quasi 3-D and fully 3-D time marching programs are used respectively for blade to blade flows and annular cascade flows. The streamline curvature method has some advantages in that it can include the effect of coolant mixing and choking flow conditions. Comparison of the experimental results with calculated results shows that the overall accuracy is determined more by the empirical correlations used for loss and deviation than by the numerical scheme. The time marching methods are the best choice for the analysis of turbine cascade flows because they can handle mixed subsonic-supersonic flows with automatic inclusion of shock waves in a single calculation. Some experimental results show that a time marching method can predict the airfoil surface Mach number distribution more accurately than a finite difference method. One weakpoint of the time marching methods is a long computer time; they usually require several times as much CPU time as other methods. But reductions in computer costs and improvements in numerical methods have made the quasi 3-D and fully 3-D time marching methods usable as design tools, and they are now used in TDSYS.

  15. A Nonideal Flow Experiment.

    ERIC Educational Resources Information Center

    Gonzalez-Velasco, Juan Ramon; Elorriaga, Javier Bilbao

    1984-01-01

    Considers the deviation from the ideal flows of both a backmix tank and a backmix tank followed by a flow vessel. Background information, apparatus used, and experimental procedures are provided. Typical results are also provided and discussed. (JN)

  16. Peak flow meter (image)

    MedlinePlus

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  17. Urination - difficulty with flow

    MedlinePlus

    ... gov/ency/article/003143.htm Urination - difficulty with flow To use the sharing features on this page, ... at night? Has the force of your urine flow decreased? Do you have dribbling or leaking urine? ...

  18. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    PubMed

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  19. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  20. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.157 Airflow resistance... feet) per minute. (c) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic...

  1. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.157 Airflow resistance... feet) per minute. (c) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic...

  2. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.157 Airflow resistance... feet) per minute. (c) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic...

  3. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.157 Airflow resistance... feet) per minute. (c) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic...

  4. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    PubMed

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    /hr, diagnoses the blockage or lack of flow, and records real-time continuous flow data in patients with EVDs. Calculations of a wide variety of diagnostic parameters can be made from the waveform recordings, including resistance and compliance of the ventricular catheters and the compliance of the brain. The sensor's clinical applications may be of particular importance to the noninvasive diagnosis of shunt malfunctions with the development of an implantable device.

  5. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  6. Ultrasonic flow metering system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  7. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  8. [Resistance profile of rilpivirine].

    PubMed

    Imaz, Arkaitz; García, Federico; di Yacovo, Silvana; Llibre, Josep M

    2013-06-01

    Rilpivirine (RPV) is a new second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) approved for use in combination with two nucleoside/nucleotide reverse transcriptase inhibitors (NRTI) as initial therapy in treatment-naïve HIV-1-infected patients with a baseline viral load ≤100,000 copies/mL. RPV is a diarylpyrimidine derivative with potent in vitro activity against multiple HIV-1 variants with resistance mutations to first-generation NNRTI such as K103N. In vitro studies and phase III clinical trials have allowed the identification of 16 mutations associated with resistance to RPV K101E/P, E138A/G/K/Q/R, V179L, Y181C/I/V, Y188L, H221Y, F227C and M230I/L. The risk of virologic failure in patients receiving RPV plus 2 NRTI with plasma viral load ≤ 100,000 copies/mL is low, but a high percentage of patients failing RPV develop resistance mutations to both RPV and NRTI. The most common resistance mutation that emerges in this setting is E138K. This mutation is usually associated with M184I due to a double compensatory effect of this combination, which confers resistance to RPV, as well as to lamivudine and emtricitabine. The emergence of RPV resistance confers cross-resistance to all NNRTI and, importantly, high percentages of cross-resistance to etravirine.

  9. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  10. Mechanisms of Antibiotic Resistance

    PubMed Central

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  11. An analysis of pressure driven cross-flow through a long slot connecting two parallel channels

    SciTech Connect

    Shadday, M.A. Jr.

    1992-12-31

    Cross-flow between two parallel channels that were connected by a long narrow slot has been measured. The data was presented primarily in terms of transverse resistance coefficients. This data has been analyzed with momentum balances applied to both the axial and transverse components of the slot flow. The importance of wall friction to the slot flow and the necessity of calculating the axial component of the slot flow is demonstrated.

  12. Existence and uniqueness of solutions in general multisolute renal flow problems.

    PubMed

    Garner, J B; Kellogg, R B

    1988-01-01

    This paper considers systems of differential equations that describe flows in renal networks. The flow geometry is of the type that occurs in modelling the renal medulla. The unknowns in the system include the flow rate, the hydrostatic pressure, and the concentrations of the various solutes. Existence and uniqueness of solutions of the appropriate boundary value problems are established, in the case of small permeability coefficients and transport rates, or large diffusion coefficients and small resistance to flow constants.

  13. An in-well heat-tracer-test method for evaluating borehole flow conditions

    NASA Astrophysics Data System (ADS)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  14. Integer Equal Flows

    SciTech Connect

    Meyers, C A; Schulz, A S

    2009-01-07

    The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.

  15. Computing Blood Flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.

    1990-01-01

    Methods developed for aerospace applied to mechanics of biofluids. Report argues use of advanced computational fluid dynamics to analyze flows of biofluids - especially blood. Ability to simulate numerically and visualize complicated, time-varying three-dimensional flows contributes to understanding of phenomena in heart and blood vessels, offering potential for development of treatments for abnormal flow conditions.

  16. Blood Flow in Arteries

    NASA Astrophysics Data System (ADS)

    Ku, David N.

    Blood flow in arteries is dominated by unsteady flow phenomena. The cardiovascular system is an internal flow loop with multiple branches in which a complex liquid circulates. A nondimensional frequency parameter, the Womersley number, governs the relationship between the unsteady and viscous forces. Normal arterial flow is laminar with secondary flows generated at curves and branches. The arteries are living organs that can adapt to and change with the varying hemodynamic conditions. In certain circumstances, unusual hemodynamic conditions create an abnormal biological response. Velocity profile skewing can create pockets in which the direction of the wall shear stress oscillates. Atherosclerotic disease tends to be localized in these sites and results in a narrowing of the artery lumena stenosis. The stenosis can cause turbulence and reduce flow by means of viscous head losses and flow choking. Very high shear stresses near the throat of the stenosis can activate platelets and thereby induce thrombosis, which can totally block blood flow to the heart or brain. Detection and quantification of stenosis serve as the basis for surgical intervention. In the future, the study of arterial blood flow will lead to the prediction of individual hemodynamic flows in any patient, the development of diagnostic tools to quantify disease, and the design of devices that mimic or alter blood flow. This field is rich with challenging problems in fluid mechanics involving three-dimensional, pulsatile flows at the edge of turbulence.

