Science.gov

Sample records for flow stabilized z-pinch

  1. Scaling of the Sheared-Flow Stabilized Z-Pinch: The Fusion Z-Pinch Experiment ``FuZE''

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Shumlak, U.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Collaboration

    2016-10-01

    The sheared flow stabilized (SFS) Z-pinch ZaP experiment was constructed based on calculations [1] showing stabilization of kink and sausage instabilities. ZaP experimentally demonstrated production and sustainment of an SFS Z-pinch for a wide range of plasma parameters, with densities up to n =1023 m-3 and a pinch radius of a = 1 cm. [2-4] The SFS Z-pinch is resistant to the instabilities of conventional Z-pinches, yet maintains the same favorable radial scaling, making it an energy-efficient way to achieve fusion-relevant conditions. The ZaP-HD (high density) experiment has demonstrated scaling of the SFS Z-pinch to 2-3 × smaller a and 10 × higher n. [5] Supported by ZaP and ZaP-HD, the Fusion Z-pinch Experiment (FuZE) project investigates scaling plasma parameters toward fusion conditions by decreasing a 2-3 × to 1 mm, and increasing n 10 × to 1025 m-3. The approach combines improved gas injection and flexible power supplies with the successful ZaP SFS Z-pinch formation. Detailed fluid and kinetic simulations complement the experimental studies to gain scientific insight into the plasma behavior and predict scaling to higher performance. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  2. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  3. Increasing plasma parameters using sheared flow stabilization of a Z-pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Hughes, M. C.; Oberto, R. J.; Ross, M. P.; Weber, T. R.

    2017-05-01

    The ZaP and ZaP-HD Flow Z-pinch experiments at the University of Washington have successfully demonstrated that sheared plasma flows can be used as a stabilization mechanism over a range of parameters that has not previously been accessible to long-lived Z-pinch configurations. The stabilization is effective even when the plasma column is compressed to small radii, producing predicted increases in magnetic field and electron temperature. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression has increased the accessible plasma parameters and has generated stable plasmas with radii of 0.3 cm, as measured with a high resolution digital holographic interferometer. Compressing the plasma with higher pinch currents has produced high magnetic fields (8.5 T) and electron temperatures (1 keV) with an electron density of 2 ×1017 cm-3, while maintaining plasma stability for many Alfvén times (approximately 50 μs). The results suggest that sheared flow stabilization can be applied to extend Z-pinch plasma parameters to high energy densities.

  4. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  6. Formation of a sheared flow Z pinch

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.

    2005-06-01

    The ZaP Flow Z-Pinch project is experimentally studying the effect of sheared flows on Z-pinch stability. It has been shown theoretically that when dVz/dr exceeds 0.1kVA the kink (m =1) mode is stabilized. [U. Shumlak and C. W. Hartman, Phys. Rev. Lett. 75, 3285 (1995).] Z pinches with an embedded axial flow are formed in ZaP with a coaxial accelerator coupled with a 1m assembly region. Long-lived, quiescent Z pinches are generated throughout the first half cycle of the current. During the initial plasma acceleration phase, the axial motion of the current sheet is consistent with snowplow models. Magnetic probes in the assembly region measure the azimuthal modes of the magnetic field. The amplitude of the m =1 mode is proportional to the radial displacement of the Z-pinch plasma current. The magnetic mode levels show a quiescent period which is over 2000 times the growth time of a static Z pinch. The axial velocity is measured along 20 chords through the plasma and deconvolved to provide a radial profile. Using data from multiple pulses, the time evolution of the velocity profile is measured during formation, throughout the quiescent period, and into the transition to instability. The evolution shows that a sheared plasma flow develops as the Z pinch forms. Throughout the quiescent period, the flow shear is greater than the theoretically required threshold for stability. As the flow shear decreases, the magnetic mode fluctuations increase. The coaxial accelerator provides plasma throughout the quiescent period and may explain the evolution of the velocity profile and the sustainment of the flow Z pinch.

  7. Long-length, long-lived flow-shear stabilized Z-pinches: Background and Experimental plans for scaling studies

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Shumlak, U.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Schmidt, A. E.

    2015-11-01

    The ZaP experiment produces long-lived sheared-flow-stabilized Z-pinch plasmas up to 126 cm in length for several flow-through times, and up to thousands of Alfvén times. Experimental measurements of the magnetic structure along the full length of the plasma column show an axially uniform Z-pinch plasma during the observed quiescent period. Interferometry, fast-framing images, and Rogowskii coils corroborate the existence of a pinched plasma during this quiescent period of time. Detailed two-dimensional non-linear magnetohydrodynamic (MHD) calculations have been performed showing the formation and assembly of long-length, long-lived Z-pinches. Experimentally-observed plasma lifetimes and velocity-shear profiles are shown to be consistent with calculations of viscous-damping timescales based on the measured plasma parameters. A newly-funded ARPA-E ALPHA project, the Fusion Z-pinch Experiment ``FuZE'' is being constructed at the University of Washington, in collaboration with the Lawrence Livermore National Laboratory. FuZE will study scaling and stability of the successful ZaP experiment to higher pinch currents. The FuZE experimental design, goals, and plans, based on ZaP experimental results, will be presented.

  8. Time-resolved Spectroscopy of a Sheared Flow Stabilized Z-pinch Plasma

    NASA Astrophysics Data System (ADS)

    Forbes, Eleanor

    2016-10-01

    The ZaP Flow Z-pinch Project investigates the use of sheared-axial flows to stabilize an otherwise unstable plasma configuration. Diagnostics with sub-microsecond resolution are required to obtain accurate time-resolved data since the plasma pulse is approximately 100 μs. Analyzing the Doppler shift of impurity line radiation from the pinch provides a measure of the velocity profile and is a reliable method of determining the plasma sheared flow. The velocity profile is spatially resolved through the use of a 20-chord fiber bundle. The ZaP-HD experiment has used a PI-MAX intensified CCD array to record a single time-resolved spectrum per plasma pulse. Obtaining the evolution of the velocity profile using this method required spectra acquired over hundreds of pulses with identical initial parameters and varying acquisition times. The use of a Kirana 05M ultra-fast framing camera is investigated for recording time-resolved velocity profiles during a single pulse. The Kirana utilizes an ultraviolet intensifier to record 180 frames of UV light at up to 2 million frames per second. An ultraviolet optics system is designed to couple the exit port of an Acton SP-500i spectrometer to the Kirana UV intensifier and focus spectra at the camera detector plane. This work is supported by US DoE FES, NNSA, and ARPA-E ALPHA.

  9. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas.

    PubMed

    Ross, M P; Shumlak, U

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10(20) m(-2) with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  10. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ross, M. P.; Shumlak, U.

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 1020 m-2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  11. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  13. The ZaP Flow Z-Pinch Project

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Crawford, E. A.; Forbes, E. T.; den Hartog, D. J.; Holly, D. J.; Nagata, M.

    2000-10-01

    Linear analysis shows that a sheared axial plasma flow can stabilize the m=1 kink instability in Z-pinches. This threshold value of flow shear can be satisfied with a peak flow velocity which is less than the Alfven speed for wavelengths typically seen in Z-pinch plasmas. Nonlinear simulations support the stabilizing effect. The ZaP Flow Z-Pinch Project seeks to experimentally verify this theory by generating Z-pinch plasmas with an inherent axial flow. The experiment produces Z-pinch plasmas which are 50 cm in length by initiating the plasma with a one meter coaxial gun. The coaxial gun generates the axial plasma flows. After leaving the coaxial gun the plasma assembles along the axis to form a flow Z-pinch. Magnetic probes measure the acceleration and assembly process, as well as, the evolution of the azimuthal mode fluctuation level. Axial flow profiles are determined by measurements of the Doppler shifts of impurity lines. Time-dependent density measurements are made using a laser interferometer. Gross plasma motion is determined by using a fast framing camera to detect visible emission. Recent results show a period of diminished fluctuation level when the plasma flow velocity is large. An overview of the experimental program and results will be presented.

  14. The ZaP Flow Z-Pinch Project - Final Technical Report

    SciTech Connect

    Shumlak, Uri; Nelson, Brian A.

    2013-12-31

    The ZaP Flow Z-Pinch Project is a project to extend the performance of the flow Z-pinch experiment at the University of Washington to investigate and isolate the relevant physics of the stabilizing effect of plasma flow. Experimental plasmas have exhibited an enhanced stability under certain operating parameters which generate a flow state (axial flows in Z-pinches and VH mode in tokamaks). Flow has also been suggested as the stabilizing mechanism in astrophysical jets.

  15. Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire

    SciTech Connect

    Martinez, D.; Presura, R.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a center wire on the axis of a conical wire array produces conditions suitable for studying shear flow stabilization of the Z-pinch. The conical wire array produces and axial plasma flow while the center wire introduces a radial variation of the axial velocity. Experiments of this array configuration were preformed on the 1 MA Zebra Z-pinch generator and showed stabilization of the kink instability when a center wire was present. Comparison with equivalent cylindrical wire arrays indicates that the shear flow stabilization plays a role in the stabilization of the kink instability.

  16. Study of the stability of Z-pinch implosions with different initial density profiles

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Labetskaya, N. A.; Chaikovsky, S. A.; Yushkov, G. Yu.; Oreshkin, V. I.; Batrakov, A. V.; Baksht, R. B.

    2014-05-15

    Stability of metal-puff Z pinches was studied experimentally. Experiments were carried out on a facility producing a load current up to 450 kA with a rise time of 450 ns. In a metal-puff Z pinch, the plasma shell is produced due to evaporation of the electrode material during the operation of a vacuum arc. In the experiment to be reported, a single-shell and a shell-on-jet pinch load with magnesium electrodes were used. Two-dimensional, 3 ns gated, visible-light images were taken at different times during the implosion. When the shell was formed from a collimated plasma flow with small radial divergence, Rayleigh–Taylor (RT) instability typical of gas-puff implosions was recorded. The RT instability was completely suppressed in a mode where the initial density distribution of the shell approached a tailored density profile [A. L. Velikovich et al., Phys. Rev. Lett. 77, 853 (1996)].

  17. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  18. Polytropic scaling of a flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  19. Effects of various axial flow profiles on the magneto-Rayleigh-Taylor instability in Z-pinch implosions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ding, N.

    2006-06-01

    The stabilizing effect of different axial flow profiles on the magneto-Rayleigh-Taylor (MTR) instability in Z-pinch implosions is investigated with a compressible skin-current model. The numerical results show that the mitigation effect of the axial flow on the MRT instability is caused by the radial velocity shear, and it is highly susceptible to the shear value nearby the plasma outer surface. By adjusting the flow profile, the mitigation effect can be improved markedly.

  20. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    SciTech Connect

    Hughes, M. C. Shumlak, U. Golingo, R. P. Nelson, B. A. Ross, M. P.

    2014-12-15

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator’s neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  1. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  2. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  3. A kinetic model of the plasma flow at the magnetic z-pinch and the plasmoid structure. Part 2 (in English)

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Prykarpatsky, A. K.; Zagrodzinski, J.; Prykarpatsky, Y. A.

    In this article we will follow the approach developed in articles N.~N.~Bogoliubov, V.~Hr.~Samoilenko, Ukr. Fiz. Zh., 37, 147 (1992); J.~Gibbon, Physica D, 3, 503 (1981) using modern Lie--algebraic and symplectic geometry methods. It is devoted to the description of Boltzman--Vlasov type kinetic equations and some two--dimensional hydrodynamic Benney type flows associated with them. In our case of the cylindrical symmetry taking place at the interrupted magnetic z--pinch in plasma we used intensively the corresponding two--dimensionality of the plasma flow under consideration which made it possible to build a kinetic model of the plasmoid vortex structure with a conserved number of linkages of vortex lines. The latter can be used to explain the observed earlier stability of the plasmoid structure at the magnetic z--pinch.

  4. The inapplicability of ideal MHD stability theory to the dense Z-pinch

    NASA Astrophysics Data System (ADS)

    Haines, M. G.; Coppins, M.; Culverwell, I. D.

    1989-12-01

    For many years Z-pinch has been considered to be intrinsically unstable. This followed the theory of Kruskal and Schwarzchild and experiments of Carruthers and Anderson et al. However in the regime of parameter space required for thermonuclear fusion, the ratio of ion Larmor radius to pinch radius is about one third; and the compressional Z-pinch at Imperial College in which the ratio is one tenth has been found to be anomalously stable for sixteen Alfvén transit times. Recent deuterium fibre experiments at NRL and Los Alamos have also reported anomalous stability. The regimes for stability can be classified using a generalization of the work of Friedberg, and using the Bennett relation which describes pressure balance. As a result ideal MHD is found to be confined to a small wedge-shaped region in ln(I4α) versus ln N space, where I, a, and N are the current (A) and pinch radius (m), and line density (m-1) respectively. We have found that a magnetic Lundquist number S below 100 stabilizes the m=0 mode, and S=3.86×1023I4a/N2. The viscous Lundquist number is the inverse of γτi, where γ is the ratio of the Alfvén speed to the pinch radius and τi is the ion-ion collision time. We find that γτi=2.07×1039I4a/N3. Above a value of γτi of unity the perturbed ion pressure will tend to be anisotropic which Coppins11 has shown to be stabilizing. The ratio of ion Larmor radius to pinch radius is 7.1×108/N1/2 and some stabilization is expected when this is in the range 0.1 to 1, though further work in this area is required. A skin-current Vlasov model will be reported by Arber at this meeting.

  5. The Role of Magnetosonic Shocks in the Dynamics and Stability of the Staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Rahman, Hafiz U.; Wessel, F. J.; Ruskov, E.; Ney, P.; Narkis, J.; Valenzuela, J.; Conti, F.; Beg, F.

    2016-10-01

    A Staged Z-pinch is comprised of a magnetized, high-Z liner compressing a low-Z target and is predicted to achieve high, final-energy-density through enhanced stability, shock heating, and flux compression. Magnetosonic waves propagate radially in the system producing a stable, current carrying shock front that heats the target plasma during run-in, prior to inertial-adiabatic compression by the liner. The propagation of nonlinear-magnetosonic waves is described analytically by the KdV-Burger's Equation, providing stable-stationary solutions. We include a finite resistivity in the energy equation and generalized Ohm's law. A radiation-hydrodynamic code is used to evaluate the dynamic shock behavior, energy coupling, and the stability of the pinch. During implosion the axial-magnetic field provides enhanced stability and thermal insulation between the liner and the target plasmas. At peak compression the large amplitude Bz traps the fusion products leading to ignition in a deuterium-tritium target mixture. Advanced Research Projects Agency - Energy, DE-AR0000569.

  6. NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS

    SciTech Connect

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.; Frank, A.; Blackman, E. G.

    2013-04-10

    The physics of accretion disks is of fundamental importance for understanding of a wide variety of astrophysical sources that includes protostars, X-ray binaries, and active galactic nuclei. The interplay between hydrodynamic flows and magnetic fields and the potential for turbulence-producing instabilities is a topic of active research that would benefit from the support of dedicated experimental studies. Such efforts are in their infancy, but in an effort to push the enterprise forward we propose an experimental configuration which employs a modified cylindrical wire array Z-pinch to produce a rotating plasma flow relevant to accretion disks. We present three-dimensional resistive magnetohydrodynamic simulations which show how this approach can be implemented. In the simulations, a rotating plasma cylinder or ring is formed, with typical rotation velocity {approx}30 km s{sup -1}, Mach number {approx}4, and Reynolds number in excess of 10{sup 7}. The plasma is also differentially rotating. Implementation of different external magnetic field configurations is discussed. It is found that a modest uniform vertical field of 1 T can affect the dynamics of the system and could be used to study magnetic field entrainment and amplification through differential rotation. A dipolar field potentially relevant to the study of accretion columns is also considered.

  7. Overview of the Fusion Z-Pinch Experiment FuZE

    NASA Astrophysics Data System (ADS)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  8. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  9. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.

  10. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    SciTech Connect

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.

  11. Abel inversion of a holographic interferogram for determination of the density profile of a sheared-flow Z pinch

    SciTech Connect

    Jackson, S. L.; Shumlak, U.

    2006-08-15

    A holographic interferometer is used to determine the radial electron number density profile of a sheared-flow Z pinch. Chord-integrated density information is recorded during a plasma pulse using the expanded beam of a pulsed ruby laser and holographic techniques. An Interactive Data Language (IDL) computer routine that requires only minimal user interaction is used to measure the resulting fringe shift in the reconstructed interferogram. This chord-integrated density information is inverted using an Abel inversion to determine the radial electron density profile. The density profiles obtained show a radially symmetric plasma column with an electron density of 10{sup 16}-10{sup 17} cm{sup -3} above the background plasma density. Holographic measurements are made at different times on separate plasma pulses to track the evolution of the density profile over time. These measurements are corroborated by time-dependent measurements made using a He-Ne interferometer.

  12. Synergistic mitigation of the Rayleigh-Taylor instability in Z-pinch implosions by sheared axial flow and finite Larmor radius effect

    NASA Astrophysics Data System (ADS)

    Qiu, X. M.; Huang, L.; Jian, G. D.

    2003-07-01

    The synergistic stabilizing effect of sheared axial flow (SAF) and finite Larmor radius (FLR) on the Rayleigh-Taylor instability in Z-pinch implosions is considered by means of the magnetohydrodynamic (MHD) equations. The SAF is introduced into the MHD equations in a conventional way and the FLR is introduced in the same way as used by Roberts and Taylor [Phys. Rev. Lett. 8, 197 (1962)]. Therefore, the linearized MHD equations include both SAF and FLR effects. The results indicate that in the whole wavenumber region the synergistic effect of FLR and SAF can mitigate the Rayleigh-Taylor instability; at low flow velocity the synergistic effect of FLR and the SAF is slightly (˜10%) stronger than the mitigation effect of FLR alone and remarkably stronger than the mitigation effect of the SAF alone; at higher flow velocities in the large wavenumber region (for normalized wavenumber κ>2.4) the synergistic effect of FLR and the SAF is remarkably stronger than the mitigation effect due to either one of the two, respectively, and in the small wavenumber region (κ<2.4) it is stronger than the mitigation effect due to either one of the two, respectively.

  13. Fusion with Z-pinches

    SciTech Connect

    Cook, D.

    1998-06-01

    In the past thirty-six months, great progress has been made in x-ray production using high-current z-pinches. Today, the x-ray energy and power output of the Z accelerator (formerly PBFA-II) is the largest available in the laboratory. These z-pinch x-ray sources have the potential to drive high-yield ICF reactions at affordable cost if several challenging technical problems can be overcome. In this paper, the recent technical progress with Z-pinches will be described, and a technical strategy for achieving high-yield ICF with z-pinches will be presented.

  14. The Effect of Precursor Plasma Flow on Foam Targets in Wire Array Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Palmer, James B. A.; Lebedev, Sergey V.; Bland, Simon N.; Chittenden, Jeremy P.; Ampleford, David J.

    2002-12-01

    Previous experiments have demonstrated that the slow ablation rate of material from wire arrays results in the formation of a precursor plasma stream bombarding the axis [1]. This could have major repercussions for the centrally located foam targets used in dynamic and static walled hohlraum configurations on the Z facility at Sandia National Laboratory (SNL) [2]. Experiments to characterise the effect of precursor plasma flow on foam targets were carried out on the MAGPIE generator at Imperial College. The TPX foam used is similar in size and density to foam used in the experiments at SNL. Diagnostics included: x-pinch backlighter; x-ray framing cameras; diamond PCDs; laser shadowgraphy and interferometry; optical streak photography. Backlighter results suggested that the foam was compressed at a rate consistent with experimental estimates of the momentum of the bombarding plasma streams. Laser probing images, however, showed expansion of low density plasma from the foam surface that exhibited structure similar to an m=0 instability. Side-on XUV and x-ray imaging showed axially modulated emission from the foam.

  15. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  16. Design of the Fusion Z-Pinch Experiment - FuZE

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; McLean, H. S.; Nelson, B. A.; Golingo, R. P.; Schmidt, A.; Claveau, E. L.

    2015-11-01

    Based on the successful results of the sheared flow stabilized (SFS) Z-pinch from ZaP and ZaP-HD, a new experiment FuZE is designed to scale the plasma performance to fusion conditions. The SFS Z-pinch is immune to the instabilities that plague the conventional Z-pinch yet maintains the same favorable radial scaling. The plasma density and temperature increase rapidly with decreasing plasma radius, which naturally leads to a compact configuration at fusion conditions. The SFS Z-pinch is being investigated as a novel approach to a compact fusion device in a new collaborative ARPA-E ALPHA project with the University of Washington and Lawrence Livermore National Laboratory. The project includes an experimental effort coupled with high-fidelity physics modeling using kinetic and fluid simulations. Along with scaling law analysis, computational and experimental results that have informed the design and development of the FuZE apparatus are presented. This work is supported by an award from US ARPA-E.

  17. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  18. Initial results of Fusion Z-Pinch Experiment, FuZE, and magnetic field topology analysis through data driven modeling

    NASA Astrophysics Data System (ADS)

    Claveau, E. L.; Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Weber, T. R.; McLean, H.

    2016-10-01

    The FuZE project is a sheared flow stabilized (SFS) Z-pinch experiment that investigates scaling the SFS Z-pinch to fusion conditions. FuZE will generate a 1 mm radius Z-pinch with a 300 kA plasma current. An array of 94 surface-mounted magnetic field probes that are embedded in the outer copper electrode provide the primary measure of the time-dependent magnetic topology of the pinch plasma. Azimuthal field measurement provide instantaneous information about the magnitude and position of the plasma current. The initial results obtained in the form of magnetic field topology are compared to previous ZaP experimental results, an experiment that investigated shear flow stabilization of Z-pinch at lower current. The magnetic field topology evolution is investigated through data-driven modeling of the characteristic dynamics. The modeling provides time evolution of large-scale structures and dynamics quantified over multiple plasma pulses. These properties can give insight about spatial and temporal propagation of fluctuations to better characterize the plasma evolution. This work funded by the USDOE/ARPAe Alpha Program.