  17. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  18. Flow Interactions and Control

    DTIC Science & Technology

    2012-03-08

    intervals of “ hibernating ” turbulence that exhibit very low skin friction, • hibernating turbulence intervals are found occasionally even without...reduce overall drag in aerodynamically important flows. Background and objective Recent results Active Hibernating vorticity velocity Laminar...flow Turbulent flow Upper branch ECS Low-drag excursions- hibernation Turbulent bursts Basin boundary: • lower-branch ECS • edge state

  19. Targeting Antibiotic Resistance

    PubMed Central

    Chellat, Mathieu F.; Raguž, Luka

    2016-01-01

    Abstract Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human‐pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last‐resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled “Combat drug resistance: no action today means no cure tomorrow” triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  20. Chronic lead exposure reduces junctional resistance at an electrical synapse.

    PubMed

    Audesirk, G; Audesirk, T

    1984-01-01

    Both acute and chronic lead exposure have been found to inhibit transmission at chemical synapses, possibly by interfering with inward calcium current. We have found that chronic lead exposure slightly reduces input resistance and greatly reduces the junctional resistance between two strongly electrically coupled neurons in the pond snail Lymnaea stagnalis. The net effect is to increase the strength of electrical coupling. A reduction in gap junctional resistance would also be expected to increase the flow of small molecules between cells. However, Lucifer Yellow injections did not reveal dye-coupling between the cells. Lead exposure also increases the capacitance of the neurons.

  1. HIV resistance to raltegravir.

    PubMed

    Clavel, Francois

    2009-11-24

    Similar to all antiretroviral drugs, failure of raltegravir-based treatment regimens to fully supress HIV replication almost invariably results in emergence of HIV resistance to this new drug. HIV resistance to raltegravir is the consequence of mutations located close to the integrase active site, which can be divided into three main evolutionary pathways: the N155H, the Q148R/H/K and the Y143R/C pathways. Each of these primary mutations can be accompanied by a variety of secondary mutations that both increase resistance and compensate for the variable loss of viral replicative capacity that is often associated with primary resistance mutations. One unique property of HIV resistance to raltegravir is that each of these different resistance pathways are mutually exclusive and appear to evolve separately on distinct viral genomes. Resistance is frequently initiated by viruses carrying mutations of the N155H pathway, followed by emergence and further dominance of viral genomes carrying mutations of the Q148R/H/K or of the Y143R/C pathways, which express higher levels of resistance. Even if some natural integrase polymorphisms can be part of this evolution process, these polymorphisms do not affect HIV susceptibility in the absence of primary mutations. Therefore, all HIV-1 subtypes and groups, together with HIV-2, are naturally susceptible to raltegravir. Finally, because interaction of integrase strand transfer inhibitors with the HIV integrase active site is comparable from one compound to another, raltegravir-resistant viruses express significant cross resistance to most other compounds of this new class of antiretroviral drugs.

  2. Echinocandin Resistance in Candida.

    PubMed

    Perlin, David S

    2015-12-01

    Invasive fungal infections are an important infection concern for patients with underlying immunosuppression. Antifungal therapy is a critical component of patient care, but therapeutic choices are limited due to few drug classes. Antifungal resistance, especially among Candida species, aggravates the problem. The echinocandin drugs (micafungin, anidulafungin, and caspofungin) are the preferred choice to treat a range of candidiasis. They target the fungal-specific enzyme glucan synthase, which is responsible for the biosynthesis of a major cell wall polymer. Therapeutic failure involves acquisition of resistance, although it is a rare event among most Candida species. However, in some settings, higher-level resistance has been reported among Candida glabrata, which is also frequently resistant to azole drugs, resulting in difficult-to-treat multidrug-resistant strains. The mechanism of echinocandin resistance involves amino acid changes in "hot spot" regions of FKS-encoded subunits of glucan synthase, which decreases the sensitivity of enzyme to drug, resulting in higher minimum inhibitory concentration values. The cellular processes promoting the formation of resistant FKS strains involve complex stress response pathways that yield a variety of adaptive compensatory genetic responses. Standardized broth microdilution techniques can be used to distinguish FKS mutant strains from wild type, but testing C. glabrata with caspofungin should be approached cautiously. Finally, clinical factors that promote echinocandin resistance include prophylaxis, host reservoirs including biofilms in the gastrointestinal tract, and intra-abdominal infections. An understanding of clinical and molecular factors that promote echinocandin resistance is critical to develop better diagnostic tools and therapeutic strategies to overcome resistance.

  3. Ethics and drug resistance.

    PubMed

    Selgelid, Michael J

    2007-05-01

    This paper reviews the dynamics behind, and ethical issues associated with, the phenomenon of drug resistance. Drug resistance is an important ethical issue partly because of the severe consequences likely to result from the increase in drug resistant pathogens if more is not done to control them. Drug resistance is also an ethical issue because, rather than being a mere quirk of nature, the problem is largely a product of drug distribution. Drug resistance results from the over-consumption of antibiotics by the wealthy; and it, ironically, results from the under-consumption of antibiotics, usually by the poor or otherwise marginalized. In both kinds of cases the phenomenon of drug resistance illustrates why health (care)--at least in the context of infectious disease--should be treated as a (global) public good. The point is that drug resistance involves 'externalities' affecting third parties. When one patient develops a resistant strain of disease because of her over- or under-consumption of medication, this more dangerous malady poses increased risk to others. The propriety of free-market distribution of goods subject to externalities is famously dubious--given that the 'efficiency' rationale behind markets assumes an absence of externalities. Market failure in the context of drug resistance is partly revealed by the fact that no new classes of antibiotics have been developed since 1970. I conclude by arguing that the case of drug resistance reveals additional reasons--to those traditionally appealed to by bioethicists--for treating health care as something special when making policy decisions about its distribution.

  4. Behavior of Settling Marine Larvae in Flow

    NASA Astrophysics Data System (ADS)

    Hernandez, J.; Koehl, M. A.

    2012-12-01

    Many bottom-dwelling marine animals produce microscopic larvae that are dispersed by ambient water currents. These larvae can only recruit to habitats on which they have landed if they can resist being washed away by ambient water flow. We found that larvae on marine surfaces do not experience steady water flow, but rather are exposed to brief pulses of water movement as turbulent eddies sweep across them. We made video recordings of larvae of the tube worm, Hydroides elegans, (important members of the community of organisms growing on docks and ships) on surfaces subjected to measured realistic flow pulses to study factors that might affect their dislodgement from surfaces in nature. We found that the response of a larva of H. elegans to a realistic pulse of water flow depended on its behavior at the time of the pulse and on its recent history of exposure to flow pulses, and that stationary larvae were less likely than locomoting larvae to be blown away when hit by the first pulse of water flow.; ;

  5. Flow Cytometry Analyses of Adipose Tissue Macrophages

    PubMed Central

    Cho, Kae Won; Morris, David L.; Lumeng, Carey N.

    2014-01-01

    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory. PMID:24480353

  6. Water transport in plants: Mechanism of apparent changes in resistance during absorption.

    PubMed

    Boyer, J S

    1974-09-01

    Leaf water potentials were measured at various rates of water absorption in whole plants and detached leaves of well-watered Helianthus annuus L. The experiments were conducted in the steady state, where changes in leaf hydration did not affect the measurements but both the transpiration and growth components of absorption could be observed. Calculations of the total plant resistance to water transport showed that the resistance at low fluxes was about 30 times the resistance at high fluxes. Most of the change took place in the leaves, since similar changes could be demonstrated in detached leaves. The roots accounted for little of the change, since they varied in resistance by a factor of only 2.5 as flow varied.To ascertain whether the protoplasts of the leaves varied in resistance by an amount which could account for the change in resistance to water transport, measurements of rates of water movement in and out of the protoplasm were made when gradients in water potential between the protoplasts and the water source were varied. These showed that water movement did not occur at rates which could account for high rates of transpiration even when large differences in potential drove flow. The high temperature sensitivity of efflux confirmed that the leaf protoplasts limited flow in these experiments. When the edge of the leaf was excised and flow occurred primarily through the vascular system of the leaf, the resistance was much lower than in the protoplasts. It is therefore concluded that the leaf protoplasts represent a high resistance to water transport and that a considerable portion of the water involved in transpiration must bypass them.Calculations based on a model of water transport showed that the protoplast resistance was almost 30 times larger than the resistance of the path leading from the soil to the leaf protoplasts. The decrease in resistance of the leaves with increasing rates of absorption was therefore attributed to a decrease in water movement

  7. Flow quality measurements in compressible subsonic flows

    NASA Technical Reports Server (NTRS)

    Stainback, P. Calvin; Johnson, Charles B.

    1987-01-01

    The purpose is to re-examine the heat transfer from a hot-wire probe in the compressible subsonic flow regime; describe the three-wire hot-wire probe calibration and data reduction techniques used to measure the velocity, density, and total temperature fluctuation; and present flow quality results obtained in the Langley 0.3 meter Transonic Cryogenic Wind Tunnel and in flight with the NASA JetStar from the same three-wire hot-wire probe.

  8. Systematic study of source mask optimization and verification flows

    NASA Astrophysics Data System (ADS)

    Ben, Yu; Latypov, Azat; Chua, Gek Soon; Zou, Yi

    2012-06-01

    Source mask optimization (SMO) emerged as powerful resolution enhancement technique (RET) for advanced technology nodes. However, there is a plethora of flow and verification metrics in the field, confounding the end user of the technique. Systemic study of different flows and the possible unification thereof is missing. This contribution is intended to reveal the pros and cons of different SMO approaches and verification metrics, understand the commonality and difference, and provide a generic guideline for RET selection via SMO. The paper discusses 3 different type of variations commonly arise in SMO, namely pattern preparation & selection, availability of relevant OPC recipe for freeform source and finally the metrics used in source verification. Several pattern selection algorithms are compared and advantages of systematic pattern selection algorithms are discussed. In the absence of a full resist model for SMO, alternative SMO flow without full resist model is reviewed. Preferred verification flow with quality metrics of DOF and MEEF is examined.

  9. Lateral flow strip assay

    SciTech Connect

    Miles, Robin R; Benett, William J; Coleman, Matthew A; Pearson, Francesca S; Nasarabadi, Shanavaz L

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  10. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.

    PubMed Central

    Steinberg, H O; Chaker, H; Leaming, R; Johnson, A; Brechtel, G; Baron, A D

    1996-01-01

    To test the hypothesis that obesity/insulin resistance impairs both endothelium-dependent vasodilation and insulin-mediated augmentation of endothelium-dependent vasodilation, we studied leg blood flow (LBF) responses to graded intrafemoral artery infusions of methacholine chloride (MCh) or sodium nitroprusside (SNP) during saline infusion and euglycemic hyperinsulinemia in lean insulin-sensitive controls (C), in obese insulin-resistant subjects (OB), and in subjects with non-insulin-dependent diabetes mellitus (NIDDM). MCh induced increments in LBF were approximately 40% and 55% lower in OB and NIDDM, respectively, as compared with C (P < 0.05). Euglycemic hyperinsulinemia augmented the LBF response to MCh by - 50% in C (P < 0.05 vs saline) but not in OB and NIDDM. SNP caused comparable increments in LBF in all groups. Regression analysis revealed a significant inverse correlation between the maximal LBF change in response to MCh and body fat content. Thus, obesity/insulin resistance is associated with (a) blunted endothelium-dependent, but normal endothelium-independent vasodilation and (b) failure of euglycemic hyperinsulinemia to augment endothelium-dependent vasodilation. Therefore, obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation. This endothelial dysfunction could contribute to the increased risk of atherosclerosis in obese insulin-resistant subjects. PMID:8647954

  11. 1d Numerical Simulation of A Swiss Debris Flow: Comparison of Flow Laws

    NASA Astrophysics Data System (ADS)

    McArdell, B. W.; Graf, Ch.; Naef, D.; Rickenmann, D.

    Efforts to numerically model debris flows have been limited by a lack of appropriate numerical tools. Here we report on our efforts to systematically evaluate different flow laws using a numerical tool under development at our institute. The model, DFEM, is a finite element solution of the shallow water equations in one or two dimensions and is based on the FEMTOOL libraries from Rutschmann (1993). Debris flow constitu- tive relations or flow laws include turbulent (e.g. Manning, Chézy, Voellmy), laminar (Bingham, Newtonian laminar), and inertial formulations (dilatant/grain shearing) as well as combinations of flow laws when appropriate. The model is applied to a recent debris flow event from the Schipfenbach torrent, Switzerland (Hürlimann, submitted), where we maintain an automated debris flow observation station. Observations include flow depth measurements from ultrasonic depth measurement devices, reach-averaged velocities estimated from the travel time between ultrasonic gages and geophones, velocity and flow behavior from video cam- eras situated near the flow retention basin on the fan, and post-event field surveys. Preliminary results suggest that the flow of debris in the steep reaches of the torrent channel can be reasonably described by a simple turbulent flow law (e.g. Manning- Strickler or Chézy) with a large overall flow resistance, and that both the flow in the channel and the deposition on the fan can be satisfactorily simulated using the Voellmy fluid approach. The results using the Voellmy fluid approach are in agree- ment with results calculated from the AVAL-1D snow avalanche simulation code and input parameters for debris instead of snow, corroborating the implementation in the DFEM model. The AVAL-1D code is commercially available, providing another tool that may be used by workers in the natural hazards field for debris flow routing in torrent channels and on alluvial fans. References: Hürlimann, M., Rickenmann, D. and Graf, Ch., Field

  12. Low flow fume hood

    DOEpatents

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  13. Flow separation detector

    NASA Technical Reports Server (NTRS)

    Mateer, G. C.; Brosh, A. (Inventor)

    1977-01-01

    An arrangement for sensing the fluid separation along a surface which employs a thermally insulating element having a continuous surface blending into and forming a part of the fluid flow surface is described. A sudden decrease in the temperature of the downstream sensor conductor and concomitant increase in the temperature of the upstream sensor conductor is an indication of the separation. When the temperatures are returned to the state achieved during normal flow, the indicator thereby indicates the normal, attached fluid flow. The conductors may be, for example, wires or thin films, and should be within the viscous sub-layer of the expected fluid flow. A single heater and several pairs of sensors and corresponding sensor conductors may be used to detect not only the fluid flow and the separation, but the direction of the fluid flow, over the fluid flow surface.