  19. Rotating plasma disks in dense Z-pinch experiments

    SciTech Connect

    Bennett, M. J. E-mail: s.lebedev@imperial.ac.uk; Lebedev, S. V. E-mail: s.lebedev@imperial.ac.uk; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R.; Hall, G. N.; Frank, A.; Blackman, E.; Drake, R. P.; Ciardi, A.

    2014-12-15

    We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms{sup −1} for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as T{sub i} ∼ 60 eV and ZT{sub e} ∼ 150 to 200 eV.

  20. Seeded perturbations in wire array Z-Pinches.

    SciTech Connect

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S. C.; Palmer, J. B. A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-07-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  1. Z-pinch equilibrium and instability analysis with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Ross, M. P.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Hughes, M. C.; Claveau, E. L.; Forbes, E. G.; Doty, S.; Kim, B.

    2016-10-01

    The ZaP-HD Flow Z-Pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma and fusion reactor conditions. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii ( 1 mm). Radial and axial plasma electron density structures are measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 ×1020 m-2 with spatial resolution near 10 μm. This work is supported by Grants from the US DoE and NNSA.

  2. Fusion in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Wessel, F. J.; Rahman, H. U.; Ney, P.; Valenzuela, J.; Beg, F.; McKee, E.; Darling, T.

    2016-03-01

    This paper is dedicated to Norman Rostoker, our (FJW and HUR) mentor and long-term collaborator, who will always be remembered for the incredible inspiration that he has provided us. Norman's illustrious career dealt with a broad range of fundamental-physics problems and we were fortunate to have worked with him on many important topics: intense-charged-particle beams, field-reversed configurations, and Z-pinches. Rostoker 's group at the University of CA, Irvine was well known for having implemented many refinements to the Z-pinch, that make it more stable, scalable, and efficient, including the development of: the gas-puff Z-pinch [1], which provides for the use of an expanded range of pinch-load materials; the gas-mixture Z-pinch [2], which enhances the pinch stability and increases its radiation efficiency; e-beam pre-ionization [3], which enhances the uniformity of the initial-breakdown process in a gas pinch; magnetic-flux-compression [4, 5], which allows for the amplification of an axial-magnetic field Bz; the Z-θ pinch [6], which predicts fusion in a pinch-on-fiber configuration; the Staged Z-pinch (SZP) [7], which allows for the amplification of the pinch self-magnetic field, Bθ , in addition to a Bz, and leads to a stable implosion and high-gain fusion [8, 9, 10]. This paper describes the physical basis for a magneto-inertial compression in a liner-on-target SZP [11]. Initially a high-atomic-number liner implodes under the action of the J →×B → , Lorentz Force. As the implosion becomes super Alfvénic, magnetosonic waves form, transporting current and magnetic field through the liner toward the interface of the low-atomic-number target. The target implosion remains subsonic with its surface bounded by a stable-shock front. Shock waves that pass into the target provide a source of target plasma pre-heat. At peak compression the assembly is compressed by liner inertia, with flux compression producing an intense-magnetic field near the target

  3. Z-pinch equilibrium and instability analysis with digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Ross, M. P.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Hughes, M. C.; Claveau, E. L.; Weed, J. R.; Forbes, E. G.; Doty, S. A.; Kim, B.

    2015-11-01

    The ZaP-HD Flow Z-Pinch project generates flow shear stabilized Z-pinches, providing a platform to explore how such plasmas could scale to HEDP and fusion reactor conditions. To scale up the plasma's density and temperature, it must be compressed to a smaller size making measurements more difficult. Digital holographic interferometry (DHI) employing a pulsed Nd:YAG laser and consumer DSLR camera can spatially resolve the plasma's electron density. The Fresnel reconstruction method allows expedient numerical data reconstruction. Obtaining electron density radial profiles relies on applying an Abel inversion to convert measured line-integrated density, and the inversion process provides an independent measure of plasma symmetry. Entire Z-pinch equilibria (n, P, T, and B profiles) can be computed by applying physical models to the density data. Tracking the time evolution of pressure and density can reveal the presence of non-adiabatic heating mechanisms. Imaging the size scales of instabilities enables relative measures of viscosity at different positions and times. Error estimation of measured density profiles is presented along with observed asymmetric instabilities. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  4. Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility

    SciTech Connect

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N. Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M.; Frolov, I. N.; Shevel’ko, A. P.; Barsuk, V. A.

    2016-11-15

    Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbations in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.

  5. The physics of fast Z pinches

    SciTech Connect

    Ryutov, D.D.; Derzon, M.S.; Matzen, M.K.

    1998-07-01

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references.

  6. The Physics of Fast Z Pinches

    SciTech Connect

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  7. Optimized Minimal Inductance Transmission Line Configuration for Z-Pinch Experiments

    SciTech Connect

    Hurricane, O

    2003-10-16

    Successful dynamic Z-pinch experiments generally require good current delivery to the target load. Power flow losses through highly inductive transmission line configurations reduce the current available to the load. In this Brief Report, a variational calculus technique is used to determine the transmission line configuration that produces the least possible inductance and therefore the best possible current delivery for Z-pinch experiments.

  8. The high density Z-pinch

    SciTech Connect

    McCall, G.H.

    1988-01-01

    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  9. Staged Z-pinch for Fusion

    NASA Astrophysics Data System (ADS)

    Wessel, Frank; Rahman, Hafiz; Ney, Paul; Darling, Tim; McKee, Erik; Covington, Aaron; Beg, Farhat; Valenzuela, Julio; Narkis, Jeff; Presura, Radu

    2015-11-01

    The Staged Z-pinch (SZP) is configured as a plasma shell imploding onto an uniform, plasma fill (50:50 Deuterium:Tritium); the pinch is pre-magnetized, with an axial Bz field. Gas-puff experiments, at the University of California, Irvine, 1.25 MA, 1.25 μs, and 50 kJ, demonstrated that the implosion was stable, as primary (DD) and secondary (DT) neutrons were produced at peak compression. Subsequent analysis accounts for the stability and neutron yield, indicating that the SZP implosion is magneto-inertial, shock-driven, with magneto-sonic shocks in the liner and ordinary (sonic) shocks in the target. The shock waves preheat the target, as a stable, current-carrying, shock front forms at the interface. Near-term, the SZP team will test pinch loads on the 1 MA, 130 ns, 100 kJ University of Nevada, Reno, Nevada Terawatt, Zebra Facility. This paper details the context and our specific plans for the upcoming experiments, as well as our recent simulations predicting breakeven fusion on existing devices. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  10. PBFA Z: A 20-MA z-pinch driver for plasma radiation sources

    SciTech Connect

    Spielman, R.B.; Breeze, S.F.; Deeney, C.

    1996-07-01

    Sandia National Laboratories is completing a major modification to the PBFA-II facility. PBFA Z will be a z-pinch driver capable of delivering up to 20 MA to a z-pinch load. It optimizes the electrical coupling to the implosion energy of z pinches at implosion velocities of {approximately} 40 cm/{mu}s. Design constraints resulted in an accelerator with a 0.12-{Omega} impedance, a 10.25-nH inductance, and a 120-ns pulse width. The design required new water transmission lines, insulator stack, and vacuum power feeds. Current is delivered to the z-pinch load through four, self-magnetically-insulated vacuum transmission lines and a double post-hole convolute. A variety of design codes are used to model the power flow. These predict a peak current of 20 MA to a z-pinch load having a 2-cm length, a 2-cm radius, and a 15--mg mass, coupling 1.5 MJ into kinetic energy. We present 2-D Rad-Hydro calculations showing MJ x-ray outputs from tungsten wire-array z pinches.

  11. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  12. High-Z Pusher Experiments on the Cobra Triple Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Qi, Niansheng; Kusse, Bruce; Seyler, Charles; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Greenly, John; Hoyt, Cad; Pikuz, Sergei; Shelkovenko, Tania; Hammer, David

    2014-10-01

    For inertial confinement fusion application and as efficient hard x-ray sources, the imploding sheath of a gas-puff z-pinch or thin liner must be accelerated to the highest possible velocity before hydrodynamic instabilities significantly disrupt the implosion symmetry. Much recent work has focused on increasing implosion stability using radially structured mass-density profiles produced by multi-nozzle gas-puff valves. The introduction of a high-Z element such as xenon into the outer gas shells in such experiments can modify radiation output during the implosion phase as well as at stagnation. In these experiments xenon is introduced into the triple-nozzle gas valve fielded on the (1 MA, 200 ns) COBRA z-pinch machine at Cornell University. The xenon is introduced only in the outer shell, only in the inner shell or in both, to investigate the radiative effects on implosion hydrodynamics and x-ray yield. Results are compared to those obtained during pure argon implosions with the same mass-density profile. Sheath thicknesses and stability are recorded using laser interferometry (532 nm) and multi-frame imaging systems. The distribution of flow velocities and of high-Z material across the pinch is investigated using a (5 GW, 527 nm) Thomson scattering probe. Work supported by DOE Grant No. DE-NA0001836.

  13. Fast Z - Pinch Study in Russia and Related Problems

    NASA Astrophysics Data System (ADS)

    Grabovskii, E. V.

    2002-12-01

    The fast Z pinches are considered as a perspective source of powerful soft x-ray emission for the ICF pellet ignition. The physical phenomena which take place in process fast of Z-pinch implosion are under investigation in the TRINITI (Troisk), in the RSC Kurchatov Institute (KI, Moscow) and the HCEI (Tomsk). In the KI the possibility of terawatt electrical power transfer in small volume hohlraum during nanosecond time duration is studied. In the TRINITI the physics of multi wire arrays implosion, the rate of plasma production in current-driven wire arrays, the conversion of pulsed power energy into x-ray emission are studied. In the HCEI (Tomsk) the stability of double gas puff implosion and the influence of gas puff regime and current pulse duration on the implosion and emitted x-ray spectrum are under investigation. The HCEI develops the new components of pulse power multi spark switches and the generators of impulse currents (LTD) with duration of an energy supply less than 100 ns. As available way to get the pulsed power generator with multi tens megaampere current the joint team of scientists from the laboratories of the TRINITI, the Efremov Institute, RFNC VNIITF (Snezinsk) have developed the concept of the Baikal facility. The KI designs, creates and tests the plasma erosion switches for the module of the Baikal facility. The inductive storage, the systems of magnetic field compression and the explosive open switches are developed in the TRINITI and the Efremov Institute. The development of new design of the pulse power generators and physics of fast Z-pinch implosion aims to create next advanced generation of powerful driver for ICF.

  14. Self-organized structures in z-pinch devices

    NASA Astrophysics Data System (ADS)

    Ortíz-Tapia, Arturo

    2002-11-01

    In several z-pinch devices there has been observation of regular structures, which appear systematically when repeating the experiments. The fact that very identifiable, recurrent, geometrical structures appear in z-pinches, which are relatively long lived, has motivated the analysis of the experimental data in a way that would cast light over these structures. In order to study this problem, diagnostic methods such as Schlieren photography, Quadro camera diagnostics, X-ray diagnostics, interferometry measurements and streak camera were used. This work includes analysis of experimental results, and the determination of some of the parameters which probably give rise to self-organized structures and some regular structures. It was found that a major contributor, for self-organization to occur, was the dominance of electromagnetic energy over the kinetic energy in the wire corona. The induction of an azimuthal magnetic field contributed to the generation of azimuthal currents, which in turn induced an axial magnetic field. Both axial and azimuthal magnetic fields contributed to the formation of helical-like structures, at least until the pinch began to dissipate. An important stabilizing factor for the plasma channel could have been played by the solid remains of part of the fiber inside the channel. There is a positive strong correlation between the expulsion of entropy and the persistence in the existence of self-organized structures.

  15. Intense neutron pulse generation in dense Z-pinch

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  16. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; hide

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  17. Magnetic Rayleigh-Taylor instability mitigation in large-diameter gas puff Z-pinch implosions

    SciTech Connect

    Qi, N.; Sze, H.; Failor, B. H.; Banister, J.; Levine, J. S.; Riordan, J. C.; Steen, P.; Sincerny, P.; Lojewski, D.

    2008-02-15

    Recently, a new approach for efficiently generating K-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a 'pusher-stabilizer-radiator' model. In this paper, direct observations of the Rayleigh-Taylor instability mitigation of a 12-cm diameter, 200-ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the ''pusher-stabilizer-radiator'' structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.

  18. Z-pinch plasma neutron sources

    SciTech Connect

    Velikovich, A. L.; Clark, R. W.; Davis, J.; Chong, Y. K.; Deeney, C.; Coverdale, C. A.; Ruiz, C. L.; Cooper, G. W.; Nelson, A. J.; Franklin, J.; Rudakov, L. I.

    2007-02-15

    A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields {approx}3x10{sup 13}, in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion accelerator. No matter what mechanism is eventually determined to be responsible for generating fusion neutrons in deuterium gas-puff shots on Z, the deuterium neutron yield is shown to scale as Y{sub n}{approx}I{sub m}{sup 4}, where I{sub m} is the peak current of the pinch. Theoretical estimates and numerical modeling of deuterium gas-puff implosions demonstrate that the yields of thermonuclear fusion neutrons that can be produced on ZR and the next-generation machines are sufficiently high to make PNS the most powerful, cost- and energy-efficient laboratory sources of 2.5-14 MeV fusion neutrons, just like plasma radiation sources are the most powerful sources of soft and keV x rays. In particular, the predicted deuterium-tritium thermal neutron-producing capability of PNS driven by the next-generation ZR and ZX accelerators is {approx}5x10{sup 16} and {approx}10{sup 18}, respectively.

  19. Instability Control in a Staged Z-pinch

    SciTech Connect

    WESSEL, Frank J

    2011-04-22

    A \\Staged Z-Pinch is a fusion-energy concept in which stored-electric energy is first converted into plasma-liner-kinetic energy, and then transferred to a coaxialtarget plasma [H. U. Rahman, F. J. Wessel, and N. Rostoker, Phys. Rev. Lett. 74, p. 714(1996)]. Proper choice of the liner and target materials, and their initial radii and mass densities, leads to dynamic stabilization, current amplification, and shock heating of the target. Simulations suggest that this configuration has merit as a alternative inertial-confinement-fusion concept, and may provide an energy release exceeding thermonuclear break-even, if tested on one of many newer pulsed power systems, for example those located at Sandia National Laboratories.

  20. Plasma channel and Z-pinch dynamics for heavy ion transport

    SciTech Connect

    Ponce-Marquez, David

    2002-01-01

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 1017 cm-3 peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  1. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  2. Magnetohydrodynamic Simulation of Solid-Deuterium - Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Sheehey, Peter Trogdon

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as "cold-start" initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating -direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized (at a time depending on current ramp and fiber thickness), rapidly developing m = 0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and "plasma -on wire" (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z -pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion -based approaches.

  3. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    NASA Astrophysics Data System (ADS)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.

  4. Progress in Z-pinch inertial fusion energy.

    SciTech Connect

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  5. Z-Pinch Pulsed Plasma Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; Cortez, Ross; Santarius, John

    2010-01-01

    Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4

  6. On the possibility of neutron generation in an imploding TiD{sub 2} puff Z pinch

    SciTech Connect

    Baksht, Rina B.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.

    2013-08-15

    Simulation of implosion of a TiD{sub 2} puff Z pinch is reported. The Z pinch is supposed to be produced by the plasma flow generated by a vacuum arc, as described by Rousskikh et al.[Phys. Plasmas 18, 092707 (2011)]. To simulate the implosion, a one-dimensional two-temperature radiative magnetohydrodynamics code was used. The simulation has shown that neutrons are generated during the implosion of a TiD{sub 2} puff Z pinch due to thermalization of the pinch plasma stagnated on axis. It has been shown that the necessary condition for neutron generation is that the ion temperature must be substantially higher than the electron temperature. For a pinch current of 1 MA, the predicted yield of 'thermal' neutrons is 2.5 × 10{sup 9} neutrons/shot.

  7. On generation of intense magnetic field in screw-wire array Z-pinch

    NASA Astrophysics Data System (ADS)

    Orlov, A. P.; Repin, B. G.

    2016-09-01

    A dynamic Z-pinch based on a multi-wire cylindrical array having azimuthally twisted wires, called a "screw-wire array," is numerically simulated in the framework of the 3-D magneto-hydrodynamic approximation. As the current flows through the screw-wire array, an axial component of the magnetic field is generated inside, which intensifies during the radial Z-pinch implosion. The pulse parameters of the compressed magnetic field that can be recorded by a cylindrical probe arranged on the system axis are computed according to the starting twist angle of the screw-wire array. A screw-wire array is compared with a typical "flux compression" scheme in terms of their efficiencies for generating ultrahigh magnetic fields pulses.

  8. Study of gas-puff Z-pinches on COBRA

    SciTech Connect

    Qi, N.; Rosenberg, E. W.; Gourdain, P. A.; Grouchy, P. W. L. de; Kusse, B. R.; Hammer, D. A.; Bell, K. S.; Shelkovenko, T. A.; Potter, W. M.; Atoyan, L.; Cahill, A. D.; Evans, M.; Greenly, J. B.; Hoyt, C. L.; Pikuz, S. A.; Schrafel, P. C.; Kroupp, E.; Fisher, A.; Maron, Y.

    2014-11-15

    Gas-puff Z-pinch experiments were conducted on the 1 MA, 200 ns pulse duration Cornell Beam Research Accelerator (COBRA) pulsed power generator in order to achieve an understanding of the dynamics and instability development in the imploding and stagnating plasma. The triple-nozzle gas-puff valve, pre-ionizer, and load hardware are described. Specific diagnostics for the gas-puff experiments, including a Planar Laser Induced Fluorescence system for measuring the radial neutral density profiles along with a Laser Shearing Interferometer and Laser Wavefront Analyzer for electron density measurements, are also described. The results of a series of experiments using two annular argon (Ar) and/or neon (Ne) gas shells (puff-on-puff) with or without an on- (or near-) axis wire are presented. For all of these experiments, plenum pressures were adjusted to hold the radial mass density profile as similar as possible. Initial implosion stability studies were performed using various combinations of the heavier (Ar) and lighter (Ne) gasses. Implosions with Ne in the outer shell and Ar in the inner were more stable than the opposite arrangement. Current waveforms can be adjusted on COBRA and it was found that the particular shape of the 200 ns current pulse affected on the duration and diameter of the stagnated pinched column and the x-ray yield.

  9. Ion collisions and the Z-pinch precursor column

    NASA Astrophysics Data System (ADS)

    Sherlock, M.; Chittenden, J. P.; Lebedev, S. V.; Haines, M. G.

    2004-04-01

    During the early stages of a wire array Z-pinch implosion, low density plasma streams toward the axis by virtue of the Lorentz force. This streaming precursor plasma may initially be highly collisionless with respect to ion-ion collisions and therefore cannot be modeled using standard fluid theory. The hybrid method in this paper models both collisional and collisionless behavior with ions exchanging energy and momentum with other ions via a Monte Carlo algorithm equivalent to a small-angle kinetic solution and with an electron fluid via a frictional force. It is shown that the axial stagnation of the plasma flow occurs once the density becomes sufficiently high to initiate a nonlinear rise in electron-ion energy exchange, resulting in the thermal equilibration between radiatively cooling electrons and hot, thermalized ions. This then gives rise to a dense, long-lived precursor column on axis, as observed experimentally. The column is held in place by the kinetic pressure of the streaming precursor plasma, which is balanced by the thermal pressure of the plasma in the column at the column's edge.

  10. Radiation-Hydromagnetic Models of a Z-Pinch Implosion with an Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Giuliani, J. L.; Terry, R.; Davis, J.; Velikovich, A. L.

    1997-11-01

    Experimental results on a 1MA pulser suggest that axial magnetic fields can stabilize z-pinch implosions and enhance the compression ratio(S. Sorokin and S. Chaikovsky, Dense Z-Pinches, AIP Conf. Proc. 299, p.83 (1993).). The present theoretical work calculates the effects of an axial magnetic field on the plasma and field profiles in an imploding z-pinch. The initial mass configuration is an annular shell of krypton. The 1-D simulation model includes: resistive diffusion (skin effect) for both the azimuthal and axial fields, ionization dynamics, and non-LTE radiation transport. Unlike the constant pulser current of self-similar models for the screw-pinch, a transmission line is used to model the circuit of a realistic ~10MA pulser. The implosion dynamics resulting from an axial field generated by a twisted return current cage will be compared with results due to an initial field from external Helmholtz coils. The dependence of the radiative performance on compression ratio, which in turn is a function of inital field strength or cage twist, will be discussed.

  11. Study of magnetic fields and current in the Z pinch at stagnation

    SciTech Connect

    Ivanov, V. V.; Anderson, A. A.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Papp, D.

    2015-09-15

    The structure of magnetic fields in wire-array Z pinches at stagnation was studied using a Faraday rotation diagnostic at the wavelength of 266 nm. The electron plasma density and the Faraday rotation angle in plasma were calculated from images of the three-channel polarimeter. The magnetic field was reconstructed with Abel transform, and the current was estimated using a simple model. Several shots with wire-array Z pinches at 0.5–1.5 MA were analyzed. The strength of the magnetic field measured in plasma of the stagnated pinch was in the range of 1–2 MG. The magnetic field and current profile in plasma near the neck on the pinch were reconstructed, and the size of the current-carrying plasma was estimated. It was found that current flowed in the large-size trailing plasma near the dense neck. Measurements of the magnetic field near the bulge on the pinch also showed current in trailing plasma. A distribution of current in the large-size trailing plasma can prevent the formation of multi-MG fields in the Z pinch.

  12. Note: Infrared laser diagnostics for deuterium gas puff Z pinches

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; McKee, E. S.; Hammel, B. D.; Darling, T. W.; Swanson, K. J.; Covington, A. M.