  14. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  15. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  16. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  17. Linezolid Resistance in Staphylococci.

    PubMed

    Stefani, Stefania; Bongiorno, Dafne; Mongelli, Gino; Campanile, Floriana

    2010-06-24

    Linezolid, the first oxazolidinone to be used clinically, is effective in the treatment of infections caused by various Gram-positive pathogens, including multidrug resistant enterococci and methicillin-resistant Staphylococus aureus. It has been used successfully for the treatment of patients with endocarditis and bacteraemia, osteomyelitis, joint infections and tuberculosis and it is often used for treatment of complicated infections when other therapies have failed. Linezolid resistance in Gram-positive cocci has been encountered clinically as well as in vitro, but it is still a rare phenomenon. The resistance to this antibiotic has been, until now, entirely associated with distinct nucleotide substitutions in domain V of the 23S rRNA genes. The number of mutated rRNA genes depends on the dose and duration of linezolid exposure and has been shown to influence the level of linezolid resistance. Mutations in associated ribosomal proteins also affect linezolid activity. A new phenicol and clindamycin resistance phenotype has recently been found to be caused by an RNA methyltransferase designated Cfr. This gene confers resistance to lincosamides, oxazolidinones, streptogramin A, phenicols and pleuromutilins, decrease the susceptibility of S. aureus to tylosin, to josamycin and spiramycin and thus differs from erm rRNA methylase genes. Research into new oxazolidinones with improved characteristics is ongoing. Data reported in patent applications demonstrated that some oxazolidinone derivatives, also with improved characteristics with respect to linezolid, are presently under study: at least three of them are in an advanced phase of development.

  18. Mechanisms for Breast Cancer Cell Resistance to Doxorubicin and Solutions to Resistance and Side Effects

    DTIC Science & Technology

    2001-10-01

    alkylation and crosslinking of DNA as important toxic events triggering cell death. The long term goals of the proposed research are to establish the...mechanism for the crosslinking , to produce new mechanism-based anthracycline derivatives which will be active against resistant breast cancer, and to...of epidoxorubicin- alkylated DNA shows the epidoxorubicin virtually crosslinking the DNA at NGC sites. 2) Flow cytometry measurements show drug

  19. Peristalsis-induced Flow and Mixing in the Stomach

    NASA Astrophysics Data System (ADS)

    Pal, Anupam; Indireshkumar, Keshavamurthy; Brasseur, James G.; Abrahamsson, Bertil; Schwizer, Werner

    2003-11-01

    Peristaltic contraction waves (PCWs) on the stomach wall induce flow that mixes gastric content. Our aim was to evaluate the relationship among PCWs, flow structure and mixing efficiency. We used 2D lattice Boltzmann method with realistic stomach geometry model and a moving boundary condition algorithm. PCWs generate two dominant viscous flow patterns: jet-like retrograde flow through a PCW driven by only fractions of a mmHg pressure drop, and recirculating eddying flow. Both flow patterns are important in mixing, i.e., the rate of spreading of fluid particles. The jet-like flow induces high strain that rapidly separates particles, whereas the eddying motions transport particles across the flow domain. Both flow strength and mixing are sensitive to occlusion and width of the PCWs; retrograde flow was also sensitive to downstream details. We conclude that PCWs drive eddying motions and generate small pressure gradients that drive fluid retrograde against frictional resistance. Both the retrograde jets and the eddying motions contribute to mixing, albeit in different ways. Flow, and consequently mixing, is sensitive to details of PCW geometry.

  20. Probing minority population of antibiotic-resistant bacteria.

    PubMed

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies.

  1. Infliximab and insulin resistance.

    PubMed

    Ursini, Francesco; Naty, Saverio; Grembiale, Rosa Daniela

    2010-06-01

    Insulin resistance is the most important pathophysiologic feature of obesity, type 2 diabetes mellitus and prediabetic states. TNF-alpha, a proinflammatory cytokine, plays a pivotal role in the pathogenesis of inflammation-associated insulin resistance during the course of rheumatic diseases. Therapies aimed at neutralizing TNF-alpha, such as the monoclonal antibody infliximab, represent a novel approach for the treatment of rheumatic diseases and allow to obtain significant results in terms of control of the inflammatory process. In this article we reviewed the scientific evidence published in the literature about a potential role of TNF-alpha blockade in improving insulin resistance in non-diabetic rheumatic patients.

  2. Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Smith, Damon C. (Inventor)

    2005-01-01

    An exercise device 10 is particularly well suited for use in low gravity environments, and includes a frame 12 with plurality of resistance elements 30,82 supported in parallel on the frame. A load transfer member 20 is moveable relative to the frame for transferring the applied force to the free end of each captured resistance element. Load selection template 14 is removably secured both to the load transfer member, and a plurality of capture mechanisms engage the free end of corresponding resistance elements. The force applying mechanism 53 may be a handle, harness or other user interface for applying a force to move the load transfer member.

  3. Predicting antibiotic resistance.

    PubMed

    Martínez, José L; Baquero, Fernando; Andersson, Dan I

    2007-12-01

    The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.

  4. Numerical calculation of periodic viscous flow through a circular hole

    NASA Astrophysics Data System (ADS)

    Notomi, T.; Namba, M.

    1992-08-01

    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are studied numerically. The time dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear co-ordinates are solved by using a finite difference method. The flow patterns and acoustic impedance of the circular hole are investigated for various combinations of the pressure/viscous force ratio, frequency and hole edge thickness. Numerical calculations revealed some interesting facts, as follows. First, the flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high-frequency-low-pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex rings (low-frequency-high-pressure range). Second, the flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid, and almost invariant with the frequency for the low-frequency-high-pressure range. On the other hand, for the high-frequency-low-pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with the 2/3 power of the frequency. Finally, the predicted circular hole impedance is in good agreement with the experimental data for the orifice impedance of Ingard and Ising.