    2017-07-01

    Deuterium gas puff Z pinches have been used for generation of strong neutron fluxes on the MA class pulse power machines. Due to the low electron density of deuterium Z-pinch plasma, regular laser diagnostics in the visible range cannot be used for observation and study of the pinch. Laser probing at the wavelength of 1064 nm was used for visualization of deuterium plasma. Infrared schlieren and interferometry diagnostics showed the deuterium gas puff plasma dynamics, instabilities, and allowed for the reconstruction of the profile of the plasma density.

  13. Polycrystalline diamond based detector for Z-pinch plasma diagnosis.

    PubMed

    Liu, Linyue; Ouyang, Xiaoping; Zhao, Jizhen; Chen, Liang; Wang, Lan

    2010-08-01

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/mum), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis.

  14. {alpha} Heating in a Stagnated Z-pinch

    SciTech Connect

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-21

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear {alpha} particles which are confined by the strong magnetic field of the Z-pinch.

  15. 9th International Conference on Dense Z-Pinches

    SciTech Connect

    Bott-Suzuki, Simon

    2015-08-31

    DOE OFES supported the 9th International Conference on Z-Pinches (DZP 2014) held in Napa, CA in August 2014. Funds were used to support travel for several US students, and to disseminate information through the publication of a proceedings volume.

  16. Linear Transformer Drivers for Z-pinch Based Propulsion

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Seidler, William; Giddens, Patrick; Fabisinski, Leo; Cassibry, Jason

    2017-01-01

    The MSFC/UAH team has been developing of a novel power management and distribution system called a Linear Transformer Driver (LTD). LTD's hold the promise of dramatically reducing the required mass to drive a z-pinch by replacing the capacitor banks which constitute half the mass of the entire system. The MSFC?UAH tea, is developing this technology in hope of integrating it with the Pulsed Fission Fusion (PuFF) propulsion concept. High-Voltage pulsed power systems used for Z-Pinch experimentation have in the past largely been based on Marx Generators. Marx generators deliver the voltage and current required for the Z-Pinch, but suffer from two significant drawbacks when applied to a flight system: they are very massive, consisting of high-voltage capacitor banks insulated in oil-filled tanks and they do not lend themselves to rapid pulsing. The overall goal of Phase 2 is to demonstrate the construction of a higher voltage stack from a number of cavities each of the design proven in Phase 1 and to characterize and understand the techniques for designing the stack. The overall goal of Phase 3 is to demonstrate the feasibility of constructing a higher energy cavity from a number of smaller LTD stacks, to characterize and understand the way in which the constituent stacks combine, and to extend this demonstration LTD to serve as the basis for a 64 kJ pulse generator for Z-Pinch experiments.

  17. Experiments With Radiatively Cooled Supersonic Plasma Jets Generated in Conical Wire Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Ampleford, D. J.; Bland, S. N.; Chittenden, J. P.; Ciardi, A.; Naz, N.; Haines, M. G.; Frank, A.; Blackman, E.; Gardiner, T.

    2002-12-01

    We present results of astrophysically relevant experiments where highly supersonic plasma jets are generated via conically convergent plasma flows in a conical wire array Z-pinch. Stagnation of plasma flow on the axis of symmetry forms a standing conical shock effectively collimating the flow in the axial direction. This scenario is essentially similar to that discussed by Canto and collaborators [1] as a purely hydrodynamic mechanism for jet formation in astrophysical systems. Experiments using different materials (Al, Fe and W) show that a hypersonic (M ~ 20), well-collimated jet is generated when the radiative cooling rate of the plasma is significant.

  18. Fusion burn dynamics in dense Z-pinch (DZP)

    SciTech Connect

    Krakowski, R.A.

    1990-04-01

    The fusion burn dynamics and energy yield of the dense Z-pinch (DZP) are examined using a profile-averaged, zero-dimensional, time dependent model. A range of conditions (fuel, line density, voltage, fusion-product heating, enthalpy endloss, density and temperature profiles, current rise rate, electrode impurities) are examined. Magneto-hydrodynamic stability is assumed, and initial conditions are based on those ideally existing after the melting and ionization of a solid fiber of fusion fuel. Plasma conditions required of neutron sources for materials testing ({dot S}{sub n} {ge} 10{sup 19} n/s) and for possible commercial power production (ratio of fusion energy yield to energy input, Q{sub p} {approx equal} 15, lower values if reversible recovery of a fraction of the magnetic energy is possible) are described. If f{sub B} {approx gt} 0.8 fractional fuel burnup is possible in a nominal 800-ns DT discharge (200-ns current-rise phase at 20 MV/m followed by a 500-ns constant-current crowbarred phase), reactor-relevant values of Q{sub p} may be possible. For the simpler (and shorter) constant-voltage discharge (e.g., no voltage crowbar) the value of Q{sub p} is in the range 5--10 for discharges below 200-ns duration. Smaller levels of fuel burnup, shorter discharges, or generally lower levels of Q{sub p} will require a reversible energy transfer system to meet reactor energy-balance requirements. Imposition of a plasma current rise-time constraint that may be needed for stable plasma operation (e.g., I > 10{sup 12} A/s) will burnup, Q{sub p} and discharge time to an extent where reversible energy/transfer system will be required to meet reactor energy- balance requirements. 25 refs.

  19. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30

  20. Modeling Z-Pinch implosions in two dimensions

    SciTech Connect

    Peterson, D.; Bowers, R.; Brownell, J.

    1997-12-31

    Ideally, simulations of Z-Pinch implosions should provide useful information about important physics processes underlying observed experimental results and provide design capabilities for future experiments. With this goal the authors have developed a methodology for simulating hollow Z-Pinches in two dimensions and applied it to experiments conducted on the Pegasus I and Pegasus II capacitor banks, the Procyon explosion generator system, and the Saturn and PBFA-Z accelerators. In comparisons with experimental results the simulations have reproduced important features of the current drive, spectrum, radiation pulse shape, peak power and total radiated energy. Comparison of the instability development in the simulations with visible light framing camera photos has shown a close correlation with the observed instability wavelengths and amplitudes. Using this methodology the authors are analyzing recent Saturn and PBFA-Z experiments and applying the 2-D modeling in developing applications such as the dynamic hohlraum.

  1. Focused Aerosol Targets for Z-pinch Loads

    NASA Astrophysics Data System (ADS)

    Gunderson, L. M.; Ruiz, D.; Fisch, N. J.; Hay, M. J.; Merino, E.; Valeo, E. J.; Wissel, S.; Zweben, S. J.

    2013-10-01

    Aerodynamic focusing of aerosols might be used as the load in Z-pinch devices, offering an alternative to wire arrays or gas puffs. Motivations for investigating this method include: better axial uniformity in the material profile, tailoring the radial density and material profile with fewer physical alterations to the machine, and more versatility in load material. In Z-pinches for K-shell X-ray sources, aerosols of metals, such as Aluminum, might be used to compare the dynamics of diffusely distributed loads (similar to gas puffs) versus wire arrays of the same material, which are suspected to be more subject to seeding Magneto-Rayleigh-Taylor instabilities. Work supported by DOE under DE-AC02-09CH11466 and DE-NA0001836.

  2. Resolving microstructures in Z pinches with intensity interferometry

    SciTech Connect

    Apruzese, J. P.; Kroupp, E.; Maron, Y.; Giuliani, J. L.; Thornhill, J. W.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.

  3. X-ray results from a modified nozzle and double gas puff z pinch

    SciTech Connect

    Chang, T.; Fisher, A.; Van Drie, A. )

    1991-03-15

    The nozzle and the anode of the UCI (University of California, Irvine) {ital z}-pinch facility were modified to study the influence of the anode-cathode geometrical structure on the stability of the pinch and the x-ray yield of the pinch. The anode was modified from a honey-comb to a hollow cylinder with a 4-cm diameter and a {similar to}3.5-mm wall thickness, placed 2 cm below the cathode. The cavity in the center of the cathode was enlarged from 6-mm diameter to 36 mm. The design of the cathode and the anode showed a marked improvement of the pinch stability over the previous design. Both zirconium and carbon-carbon nozzle were used for the Kr and Ne {ital z} pinches. After a few tens of shots the Zr nozzle was melted at the edge and the pinch degraded, while the carbon-carbon nozzle did not sustain any damage for more than 300 shots. Some shots showed the {ital di}/{ital dt} at the implosion is {similar to}5 times higher than the {ital di}/{ital dt} at the beginning of the discharge, this has never been obtained at UCI before. This ratio of the initial {ital di}/{ital dt} to pinch {ital di}/{ital dt} is a measure of the pinch quality. By serendipity it was found that double gas puff {ital z} pinch increased the hard x-ray ({gt}1 keV) output by about an order of magnitude. The nozzle was then modified to allow double puff operation. A 3.4-mm-diam hole was opened at the center of the nozzle and a plunger was inserted from the top to control the mass of the gas entering the hole. The diagnostics include {ital di}/{ital dt} coil, soft, and hard x-ray diodes. Soft and hard x-ray emission are both enhanced by the double gas puff {ital z} pinch.

  4. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  5. History of HERMES III diode to z-pinch breakthrough and beyond :

    SciTech Connect

    Sanford, Thomas Williamlou.

    2013-04-01

    HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense -ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into -rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.

  6. Solid fiber Z-pinches: ''Cold-start'' computations

    SciTech Connect

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs.

  7. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  8. Ion Beam Driven Shock Device Using Accelerated High Density Plasmoid by Phased Z-Pinch

    NASA Astrophysics Data System (ADS)

    Horioka, Kazuhiko; Aizawa, Tatsuhiko; Tsuchida, Minoru

    1997-07-01

    Different from three methods to generate high shock pressure by acceleration of high density plasma or particles (intense ion beams, plasma gun and rail gun) having their intrinsic deficiencies, new frontier is proposed to propel the shock physics and chemistry by using the high density plasma. In the present paper, new scheduled Z-pinch method is developed as a new device to generate high shock pressure. In the present method, plasma density can be compressed to the order of 10^18 to 10^19 cm-3, and high density plasma can be accelerated by zippering together with axial shock pressure, resulting in high-velocity launching of flyer. In the present paper, systematic experimental works are performed to demonstrate that high energy plasma flow can be electro-magnetically driven by the scheduled capillary Z-pinch, and to characterize the ion velocity and its current density. The estimated value of ion speed from the plasma-measurement reaches to 7 x 10^7 cm/s corresponding to 70 to 100 KeV for Ar. Copper flyer can be shot with the velocity range from 1km/s to 3km/s in the standard condition.

  9. 100 ns Z-Pinch Performance on the Inductive-Energy-Based ACE 4 Generator

    NASA Astrophysics Data System (ADS)

    Coleman, Philip; Thompson, John; Crumley, Randy; Failor, Bruce; Goodrich, Phillip; Parks, Don; Rauch, John; Song, Yuanxu; Steen, Paul; Waisman, Eduardo; Weber, Bruce; Moosman, Bryan; Qi, Niansheng; Schein, Jochen; McFarland, Mike; Campbell, Kelly; Krishnan, Mahadevan

    2000-10-01

    We report on the performance of a short implosion time ( ~100 ns) argon z-pinch using an inductive-energy-storage system. The generator, ACE 4, used a plasma opening switch (POS) to conduct for over a microsecond before driving the short implosion time 2.5 cm diameter Double Eagle gas nozzle. (Previously reported ACE 4 results used longer implosion times, 150 to over 300 ns, with z-pinch load diameters up to 14 cm.) The Double Eagle nozzle, which produces more than 20 kJ of argon K-shell radiation with a current I of almost 4 MA on Double Eagle, produced more than 6 kJ with 3 MA on ACE 4. This performance is consistent with the expected I to the 4th scaling. Pinch behavior on the two machines was quite similar in terms of zippering, pulse width and pinch diameter. As on Double Eagle, the gas flow away from the nozzle was observed to pinch best. On ACE 4, recessing the nozzle behind a wire grid cathode plane moved the high output part of the pinch down to the cathode plane. This allowed us to reduce the pinch length and load inductance, hence increasing load current and yield. Similar changes could be exploited on other gas puff loads and generators to enhance x-ray output. (Thompson, et. al., report elsewhere at this meeting on the performance of the POS and its interaction with the PRS.)

  10. The Prospects for High-Yield ICF with a Z-Pinch Driven Dynamic Hohlraum

    SciTech Connect

    CHANDLER, GORDON A.; CHRIEN, R.; COOPER, GARY WAYNE; DERZON, MARK S.; DOUGLAS, MELISSA R.; HEBRON, DAVID E.; LASH, JOEL S.; LEEPER, RAMON J.; MATZEN, M. KEITH; MEHLHORN, THOMAS A.; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SLUTZ, STEPHEN A.

    1999-09-07

    Recent success with the Sandia Z machine has renewed interest in utilizing fast z-pinenes for ICF. One promising concept places the ICF capsule internal to the imploding z-pinch. At machine parameters relevant to achieving high yield, the imploding z-pinch mass has sufficient opacity to trap radiation giving rise to a dynamic hohlraum. The concept utilizes a 12 MJ, 54 MA z-pinch driver producing a capsule drive temperature exceeding 300 eV to realize a 550 MJ thermonuclear yield. They present the current high-yield design and its development that supports high-yield ICF with a z-pinch driven dynamic hohlraum.

  11. Optical diagnostics on dense Z-pinch plasmas

    SciTech Connect

    Riley, R.A. Jr.; Lovberg, R.H.; Shlachter, J.S.; Scudder, D.W.

    1992-05-01

    A novel ``point-diffraction`` interferometer has been implemented on the Los Alamos Solid Fiber Z-Pinch experiment. The laser beam is split into two legs after passing through the plasma. The reference leg is filtered with a pin-hole aperture and recombined with the other leg to form an interferogram. This allows compact mounting of the optics and relative ease of alignment. The Z-Pinch experiment employs a pulsed-power generator that delivers up to 700 KA with a 100ns rise-time through a fiber of deuterium or deuterated polyethylene (CD{sub s}) that is 5-cm long and initially solid with radius r{approx}15{mu}m. The interferometer, using a {triangle}t{approx}200ps pulse from a Nd:YAG laser frequency doubled to {lambda}=532nm, measures the electron line density and, assuming azimuthal symmetry, the density as a function of radial and axial position. Calculations predict Faraday rotations of order {pi}/2 for plasma and current densities that this experiment was designed to produce. The resulting periodic loss of fringes would provide the current density distribution.

  12. Z-Pinch Driven Isentropic Compression for Inertial Fusion

    SciTech Connect

    Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B.; Stygar, W.A.

    1999-02-01

    The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.

  13. Z-pinch modeling at Sandia National Laboratories

    SciTech Connect

    Hussey, T.W.; Matzen, M.K. ); Roderick, N.F. )

    1989-12-01

    The recent emphasis of the Sandia National Laboratories fast Z-pinch effort has been to utilize an imploding gas puff to produce the pump radiation for a photoionization-pumped soft x-ray laser. Because of their potential for utilizing the cylindrical convergence of a fast Z-pinch, we use hollow, coaxial, cylindrical targets to stagnate the implosion. The kilovolt component of radiation produced by this stagnation is the photoionizing pump source for the lasant material that is inside the cylinder. Such a system requires a detailed understanding of the dynamics of both the target and the imploding gas puff as well as their radiative properties. In recent years at Sandia we have studied a number of aspects of this process theoretically, which we describe here. We have considered large scale length non-uniformities resulting from flaring of the gas puff that lead to nonuniform target closure, and shorter wavelength nonuniformities resulting from the hydromagnetic Rayleigh-Taylor instability. More recently, we have emphasized the profound effect of radiation collapse'' of the imploding annular plasma before it reaches the target. This process, which varies considerably with gas puff material and mass (and, therefore, implosion energy), alters density gradient and radiation preheat during the run-in, greatly affecting target dynamics. In addition, we have developed detailed designs for these central targets, which are found to levy severe requirements on gas-puff implosion performance. The feasibility of meeting these requirements, which may be ameliorated by increased driver energy, is discussed.

  14. D-D fusion experiments using fast Z pinches

    SciTech Connect

    Spielman, R.B.; Baldwin, G.T.; Cooper, G.

    1998-03-01

    The development of high current (I > 10 MA) drivers provides the authors with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (<100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. The authors describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, the authors intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

  15. Simulation of Wire-Array Z Pinches with ALEGRA

    NASA Astrophysics Data System (ADS)

    Chantrenne, Sophie; Bliss, David; Cochrane, Kyle; Coverdale, Christine; Deeney, Chris; Hall, Clint; Haill, Thomas; Jones, Brent; Lepell, Paul; Oliver, Bryan; Sinars, Daniel

    2006-10-01

    Wire-array z pinches provide the x-ray radiation drive for Inertial Confinement Fusion Experiments at Sandia National Laboratories. A physical understanding of the physics of wire-array z pinches is important in providing a future radiation source capable of driving high-yield fusion capsules. Modeling of wire-array implosions on the Z machine were performed using the 2-D radiation MHD code Alegra. These new calculations use more accurate initial conditions that are more representative of the experimental data, allowing us to model the implosion through stagnation, to avoid radiation collapse, and to generate a radiation pulse that compares well with data. Code predictions will be compared with tungsten & aluminum wire-array data from Z. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04- 94AL85000. a Ktech Corporation, 1300 Eubank Blvd. S.E., Albuquerque, NM 87123-3336

  16. Transition from column to micropinch regime in Z-pinches

    SciTech Connect

    Engel, A.; Lebert, R.; Koshelev, K. N.; Sidelnikov, Yu. V.; Gavrilescu, C.; Neff, W.

    1997-05-05

    Plasma focus and Z-pinches are known to be intensive sources of K-ion radiation. This radiation is observed in two different regimes of compression: column and micropinch. Appearance of these regimes depends on combination of discharge circuit parameter and element composition of plasma. Column regime is typical for low current discharges operating in low Z gases. Micropinch regime, which represents a development of ''neck'' type instabilities in a presence of strong radiation losses, is typical for heavy ion plasma, i.e. vacuum spark or plasma focus with admixture of heavy gases. Transition from column to micropinch mode has been investigated experimentally. It was found that appearance of either regime can be quantitatively described by a distinction parameter depending on pinch current, particle density and used element.

  17. A kind of fast shutter for Z pinch diagnosis device

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin

    2016-09-01

    A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.

  18. Tungsten Z-Pinch Long Implosions on the Saturn Generator

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; HAINES,M.G.

    1999-11-05

    Recent success on the Saturn and Z accelerators at Sandia National Laboratories have demonstrated the ability to scale z-pinch parameters to increasingly larger current pulsed power facilities. Next generation machines will require even larger currents (>20 MA), placing further demands on pulsed power technology. To this end, experiments have been carried out on Saturn operating in a long pulse mode, investigating the potential of lower voltages and longer implosion times while still maintaining pinch fidelity. High wire number, 25 mm diameter tungsten arrays were imploded with implosion times ranging from 130 to 240 ns. The results were comparable to those observed in the Saturn short pulse mode, with risetimes on the order of 4.5 to 6.5 ns. Experimental data will be presented, along with two dimensional radiation magnetohydrodynamic simulations used to explain and reproduce the experiment.

  19. Light detonation wave in a cylindrical Z-pinch

    NASA Astrophysics Data System (ADS)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  20. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  1. Instability heating of solid-fiber Z pinches

    SciTech Connect

    Riley, Jr., Ronald Alan

    1994-02-01

    The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD2 with a range in radii of 3--60 μm. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of the electrons, strongly suggesting an additional heating term that puts energy directly into the ions. An ion heating term is proposed to explain the observed rapid radial expansion and elevated ion temperatures. This heating term is based on the assumption that the observed m=0 instabilities reconnect, enclosing magnetic flux which degenerates into turbulence in the plasma. A 0-D simulation is developed to investigate the relevance of different physical models to the data presented.

  2. Z-pinch modeling at Sandia National Laboratories

    SciTech Connect

    Hussey, T.W.; Matzen, M.K.; Roderick, N.F.

    1989-01-01

    The recent emphasis of the Sandia National Laboratories fast Z-pinch effort has been to utilize an imploding gas puff to produce the pump radiation for a photoionization-pumped soft x-ray laser. Because of their potential for utilizing the cylindrical convergence of a fast Z-pinch, we use hollow, coaxial, cylindrical targets to stagnate the implosion. The kilovolt component of radiation produced by this stagnation is the photoionizing pump source for the lasant material that is inside the cylinder. Such a system requires a detailed understanding of the dynamics of both the target and the imploding gas puff as well as their radiative properties. In recent years at Sandia we have studied a number of aspects of this process theoretically, which we describe here. We have considered large scale length non-uniformities resulting from flaring of the gas puff that lead to nonuniform target closure, and shorter wavelength non-uniformities resulting from the hydromagnetic Rayleigh-Taylor instability. More recently, we have emphasized the profound effect of ''radiation collapse'' of the imploding annular plasma before it reaches the target. This process, which varies considerably with gas puff material and mass (and, therefore, implosion energy), alters density gradient and radiation preheat during the run-in, greatly affecting target dynamics. In addition, we have developed detailed designs for these central targets, which are found to levy severe requirements on gas puff implosion performance. The feasibility of meeting these requirements which may be ameliorated by increased driver energy, is discussed. 32 refs., 9 figs.

  3. Z-Pinch Drivers for Shock Physics Research

    SciTech Connect

    Asay, J.; Bernard, M.; Clark, B.; Fleming, K.; Hall, C.; Holland, K.; McDaniel, D.; Spielman, R.; Stygar, W.; Trott, W.