  5. Mechanisms of drug resistance: daptomycin resistance.

    PubMed

    Tran, Truc T; Munita, Jose M; Arias, Cesar A

    2015-09-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction into clinical practice in 2003, DAP has become an important key frontline antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP resistance (DAP-R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp., and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP-R are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have provided novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope, such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria.

  6. 46 CFR 154.546 - Excess flow valve: Closing flow.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Excess flow valve: Closing flow. 154.546 Section 154.546... and Process Piping Systems § 154.546 Excess flow valve: Closing flow. (a) The rated closing flow of vapor or liquid cargo for an excess flow valve must be specially approved by the Commandant (CG-522)....

  7. [Quantification and monitoring of vascular resistance in the lower limbs by the Doppler method (animal model)

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Berson, M.; Blondeau, B.; Durand, A.; Bodard, S.; Locatelli, A.; Fox, G. E. (Principal Investigator)

    1995-01-01

    The object of this study was to define and validate a non-invasive method of evaluation and monitoring of vascular resistances in the leg. Blood flow velocity was measured by Doppler ultrasound in an animal model (ewe) with similar blood flow characteristics in the lower limb as man and allowing access to the required invasive measurements for validation of the method (pressure and flow). Vascular resistances distal to the measuring point (femoral, for example) were assessed using the resistance index R = D/S, S being the peak systolic deflection and D that of diastolic reflux of the Doppler spectral analysis of flow in the femoral artery. The values and variations of this resistance index were compared with the vascular resistances calculated from measurements of pressure and flow at the point of Doppler sampling and expressed in mmHg/ml/min. Femoral flow was measured by Doppler ultrasound (Doppler-echo), and mean pressure by an arterial catheter introduced into the abdominal aorta. Compression of the lower limb veins induced a venous return resulting in a reduction of cardiac output and femoral flow. During compression, femoral flow decreased by an average of 29% (p < 0.001) although mean pressure and heart rate did not change significantly. The femoral resistance index (Rf) increased by an average of 37.5% (p < 0.01) and vascular resistances increased by 45.9% (p < 0.01). Injection of 1 mg adrenaline induced peripheral vasoconstriction with an increase in blood pressure and a decrease in heart rate and femoral flow.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  9. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.

    PubMed

    Nishida, Masahiro; Kosaka, Ryo; Maruyama, Osamu; Yamane, Takashi; Shirasu, Akio; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2017-03-01

    A long-term durability test was conducted on a newly developed axial-flow ventricular assist device (VAD) with hydrodynamic bearings. The mock circulatory loop consisted of a diaphragm pump with a mechanical heart valve, a reservoir, a compliance tank, a resistance valve, and flow paths made of polymer or titanium. The VAD was installed behind the diaphragm pump. The blood analog fluid was a saline solution with added glycerin at a temperature of 37 °C. A pulsatile flow was introduced into the VAD over a range of flow rates to realize a positive flow rate and a positive pressure head at a given impeller rotational speed, yielding a flow rate of 5 L/min and a pressure of 100 mmHg. Pulsatile flow conditions were achieved with the diastolic and systolic flow rates of ~0 and 9.5 L/min, respectively, and an average flow rate of ~5 L/min at a pulse rate of 72 bpm. The VAD operation was judged by not only the rotational speed of the impeller, but also the diastolic, systolic, and average flow rates and the average pressure head of the VAD. The conditions of the mock circulatory loop, including the pulse rate of the diaphragm pump, the fluid temperature, and the fluid viscosity were maintained. Eight VADs were tested with testing periods of 2 years, during which they were continuously in operation. The VAD performance factors, including the power consumption and the vibration characteristics, were kept almost constant. The long-term durability of the developed VAD was successfully demonstrated.

  10. Insulin Resistance and Prediabetes

    MedlinePlus

    ... especially sleep apnea; and cigarette smoking. Does sleep matter? Yes. Studies show that untreated sleep problems, especially ... a severe form of insulin resistance may have dark patches of skin, usually on the back of ...

  11. MCR: modern colistin resistance.

    PubMed

    Caniaux, I; van Belkum, A; Zambardi, G; Poirel, L; Gros, M F

    2017-03-01

    Recently, plasmid-mediated and, therefore, transferable bacterial polymyxin resistance was discovered in strains from both humans and animals. Such a trait may widely spread geographically, while simultaneously crossing microbial species barriers. This may ultimately render the "last resort" polymyxin antibiotics therapeutically useless. Colistin is currently used to treat infections caused by Gram-negative carbapenemase producers and colistin resistance may lead to practical pan-antibiotic resistance. We here analyzed the medical and diagnostic consequences of (emerging) colistin resistance and propose pathways toward adequate diagnostics for timely detection of both asymptomatic carriage and infection. Culture-based testing using chromogenic and selective media for screening clinical (and veterinary) specimens may constitute key tools for that purpose. Relevant molecular tests are also discussed.

  12. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... NIAID invests in basic research to understand the biology of microbes, their behavior, and how drug resistance ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  13. Helical Emg Effective Resistance

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. K.; Zharinov, E. I.; Busin, V. N.; Grinevich, B. E.; Sokolova, O. V.; Smirnova, G. N.; Klimushkin, K. N.

    2004-11-01

    The efficiency of explosive-magnetic system operation depends on the magnetic flux losses produced under circuit deformation. Losses primarily arise from circuit ohmic resistance and flux pocketing due to the disturbed continuity of helix wires deformation. This is because of technological faults in fabrication and potential electric breakdowns resulting from the voltage overload in the generator circuit. Since it is rather difficult to identify each type of loss mentioned, all soles are expressed as the effective resistance of the circuit, Reff. The EMG-160 multi-sectional helical generator with a 760 mm long helix having an inner diameter of 160 mm is considered as an example. EMG-160 initial conductance was 34 μH and the final inductance was 25 nH. The effective resistance of the circuit was calculated for this experiment. The method of determining the effective resistance allows estimation of EMG efficiency at all stages of generator operation.

  14. Tetracycline Antibiotics and Resistance.

    PubMed

    Grossman, Trudy H

    2016-04-01

    Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.

  15. [Resistance to antibiotics].

    PubMed

    Sánchez, Jesús Silva

    2006-01-01

    Bacterial resistance to antibiotics is a major public health problem around the world causing high rates of morbi-mortality and economic problems in hospital settings. Major bacterial causing nosocomial infections are: extended-spectrum beta-lactameses (ESBL) producing enterobacteria, methicillin resistance Staphylococcus aureus, coagulase negative Staphylococcus, metallo fl-lactamases (MBL) producing Pseudomonas aeruginosa, Streptococcus pneumoniae, Enterococcus spp, Acinetobacter baumani. This last bacteria is not very often isolated in hospital settings yet, but it is multi-resistance pathogen causing high mortality. Helicobacter pylori, which is not a nosocomial pathogen but is associated to gastric diseases (from gastritis to gastric cancer). Infections prevention, to obtain an accuracy diagnostic and effective treatment, use antibiotic wisely and pathogen dissemination prevention (hand washing), are important steps to control the bacterial resistance.