    1998-10-13

    The recent development of Z pinch drivers for producing intense radiation envkomn~ enables study of physical and mechanical properties of condensed materials in regimes previously inaccessible in the Mm-am-y. With Z pinch radiation sources, it is possible fo subject mm-sized sampies to pianar compressions of a fe w Mbar. Tie-resolved velocity interferometry was used to perform the first shock loading and unloading profiles in Al and Be for ablatively driven shock$s to 3 Mbar and the first iseritropic loading of iron specimens to 300 War. A principai goai of our shock physics program is to establish a capability to make accurats eqwion of state measurements on the Z pulsed radiation source. The Z accelerator is a source of intense radntion, which can be used to drive ablative shocks for E(X$ studies. With this source, ablative muki-Mbar shocks can be produced to study materials over the range of interest to both weapons and ICF physics programs. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experiments were implemented. The primary diagnostic presently being used for this work is ve"!ocity interferoinetry, VL%4R, [2] which not only provides Hugoniot particle velocity measurements, but also measurements of non-shock EOS measummenu,, such as isentropic compression. In addition to VKSAR capability, methods for measuring shock velocity have also been developed for shock studies on Z. When used in conjunction with the Rankine-Hugoniot jump conditions, material response at high temperatures and pressures can be inferred. The next section discusses the basic approach for conducting EOS experiments on Z for both shock loading and istmtropic compression on the Z accelerator.

  4. Cu spectroscopy from a z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert W.; Ouart, Nicholas D.; Giuliani, John L.

    2014-11-01

    Recent improvements in diagnostic techniques at the Sandia Laboratories Z accelerator have facilitated the production of very detailed x-ray spectral data in the range of 1-20 keV. The high energy density plasma produced in a z-pinch is inherently in non-local thermodynamic equilibrium (NLTE). We therefore employ a NLTE collisional equilibrium model in a 1D radiation-magnetohydrodynamics code to simulate the dynamics of the pinch and to generate synthetic emission spectra. We will discuss the effects on radiation spectra and the yields of using simplifying assumptions in the atomic model and/or the radiation transport. X-ray emission from moderately high atomic number plasmas such as Fe and Cu wire array implosions often include substantial 2p-1s K-α radiation. In a z-pinch plasma, K-shell vacancies can be produced by e-beams, hot electrons at the tail of a Maxwellian and also by photopumping from energetic photons emitted near the pinch axis. In the Z-1975 Cu wire implosion, K-α lines from various ionization stages of Cu as well as from minor constituents including Ni, Fe and Cr are observed. We have calculated K-α production within a full simulation of a Cu implosion, including contributions from energetic electrons and photons. Photo-pumped K-α emission can be distinguished from that produced by e-beams; K-shell vacancies will be produced near the axis for a beam, and near the outer edge of the plasma for energetic photons. Spectroscopic modeling of these K-α lines as well as K- and L-shell emission from valence electrons can provide quantitative diagnostics of plasma parameters. This methodology can also be used to investigate K-α emission from other laboratory experiments such as EBIT and astrophysical plasmas.

  5. Circuit model for the inverse Z-pinch wire array switch.

    SciTech Connect

    Waisman, Eduardo Mario; Cuneo, Michael Edward; Harvey-Thompson, A.; Lebedev, Sergey V.

    2010-06-01

    A 0D circuit code is introduced to study the wire array switch concept introduced in. It has been implemented and researched at Imperial College. An exploding wire array, the switch, is in parallel with the load, an imploding wire array. Most of the current flows in the exploding array until it expands and becomes highly resistive. The 0D code contains simple models of Joule energy deposition and plasma expansion for W and Al wires. The purpose of the device is to produce fast Z-pinch implosion, below 100ns on MAGPIE and the Sandia Z machine. Self and mutual inductances are taken into consideration as well as the rocket model for wire ablation. The switch characteristics of the exploding array are prescribed and tuned up to agree with MAGPIE shots. The dependence of the device on the configuration of the arrays is studied and scaling to ZR conditions is explored.

  6. Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments

    SciTech Connect

    Sheehey, Peter Trogdon

    1994-02-01

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.

  7. Analytic model for the dynamic Z-pinch

    SciTech Connect

    Piriz, A. R. Sun, Y. B.; Tahir, N. A.

    2015-06-15

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting cases of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.

  8. Diagnostics for Z-pinch implosion experiments on PTS

    SciTech Connect

    Ren, X. D. Huang, X. B. Zhou, S. T. Zhang, S. Q. Dan, J. K. Li, J. Cai, H. C. Wang, K. L. Ouyang, K. Xu, Q. Duan, S. C. Chen, G. H. Wang, M. Feng, S. P. Yang, L. B. Xie, W. P. Deng, J. J.

    2014-12-15

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  9. Implicit XMHD Modeling of Fast Z-Pinches

    NASA Astrophysics Data System (ADS)

    Martin, Matthew

    2013-10-01

    The numerical modeling of fast Z-Pinches as applied to magnetically driven inertial confinement fusion concepts is typically performed under the resistive- magnetohydrodynamic (MHD) model. We derive the limitations of this model as currently applied to modeling such targets and present numerical test problems that demonstrate the physical error introduced through the approximations inherent in resistive-MHD. We then compare the resistive-MHD model to simulations utilizing new implicit algorithms for the efficient solution of the extended-magnetohydrodynamic (XMHD) system of equations. Herein we define XMHD as a quasi-neutral electro-magnetic two-fluid model. We present specific examples where the XMHD system of equations is required for modeling magnetically driven ICF targets if large physical errors are to be avoided in the numerical solution of the system. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Electromagnetic wave propagation through the ZR Z-pinch accelerator.

    SciTech Connect

    Welch, Dale Robert; Clark, R. E.; Rose, David Vincent; Madrid, Elizabeth Ann; Corcoran, P. A.; Struve, Kenneth William; Stygar, William A.; Miller, C. L.; Whitney, B.

    2008-08-01

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  11. Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator

    SciTech Connect

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.

    2009-01-21

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  12. Viscous Heating At Stagnation In Z-Pinches

    SciTech Connect

    Haines, M. G.

    2009-01-21

    The viscous heating associated with m = 0 MHD instabilities in the stagnated Z-pinch is developed further. It would appear that the larger numerical (Neumann) viscosity plus De Bar corrections in simulation codes to yield energy conservation might be another way of representing viscous heating, but in this case the viscosity is inserted to smooth shock discontinuities. However the viscous heating per unit volume appears to be independent of the coefficient of viscosity itself because the fastest growing MHD mode is itself determined by the viscous damping. Therefore it could be argued that, though the correct physics is not in the codes, the resulting heating is not sensitive to the fact that numerical viscosity instead is employed. In addition, by chance, the model of magnetic bubbles first introduced by Lovberg et al. and Riley et al., and later by Rudakov et al. to explain phenomenologically extra heating of the ions leads to the same heating rate as in Haines et al. For the stainless steel array in which T{sub i} was predicted and measured to be >200 KeV while T{sub e} = 3 KeV the ion viscous heating is dominant. However, for the low current experiment by Kroupp et al. in which the ion kinematic viscosity is much smaller than the resistive diffusivity there is resistive damping of MHD modes, and no ions viscous heating should be expected.

  13. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    PubMed

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  14. Use of the Pegasus Z pinch machine to study inertial instabilities in aluminum: a preliminary report

    SciTech Connect

    Chandler, E.; Egan, P.; Winer, K.; Stokes, J.; Fulton, R.D.; King, N.S.P.; Morgan, D.V.; Obst, A.W.; Oro, D.W.

    1997-06-13

    We have designed a target to probe the use of the Pegasus Z-Pinch machine to image inertial instabilities that develop on cylindrical- convergent material interfaces. The Z-pinch is tailored so that the target, soft Al 1100-O, remains solid; instabilities and inertial effects are seeded by wire inclusions of different densities. We present here the first images and preliminary results from this experiment.

  15. The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1982-01-01

    A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.

  16. Development of laser-based diagnostics for 1-MA z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Presura, R.; Kindel, J. M.; Shevelko, A. P.; Chalyy, O.; Astanovitskiy, A.; Haboub, A.; Altemara, S. D.; Papp, D.; Durmaz, T.

    2009-11-01

    The 50 TW Leopard laser coupled with the 1-MA Zebra generator was used for development of new diagnostics of z-pinch plasmas. Two plasma diagnostics are presented: an x-ray broadband backlighting for z-pinch absorption spectroscopy and parametric two-plasmon decay of the laser beam in dense z-pinch plasma. Implementation of new diagnostics on the Zebra generator and the first results are discussed. The absorption spectroscopy is based on backlighting of z-pinch plasma with a broadband x-ray radiation from a Sm laser plasma. Detailed analysis of the absorption spectra yields the electron temperature and density of z-pinch plasma at the non-radiative stage. The parametric two-plasmon decay of intensive laser radiation generates 3/2φ and 1/2φ harmonics. These harmonics can be used to derive a temperature of z-pinch plasma with the electron density near the quarter of critical plasma density.

  17. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  18. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  19. Equation-of-State Measurements with Z-Pinch Sources

    SciTech Connect

    Asay, J.R.; Hall, C.; Bailey, J.E.; Knudson, M.D.; Holland, K.G.; Hanson, D.L.; Johnston, R.; Bernard, M.A.; Trott, W.M.; Spielman, R.E.; Stygar, W.A.; McDaniel, D.H.

    1999-07-22

    Validation of material models in a variety of scientific and technological applications requires accurate data regarding the high-pressure thermodynamic and mechanical properties. Traditional laboratory techniques for striking these measurements involve light gas guns to generate the required thermodynamic states, and the use of high-resolution time-resolved diagnostics to measure the desired material properties. EOS and constitutive material properties of importance to modeling needs include high-pressure Hugoniot curves and off-Hugoniot properties, such as. material strength and isentropic compression and decompression [1]. Conventional light gas guns are limited to impact pressures of about 7 Mbar in high-impedance materials. Pulsed radiation sources, such as high-intensity lasers, and pulsed power techniques significantly extend the accessible pressures and are becoming accepted methods for meeting the needs of material models in regimes inaccessible by gas guns. A present limitation of these new approaches is that samples must necessarily be small, typically a few tens of microns in thickness, which severely limits the accuracy of EOS measurements that can be made and also the ability to perform a variety of off-Hugoniot measurements. However, recent advances in z-pinch techniques for high-pressure material response studies provide potential opportunities for achieving accuracies comparable with gas guns because of the significantly larger samples that can be studied. Sample thicknesses approaching 1 mm may be possible with advances presently being made. These sample dimensions are comparable with gas gun sample dimensions so that accuracies should be comparable. The Sandia Z accelerator [2] is a recently developed facility that generates x-ray energies of about 2 MJ over time scales of 5-10 ns with resulting temperatures of 100-150 eV in containment fixtures, referred to as hohlraums, that are a few cubic centimeters in volume. This intense radiation source

  20. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    PubMed

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the

  1. Charger 1: A New Facility for Z-Pinch Research

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  2. Magnetized jets and shocks in radial foil Z-pinches: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Suzuki-Vidal, F.; Pickworth, L. A.; Swadling, G. F.; Burdiak, G.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Chittenden, J. P.; de Grouchy, P.; Derrick, J.; Hare, J.; Parker, T.; Sciortino, F.; Suttle, L.; Ciardi, A.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Hansen, E.; Frank, A.; Music, J.

    2014-10-01

    Different variations of the radial foil Z-pinch configuration have been investigated in the recent years on the MAGPIE generator (1.4 MA, 250 ns), particularly using over-massed aluminum foils with thicknesses of ~15 μm. This setup is characterized by a highly collimated, supersonic jet on the axis of the foil surrounded by low-density ablated plasma, both moving with the same axial velocity of ~60 km/s. Latest results show that the formation and collimation of the jet is directly related to toroidal magnetic field advected with the flow. We present new experimental results that include Thomson scattering measurements of plasma flow velocity and temperature, and a first study on the effect of foil material on jet formation. The effect of advected toroidal magnetic field in the plasma flow is clearly evidenced using a new experimental configuration that produces counter-streaming jets. The results are characterized by the formation of shocks in which the effect of magnetic field and radiative cooling are significant. The setup also allows controlling the polarity of the advected fields at the interaction point between the counter-streaming flows, and results from experiments and numerical simulations will be presented and discussed.

  3. Radiatively cooled supersonic plasma jets generated in wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Bland, Simon; Lebedev, Sergey; Chittenden, Jerry; Beg, F. N.; Ciardi, A.; Haines, M. G.

    2000-10-01

    We will present experiments on the generation of a highly supersonic plasma jet by a convergent plasma flow, produced by electrodynamic acceleration of plasma in a conical array of fine metallic wires (a modification of the wire array Z-pinch [1]). Stagnation of the plasma flow on the axis of symmetry forms a standing conical shock, which effectively collimates the flow in the axial direction. This scenario is essentially similar to that discussed by Cantó et al. [2] as a possible, purely hydrodynamic mechanism of jet formation in young stellar objects. Experiments using different materials (Al, Fe and W) show that a highly supersonic (M 20) and a well-collimated jet is generated when the radiative cooling rate of the plasma is significant. The interaction of this jet with a plasma target could be used for scaled [3] laboratory astrophysical experiments on hydrodynamic instabilities in decelerated plasma flow. [1] M.K. Matzen, Phys. Plasmas v.4, 1519 (1997) [2] J. Cantó, et. al. Astron. Astrophys. v.192, 287 (1994). [3] D. Ryutov et al., ApJ, v.518, 821 (1999)

  4. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch

    SciTech Connect

    Navarro, Alejandro Bañón Jenko, Frank; Teaca, Bogdan

    2016-04-15

    For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.

  5. Use of Z-pinch sources for high-pressure shock wave studies

    SciTech Connect

    Konrad, C.H.; Asay, J.R.; Hall, C.A.

    1998-01-01

    In this paper, we will discuss the use of z-pinch sources for shock wave studies at multi-Mbar pressures. Experimental plans to use the technique for absolute shock Hugoniot measurements are discussed. Recent developments have demonstrated the use of pulsed power techniques for producing intense radiation sources (Z pinches) for driving planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. Initial indications are that using Z pinch sources for producing Planckian radiation sources in secondary hohlraums can be used to drive shock waves in samples with diameters to a few millimeters and thickness approaching one millimeter in thickness. These dimensions provides the opportunity to measure both shock velocity and the particle velocity behind the shock front with accuracy comparable to that obtained with gun launchers. In addition, the peak hohlraum temperatures of nearly 150 eV that are now possible with Z pinch sources result in shock wave pressures approaching 45 Mbar in high impedance materials such as tungsten and 10-15 Mbar in low impedance materials such as aluminum and plastics. In this paper, we discuss the use of Z pinch sources for making accurate absolute EOS measurements in the megabar pressure range.

  6. Ion Acceleration in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.,; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Munzar, V.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Dudkin, G.; Padalko, V.; Krasa, J.; Turek, K.

    2016-10-01

    Acceleration of ions to high energies was observed in deuterium z-pinches already at the beginning of the fusion research in the 1950s. Even though the ion acceleration mechanism in z-pinches and dense plasma foci has been studied for decades, it is still a source of controversy which has not been resolved. Recently, the ion emission has been researched at a 3 MA current on the GIT-12 generator (IHCE in Tomsk). When an outer hollow cylindrical plasma shell was injected around an inner deuterium gas puff, a larger amount of current was assembled on the z-pinch axis at stagnation. After the disruptive development of m =0 necks, hydrogen ions were accelerated up to 40 MeV energies. Comprehensive diagnostics of multi-MeV protons and deuterons provided unique information about the ion acceleration in z-pinches. The better knowledge of the ion emission was used to increase the neutron yield above 1013. A large amount of experimental data from various ion diagnostic instruments is also useful for validation of numerical codes and verification of various hypotheses about the ion acceleration mechanism in z-pinches. This work was partially supported by the GACR Grant No. 16-07036S.

  7. Development of the 50 TW laser for joint experiments with 1 MA z-pinches

    NASA Astrophysics Data System (ADS)

    Wiewior, P. P.; Ivanov, V. V.; Chalyy, O.

    2010-08-01

    A 50 TW high-intensity laser (aka "Leopard" laser) was developed for experiments with the 1 MA z-pinch generator at the University of Nevada, Reno. The laser produces short pulses of 0.35 ps; energy is 15 J. Long pulses are 1 ns; energy is 30 J. The output beam diameter is 80 mm. The Leopard laser applies chirped pulse amplification technology. The laser is based on the 130 fs Ti:Sapphire oscillator, Öffner-type stretcher, Ti:Sapphire regenerative amplifier, mixed Nd:glass rod and disk amplifiers, and vacuum grating compressor. An adaptive optics system ameliorates focusing ability and augments the repetition rate. Two beam terminals are available for experiments: in the vacuum chamber of the z-pinch generator (aka "Zebra"), and a laser-only vacuum chamber (aka "Phoenix" chamber). The Leopard laser coupled to the Zebra z-pinch generator is a powerful diagnostic tool for dense z-pinch plasma. We outline the status, design, architecture and parameters of the Leopard laser, and its coupling to Zebra. We present the methods of laser-based z-pinch plasma diagnostics, which are under development at the University of Nevada, Reno.

  8. Application of Proton Deflectometry to Z-Pinch Plasma Systems at the Mega-Ampere Scale

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; McGuffey, Chris; Valenzuela, Julio; Wei, Mingsheng; Beg, Farhat; Presura, Radu; Haque, Showera; Arias, Angel; Covington, Aaron; Sawada, Hiroshi; Chittenden, Jeremy

    2013-10-01

    Measuring magnetic fields in z-pinch plasmas is challenging. Typical laser-probing diagnostics are limited by the critical density and large density gradients, while electrical diagnostics have limited spatial resolution. We report the first demonstration of proton deflectometry of z-pinch plasma systems at the mega-ampere scale. The proton beam was produced using the 10J 0.3ps Leopard laser and coupled to z-pinch plasma produced by Zebra, a 1MA pulsed-power driver at the Nevada Terawatt Facility. The magnetic field distorted the proton beam profile, which was recorded on radiochromic film. The experimental data was compared against integrated modeling using the resistive MHD code, Gorgon, for Z-pinch plasmas, in combination with the hybrid PIC code, LSP, for proton-beam trajectory tracking. This comparison provided the field and current configuration for various plasma loads, including wire and foil z-pinches. Funded by the NSF/DoE Partnership in Basic Plasma Scienceand En- gineering under contracts DE-SC-0001992 / PHY-0903876. Use of the Nevada Terawatt Facility was supported by the US DOE, NNSA, under Contract No. DE-FC52-06NA27616.

  9. PBFA Z: A 60-TW/5-MJ Z-pinch driver

    SciTech Connect

    Spielman, R. B.; Deeney, C.; Chandler, G. A.; Douglas, M. R.; Fehl, D. L.; Matzen, M. K.; McDaniel, D. H.; Nash, T. J.; Porter, J. L.; Sanford, T. W. L.; Seamen, J. F.; Stygar, W. A.; Struve, K. W.; Breeze, S. P.; McGurn, J. S.; Torres, J. A.; Zagar, D. M.; Gilliland, T. L.; Jobe, D. O.; McKenney, J. L.

    1997-05-05

    PBFA Z, a new 60-TW/5-MJ electrical accelerator located at Sandia National Laboratories, is now the world's most powerful z-pinch driver. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ into a 60-TW/105-ns FWHM pulse to the 120-m{omega} water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on load parameters, we attain peak load currents of 16-20 MA with a current rise time of {approx}105 ns with wire-array z-pinch loads. We have extended the x-ray performance of tungsten wire-array z pinches from earlier Saturn experiments. Using a 2-cm-radius, 2-cm-long tungsten wire array with 240, 7.5-{mu}m diameter wires (4.1-mg mass), we achieved an x-ray power of 210 TW and an x-ray energy of 1.9 MJ. Preliminary spectral measurements suggest a mostly optically-thick, Planckian-like radiator below 1000 eV. Data indicate {approx}100 kJ of x rays radiated above 1000 eV. An intense z-pinch x-ray source with an overall coupling efficiency greater than 15% has been demonstrated.

  10. PBFA Z: A 60-TW/5-MJ Z-pinch driver

    SciTech Connect

    Spielman, R.B.; Deeney, C.; Chandler, G.A.; Douglas, M.R.; Fehl, D.L.; Matzen, M.K.; McDaniel, D.H.; Nash, T.J.; Porter, J.L.; Sanford, T.W.; Seamen, J.F.; Stygar, W.A.; Struve, K.W.; Breeze, S.P.; McGurn, J.S.; Torres, J.A.; Zagar, D.M.; Gilliland, T.L.; Jobe, D.O.; McKenney, J.L.; Mock, R.C.; Vargas, M.; Wagoner, T.; Peterson, D.L.

    1997-05-01

    PBFA Z, a new 60-TW/5-MJ electrical accelerator located at Sandia National Laboratories, is now the world{close_quote}s most powerful z-pinch driver. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ into a 60-TW/105-ns FWHM pulse to the 120-m{Omega} water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on load parameters, we attain peak load currents of 16{endash}20 MA with a current rise time of {approximately}105ns with wire-array z-pinch loads. We have extended the x-ray performance of tungsten wire-array z pinches from earlier Saturn experiments. Using a 2-cm-radius, 2-cm-long tungsten wire array with 240, 7.5-{mu}m diameter wires (4.1-mg mass), we achieved an x-ray power of 210 TW and an x-ray energy of 1.9 MJ. Preliminary spectral measurements suggest a mostly optically-thick, Planckian-like radiator below 1000 eV. Data indicate {approximately}100kJ of x rays radiated above 1000 eV. An intense z-pinch x-ray source with an overall coupling efficiency greater than 15{percent} has been demonstrated. {copyright} {ital 1997 American Institute of Physics.}

  11. A Moving Finite Element Model of the High Density Z-Pinch

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    1989-11-01

    This paper presents the results of computations of the behavior of the fiber-initiated high density Z-pinch (HDZP). Its purpose is twofold. One is to study the behavior of the physical system itself as an interesting controlled fusion experiment. The main result of this study is a demonstration of the relaxation of the full inertial behavior of the pinch to simplified self-similar behavior in which the forces on the system are in near balance. The moving free boundary and violent initial behavior of this configuration require careful treatment. This leads to the other purpose of the work, to use this realistic physical system as a test-bed for a general-purpose 1-dimensional code based on moving finite elements. A key step in accomplishing this goal has been the recognition that numerical stability of the discretized equations has required the use of nonconservative quantities as the fundamental dependent variables to be discretized. The main result of this work is a code which is capable of treating a very general class of nonlinear, time-dependent fluid equations.

  12. Enhancement of X-ray Production in Z-Pinch Plasmas Using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Edison, N. S.; Etlicher, B.; Attelan, S.; Rouillé, C.; Chuvatin, A. S.; Aliaga, R.

    1994-03-01

    We are investigating the effects of an axial magnetic field to stabilize an aluminum vapor z-pinch. An aluminum plasma jet is created from an exploding foil in a DC magnetic field (Bz0 ≤ 300 G). The applied field is small compared to the azimuthal field, Bz0 ≫ Bϑ, and is intended to reduce the growth of instabilities during the compression phase. The pinch is driven by a 2 Ω, 0.1 TW generator (250 kA in 80 ns). Additionally, a micron sized wire may be placed on the pinch axis leading to the plasma-on-wire (POW) configuration. Qualitatively, increasing the axial magnetic field improves the pinch with the m=1 instabilities becoming negligible for fields higher than 150 G. We find that the externally applied fields can enhance x-ray production up to a critical field. Above this critical field x-ray emission decreases even though the pulse length of the radiation may still be increasing. As the applied field increases, the period of x-ray emission increases with the harder spectrum affected the least. The x-ray yield peaks for the POW and Al jet alone configurations at 150 G and 50 G respectively. Diagnostics include filtered PIN x-ray diodes, time-resolved schlieren photography, and time-integrated multiple filtered pinholes. We will present the results comparing the POW and aluminum jet configurations described above.

  13. Measurements of high energy photons in Z-pinch experiments on primary test stand

    SciTech Connect

    Si, Fenni Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-15

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10{sup 10} cm{sup −2} (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  14. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  15. Gas puff Z-pinches with deuterium-krypton gas mixtures

    NASA Astrophysics Data System (ADS)

    Darling, Timothy; McKee, Erik; Covington, Aaron; Ivanov, Vladimir; Wessel, Frank; Rahman, Hafiz

    2015-11-01

    We discuss experiments with single-shell, pure and mixed-gas loads on the zebra pulsed-power generator at the Nevada Terawatt Facility (NTF). These experiments are modeled using the MACH2 code and provide input and benchmarking for further models and experiments on upcoming staged Z-pinch (SZP) studies under an ARPA-E program. The 1MA-70ns rise time discharge of Zebra produces bursts of both high and low energy X-rays and neutrons if deuterium gas is present. The gas is injected from the (grounded) anode to cathode as an expanding cylindrical shell of approximately 4cm diameter. A pulsed valve and a flow-forming nozzle determine the details of the gas target geometry which is imaged as a density map using a UV excited fluorescent tracer (LIF). The gases imaged are pure Kr and D2 and binary mixtures thereof. A pure D2 pinch produces a (yet to be optimized) neutron yield in the 1e10 regime. Additional diagnostics include a 2-frame Schlieren 1064nm IR imaging diagnostic, which provides information on the implosion dynamics of the pinch. Support for this work comes from DOE/NNSA (grant # DE-NA0002075) and the ARPA-E ALPHA program.

  16. Magnetohydrodynamic solution for a Z pinch showing the production of a hot spot

    NASA Astrophysics Data System (ADS)

    Maxon, S.; Hammer, J. H.; Eddleman, J. L.; Tabak, M.; Zimmerman, G. B.; Alley, W. E.; Estabrook, K. G.; Harte, J. A.; Nash, T. J.; Sanford, T. W. L.; De Groot, J. S.

    1996-05-01

    Two-dimensional LASNEX [National Technical Information Service Document No. DE 81026329 (Zimmerman, Report No. UCRL-74811, 1973)] calculations are made for a Z pinch on Saturn, the low-impedance, low-inductance electron accelerator at the Sandia National Laboratories [D. D. Bloomquist et al. Proceedings of the Sixth IEEE Pulsed Power Conference, Arlington, VA, edited by P. J. Turchi and B. H. Bernstein (Institute of Electronics and Electrical Engineers, New York, 1987), p. 310]. The experiment is characterized by a current of 6 MA with a tungsten wire load (4 mg) at 2 mm. Two-dimensional calculations show the evolution of the Rayleigh-Taylor instability to the bubble and spike phase, causing high-density islands to form in the pinch opposite the bubbles. The two-dimensional energy flow causes a ``hot spot'' to evolve, which is shown to agree in its size and brightness with pinhole camera measurements. This is the first explicit calculation of a hot spot in two dimensions employing the full magnetohydrodynamic equations.

  17. Magnetohydrodynamic solution for a Z pinch showing the production of a hot spot

    SciTech Connect

    Maxon, S.; Hammer, J.H.; Eddleman, J.L.; Tabak, M.; Zimmerman, G.B.; Alley, W.E.; Estabrook, K.G.; Harte, J.A.; Nash, T.J.; Sanford, T.W.; De Groot, J.S.

    1996-05-01

    Two-dimensional LASNEX [National Technical Information Service Document No. DE 81026329 (Zimmerman, Report No. UCRL-74811, 1973)] calculations are made for a Z pinch on Saturn, the low-impedance, low-inductance electron accelerator at the Sandia National Laboratories [D. D. Bloomquist {ital et} {ital al}. {ital Proceedings} {ital of} {ital the} {ital Sixth} {ital IEEE} {ital Pulsed} {ital Power} {ital Conference}, Arlington, VA, edited by P. J. Turchi and B. H. Bernstein (Institute of Electronics and Electrical Engineers, New York, 1987), p. 310]. The experiment is characterized by a current of 6 MA with a tungsten wire load (4 mg) at 2 mm. Two-dimensional calculations show the evolution of the Rayleigh{endash}Taylor instability to the bubble and spike phase, causing high-density islands to form in the pinch opposite the bubbles. The two-dimensional energy flow causes a {open_quote}{open_quote}hot spot{close_quote}{close_quote} to evolve, which is shown to agree in its size and brightness with pinhole camera measurements. This is the first explicit calculation of a hot spot in two dimensions employing the full magnetohydrodynamic equations. {copyright} {ital 1996 American Institute of Physics.}

  18. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  19. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Hall, G. N.; Swadling, G. F.; Suzuki-Vidal, F.; Khoory, E.; Bland, S. N.; Pickworth, L.; de Grouchy, P.; Skidmore, J.; Suttle, L.; Waisman, E. M.

    2015-11-01

    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100-150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. The ˜5 kA pre-pulse delivers ˜0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.

  20. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  1. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    SciTech Connect

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Hall, G. N.; Swadling, G. F.; Suzuki-Vidal, F.; Khoory, E.; Bland, S. N.; Pickworth, L.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Waisman, E. M.

    2015-11-15

    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100–150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. The ∼5 kA pre-pulse delivers ∼0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.

  2. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.; Chittenden, J. P.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G.; Harvey-Thompson, A. J.; Bland, S. N.; De Grouchy, P.; Khoory, E.; Pickworth, L.; Skidmore, J.; Suttle, L.

    2013-02-01

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by a dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al. [Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the Z¯Te of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.

  3. A Multiple Z-Pinch Configuration for the Generation of High-Density, Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.

    2015-11-01

    The z-pinch is arguably the most straightforward and economical approach for the generation and confinement of hot plasmas, with a long history of theoretical investigations and experimental developments. While most of the past studies were focused on countering the natural tendency of z-pinches to develop instabilities, this study attempts to take advantage of those unstable regimes to form a quasi-stable plasma, with higher density and temperature, possibly of interest for a fusion reactor concept. For this purpose, a configuration with four z-pinch discharges, with axis parallel to each other and symmetrically positioned, is considered. Electrodes for the generation of the discharges and magnetic coils are arranged to favor the formation of concave discharge patterns. The mutual attraction from the co-streaming discharge currents enhances this pattern, leading to bent plasma streams, all nearing towards the axis. This configuration is intended to excite and sustain a ``kink'' unstable mode for each z-pinch, eventually producing either plasmoid structures, detached from each discharge, or sustained kink patterns: both these cases appear to lead to plasmas merging in the central region. The feasibility of this approach in creating a higher density, hotter, meta-stable plasma regime is investigated computationally, addressing both the kink excitation phase and the dynamics of the converging plasma columns.

  4. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-07

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  5. High-energy electron acceleration in the gas-puff Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-01

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  6. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  7. High-energy electron acceleration in the gas-puff Z-pinch plasma

    SciTech Connect

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  8. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  9. MHRDRing Z-Pinches and Related Geometries: Four Decades of Computational Modeling Using Still Unconventional Methods

    SciTech Connect

    Lindemuth, Irvin R.

    2009-01-21

    For approximately four decades, Z-pinches and related geometries have been computationally modeled using unique Alternating Direction Implicit (ADI) numerical methods. Computational results have provided illuminating and often provocative interpretations of experimental results. A number of past and continuing applications are reviewed and discussed.

  10. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    SciTech Connect

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-21

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  11. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  12. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    SciTech Connect

    Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  13. Influence of electrode separation and gas curtain on extreme ultraviolet emission of a gas jet z-pinch source

    NASA Astrophysics Data System (ADS)

    Mohanty, S. R.; Sakamoto, T.; Kobayashi, Y.; Izuka, N.; Kishi, N.; Song, I.; Watanabe, M.; Kawamura, T.; Okino, A.; Horioka, K.; Hotta, E.

    2006-07-01

    Extreme ultraviolet (EUV) emission from a gas jet z-pinch source has been examined by employing a photodiode and pinhole camera. Visible images of the pinched plasma have been also recorded. A current pulse of 10kA is used to heat the gas jet, which emits radiation around 13.5nm. Experimental parameters such as electrode separation and gas flow rate are varied to optimize EUV emission. The maximum EUV energy is obtained for 12mm electrode separation and 20Torr xenon pressure and it is estimated to 10.95mJ/sr per 2% bandwidth per pulse. The presence of gas curtain improves EUV emission by 30%.

  14. Numerical simulation of fiber and wire array Z-pinches with Trac-II

    SciTech Connect

    Reisman, David B.

    1998-09-01

    Trac-II is a two dimensional axisymmetric resistive MHD code. It simulates all three spatial components (r, z, φ) of the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with two temperatures (Te,Ti). In addition, it can optionally include a self-consistent external circuit. Recent modifications to the code include the addition of the 3-T radiation model, a 4-phase (solid-liquid-vapor-plasma) equation of state model (QEOS), a 4-phase electrical/thermal conductivity model, and an implicit solution of poloidal Bz,Br) magnetic field diffusion. These changes permit a detailed study of fiber and wire array Z-pinches. Specifically, Trac-II is used to study the wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory. First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these results as initial radial conditions in 2-D, we investigate the dynamics of wire array configurations in the r-z and r-θ plane. In the r-z plane we examine the growth of the m=0 or "sausage" instability in single wires within the array. In the r-θ plane we examine the merging behavior between neighboring wires. Special emphasis is placed on trying to explain how instability growth affects the performance of the Z-pinch. Lastly, we introduce Trac-III, a 3-D MHD code, and illustrate the m=1 or "kink" instability. We also discuss how Trac-III can be modified to simulate the wire array Z-pinch.

  15. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    SciTech Connect

    Ivanov, Vladimir V.

    2016-08-17

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated

  16. DT ignition in a Z pinch compressed by an imploding liner

    NASA Astrophysics Data System (ADS)

    Bilbao, L.; Bernal, L.; Linhart, J. G.; Verri, G.

    2001-11-01

    It has been shown that an m = 0 instability of a Z pinch carrying a current of the order of 10 MA with a rise time of less than 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent DT plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in previous publications without considering the role played by an initially impressed m = 0 perturbation, a mechanism indispensable for the generation of a spark. The liner-Z pinch dynamics can be solved at several levels of physical model completeness. The first corresponds to a zero dimensional model in which the liner has a given mass per unit length and a zero thickness, the plasma is compressed adiabatically and is isotropic, and there are no energy losses or Joule heating. The second level is one dimensional. The Z pinch plasma is described by the full set of MHD, two-fluid equations. The liner is treated first as thin and incompressible, and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic equation of state. Both plasma and liner are considered uniform in the Z direction and only DT reactions are considered. It is shown that, given sufficient energy and speed of the liner, the Z pinch can reach a volume ignition. The third level is two dimensional. Plasma and liner are treated as in the second level but either the Z pinch or the liner is perturbed by an m = 0 non-uniformity. Provided the liner energy is high enough and the initial m = 0 perturbation is correctly chosen, the final neck plasma can act as a spark for DT ignition. It is also shown that the liner energy required for generating a spark and the subsequent detonation propagation are considerably less than in the case of volume ignition.

  17. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  18. Advances in experimental spectroscopy of Z-pinch plasmas and applications

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.

    2012-06-01

    Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.

  19. Progress in Z-pinch research driven by the mega-ampere device SPEED2

    SciTech Connect

    Pavez, Cristian; Soto, Leopoldo; Moreno, Jose; Tarifeno, Ariel; Sylvester, Gustavo

    2008-04-07

    Several pinch configurations have being studied at the Chilean Nuclear Energy Commission using the SPEED2 generator: plasma focus, gas embedded z-pinch and wire arrays. SPEED2 is a generator based on Marx technology (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt{approx}10{sup 13} A/s). Currently the device is being operated at 70kJ stored energy producing a peak current of 2.4 MA in short circuit. In this work results related to studies in gas embedded z-pinch in deuterium and studies in wire arrays are presented.

  20. Z-Pinch Driven Inertial Confinement Fusion Target Physics Research at Sandia National Laboratories

    SciTech Connect

    Alberts, T.E.; Asay, J.R.; Baca, P.M.; Baker, K.L.; Breeze, S.P.; Chandler, G.A.; Cook, D.L.; Cooper, G.W.; Deeney, C.; Derzon, M.S.; Douglas, M.R.; Fehl, D.L.; Gilliland, T.; Hebron, D.E.; Hurst, M.J.; Jobe, D.O.; Kellogg, J.W.; Lash, J.S.; Lazier, S.E.; Leeper, R.J.; Matzen, M.K.; McDaniel, D.H.; McGurn, J.S.; Mehlhorn, T.A.; Moats, A.R.; Mock, R.C.; Muron, D.J.; Nash, T.J.; Olson, R.E.; Porter, J.L.; Quintenz, J.P.; Reyers, P.V.; Ruggles, L.E.; Ruiz, C.L.; Sandford, T.W.L.; Schmidlapp, F.A.; Seamen, J.F.; Spielman, R.B.; Stark, M.A.; Struve, K.W.; Stygar, W.A.; Tibbetts-Russell, D.R.; Torres, J.A.; Vargas, M.; Wagoner, T.C.; Wakefield, C.

    1998-10-27

    Three hohlraum concepts are being pursued at Sandia National Laboratories (SNL) to investigate the possibility of using pulsed power driven magnetic implosions (z-pinches) to drive high gain targets capable of yields in the range of 200-1000 MJ. This research is being conducted on SNL'S.Z facility that is capable of driving peak currents of 20 MA in z-pinch loads producing implosion velocities as high as 7.5X 107 cm/s, x-ray energies approaching 2 MJ, and x-ray powers exceeding 200 TW. This paper will discuss each of these hohlraum concepts and will overview the experiments that have been conducted on these systems to date.

  1. Direct Drive Inertial Confinement Fusion in a Z-Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Clark, Robert W.; Davis, Jack; Velikovich, Alexander; Rudakov, Leonid; Giuliani, John L.

    2002-12-01

    The recent successes with the Saturn and "Z" facilities at Sandia National Laboratory have renewed interest in Z-pinch fusion as a means of producing an abundance of high-energy photons. We have estimated that, in a nuclear fusion pulsed Z-pinch, peak currents in excess of 20-30 MA may produce magnetic fields sufficient to confine α-particles. We performed a series of numerical simulations with Au/CH/DT loads for devices with peak currents ranging from 20 to 60 MA. A detailed ionization model for Au was employed, and includes a forest of transported emission lines or line groups. For each case, we will give the calculated D-T yield and the yield of the α-particles deposited in the plasma.

  2. Excitation of intense shock waves by soft X-radiation from a Z-pinch plasma

    SciTech Connect

    Fortov, V.E.; Dyabilin, K.; Lebedev, M.; Yu, V.O.; Grabovskij, E.; Smirnov, V.; Goel, B.

    1996-05-01

    The paper presents the measurements of the shock waves intensities, generated by soft X-radiation in Al and Pb targets. The soft X-radiation was induced by the dynamic compression and heating of the plasma in the cylindrical Z-pinch geometry in the ANGARA-5-1 installation. 1D computer simulation of shock wave generation were performed with realistic EOS and energy transfer models. {copyright} {ital 1996 American Institute of Physics.}

  3. Fully kinetic particle-in-cell simulations of a deuterium gas puff z pinch.

    PubMed

    Welch, D R; Rose, D V; Clark, R E; Mostrom, C B; Stygar, W A; Leeper, R J

    2009-12-18

    We present the first fully kinetic, collisional, and electromagnetic simulations of the complete time evolution of a deuterium gas puff z pinch. Recent experiments with 15-MA current pinches have suggested that the dominant neutron-production mechanism is thermonuclear. We observe distinct differences between the kinetic and magnetohydrodynamic simulations in the pinch evolution with the kinetic simulations producing both thermonuclear and beam-target neutrons. The kinetic approach demonstrated in this Letter represents a viable alternative for performing future plasma physics calculations.

  4. Fully Kinetic Particle-in-Cell Simulations of a Deuterium Gas Puff z Pinch

    SciTech Connect

    Welch, D. R.; Rose, D. V.; Clark, R. E.; Mostrom, C. B.; Stygar, W. A.; Leeper, R. J.

    2009-12-18

    We present the first fully kinetic, collisional, and electromagnetic simulations of the complete time evolution of a deuterium gas puff z pinch. Recent experiments with 15-MA current pinches have suggested that the dominant neutron-production mechanism is thermonuclear. We observe distinct differences between the kinetic and magnetohydrodynamic simulations in the pinch evolution with the kinetic simulations producing both thermonuclear and beam-target neutrons. The kinetic approach demonstrated in this Letter represents a viable alternative for performing future plasma physics calculations.

  5. Experimental observation of runaway electrons near the axis of a Z-pinch in a high-Z medium

    SciTech Connect

    Dolgov, A. N.; Zemchenkova, N. V.; Klyachin, N. A.; Prokhorovich, D. E.

    2011-03-15

    Generation of runaway electrons in the axial region of a Z-pinch (high-current vacuum spark) operating in a high-Z medium was observed experimentally using pulsed optical shadowgraphy and X-ray pinhole imaging.

  6. Investigation of asymmetry of wire-array Z pinches at stagnation using a 4-channel laser diagnostic

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Anderson, A. A.

    2016-09-01

    Asymmetry of wire-array Z-pinches at stagnation was investigated using four synchronized laser beams at the wavelength of 266 nm. These beams were spaced at 45° with respect to each other, allowing a full view of the pinch from four directions. The laser pulse duration was 0.2 ns, with a <0.1 ns temporal accuracy between the four channels. Strong asymmetry was found in Z pinches produced by implosion of asymmetrical wire array loads. Anisotropy of the wire-array Z pinch arises due to the asymmetric implosion and development of plasma instabilities. Understanding the three-dimensional structure of Z-pinches is important for interpretation of data from x-ray and laser diagnostics.

  7. Comparison of Staged Z-pinch Experiments at the NTF Zebra Facility with Mach2 simulations

    NASA Astrophysics Data System (ADS)

    Ruskov, E.; Wessel, F. J.; Rahman, H. U.; Ney, P.; Darling, T. W.; Johnson, Z.; McGee, E.; Covington, A.; Dutra, E.; Valenzuela, J. C.; Conti, F.; Narkis, J.; Beg, F.

    2016-10-01

    Staged Z-pinch experiments at the University of Nevada, Reno, 1MA Z-pinch Zebra facility were conducted. A hollow shell of argon gas liner is injected between 1 cm anode-cathode gap through a supersonic nozzle of 2.0 cm diameter with a throat gap of 240 microns. A deuterium plasma fill is injected inside the argon gas shell through a plasma gun as a fusible target plasma. An axial magnetic field is also applied throughout the pinch region. Experimental measurements such as pinch current, X-ray signal, neutron yield, and streak images are compared with MACH2 radiation hydrodynamic code simulations. The argon liner density profiles, obtained from the CFD (FLUENT), are used as an input to MACH2. The comparison suggests a fairly close agreement between the experimental measurements and the simulation results. This study not only helps to benchmark the code but also suggests the importance of the Z-pinch implosion time, optimizing both liner and target plasma density to obtain the maximum energy coupling between the circuit and the load. Advanced Research Projects Agency - Energy, DE-AR0000569.

  8. Application of 2-D simulations to hollow z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.

    1997-12-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.

  9. Observations of the Influence of Protons on Argon Z-pinches

    NASA Astrophysics Data System (ADS)

    Coleman, Philip; Bixler, Alex; Knight, Jason; Krishnan, Mahadevan; Lee, Susan; Parks, Donald; Thompson, John; Wilson, Kristi

    2004-11-01

    Recent observations [Ref.1] showed that a low level of a H2S tracer could dramatically reduce the K-shell x-ray output of a double ``shell'' argon z-pinch. When the 5% (by partial pressure) H2S tracer was used in the outer gas plenum, the K-shell yield was reduced by about 30%. When the tracer was used in the inner gas plenum, the K-yield reduction was over 350%. Comparable tracers containing chlorine but not hydrogen have not had such an effect. Thus the data suggest that it is the presence of about 1 proton per 20 argon atoms, if concentrated near the pinch axis, that can strongly influence the pinch behavior. An understanding of the mechanism for this may enhance overall understanding of z-pinch dynamics. The data also suggest that extraneous sources of protons must be controlled to prevent inadvertent degradation in the z-pinch's implosion. We report here additional observations and analysis of this effect. The tests, conducted on the Double-EAGLE simulator at ˜3.5 MA peak current, utilized a large 12 cm diameter double-shell nozzle that was designed for use with the 300 ns rise-time pulse of the DECADE QUAD (DQ) pulsed power machine. * Work supported by the U. S. Defense Threat Reduction Agency. 1. P.L.Coleman, et.al., BEAMS 2004 Conference Proceedings, July 2004.