  16. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  17. CELLULAR RESISTANCE TO INFECTION

    PubMed Central

    Mackaness, G. B.

    1962-01-01

    The mouse was found to be natively susceptible to Listeria monocytogenes. Its susceptibility was attributed to the capacity of the organism to survive and multiplying in host macrophages. During the first 3 days of a primary infection the bacterial populations of spleen and liver were found to increase at a constant rate. On the 4th day of infection the host became hypersensitive to Listeria antigens and at the same time bacterial growth ceased. A rapid inactivation of the organism ensued. Convalescent mice were resistant to challenge, but no protective factor could be found in their serum. Histological evidence suggested that acquired resistance was the result of a change occurring in the host's mononuclear phagocytes. When challenged in vitro, the macrophages of convalescent mice were found to resist infection with Listeria monocytogenes. Listeria-resistant cells appeared during the course of infection at a time which corresponded with the development of the antibacterial mechanism in the spleen. They persisted for as long as the antibacterial mechanism remained intact in this organ. This period of absolute resistance to Listeria lasted about 3 weeks. Thereafter, the host remained hypersensitive but unable to inactivate a challenge inoculum of Listeria. However, it remained capable of producing an accelerated response to reinfection. This was thought to depend upon an ability to generate a new population of resistant cells from a residuum of specifically sensitized macrophages or macrophage precursors still surviving in the tissues as a result of the immunological activation which occurred during the primary infection. PMID:14467923

  18. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  19. CD30 Downregulation, MMAE Resistance, and MDR1 Upregulation Are All Associated with Resistance to Brentuximab Vedotin.

    PubMed

    Chen, Robert; Hou, Jessie; Newman, Edward; Kim, Young; Donohue, Cecile; Liu, Xueli; Thomas, Sandra H; Forman, Stephen J; Kane, Susan E

    2015-06-01

    Brentuximab vedotin (BV) is an antibody-drug conjugate that specifically delivers the potent cytotoxic drug monomethyl auristatin E (MMAE) to CD30-positive cells. BV is FDA approved for treatment of relapsed/refractory Hodgkin lymphoma and anaplastic large cell lymphoma (ALCL); however, many patients do not achieve complete remission and develop BV-resistant disease. We selected for BV-resistant Hodgkin lymphoma (L428) and ALCL (Karpas-299) cell lines using either constant (ALCL) or pulsatile (Hodgkin lymphoma) exposure to BV. We confirmed drug resistance by MTS assay and analyzed CD30 expression in resistant cells by flow cytometry, qRT-PCR, and Western blotting. We also measured drug exporter expression, MMAE resistance, and intracellular MMAE concentrations in BV-resistant cells. In addition, tissue biopsy samples from 10 Hodgkin lymphoma and 5 ALCL patients who had relapsed or progressed after BV treatment were analyzed by immunohistocytochemistry for CD30 expression. The resistant ALCL cell line, but not the Hodgkin lymphoma cell line, demonstrated downregulated CD30 expression compared with the parental cell line. In contrast, the Hodgkin lymphoma cell line, but not the ALCL cell line, exhibited MMAE resistance and increased expression of the MDR1 drug exporter compared with the parental line. For both Hodgkin lymphoma and ALCL, samples from patients relapsed/resistant on BV persistently expressed CD30 by immunohistocytochemistry. One Hodgkin lymphoma patient sample expressed MDR1 by immunohistocytochemistry. Although loss of CD30 expression is a possible mode of BV resistance in ALCL in vitro models, this has not been confirmed in patients. MMAE resistance and MDR1 expression are possible modes of BV resistance for Hodgkin lymphoma both in vitro and in patients.

  20. CD30 downregulation, MMAE resistance, and MDR1 upregulation are all associated with resistance to brentuximab vedotin

    PubMed Central

    Chen, Robert; Hou, Jessie; Newman, Edward; Kim, Young; Donohue, Cecile; Liu, Xueli; Thomas, Sandra H.; Forman, Stephen J.; Kane, Susan E.

    2015-01-01

    Brentuximab vedotin (BV) is an antibody-drug conjugate that specifically delivers the potent cytotoxic drug MMAE to CD30-positive cells. BV is FDA-approved for treatment of relapsed/refractory Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL); however, many patients do not achieve complete remission and develop BV resistant disease. We selected for BV-resistant HL (L428) and ALCL (Karpas-299) cell lines using either constant (ALCL) or pulsatile (HL) exposure to BV. We confirmed drug resistance by MTS assay, and analyzed CD30 expression in resistant cells by flow cytometry, qRT-PCR, and Western blotting. We also measured drug exporter expression, MMAE resistance, and intracellular MMAE concentrations in BV-resistant cells. Additionally, tissue biopsy samples from 10 HL and 5 ALCL patients who had relapsed or progressed after BV treatment were analyzed by immunohistocytochemistry for CD30 expression. The resistant ALCL cell line, but not the HL cell line, demonstrated downregulated CD30 expression compared to the parental cell line. In contrast, the HL cell line, but not the ALCL cell line, exhibited MMAE resistance and increased expression of the MDR1 drug exporter compared to the parental line. For both HL and ALCL, samples from patients relapsed/resistant on BV persistently expressed CD30 by immunohistocytochemistry. One HL patient sample expressed MDR1 by immunohistocytochemistry. Although loss of CD30 expression is a possible mode of BV resistance in ALCL in vitro models, this has not been confirmed in patients. MMAE resistance and MDR1 expression are possible modes of BV resistance for HL both in vitro and in patients. PMID:25840583

  1. The Effects of Hyper- and Hypocapnia on Phonatory Laryngeal Airway Resistance in Women

    ERIC Educational Resources Information Center

    Gillespie, Amanda I.; Slivka, William; Atwood, Charles W., Jr.; Abbott, Katherine Verdolini

    2015-01-01

    Purpose: The larynx has a dual role in the regulation of gas flow into and out of the lungs while also establishing resistance required for vocal fold vibration. This study assessed reciprocal relations between phonatory functions--specifically, phonatory laryngeal airway resistance (R[subscript law])--and respiratory homeostasis during states of…

  2. In-situ technique for checking the calibration of platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, Lawrence A.

    1987-01-01

    The applicability of the self-heating technique for checking the calibration of platinum resistance thermometers located inside wind tunnels was investigated. This technique is based on a steady state measurement of resistance increase versus joule heating. This method was found to be undesirable, mainly because of the fluctuations of flow variables during any wind tunnel testing.