  10. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    SciTech Connect

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  11. Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Chu, Y. Y.; Wang, Z.; Qi, J. M.; Wu, F. Y.; Li, Z. H.

    2017-06-01

    A new indirectly driven cylindrical target is proposed for Z-pinch inertial confinement fusion, and the target implosion dynamics is simulated with a combination of the mass-point model and the radiation hydrodynamic model. Driven by a current waveform with the peak value of 60 MA and 10-90% rising time of 180 ns, the shell kinetic energy of 5 MJ cm-1 can be obtained when the 60 mg cm-1 liner with initial radius 5 cm is imploded to radius of 5 mm. The simulated kinetic energy is loaded to compress the multi-layer cylindrical target, and 24.6 MJ fusion energy can be released according to the radiation hydrodynamic simulation. The power balance relationship is analyzed for the fusion fuel, and the fuel is ignited in the volume-ignition style. The target here can avoid the problem of coupling between the cylindrical Z-pinch and spherical fusion capsule, and can make use of dynamics hohlraum to weaken the influence of Z-pinch instability on the fuel compression. The implosion dynamics of the cylindrical fusion target is easy to diagnose from the axial direction, which makes it suitable to be investigated in future experiments.

  12. Study of micro-pinches in wire-array Z pinches

    SciTech Connect

    Ivanov, V. V.; Papp, D.; Anderson, A. A.; Talbot, B. R.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Chittenden, J. P.; Niasse, N.; Pikuz, S. A.; Shelkovenko, T. A.

    2013-11-15

    Bright and hot areas with a high plasma density and temperature are observed in all kinds of Z pinches. We studied bright radiating spots produced by micro-pinches in cylindrical and planar wire-arrays at the 1 MA Zebra pulsed power generator using an x-ray streak camera synchronized with laser diagnostics, x-ray time-gated pinhole camera, and spectroscopy. Hot spots with extremely dense and relatively hot plasma arise during the collapse of the micro-pinches. These hot spots radiate a continuum spectrum with energy >2.5 keV. Typical micro-pinches in Al wire arrays generate x-ray bursts with durations of 0.4–1 ns in the soft x-ray range and 0.1–0.4 ns in the keV range. UV two-frame shadowgraphy shows spatial correlation of hot spots with the collapse and explosion of micro-pinches. Micro-pinches typically occur at the necks of the Z pinch, but can demonstrate a variety of parameters and different dynamics. An analysis of x-ray streak images shows that micro-pinches can generate >20% of the x-ray energy in some types of wire-array Z pinches.

  13. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation

  14. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    SciTech Connect

    Ning, Cheng; Xue, Chuang; Li, Baiwen; Feng, Zhixing

    2015-02-15

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation

  15. Recyclable transmission line concept for z-pinch driven inertial fusion energy.

    SciTech Connect

    De Groot, J. S.; Olson, Craig Lee; Cochrane, Kyle Robert; Slutz, Stephen A.; Vesey, Roger Alan; Peterson, Per F.

    2003-12-01

    Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

  16. On the transparency of foam in low-density foam Z-pinch experiments

    SciTech Connect

    MacFarlane, J.J. |; Derzon, M.S.; Nash, T.J.; Chandler, G.A.; Peterson, D.L.

    1998-12-31

    Foam Z-pinch experiments have been performed on the SATURN and Z machines at Sandia National Laboratories to study physics issues related to x-ray radiation generation and inertial confinement fusion. A significant issue for foam Z-pinch experiments is the transparency of the heated foam as a function of time and wavelength. Foam transparency will be important in future foam Z-pinch experiments both because it influences the time-dependent radiation field seen by an ICF capsule embedded in the foam, and because it is an important factor in making high-resolution spectral measurements of a capsule or tracers embedded in the foam. In this paper, the authors describe results from simulations and experiments which address the issue of foam transparency. They discuss imaging data from one Z experiment in which x-ray emission from a half-Au/half-CH disk located at the bottom of a 1 cm-tall, 14 mg/cc TPX foam is observed. Simulation results predicting CH foam optical depths as a function of plasma conditions are presented. In addition, the authors present results from spectral calculations which utilize 2-D MHD simulation predictions for the time-dependent foam conditions. The results indicate that the observed x-ray framing camera images are consistent with early-time (several ns prior to stagnation) foam electron temperatures of {approx_gt} 30 eV, which is somewhat hotter than the foam electron temperatures predicted from the 2-D MHD simulations at early times.

  17. Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.

    NASA Astrophysics Data System (ADS)

    Peterson, Gus Gordon

    This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.

  18. On the transparency of foam in low-density foam Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    MacFarlane, J. J.; Derzon, M. S.; Nash, T. J.; Chandler, G. A.; Peterson, D. L.

    1999-01-01

    Z-pinch experiments have been performed on the SATURN and Z machines at Sandia National Laboratories to study physics issues related to x-ray radiation generation and inertial confinement fusion. Some of these experiments utilize a CH foam located on-axis to convert energy to radiation and act as a radiative transfer volume. A significant issue for foam Z-pinch experiments is the transparency of the heated foam as a function of time and wavelength. Foam transparency will be important in future foam Z-pinch experiments both because it influences the time-dependent radiation field seen by an inertial confinement fusion capsule embedded in the foam, and because it is an important factor in making high-resolution spectral measurements of a capsule or tracers embedded in the foam. In this article, we describe results from simulations and experiments which address the issue of foam transparency. We discuss imaging data from one Z experiment in which x-ray emission from a half-Au/half-CH disk located at the bottom of a 1-cm-tall, 14 mg/cc TPX foam is observed. Simulation results predicting CH foam optical depths as a function of plasma conditions are presented. In addition, we present results from spectral calculations which utilize 2D magnetohydrodynamic (MHD) simulation predictions for the time-dependent foam conditions. Our results indicate that the observed x-ray framing camera images are consistent with early-time (several ns prior to stagnation) foam electron temperatures of ≳30 eV, which is somewhat hotter than the foam electron temperatures predicted from the 2D MHD simulations at early times.

  19. X-ray Spectroscopy of Astrophysical and Laboratory Z-pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Davis, J.; Giuliani, J. G.

    In recent years, there have been significant advances in instrumental capabilities for making X-ray spectroscopic measurements of astrophysical plasmas. There have been corresponding improvements in X-ray diagnostics for advanced multi-mega-ampere pulse power machines which produce increasingly large radiative yields from gas-puff and wire array Z pinch plasmas. Analysis used for Z pinches can be used to study ICF and also astrophysical plasmas where laboratory measurements and simulations are the only means to interpret observed data. The astrophysical data for Fe, the most cosmically abundant high Z element, can provide a wealth of information about cosmic plasmas. Fe is also the key element in stainless steel (SS) wire arrays that are investigated as an intensive X-ray radiation source at the Z machine in the US Sandia National Laboratories. The implosion dynamics of an array of SS wires on the Z and/or refurbished Z (ZR) accelerator produces an abundance of radiation from the K- and L-shell ionization stages. These dynamic plasmas are inherently non-LTE, with opacity and other factors influencing the X-ray output. As the plasma assembles on axis, a number of time resolved snapshots provide temperature and density profiles and map the emitting region. We will analyze the ionization dynamics and generate K- and L-shell spectra using the conditions generated in the Z and/or ZR, described by a 1-D non-LTE radiation hydrodynamics model. Diagnostics based on spectral shape of L-shell emissions are inherently more difficult than those based on K-shell emissions because of more complex multiplet structures and line overlaps. The non-LTE populations are obtained using detailed atomic models that include all important excitation, ionization, and recombination processes. We will highlight the connection between laboratory Z-pinch plasma simulations and astrophysical plasmas.

  20. The importance of EBIT data for Z-pinch plasma diagnostics

    SciTech Connect

    Safronova, A S; Kantsyrev, V L; Neill, P; Safronova, U I; Fedin, D A; Ouart, N D; Yilmaz, M F; Osborne, G; Shrestha, I; Williamson, K; Hoppe, T; Harris, C; Beiersdorfer, P; Hansen, S

    2007-04-04

    The results from the last six years of x-ray spectroscopy and spectropolarimetry of high energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell x-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an 'X-pinch'. X-pinches are excellent sources for testing new spectral diagnostics and for atomic modelling because of the high density and temperature of the pinch plasmas, which scale from a few {micro}m to several mm in size. They offer a variety of load configurations, which differ in wire connections, number of wires, and wire materials. In this work the study of X-pinches with tungsten wires combined with wires from other, lower-Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of x-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.

  1. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Investigation of Metal Puff Z pinch Based on Multichannel Vacuum Arcs

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Chaikovsky, S. A.; Baksht, R. B.; Mitrofanov, K. N.

    2015-11-01

    The performance of a metal double puff Z-pinch system has been studied experimentally. In this type of system, the outer and inner cylindrical shells were produced by ten plasma guns. Each gun initiates a vacuum arc operating between aluminum electrodes. The net current of the guns was 80 kA. The arc-produced plasma shells were compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.2 cm in diameter was formed. The power of the Al K-line radiation emitted by the plasma for 7 ns was 800 MW/cm.

  3. The inverse skin effect in the Z-pinch and plasma focus

    SciTech Connect

    Usenko, P. L. Gaganov, V. V.

    2016-08-15

    The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.

  4. Generation and anisotropy of neutron emission from a condensed Z-pinch

    NASA Astrophysics Data System (ADS)

    Bakshaev, Yu. L.; Bryzgunov, V. A.; Vikhrev, V. V.; Volobuev, I. V.; Dan'ko, S. A.; Kazakov, E. D.; Korolev, V. D.; Klír, D.; Mironenko-Marenkov, A. D.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.

    2014-06-01

    The paper presents results of measurements of neutron emission generated in the constriction of a fast Z-pinch at the S-300 facility (2 MA, 100 ns). An increased energy concentration was achieved by using a combined load the central part of which was a microporous deuterated polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1-1.5 mm. The neck was placed between two 5-mm-diameter agar-agar cylinders. The characteristics of neutron emission in two axial and two radial directions were measured by the time-of-flight method. The neutron spectrum was recovered from the measured neutron signals by the Monte Carlo method. In all experiments, the spatiotemporal characteristics of plasma in the Z-pinch constriction were measured by means of the diagnostic complex of the S-300 facility, which includes frame photography in the optical, VUV, and soft X-ray (SXR) spectral regions; optical streak imaging; SXR detection; and time-integrated SXR photography. The formation of hot dense plasma in the Z-pinch constriction was accompanied by the generation of hard X-ray (with photon energies E > 30 keV), SXR (with photon energies E > 1 keV and duration of 2-4 ns), and neutron emission. Anisotropy of the neutron energy distribution in the axial direction was revealed. The mean neutron energies measured in four directions at angles of 0° (above the anode), 90°, 180° (under the cathode), and 270° with respect to the load axis were found to be of 2.1 ± 0.1, 2.5 ± 0.1, 2.6 ± 0.2, and 2.4 ± 0.1 MeV, respectively. For a 1-mm-diameter neck, the maximum integral neutron yield was 6 × 109 neutrons. The anisotropy of neutron emission for a Z-pinch with a power-law distribution of high-energy ions is calculated.

  5. Interaction of CO2 laser radiation with a dense Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Neufeld, C. R.

    1980-01-01

    Results obtained when a TEA-CO2 laser pulse is radially incident on a dense hydrogen Z-pinch plasma are presented. Perturbations of the plasma column are visible on high-speed streak photographs. Spectral measurements indicate that stimulated Brillouin scattering in the underdense plasma regions is the dominant mechanism for the observed backscattering of laser radiation by the plasma column. The time behavior of the backscattered signal can be very complex, both prompt and delayed backscatter having been observed under ostensibly identical experimental conditions. The backscattered power is typically 1-2 percent of the incident laser power.

  6. Doppler measurement of implosion velocity in fast Z-pinch x-ray sources

    NASA Astrophysics Data System (ADS)

    Jones, B.; Jennings, C. A.; Bailey, J. E.; Rochau, G. A.; Maron, Y.; Coverdale, C. A.; Yu, E. P.; Hansen, S. B.; Ampleford, D. J.; Lake, P. W.; Dunham, G.; Cuneo, M. E.; Deeney, C.; Fisher, D. V.; Fisher, V. I.; Bernshtam, V.; Starobinets, A.; Weingarten, L.

    2011-11-01

    The observation of Doppler splitting in K-shell x-ray lines emitted from optically thin dopants is used to infer implosion velocities of up to 70 cm/μs in wire-array and gas-puff Z pinches at drive currents of 15-20 MA. These data can benchmark numerical implosion models, which produce reasonable agreement with the measured velocity in the emitting region. Doppler splitting is obscured in lines with strong opacity, but red-shifted absorption produced by the cooler halo of material backlit by the hot core assembling on axis can be used to diagnose velocity in the trailing mass.

  7. Time-resolved voltage measurements of Z-pinch radiation sources with a vacuum voltmeter

    SciTech Connect

    Murphy, D. P.; Allen, R. J.; Weber, B. V.; Commisso, R. J.; Apruzese, J. P.; Phipps, D. G.; Mosher, D.

    2008-10-15

    A vacuum-voltmeter (VVM) was fielded on the Saturn pulsed power generator during a series of argon gas-puff Z-pinch shots. Time-resolved voltage and separately measured load current are used to determine several dynamic properties as the load implodes, namely, the inductance, L(t), net energy coupled to the load, E{sub coupled}(t), and the load radius, r(t). The VVM is a two-stage voltage divider, designed to operate at voltages up to 2 MV. The VVM is presently being modified to operate at voltages up to 6 MV for eventual use on the Z generator.

  8. Design and optimization of a gas-puff nozzle for staged Z-pinch experiments using computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Beg, F. N.; Wessel, F.; Rahman, H.; Ney, P.; Presura, R.; McKee, E.; Darling, T.; Covington, A.

    2015-11-01

    Previous experimental work on staged Z-pinches demonstrated that gas liners can efficiently couple energy and implode uniformly a target-plasma. A 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D + target, producing 1010 neutrons per shot and providing clear evidence of enhanced pinch stability. Time-of-flight data suggest that primary and secondary neutrons were produced. MHD simulations show that in Zebra, a 1.5MA and 100ns rise-time current driver, high fusion gain can be attained when the optimum liner and plasma target conditions are used. In this work we present the design and optimization of a liner-on-target nozzle to be fielded in Zebra and demonstrate high fusion gain at 1 MA current level. The nozzle is composed of an annular high atomic number gas-puff and an on-axis plasma gun that will deliver the ionized deuterium target. The nozzle optimization was carried out using the computational fluid dynamics (CFD) code fluent and the MHD code Mach2. The CFD simulation produces density and temperature profiles, as a function of the nozzle shapes and gas conditions, which are then used in Mach2 to find the optimum plasma liner implosion-pinch conditions. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  9. Measurements of the parameters of a condensed deuterated Z-pinch on the angara-5-1 facility

    SciTech Connect

    Aleksandrov, V. V.; Bryzgunov, V. A.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.

    2016-04-15

    Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm{sup 3} and diameter of 1–1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200–300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3–4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200–400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 10{sup 10} neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.

  10. Larger sized planar wire arrays of complex configuration on 1.5-1.8 MA Z-pinch generator

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I. K.; Stafford, A.; Schmidt-Petersen, M. T.; Lorance, M. Y.; Schultz, K. A.; Chuvatin, A. S.

    2016-10-01

    Two new approaches of (i) simultaneous study of implosion and radiative characteristics of different materials in wire array Z-pinch plasmas in one shot and (ii) investigation of larger sized wire arrays (to enhance energy coupling to plasmas and provide better diagnostic access) were developed in experiments with 1.5-1.8 MA Zebra with a Load Current Multiplier. In particular, the larger sized multi-plane Planar Wire Arrays with two outer planes placed at 9 and 15 mm from each other and then as far as at 19 mm (compared with 6 mm studied before at standard 1 MA current) and with a modified central plane with 8 to 12 empty slots were investigated. Though K-shell Al and L-shell Ni, Cu plasmas have similar electron temperatures and densities, the ablation dynamics and radiation of Al and Ni, Cu planes are somewhat different, which was investigated in detail using the full set of diagnostics and modeling. Advantages of using such wire arrays at higher currents to study plasma flow and radiation from different materials and jets are highlighted.

  11. Numerical investigation on the implosion dynamics of wire-array Z-pinches in (r, {theta}) geometry

    SciTech Connect

    Huang Jun; Ding Ning; Ning Cheng; Sun Shunkai; Zhang Yang; Xiao Delong; Xue Chuang

    2012-06-15

    The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, {theta}) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d{sub 0}, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d{sub 0}, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d{sub 0} is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d{sub 0}. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d{sub 0}, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.

  12. Comparison Between Laser Initiated Hollow Gas Embedded Z-pinches with Different Initial Radius

    SciTech Connect

    Veloso, Felipe; Chuaqui, Hernan; Aliaga-Rossel, Raul; Favre, Mario; Mitchell, Ian; Wyndham, Edmund

    2006-12-04

    An experimental study of the effect of the initial radius on the formation of hollow gas embedded z-pinches is presented. These hollow pinches are formed using a ring precursor plasma generated by focussing a 10ns, 0.2J, 1064nm, Nd:YAG laser pulse onto the cathode surface. The laser pulse is focussed into a ring shape, by using a combination of a converging lens and an axicon. Ring radius variation give place to different initial radius of hollow z-pinches. The experiments were carried out on the Gepopu generator at 110kA, 50ns rise time using flat electrodes. The anode had a central hole, allowing the laser to be focussed onto the cathode surface. Experiments were performed in hydrogen at 1/3 of atmosphere. Schlieren and interferometry are the main plasma diagnostics using the second harmonic of the same laser. Comparison between initial radius of 2 and 3mm are presented, where electron densities on the order of 1018 cm-3 were measured in both cases. Temperature estimates using Bennett relation are of 185 eV and 75 eV respectively. Pinch effect was observed for current density {approx} 5MA/cm2.

  13. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  14. PBFA II-Z: A 20-MA driver for z-pinch experiments

    SciTech Connect

    1995-12-01

    Sandia is modifying the PBFA II accelerator into a dual use facility. While maintaining the present ion-beam capability, we are developing a long-pulse, high-current operating mode for magnetically-driven implosions. This option, called PBFA II-Z, will require new water transmission lines, a new insulator stack, and new magnetically-insulated transmission lines (MITLs). Each of the existing 36, coaxial water pulse-forming sections will couple to a 4.5-{Omega}, bi-plate water-transmission line. The water transmission lines then feed a four-level insulator stack. The insulators are expected to operate at a maximum, spatially-averaged electric field of {approximately}l00 kV/cm. The MITL design is based on the successful biconic Saturn design. The four ``disk`` feeds will each have a vacuum impedance of {approximately}2.0 {Omega}. The disk feeds are added in parallel using a double post-hole convolute at a diameter of 15 cm. We predict that the accelerator will deliver 20 MA to a 15-mg z-pinch load in 100 ns, making PBFA II-Z the most powerful z-pinch driver in the world providing a pulsed power and load physics scaling testbed for future 40-80-MA drivers.

  15. Status of Pulsed Power/Beams/Z-pinch Researches in Japan

    NASA Astrophysics Data System (ADS)

    Yatsui, Kiyoshi

    2002-12-01

    Fruitful progresses have been achieved in pulsed power technology and its applications in Japan in materials science, environmental, medical, biological, etc. At Nagaoka Univ. of Tech., main efforts are devoted in materials science such as the preparation of thin films or ultrafine nanosized powders (UNP) by high-density ablation plasma produced by pulsed ion beam evaporation. Alternatively, UNPs were produced by rapid cooling of the plasma produced by pulsed wire discharge (PWD) as well. The ablation plasma is also very effective to build-in metals (e.g., tungsten, aluminum, copper) in via holes of LSIs. Flue-gas treatment of NOx is studied by pulsed, relativistic electron beam. At Tokyo Inst. of Tech., studies are carried out on pulse discharge using powders, soft X-ray by capillary discharge, and development of pulse power sources for industrial applications. At Kumamoto Univ., studies are concerned on NOx removal by pulsed power, gas-puff z-pinch, and opening switches. Converting the pulsed power to z-pinches, charged particles beams, or plasma foci have also been carried out in many universities. Systematic studies are carried out under good collaboration among many universities, national laboratories and companies.

  16. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    NASA Astrophysics Data System (ADS)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  17. Primary experimental results of wire-array Z-pinches on PTS

    SciTech Connect

    Huang, X. B. Zhou, S. T. Ren, X. D. Dan, J. K. Wang, K. L. Zhang, S. Q. Li, J. Xu, Q. Cai, H. C. Duan, S. C. Ouyang, K. Chen, G. H. Ji, C. Wang, M. Feng, S. P. Yang, L. B. Xie, W. P. Deng, J. J.

    2014-12-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.

  18. Investigation of Magnetic Field Geometry in Exploding Wire Z-Pinches via Proton Deflectometry

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; Beg, Farhat; Wei, Mingsheng; Chittenden, Jeremy; Presura, Radu

    2012-10-01

    It is often difficult to determine the configuration of B-fields within z-pinch plasma systems. Typical laser probing diagnostics are limited by the critical density, and electrical diagnostics are prone to failure as well as perturbation of the system. The use of proton beams launched by high intensity lasers, and the subsequent tracking of their deflected trajectories, will enable access to field measurements in previously inaccessible plasma densities.The experimental testing of this method is performed at the Nevada Test Facility (NTF) using the 10J 0.3ps Leopard laser coupled to the 1.6MA ZEBRA pulsed power generator. MHD simulations of the z-pinch plasmas are performed with the 3D resistive MHD code, GORGON. Protons are then injected and tracked through the plasma using the 3D PIC Large Scale Plasma code in order to produce possible proton image plane data. The first computational demonstration of protons propagating through single wire and x-pinch plasmas, along with comparison to recent experimental data will be presented.

  19. Analysis of spatially resolved Z-pinch spectra to investigate the nature of 'bright spots'

    SciTech Connect

    Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Coverdale, C. A.; Jones, B.; Ampleford, D. J.

    2013-02-15

    Localized, intensely radiating regions are often observed in Z pinches. High resolution images of such areas have been recorded at least as far back as the 1970s. However, there is as yet no widely accepted consensus on the nature of these 'bright spots' or how they are formed. This phenomenon has also been referred to 'hot spots' or 'micropinches.' To shed further light on this issue, we have analyzed axially resolved K-shell spectra from 4 Z pinches driven by the refurbished Z generator ('ZR') at Sandia National Laboratories, and the previous version of the Z machine ('Z'). The atomic numbers of the loads varied from 13 to 29. We find that higher spatial K-shell intensity in the Al pinch correlates with density. The K-shell intensity within a copper shot taken on ZR correlates strongly with increased electron temperature, but another, somewhat less well-diagnosed copper shot from Z shows correlation with density. The bright spots in a Ti pinch correlate with neither density nor temperature, but do correlate with the product of density and diameter (proportional to opacity). This opacity correlation is also observed in the other 3 pinches.

  20. Impact of Rayleigh Taylor on neutron production in a deuterium Z-pinch.

    SciTech Connect

    Mostrom, C.; Stygar, William A.; Thoma, Carsten; Welch, Dale Robert; Clark, R. E.; Leeper, Ramon Joe; Rose, David V.

    2010-06-01

    A deuterium gas puff z-pinch has been shown to be a significant source of neutrons with yield scaling with current as Y{sub n} {approx} I{sup 3.5}. Recent implicit, electromagnetic and kinetic particle-in-cell simulations with the LSP code have shown that the yield has significant thermonuclear and beam-target components. Beam-target neutron yield is produced from deuterium ion high-energy tails driven by the Rayleigh Taylor instability. In this paper, we present further results from 1-3D simulations of deuterium z-pinches over a wider current range 1.4-20 MA. Preliminary results show that unlike the high current regime above 7 MA, the yield at lower currents is dominated by beam-target fusion reactions from high energy ions consistent with experiment. We will also examine in 3D the impact of the Rayleigh Taylor instability on the ion energy distribution. We discuss the implications of these simulations for neutron yield at still higher currents.

  1. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.

    2010-01-01

    A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.

  2. Diagnostics of Fast Axial Ions Produced in Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Cikhardt, J.; Kubes, P.; Sila, O.; Kravarik, J.; Shishlov, A. V.; Labetsky, A. Yu.; Cherdizov, R. K.; Ratakhin, N. A.; Orcikova, H.; Turek, K.; Dudkin, N.; Padalko, V. N.; GIT-12 Team

    2016-10-01

    An unexpected advantage of some Z-pinch configurations is a possibility of an acceleration of ions to high energies. One of these configurations is a deuterium gas-puff with outer plasma shell, where hydrogen ions with energies up to 40 MeV has been observed during Z-pinch experiments on the GIT-12 generator since 2013. During the recent campaign in 2016, the source of high energetic ions and also parameters of ion pulses have been studied by various in-chamber diagnostics in 24 experimental shots on the current level below 3 MA. Principal aims were (i) to find a spatial distribution of ion sources, (ii) localization of ion sources on the z-axis and (iii) determine the ion energy spectra by an unfold technique. All of these has been done with the help of a new diagnostic setup consists of an ion pinhole camera, an ion 3-pinhole camera, a multi-pinhole camera and a detector of spatial ion beam profile. The ion diagnostics contained stacks with various absorbers, CR-39 track detectors, HD-V2 and EBT-3 radio-chromic films. One more aim, (iv) the study of a difference in production time of axial ion pulses with off-axis pulses, were accomplished by LiF samples and nTOF signals. This work was supported by the projects GACR 16-07036S, MSMT LD14089, CTU. SGS16/223/OHK3/3T/13, IAEA RC17088.

  3. Plasma-Opening-Switch-Driven Z-Pinch Experiments on Hawk

    NASA Astrophysics Data System (ADS)

    Commisso, R. J.; Apruzese, J. P.; Mosher, D.; Peterson, G. G.; Stephanakis, S. J.; Thornhill, J. W.; Young, F. C.; Weber, B. V.

    1996-11-01

    We present results from Ne, annular-gas-puff, z-pinch implosions driven by 0.5-MA currents on Hawk, an inductive-store pulsed-power generator with a plasma opening switch (POS). Several current monitors measure the pinch current and losses between the POS and the pinch. X-ray diagnostics include filtered vacuum diodes, a PCD, an x-ray spectrograph, and an x-ray pinhole-camera. The nearly constant driving current associated with the inductive Hawk generator (compared with finite width current pulses of conventional capacitive generators) allows investigation of implosions with different initial radii at approximately constant kinetic energy per unit mass. Results from such studies to determine the pinch quality as a function of initial radius for different gas nozzle designs will be discussed. The coupling between the POS and z-pinch is investigated by varying their axial separation. These results will also be discussed. This work is supported by DSWA. ^ NRC-NRL Research Associate.

  4. Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem

    NASA Astrophysics Data System (ADS)

    Allen, Robert C.

    The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.

  5. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  6. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    SciTech Connect

    Schmidt, A. Ellsworth, J. Falabella, S. Link, A. McLean, H. Rusnak, B. Sears, J. Tang, V.; Welch, D.

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  7. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure

  8. Design of the PST: A Diagnostic for 1-D Imaging of Fast Z-Pinch Power Emissions

    SciTech Connect

    ROCHAU,GREGORY A.; DERZON,MARK S.; CHANDLER,GORDON A.; LAZIER,STEVEN EARL

    2000-08-03

    Fast Z-pinch technology developed on the Z machine at Sandia National Laboratories can produce up to 230 TW of thermal x-ray power for applications in inertial confinement fusion (ICF) and weapons physics experiments. During implosion, these Z-pinches develop Rayleigh-Taylor (R-T) instabilities which are very difficult to diagnose and which functionally diminish the overall pinch quality. The Power-Space-Time (PST) instrument is a newly configured diagnostic for measuring the pinch power as a function of both space and time in a Z-pinch. Placing the diagnostic at 90 degrees from the Z-pinch axis, the PST provides a new capability in collecting experimental data on R-T characteristics for making meaningful comparisons to magneto-hydrodynamic computer models. This paper is a summary of the PST diagnostic design. By slit-imaging the Z-pinch x-ray emissions onto a linear scintillator/fiber-optic array coupled to a streak camera system, the PST can achieve {approximately}100 {micro}m spatial resolution and {approximately}1.3 ns time resolution. Calculations indicate that a 20 {micro}m thick scintillating detection element filtered by 1,000 {angstrom} of Al is theoretically linear in response to Plankian x-ray distributions corresponding to plasma temperatures from 40 eV to 150 eV, By calibrating this detection element to x-ray energies up to 5,000 eV, the PST can provide pinch power as a function of height and time in a Z-pinch for temperatures ranging from {approximately}40 eV to {approximately}400 eV. With these system pm-meters, the PST can provide data for an experimental determination of the R-T mode number, amplitude, and growth rate during the late-time pinch implosion.

  9. Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    SciTech Connect

    DERZON,MARK S.

    2000-03-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

  10. Application of 2-D simulations to hollow Z-pinch implosions

    SciTech Connect

    Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R. B.; Nash, T. J.; Chandler, G.; Mock, R. C.; Sanford, T. W. L.; Matzen, M. K.; Roderick, N. F.

    1997-05-05

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known a priori. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii (<1 cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has

  11. Application of 2-D simulations to hollow Z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R.B.; Nash, T.J.; Chandler, G.; Mock, R.C.; Sanford, T.W.; Matzen, M.K.; Roderick, N.F.

    1997-05-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known {ital a priori}. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii ({lt}1cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D

  12. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    SciTech Connect

    Smith, James Dean; Drennen, Thomas E.; Rochau, Gary Eugene; Martin, William Joseph; Kamery, William; Phruksarojanakun, Phiphat; Grady, Ryan; Cipiti, Benjamin B.; Wilson, Paul Philip Hood; Mehlhorn, Thomas Alan; Guild-Bingham, Avery; Tsvetkov, Pavel Valeryevich

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  13. Imaging XUV spectroscopy of a Z-pinch plasma in the former Soviet Union

    SciTech Connect

    Bruns, H.C.; Springer, P.T.; Emig, J.A.; Lanier, N.E.; Hernandez, J.A.

    1993-08-11

    In 1991 a group of scientists from the Angara 5 pulsed power facility at the Kurchatov Institute in Troitsk, Russia had determined the thermal emission from an implosion of xenon gas onto an annular, molybdenum doped foam liner to be 30 TW/cm{sup 2}. This represents an extremely efficient conversion of energy into a high fluence radiation field. In order to verify this claim and better understand the process of producing radiation by means of a Z-pinch plasma device, a series of experiments were proposed through a collaboration from Sandia National Laboratory, Albuquerque, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. Due to previous experience with x-ray spectroscopic measurements in the XUV region, the team from Lawrence Livermore Lab took on the task of designing, constructing, and fielding the necessary diagnostic equipment to spatially and temporally resolve plasma temperatures throughout the implosion of the high Z foam target.

  14. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    SciTech Connect

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  15. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  16. Wire array z-pinch insights for high X-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  17. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  19. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  20. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Baksht, R. B.

    2011-09-15

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of the Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.

  1. 250 kA compact linear transformer driver for wire array z-pinch loads

    NASA Astrophysics Data System (ADS)

    Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.

    2011-05-01

    We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.

  2. Current initiation in low-density foam z-pinch plasmas

    SciTech Connect

    Derzon, M.; Nash, T.; Allshouse, G.

    1996-07-01

    Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.

  3. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  4. Development of absorption spectroscopy for wire-array Z-pinches

    NASA Astrophysics Data System (ADS)

    Anderson, A.; Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Astanovitskiy, A. L.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    The 50 TW Leopard laser was coupled with the 1 MA Zebra generator for the x-ray backlighting of wire arrays. The Leopard laser is based on the chirped pulse amplification and can operate in subpicosecond or subnanosecond regimes. Several materials were tested in both regimes and samarium was selected for subnanosecond backlighting in the range of 7-9 å. One ray of Al wire-arrays was investigated at the ablation and implosion stages. Two focusing conical spectrometers with mica crystals recorded reference and main spectra on x-ray film. Collimators protected spectrometers against the x-ray burst from the main Z-pinch. Comparison of spectra of backlighting radiation with reference spectra indicates absorption lines in the range of 8.2-8.4 å. The electron temperature of wire-array plasma was estimated from simulations with atomic kinetics models.

  5. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; Santarius, John; Percy, Tom

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  6. General computational spectroscopic framework applied to Z-pinch dynamic hohlraum K-shell argon spectra

    SciTech Connect

    Adams, M L; Sinars, D B; Scott, H A

    2005-01-10

    We describe a general computational spectroscopic framework for interpreting observed spectra. The framework compares synthetic spectra with measured spectra, then optimizes the agreement using the Dakota toolkit to minimize a merit function that incorporates established spectroscopic techniques. We generate synthetic spectra using the self-consistent nonlocal thermodynamic equilibrium atomic kinetics and radiative transfer code Cretin, relativistic atomic structure and cross section data from Hullac, and detailed spectral line shapes from Totalb. We test the capabilities of both our synthetic spectra model and general spectroscopic framework by analyzing a K-shell argon spectrum from a Z-pinch dynamic hohlraum inertial confinement fusion capsule implosion experiment. The framework obtains close agreement between an experimental spectrum measured by a time integrated focusing spectrometer and the optimal synthetic spectrum. The synthetic spectra show that considering the spatial extent of the capsule and including the effects of optically thick resonance lines significantly affects the interpretation of measured spectra.

  7. Radiative properties of argon gas puff z-pinch implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, N. D.; de Grouchy, P. W. L.; Qi, N.; Giuliani, J. L.; Dasgupta, A.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Kusse, B. R.; Apruzese, J. P.; Clark, R. W.

    2016-10-01

    Spatially resolved and time-integrated x-ray spectroscopy, combined with modeling of the spectra with detailed radiation kinetics and transport, is a powerful method to study the conditions in a hot moving plasma. K-shell argon spectra were measured from gas puff implosions with different center jet masses on the 1 MA COBRA generator at Cornell University. The outer to inner plenum pressures (1 and 3 psia, respectively) were the same for all shots producing an outer to inner mass ratio of 1:1. This paper uses non-local thermodynamic equilibrium kinetic modeling to infer the ion density, electron temperature, K-shell radiating mass, and K-shell powers from stagnating argon gas puff z-pinch implosion. We find that the implosions with a center jet produced bright spot regions of plasma with higher temperature and density than those without a jet.

  8. 3D MHD Simulations of Radial Wire Array Z-pinches

    SciTech Connect

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-21

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 {mu}s) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  9. Behavior of a plasma in a high-density gas-embedded Z-pinch configuration

    SciTech Connect

    Shlachter, J.S.

    1982-05-01

    The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

  10. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    SciTech Connect

    Li, M. Li, Y.; Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T.; Li, X. W.

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  11. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    SciTech Connect

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-21

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 'bricks,' to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility.Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  12. Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches

    SciTech Connect

    Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.

    2009-01-21

    Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.

  13. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    SciTech Connect

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Douglass, J. D.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.; Hall, G. N.

    2009-01-21

    We are investigating the development of the axial instability, a modulation of the size of the coronal plasma that develops around each wire in wire-array Z-pinches. The modulation is a result of nonuniform ablation of material from the relatively cold wire core. It has long been known that the wavelength of this modulation is constant late in time and, since it is unique to different materials, it has come to be known as the fundamental mode. In these experiments we imaged individual wires with laser shadowgraphy early in time primarily in low wire number, large wire diameter aluminum arrays for ease of viewing. We Observe the development of this modulation from the time of initiation of coronal plasma, obtaining its dominant wavelength and amplitude growth as a function of time. We also studied the instability on coiled wires, which modify the wire ablation mechanism and completely suppress the fundamental mode[Hall2008]. time is discussed.

  14. Axially resolved radiation of tungsten wire-array Z-pinches on JULONG-I

    NASA Astrophysics Data System (ADS)

    Huang, Zhanchang; Yang, Jianlun; Xu, Rongkun; Li, Zhenghong; Jiang, Shuqing; Ye, Fan; Hu, Qingyuan; Ning, Jiamin; Xu, Zeping

    2016-12-01

    Four types of wire-arrays were investigated in Z-pinch experiments on JULONG-I, in which axially resolved x-ray radiations were measured by using one-dimensional imaging system. X-ray radiations rose up significantly later near electrodes than at other main positions. The radiation intensity was weaker near anode than other positions. The optimized value of product of wire-array line mass and the square of wire-array radius (called MR2) for a 20 mm diameter wire-array on JULONG-I was found to be approximately 0.9 mg cm. Further, there was a clear correlation between axial radiation synchronization quality and radiation power.

  15. Acceleration of Deuterons to Multi-MeV Energies in Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Krasa, J.; Turek, K.

    2015-11-01

    A novel configuration of a deuterium gas-puff z-pinch has been used to generate a short (approx. 20 ns) pulse of multi-MeV ions and neutrons. Even though ion acceleration in z-pinches has not been researched to such an extent as in laser-based sources, obtained results show that z-pinches can reach values comparable to those of state-of-the-art lasers. On the 3 MA GIT-12 generator, the peak neutron yield was 3.6x1012. When a neutron-producing sample was placed onto the axis below a cathode mesh, the neutron yield was increased up to 1013. The emission time of 20 ns implied the neutron production rate of 5x1020 n/s. Neutron energies reached the maximum value of 33 MeV. The comprehensive set of ion diagnostics provided unique information about ion acceleration mechanism. The ion emission was highly anisotropic. Deuterons were trapped in the radial direction whereas a lot of fast ions escaped the z-pinch along the axis. On the axis, the total number of >1 MeV and >25 MeV deuterons was 1016 and 5x1012, respectively. Utilizing these ions offers a real possibility of various applications including the production of short-lived isotopes or fast neutron radiography. This work was supported by the MSMT grants LH13283, LD14089.

  16. Neutron Production from Z-pinch Plasmas at the 1 MA Zebra Generator

    NASA Astrophysics Data System (ADS)

    McKee, Erik Scott

    Neutrons produced deuterium Z-pinch plasmas are widely acknowledged to be a consequence of highly accelerated deuterons undergoing nuclear fusion with relatively stationary deuterons. The acceleration is thought to occur in intense fields created in the MHD instabilities that punctuate the plasma column. Interestingly, the energies of the accelerated ions exceed the applied voltage across the electrode gap. We use the 1 MA Zebra pulsed-power generator at the Nevada Terawatt Facility (NTF) to explore this poorly understood fast neutron production mechanism by creating deuterium Z-pinches in three distinct types of target loads. The loads are a cylindrical shell of deuterium gas, the far less explored deuterided palladium wire arrays, and a deuterium-carbon ablated laser plume target, which is unique to the NTF. The pinch dynamics vary considerably in these three targets and provide the opportunity to explore the ion acceleration mechanism. We infer the characteristics of the accelerating fields from a wide range of diagnostic data including the neutron yield, energy spectrum and angular distribution, and the properties of the matching electron beams that are accelerated in the same field, and the energetic X-rays they produce on stopping. The plasma and the instabilities were recorded on several high-speed imaging diagnostics along with time-integrated soft (<10 keV) X-ray pinhole images. The three load types produced total neutron yields in the 108-1010 n/pulse range. The synchronization we observe between the ion and electron beams and the development of instabilities leads us to conrm the acceleration hypothesis. We also present the characteristics of the fields and ion beams in these varied pinches.

  17. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.; Ciardi, A.

    2004-12-01

    Resistive magneto-hydrodynamic (MHD) simulations are used to evaluate the influence of three-dimensional inhomogeneities on x-ray power production in wire array Z-pinches. In particular, we concentrate on simulations of wire array Z-pinch experiments on the MAGPIE generator at Imperial College. An initial temperature perturbation is used to stimulate variations in wire core ablation rates that result in a highly non-uniform final implosion. Results indicate that x-ray power production is governed by the symmetry of the implosion surface and by the rate at which current can transfer to the axis through a three-dimensional debris field that trails behind the main implosion. The peak power is ultimately limited by the growth of MHD instabilities in the stagnated pinch. The individual contributions of the implosion kinetic energy, compression of the stagnated pinch, ohmic heating and MHD instabilities to the radiation yield are quantified. The onset of m = 1 instabilities is found to provide an efficient mechanism for dissipation of the magnetic energy surrounding the stagnated pinch. The formation of a helical plasma column not only allows the magnetic field to do work in driving an expansion of the helix but also enhances the ohmic heating by elongating the path of the current through the pinch. The effect of these energy sources combined is to increase the radiation yield to typically 3½ times the kinetic energy of the implosion. Simulations of arrays with different wire numbers, wire material and with nested arrays are used to examine the mechanisms that influence the peak soft x-ray power. In the simulations, peak power can be increased by: increasing the number of wires (which improves the implosion symmetry), by increasing the atomic number of the material (which increases the compressibility of the plasma) and by using a nested inner array (which brings the mass and the current to the axis more efficiently than a single array).

  18. Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics

    SciTech Connect

    Giuliani, J. L.; Thornhill, J. W.; Dasgupta, A.; Velikovich, A. L.; Chong, Y. K.; Mehlhorn, T. A.; Kroupp, E.; Osin, D.; Maron, Y.; Starobinets, A.; Fisher, V.; Zarnitsky, Yu.; Bernshtam, V.; Apruzese, J. P.; Fisher, A.; Deeney, C.

    2014-03-15

    The difference between the ion thermal and effective temperatures is investigated through simulations of the Ne gas puff z-pinch reported by Kroupp et al. [Phys. Rev. Lett. 107, 105001 (2011)]. Calculations are performed using a 2D, radiation-magnetohydrodynamic code with Tabular Collisional-Radiative Equilibrium, namely Mach2-TCRE [Thornhill et al., Phys. Plasmas 8, 3480 (2001)]. The extensive data set of imaging and K-shell spectroscopy from the experiments provides a challenging validation test for z-pinch simulations. Synthetic visible images of the implosion phase match the observed large scale structure if the breakdown occurs at the density corresponding to the Paschen minimum. At the beginning of stagnation (−4 ns), computed plasma conditions change rapidly showing a rising electron density and a peak in the ion thermal temperature of ∼1.8 keV. This is larger than the ion thermal temperature (<400 eV) inferred from the experiment. By the time of peak K-shell power (0 ns), the calculated electron density is similar to the data and the electron and ion thermal temperatures are equilibrated, as is observed. Effective ion temperatures are obtained from calculated emission line widths accounting for thermal broadening and Doppler velocity shifts. The observed, large effective ion temperatures (∼4 keV) early in the stagnation of this Ne pinch can be explained solely as a combination of compressional ion heating and steep radial velocity gradients near the axis. Approximations in the modeling are discussed in regard to the higher ion thermal temperature and lower electron density early in the stagnation compared to the experimental results.

  19. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  20. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    SciTech Connect

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-21

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a 'press' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  1. Z-pinches as intense x-ray sources for high energy density physics applications

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith

    1996-11-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads (typically gas jets, arrays of wires, thin foils, or low density foams), producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years as a source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case (a hohlraum). These large volume ( 6000 mm^3), long-lived ( 20 ns) radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Magneto-Rayleigh-Taylor instabilities and load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulsewidths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulsewidths of less than 5 ns and peak powers of 75?10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the accelerator, and are a record for x-ray powers in the

  2. Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kubes, P.; Rezac, K.; Fursov, F. I.; Kokshenev, V. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.