  3. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene flow between jointed goatgrass and winter wheat is a concern because transfer of herbicide resistance genes from imidazolinone-resistant (IR) winter wheat cultivars to jointed goatgrass could restrict weed management options for this serious weed of winter wheat cropping systems. The objective...

  4. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  5. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Solids mass flow determination

    DOEpatents

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  7. Response of a radial-bladed centrifugal pump to sinusoidal disturbances for noncavitating flow

    NASA Technical Reports Server (NTRS)

    Anderson, D. A.; Blade, R. J.; Stevans, W.

    1971-01-01

    A radial-bladed centrifugal pump was run in water with sinusoidal fluctuations of pressure and flow rate imposed at the pump inlet. Since the flow was noncavitating, zero gain was assumed in computing pump impedance. The inertive reactance became greater than the resistance at relatively low frequencies. An electric circuit model was developed in order to explain the trends of inertance and resistance with frequency.

  8. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  9. Flows in Stenotic Vessels

    NASA Astrophysics Data System (ADS)

    Berger, S. A.; Jou, L.-D.

    The relationship between flow in the arteries, particularly the wall shear stresses, and the sites where atherosclerosis develops has motivated much of the research on arterial flow in recent decades. It is now well accepted that it is sites where shear stresses are low, or change rapidly in time or space, that are most vulnerable. These conditions are likely to prevail at places where the vessel is curved; bifurcates; has a junction, a side branch, or other sudden change in flow geometry; and when the flow is unsteady. These flows, often but not always involving flow separation or secondary motions, are also the most difficult ones in fluid mechanics to analyze or compute. In this article we review the modeling studies and experiments on steady and unsteady, two-and three-dimensional flows in arteries, and in arterial geometries most relevant in the context of atherosclerosis. These include studies of normal vessels -- to identify, on the basis of the fluid mechanics, lesion foci -- and stenotic vessels, to model and measure flow in vessels after the lesions have evolved into plaques sufficiently large to significantly modify the flow. We also discuss recent work that elucidates many of the pathways by which mechanical forces, primarily the wall shear stresses, are transduced to effect changes in the arterial wall at the cellular, subcellular, and genetic level.

  10. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  11. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  12. Effect of chlorine purification on oxidation resistance of some mechanical carbons

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.; Allen, G. P.

    1974-01-01

    Oxidation experiments were conducted with some experimental and commercial mechanical carbons at 650 C in dry air flowing at 28 cc/sec (STP). In general, purification of these carbon-graphites with chlorine at 2800 C improved oxidation resistance. Additional improvements in oxidation resistance were obtained from purification followed by an antioxidant (zinc phosphate) treatment. For the commercial materials, purification alone gave greater oxidation resistance than the antioxidant treatment alone. The reverse, however, was the case for the experimental materials.

  13. Resistivity and phase in localized BIA

    NASA Astrophysics Data System (ADS)

    Shiffman, C. A.; Aaron, R.; Amoss, V.; Therrien, J.; Coomler, K.

    1999-10-01

    We describe a system for highly reproducible non-invasive rf impedance measurements as a function of position along body segments such as the thigh. Results are reported for mainly healthy male and female subjects ranging in age from 19 to 65 and in body-mass index from 15 to 40. A principal conclusion is that the phase of the impedance falls monotonically with increasing distance from the knee, with average values substantially above what is found using standard, whole-body bioelectrical impedance analysis (BIA). To compensate for thigh shape, the data are further analysed using an anatomical model based on reasonable approximations for the distributions of muscle, fat and bone, yielding values of the effective resistivity for current flow parallel to the muscle fibres. The phase and resistivity results are discussed with reference to the whole-body BIA study of maintenance haemodialysis patients by Chertow et al, and in regard to possible physiological correlations observed in this work.

  14. A review of leakage flow in centrifugal blood pumps.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah

    2006-05-01

    This article presents a new approach in determining the functional relationship between the leakage flow in a centrifugal blood pump and various parameters that affect it. While high leakage flow in a blood pump is essential for good washout and can help prevent thrombus formation, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Dimensional analysis is employed to provide a functional relationship between leakage flow rate and other important parameters governing the operation of a centrifugal blood pump. Results showed that pump performance with a smaller gap clearance is clearly superior compared to those of two other similar pumps with larger gap clearances. It was also observed that the nondimensional leakage flow rate varies almost linearly with dimensionless pump head. It also decreases with increasing volume flow rate. A smaller gap clearance will also increase the flow resistance and hence, decrease the nondimensional leakage flow rate. Increasing surface roughness, length of the gap clearance passage, or loss coefficient of the gap geometry will increase losses and hence, decrease the leakage flow rate. It is also interesting to note that for a given pump and gap clearance geometry, the nondimensional leakage flow rate is almost independent of the Reynolds number when specific speed is constant.

  15. Evaluation of flow capture techniques for measuring HVAC grilleairflows

    SciTech Connect

    Walker, Iain S.; Wray, Craig P.

    2002-11-01

    This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and there can be large measurement discrepancies between different flow hoods. The errors are due to poor calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow capture techniques.

  16. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  17. Steerable Catheter Microcoils for Interventional MRI: Reducing Resistive Heating

    PubMed Central

    Bernhardt, Anthony; Wilson, Mark W.; Settecase, Fabio; Evans, Leland; Malba, Vincent; Martin, Alastair J.; Saeed, Maythem; Roberts, Timothy P. L.; Arenson, Ronald L.; Hetts, Steven W.

    2010-01-01

    PURPOSE To assess resistive heating of microwires used for remote catheter steering in interventional magnetic resonance imaging. To investigate the use of alumina to facilitate heat transfer to saline flowing in the catheter lumen. MATERIALS AND METHODS A microcoil was fabricated using a laser lathe onto polyimide-tipped or alumina-tipped endovascular catheters. In vitro testing was performed in a 1.5 T MR system using a vessel phantom, body RF coil, and steady state pulse sequence. Resistive heating was measured with water flowing over a polyimide tip catheter, or saline flowing through the lumen of an alumina-tip catheter. Preliminary in vivo testing in porcine common carotid arteries was conducted with normal blood flow or after arterial ligation when current was applied to an alumnia-tip catheter for up to 5 minutes. RESULTS After application of up to 1 W of DC power, clinically significant temperature increases were noted with the polyimide-tip catheter: 23°C/W at zero flow, 13°C/W at 0.28 cc/s, and 7.9°C/W at 1 cc/s. Using the alumina-tip catheter, the effluent temperature rise using the lowest flow rate (0.12 cc/s) was 2.3°C/W. In vivo testing demonstrated no thermal injury to vessel walls at normal and zero arterial flow. CONCLUSION Resistive heating in current carrying wire pairs can be dissipated by saline coolant flowing within the lumen of a catheter tip composed of material that facilitates heat transfer. PMID:21075017

  18. Fluid flow through packings of rotating obstacles

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.

    2015-03-01

    We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.

  19. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-07

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance.

  20. Response time correlations for platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.; Dillon-Townes, L. A.

    1985-01-01

    The 'plunge method' recommended by ASTM has been used to determine the time constant of 100-ohm platinum resistance thermometers (PRT) considered for use in the National Transonic Facility. It is shown that the response time of ventilated PRT can be correlated with the reciprocal of the heat transfer coefficient in a given field. Universal correlations are established for the 100- and 1000-ohm PRT with uncertainties of 20 and 30 percent, respectively. The correlations are found to be consistent with the uncertainty involved in heat transfer correlations available in the literature and are recommended for use in flowing liquids and gases.

  1. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  2. New computer program solves wide variety of heat flow problems

    NASA Technical Reports Server (NTRS)

    Almond, J. C.

    1966-01-01

    Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

  3. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  4. Semitoroidal-diaphragm cavitating valve designed for bipropellant flow control

    NASA Technical Reports Server (NTRS)

    Young, A. L.

    1969-01-01

    Valve controls the flow of bipropellant liquids in rocket engines. Throttling and cavitation of the liquids are controlled by axial deflections of a semitoroidal metal diaphram. The valve is highly resistant to corrosion and leakage, and should be useful in food processing and chemical industries.

  5. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  6. Effect of the eccentricity of normal resistivity borehole tools on the current field and resistivity measurement

    NASA Astrophysics Data System (ADS)

    Galsa, Attila; Herein, Mátyás; Drahos, Dezső; Herein, András

    2016-11-01

    Three-dimensional finite element numerical model calculations have been carried out to investigate the quantitative effect of the eccentric position of a normal resistivity borehole probe used in practice. Detailed calculations were done between the point-wise analytical solution and numerical solution to verify the results obtained from the finite element method for a normal probe with finite-length cylindrical electrodes. In the borehole the pattern of the current flowing out from current electrode A is efficiently influenced by the eccentricity. For high-resistivity rock the current density is decreased, while for low-resistivity rock it is increased toward the wall side. On the other hand, the eccentricity does not affect considerably the apparent resistivity calculated from electrode potentials. In most geological situations the deviation is less than 2%. However, in infrequent cases when the true resistivity of the rock is extremely low and/or the distance between the potential and current electrodes is very small the effect of the eccentricity can exceed even 10%.

  7. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  8. A thermal stack structure for measurement of fluid flow

    NASA Astrophysics Data System (ADS)

    Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.

    2003-03-01

    A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.

  9. Insecticide resistance and vector control.

    PubMed Central

    Brogdon, W. G.; McAllister, J. C.

    1998-01-01

    Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance. PMID:9866736

  10. Enhancing the linear flow of fine granules through the addition of elongated particles

    PubMed Central

    Guo, Zhiguo; Chen, Xueli; Xu, Yang; Liu, Haifeng

    2015-01-01

    Sandglasses have been used to record time for thousands of years because of their constant flow rates; however, they now are drawing attention for their substantial scientific importance and extensive industrial applications. The presence of elongated particles in a binary granular system is believed to result in undesired flow because their shape implies a larger resistance to flow. However, our experiments demonstrate that the addition of elongated particles can substantially reduce the flow fluctuation of fine granules and produce a stable linear flow similar to that in an hourglass. On the basis of experimental data and previous reports of flow dynamics, we observed that the linear flow is driven by the “needle particle effect,” including flow orientation, reduced agglomeration, and local perturbation. This phenomenon is observed in several binary granular systems, including fine granules and secondary elongated particles, which demonstrates that our simple method can be widely applied to the accurate measurement of granular flows in industry. PMID:26551736

  11. Antiplatelet resistance in stroke

    PubMed Central

    Topçuoglu, Mehmet Akif; Arsava, Ethem Murat; Ay, Hakan

    2011-01-01

    Although the exact prevalence of antiplatelet resistance in ischemic stroke is not known, estimates about the two most widely used antiplatelet agents – aspirin and clopidogrel – suggest that the resistance rate is high, irrespective of the definition used and parameters measured. Inadequate antiplatelet responsiveness correlates with an increased risk of recurrent ischemic vascular events in patients with stroke and acute coronary syndrome. It is not currently known whether tailoring antiplatelet therapy based on platelet function test results translates into a more effective strategy to prevent secondary vascular events after stroke. Large-scale clinical trials using a universally accepted definition and standardized measurement techniques for antiplatelet resistance are needed to demonstrate whether a ‘platelet-function test-guided antiplatelet treatment’ strategy translates into improved stroke care. This article gives an overview of the clinical importance of laboratory antiplatelet resistance, describes the challenges for platelet-function test-guided antiplatelet treatment and discusses practical issues about the management of patients with aspirin and/or clopidogrel resistance. PMID:21306212

  12. Flow Interactions and Control

    DTIC Science & Technology

    2013-03-04

    0 0.1 0.2 0.3 F H T A T H F H average duration of active turbulence fraction of time taken by hibernation Onset of DR average duration of... hibernation Laminar flow Turbulent flow Upper branch ECS Low-drag excursions- hibernation Turbulent bursts Basin boundary: • lower-branch

  13. Flow Around Steep Topography

    DTIC Science & Technology

    2015-09-30

    appreciable energy/ momentum is lost from the large-scale NEC flow to smaller scales and through which processes? • What limits numerical models/state...to address two overarching hypotheses: • Energy and momentum are lost in appreciable amounts due to encounters between low-frequency flows and

  14. AUTO-EXPANSIVE FLOW

    EPA Science Inventory

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  15. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  16. Growing with the Flows

    ERIC Educational Resources Information Center

    Durkin, Dorothy

    2010-01-01

    People live and work in an era of transformation and uncertainty; they know that things are changing, but they are not sure where they are headed. One of the key forces of change is the enormous flow of information that individuals and institutions consume and produce. Awareness of knowledge flow is essential, but so is the sense that neither…

  17. Facilitating Naval Knowledge Flow

    DTIC Science & Technology

    2001-07-01

    Transition ...................................................................... 9 Figure 5 Nonaka Knowledge Flow Theory...terms of the dimension reach above. Episteoloogical Explicit Tackt Individual Group Organizabori loter-organization Ontological Figure 5 Nonaka ... Knowledge Flow Theory (Adapted from [48]) As depicted in Figure 5, Nonaka views the interaction between these dimensions as the principal drivers of

  18. Flow cytometry of sperm

    SciTech Connect

    Gledhill, B.L.

    1987-09-21

    This brief paper summarizes automated flow cytometric determination of sperm morphology and flow cytometry/sorting of sperm with application to sex preselection. In the latter context, mention is made of results of karyotypic determination of sex chromosome ratios in albumin-processed human sperm. 23 refs., 1 fig., 1 tab.

  19. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  20. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)