    2012-03-01

    Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The emphasis was put on the study of plasma dynamics and neutron production in double shell gas puffs. A linear mass density of deuterium (D2) varied between 50 and 85 μg/cm. Somewhat problematic was a spread of the D2 gas at a large diameter in the central anode-cathode region. The generator operated in two regimes, with and without a plasma opening switch (POS). When the POS was used, a current reached a peak of 2.7 MA with a 200 ns rise time. Without the POS, a current rise time approached 1500 ns. The influence of different current rise times on neutron production was researched. Obtained results were important for comparison of fast deuterium Z-pinches with plasma foci. Average DD neutron yields with and without the POS were about 1011. The neutron yield seems to be dependent on a peak voltage at the Z-pinch load. In all shots, the neutron emission started during stagnation. At the beginning of the neutron production, the neutron emission correlated with soft x-rays and a significant fraction of neutrons could be explained by the thermonuclear mechanism. Nevertheless, a peak of the neutron emission occurred 40 ns after a soft x-ray peak. At this very moment, hard x-rays above 1 MeV were detected and a rapid expansion with a velocity of 3×105 m/s was observed. In the case of the POS, 1 MeV widths of radial neutron spectra implied that there are deuterons with the energy above 200 keV moving in the radial direction. On the basis of D2 gas puff experiments in the 0.3-17 MA region, the neutron yield dependence on a current as Y∝I3.0±0.2 was proposed.

  3. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a "press" contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load. Previous research with single wires on a 1-5 kA pulser [1] has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator [2] have shown that improving the contact improved the x-ray yield. Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera. In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation

  4. Transition from Beam-Target to Thermonuclear Fusion in High-Current Deuterium Z-Pinch Simulations

    NASA Astrophysics Data System (ADS)

    Offermann, Dustin; Welch, Dale; Rose, Dave; Thoma, Carsten; Clark, Robert; Mostrom, Chris; Schmidt, Andrea; Link, Anthony

    2016-10-01

    Fusion yields from dense, Z-pinch plasmas are known to scale with the drive current, which is favorable for many potential applications. Decades of experimental studies, however, show an unexplained drop in yield for currents above a few mega-ampere (MA). In this work, simulations of DD Z-Pinch plasmas have been performed in 1D and 2D for a constant pinch time and initial radius using the code LSP, and observations of a shift in scaling are presented. The results show that yields below 3 MA are enhanced relative to pure thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor induced electric fields, while yields above 3 MA are reduced because of energy lost by the instability and the inability of the beamlike ions to enter the pinch region. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

  5. Transition from Beam-Target to Thermonuclear Fusion in High-Current Deuterium Z-Pinch Simulations.

    PubMed

    Offermann, Dustin T; Welch, Dale R; Rose, Dave V; Thoma, Carsten; Clark, Robert E; Mostrom, Chris B; Schmidt, Andrea E W; Link, Anthony J

    2016-05-13

    Fusion yields from dense, Z-pinch plasmas are known to scale with the drive current, which is favorable for many potential applications. Decades of experimental studies, however, show an unexplained drop in yield for currents above a few mega-ampere (MA). In this work, simulations of DD Z-Pinch plasmas have been performed in 1D and 2D for a constant pinch time and initial radius using the code Lsp, and observations of a shift in scaling are presented. The results show that yields below 3 MA are enhanced relative to pure thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor induced electric fields, while yields above 3 MA are reduced because of energy lost by the instability and the inability of the beamlike ions to enter the pinch region.

  6. Properties of the Best Ar K-Shell Radiators: Two Decades of Data Analysis from Seven Z-Pinch Drivers

    SciTech Connect

    Apruzese, J. P.; Commisso, R. J.; Weber, B. V.; Thornhill, J. W.; Giuliani, J. L.; Mosher, D.; Young, F. C.; Coverdale, C. A.; Deeney, C.

    2009-01-21

    Z Pinches formed from Ar gas puffs have been investigated for more than two decades. Experiments have been performed on many generators; a frequent objective has been maximization of the yield in the K-shell lines. The increase in available current during that time, from 2 to 15 MA, has resulted in a remarkable enhancement in yield from a few kJ on PITHON to {approx}300 kJ on Sandia's Z generator. We have analyzed spectroscopic and other radiation data from seven Z-pinch drivers, some dating back to 1991, in an effort to determine what properties of the pinches correlate with high K-shell yield. The strongest correlation is with the amount of mass that is heated to K-shell emitting temperatures. Those temperatures, effective at emitting Ar K-shell x rays, exhibit a range of {approx}1 to 2.4 keV.

  7. Preliminary Results of a 10 kJ Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Piriz, A. R.; Prieto, G. Rodríguez; Hoffmann, D. H. H.; Tahir, N. A.

    2008-04-01

    Preliminary results obtained on 10 kJ Z-pinch device developed at the Plasma and Electrical Discharge Laboratory in the University of Castilla-La Mancha are presented. The device called ENERGU-1 is composed by 8 capacitors (0.5 μF, 75 kV, 20 nH) connected in parallel to a discharge chamber by means of one high power plane transmission line by mean of 8 spark-gaps switches triggered by a 100 kV, 13 ns trigger pulse. The discharge chamber is a cylindrical Pyrex glass tube externally surrounded by a SF6 isolation atmosphere with the electrodes at the ends. Two different chambers have been studied by discharging the capacitor bank energy in deuterium for optimizing the D-D nuclear fusion reactions: one of 100 mm long by 100 mm inner diameter and the other of the same length and 70 mm inner diameter. Several sequences of ultrahigh speed converter camera photography (5 ns) are presented showing the implosion of plasma columns for different deuterium pressure and currents. Preliminary measurements of integrated 2.45 MeV neutron emissions by a silver activated neutron counter are analyzed as a function of electrical and constructive parameters. A yield of 107-108 D-D fusion reactions by shot is reported when the optimum conditions are reached conducting currents of 400-600 kA with a plasma column lifetime above 100 ns.

  8. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  9. The role of Z-pinches and related configurations in magnetized target fusion

    SciTech Connect

    Lindemuth, I.R.

    1997-07-10

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system.

  10. Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

    NASA Astrophysics Data System (ADS)

    Abd Al-Halim, Mohamed A.; Afify, M. S.

    2017-03-01

    The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

  11. Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David

    2016-10-01

    The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.

  12. Computational investigation of the limits to Pease-Braginskii collapse of a Z-pinch

    SciTech Connect

    Nielsen, P.D.

    1981-06-01

    This dissertation investigates the one-dimensional limits to such a radiation enhanced collapse through the use of a Lagrangian simulation code, LASNEX. The code includes the effects of a wide range of phenomena - opacity, ionization, experimentally determined equations of state, magnetic effects on transport coefficients, and external electrical circuits. Special attention was given to the magnetic field subroutines. They were revised to include ion acoustic and lower hybrid drift induced resistivity and to increase accuracy and efficiency. The magnetic pressure term was differenced in a manner that eliminates any influence of zone size, allowing large, low density zones outside the plasma column. In these large zones, magnetic flux and energy were determined by direct integration instead of summation to increase overall conservation. With these changes, the computational timesteps were determined by phenomena in the plasma instead of the Alfven velocity in the low density region. These modifications improved the accuracy of the code on Z-pinch problems by a factor of 10-100 depending on the minimum pinch radius reached.

  13. Z-pinch diagnostics, plasma and liner instabilities and new x-ray techniques

    SciTech Connect

    Oona, H.; Anderson, B.; Benage, J.

    1996-09-01

    Pulse power experiments of the last several decades have contributed greatly to the understanding of high temperature and high density plasmas and, more recently, to the study of hydrodynamic effects in thick imploding cylinders. Common to all these experiments is the application of a large current pulse to a cylindrically symmetric load, with the resulting Lorenz force compressing the load to produce hydrodynamic motion and/or high temperature, high density plasma. In Los Alamos, Pulsed power experiments are carried out at two facilities. Experiments at low current (from several million to ten million Amperes) are conducted on the Pegasus II capacitor bank. Experiments with higher currents (10`s to 100`s MA range) are performed in Ancho Canyon with the explosively driven Procyon and MAGO magnetic flux compression generator systems. In this paper, the authors present a survey of diagnostic capabilities and results from several sets of experiments. First, they discuss the initiation and growth of instabilities in plasmas generated from the implosion of hollow z-pinches in the pegasus and Procyon experiments. Next they discuss spectroscopic data from the plasmas produced by the MAGO system. They also show time resolved imaging data from thick ({approximately} .4 mm) liner implosions. Finally, the authors discuss improvements to x-ray and visible light imaging and spectrographic diagnostic techniques. The emphasis of this paper is not so much a detailed discussion of the experiments, but a presentation of imaging and spectroscopic results and the implications of these observations to the experiments.

  14. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    SciTech Connect

    Kantsyrev, V. L. Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  15. Preliminary Results of Cone Z-Pinch Device with 5 kJ

    NASA Astrophysics Data System (ADS)

    Abdel-kader, M. E.; Abd Al-Halim, M. A.; Shagar, A. M.; Eltayeb, H. A.; Algamal, H. A.; Saudy, A. H.

    2013-10-01

    The Cone Z-Pinch Experiment with 5 kJ is designed, constructed and operated. The electric discharge takes place between an upper ring electrode and a lower pin electrode creating plasma sheath in shape of cone. The preliminary experimental results using Helium gas in discharge show that the discharge period is 35 μs, the total system inductance is 287 nH, and the total system resistance is 15 mΩ. The breakdown curve shows a minimum breakdown value at 0.2 torr pressure. The cone plasma is confined by electromagnetic force and plasma inductance has its maximum value at the pinch. The plasma current has a maximum value of 53 kA at the axis of the discharge tube. The experimental results showed that a time of 2.1 μs at least is required for the pinch to occur and that both the pinch time and the duration time decrease with increasing the charging voltage.

  16. Simulations of high current wire array Z-pinches using a parallel 3D resistive MHD

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Jennings, C. A.; Ciardi, A.

    2006-10-01

    We present calculations of the implosion and stagnation phases of wire array Z-pinches at Sandia National Laboratory which model the full 3D plasma volume. Modelling the full volume in 3D is found to be necessary in order to accommodate all possible mechanisms for broadening the width of the imploding plasma and for modelling all modes of instability in the stagnated pinch. The width of the imploding plasma is shown to arise from the evolution of the uncorrelated modulations present on each wire in the array early in time into a globally correlated 3D instability structure. The 3D nature of the collision of two nested arrays is highlighted and the implications for radiation pulse shaping are discussed. The addition of a simple circuit model to model the Z generator allows the pinch energetics during stagnation to be treated more accurately and provides another point of comparison to experimental data. The implications of these results for improved X-ray production are discussed both for the keV range and for soft X-ray radiation sources used in inertial confinement fusion research. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  17. Staged Z-pinch Experiments on the University of Nevada, Reno, NTF Zebra Facility

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Ruskov, E.; Rahman, H. U.; Ney, P.; Darling, T. W.; Johnson, Z.; McGee, E.; Covington, A.; Dutra, E.; Valenzuela, J. C.; Conti, F.; Narkis, J.; Beg, F.

    2016-10-01

    A Staged Z-pinch load is tested on the University of Nevada, Reno, Zebra Facility, located at the Nevada Terawatt Facility. The annular liner was argon (1-cm radius × 0.5-cm thickness), the target was a deuterium fill (either gas, or plasma), and the axial-magnetic field was either, Bz = 0, 100 G. This paper presents experimental data and analyses, including neutron-total yield and time-of-flight measurements. The results are benchmarked against the predictions from a 2D-MHD simulations. Results from this first (Spring 2016) series of experiments indicate that the initial-operating points selected for the mass injectors were sub-optimal. Design revisions are underway and changes in the injector timing will be implemented the Fall 2016 campaign. Companion papers in this session, and in poster papers, provide the basis for the SZP, designs and performance for the injectors, and details on the Zebra Facility. Advanced Research Projects Agency - Energy, DE-AR0000569.

  18. Wire Array Z-pinch Insights for Intense X-ray Power Production

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.

    1998-11-01

    The discovery [1] that the use of very large numbers of wires enables high x- ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities [2] on Saturn [3] and Z [4]. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. In this discussion, the detailed measurements made with bolometers, filtered XRDs and PCDs, time resolved filtered x-ray pinhole cameras and crystal spectrometers are given meaning by comparison with one, two, and three dimensional radiation-magnetohydrodynamic code simulations. [1] T. W. L. Sanford, et al., Phys. Rev. Lett. 77, 5063 (1996). [2] M. K. Matzen, Phys. Plasmas 4, 1519 (1997). [3] D. D. Bloomquist, et al., Proc. 6th Int. IEEE Pulsed Power Conf., (1987), p. 310. [4] R. B. Spielman, et al., Phys. Plasmas 5, 2105 (1998).

  19. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2008-11-01

    We are investigating the development of the axial instability that occurs on wires in wire-array Z-pinches, which manifests itself as a modulation of the size of the coronal plasma. The modulation is evidently a result of non-uniform ablation of material from the wire core. It is known that the wavelength of this modulation reaches a constant as the pinch develops that is a strong function of the material and little else, thus it is known as the fundamental mode. In these experiments we have been imaging individual wires with laser shadowgraphy primarily in low wire number, large wire diameter arrays made with Al, Cu, Ag and other wires. We document the development of this modulation from the beginning of plasma formation and show the wavelength and amplitude growth as a function of time. The magnetic field is also measured using B-dot probes inside the array. The change from a closed to an open field topology and its relation to the instability growth will be discussed.This research was supported by the Stewardship Sciences Academic Alliances program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057 and by Sandia National Laboratories contract AO258.

  20. Z-Pinch Wire-Electrode Contact Resistance Studies Using Weighted and Soft Metal Gasket Contacts*

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Zier, J. C.; Thurtell, A. F.; French, D. M.; Gilgenbach, R. M.; Tang, W.; Lau, Y. Y.

    2008-11-01

    The contact made between z-pinch wires and electrodes has a significant effect on both the energy deposited in the wires and the uniformity of the expansion profile of the wires. We have shown that using soft metal gaskets can improve wire-electrode contact significantly over typical weighted contacts. Images of wire expansion profile and wire plasma emission will be presented for single and double wire shots on a 16 kA, 100 kV 4-stage Marx bank with 150 ns risetime. Bench resistance measurements for aluminum, stainless steel, and tungsten wires with diameters ranging from 7.5 um to 30 um will be presented. These measurements utilized both soft metal gasket contacts (gaskets include: indium, silver, aluminum, tin, and lead) and double-ended wire weight contacts (weights ranged from 0.4 g to 1.9 g). *This research was supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the University of Michigan. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship sponsored by Sandia National Labs.

  1. Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2008-11-01

    We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.

  2. 3D full circumference modelling of wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.; Ciardi, A.

    2003-10-01

    Resistive magneto-hydrodynamic simulations are used to evaluate the influence of 3D inhomogeneities on X-ray power production in wire array Z-pinches. An initial temperature perturbation is used to stimulate variations in core ablation rates which result in a highly non-uniform final implosion. Results indicate that X-ray power production is governed by the rate at which current can transfer to the axis through a 3D debris field which trails behind the main implosion. Three dominant sources of power input to the pinch, and hence X-ray production, are identified. The first is the implosion of a large fraction of the array mass at moderate velocity. The second is the later implosion of a smaller mass fraction at higher velocity which carries the majority of current. Finally the contribution of Ohmic heating to the power input becomes significant. The peak power is ultimately limited by the onset of MHD instabilities in the stagnated pinch. Mechanisms for the influence of wire number, material and nesting on X-ray power production are presented. This research was sponsored by the NNSA under DOE Cooperative Agreement DE-F03-02NA00057.

  3. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  4. Model of enhanced energy deposition in a Z-pinch plasma

    SciTech Connect

    Velikovich, A. L.; Davis, J.; Thornhill, J. W.; Giuliani, J. L. Jr.; Rudakov, L. I.; Deeney, C.

    2000-08-01

    In numerous experiments, magnetic energy coupled to strongly radiating Z-pinch plasmas exceeds the thermalized kinetic energy, sometimes by a factor of 2-3. An analytical model describing this additional energy deposition based on the concept of macroscopic magnetohydrodynamic (MHD) turbulent pinch heating proposed by Rudakov and Sudan [Phys. Reports 283, 253 (1997)] is presented. The pinch plasma is modeled as a foam-like medium saturated with toroidal ''magnetic bubbles'' produced by the development of surface m=0 Rayleigh-Taylor and MHD instabilities. As the bubbles converge to the pinch axis, their magnetic energy is converted to thermal energy of the plasma through pdV work. Explicit formulas for the average dissipation rate of this process and the corresponding contribution to the resistance of the load, which compare favorably to the experimental data and simulation results, are presented. The possibility of using this enhanced (relative to Ohmic heating) dissipation mechanism to power novel plasma radiation sources and produce high K-shell yields using long current rise time machines is discussed. (c) 2000 American Institute of Physics.

  5. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ

    SciTech Connect

    Spielman, R.B.; Deeney, C.; Chandler, G.A.; Douglas, M.R.; Fehl, D.L.; Matzen, M.K.; McDaniel, D.H.; Nash, T.J.; Porter, J.L.; Sanford, T.W.; Seamen, J.F.; Stygar, W.A.; Struve, K.W.; Breeze, S.P.; McGurn, J.S.; Torres, J.A.; Zagar, D.M.; Gilliland, T.L.; Jobe, D.O.; McKenney, J.L.; Mock, R.C.; Vargas, M.; Wagoner, T.; Peterson, D.L.

    1998-05-01

    Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120{endash}300) with wire diameters of 7.5 to 15 {mu}m placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 {mu}m diam wires (4.1 mg mass) achieved an x-ray power of {approximately}200TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations. {copyright} {ital 1998 American Institute of Physics.}

  6. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  7. Staged Z-pinch Simulations for the UNR, Nevada Terawatt Zebra Facility

    NASA Astrophysics Data System (ADS)

    Ney, Paul; Rahman, Hafiz; Wessel, Frank; Narkis, Jeff; Valenzuela, Julio; Beg, Farhat; Presura, Radu; Darling, Tim; McKee, Erik; Covington, Aaron

    2015-11-01

    We simulate a Staged Z-pinch imploded on the 1 MA, 130 ns, 100 kJ, Nevada Terawatt Zebra Facility. The load is a magnetized, cylindrical, double gas-puff, plasma liner imploding onto a plasma target. Simulations use the 2-1/2 D, radiation-MHD code, MACH2. Three different liner gases are evaluated: Ar, Kr, and Xe and the target is either: DD, or DT, with a liner-plasma radius of: 1.0 cm and 2.0 cm, and a 5.0-mm thickness. Initial conditions are optimized to produce the highest neutron yield. Shocks propagate at different speeds in the liner and target, leading to a shock front at the interface. Magnetosonic shock waves pre-heat the target plasma and provide a stable implosion. The shock front provides a secondary conduction channel which builds up during implosion. The axial magnetic field controls the MRT instability and traps α-particles, leading to ignition. Magnetic flux is compressed, and at peak parameters the magnetic field and current density exceed, by an order of magnitude, values outside the pinch, providing a magneto-inertial confinement. A smaller radius provides 102 -103 × higher neutron yield. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.

  8. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  9. Neutron spectra from beam-target reactions in dense Z-pinches

    SciTech Connect

    Appelbe, B. Chittenden, J.

    2015-10-15

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  10. High density Z pinch as a small low-energy fusion device

    NASA Astrophysics Data System (ADS)

    Hammel, J. E.; Scudder, D. W.; Shlachter, J. S.

    A Z pinch in the density range 0.5 x 10 to the 20th power to 10 to the 21st power cu cm was investigated. The pinch was created in one to four atmospheres of hydrogen on the axis of a cylindrical chamber through the combination of laser beam preionization and high electric field breakdown between electrodes separated by 5 cm. The low divergence laser beam focused by a 2 m focal length lens entered the chamber through a .64 cm hole in the ground electrode and was dumped in a cavity in the high voltage electrode. The pinch electrodes were driven by a 1.6 ohm, 600 kV water transmission line switched to the load through a multipoint water breakdown switch. The line was charged by a 12 kJ, 600 kV Marx generator. The 30 nsec neodymium laser pulse was fired 50 to 100 nsec prior to the arrival of the high voltage pulse. The 500 kV pulse gave an initial current rise rate of 4 x 10 to the 12th power and a peak current of 300 kA in 200 nsec.

  11. Ablation dynamics in wire array Z-pinches under modifications on global magnetic field topology

    SciTech Connect

    Veloso, Felipe Muñoz-Cordovez, Gonzalo; Donoso-Tapia, Luis; Valenzuela-Villaseca, Vicente; Favre, Mario; Wyndham, Edmund; Suzuki-Vidal, Francisco; Swadling, George; Chittenden, Jeremy

    2015-07-15

    The dynamics of ablation streams and precursor plasma in cylindrical wire array Z-pinches under temporal variations of the global magnetic field topology is investigated through experiments and numerical simulations. The wire arrays in these experiments are modified by replacing a pair of consecutive wires with wires of a larger diameter. This modification leads to two separate effects, both of which impact the dynamics of the precursor plasma; firstly, current is unevenly distributed between the wires and secondly, the thicker wires take longer to fully ablate. The uneven distribution of current is evidenced in the experiments by the drift of the precursor off axis due to a variation in the global magnetic field topology which modifies the direction of the ablation streams tracking the precursor position. The variation of the global magnetic field due to the presence of thick wires is studied with three-dimensional magnetohydrodynamic (MHD) simulations, showing that the global field changes from the expected toroidal field to a temporally variable topology after breakages appear in the thin wires. This leads to an observed acceleration of the precursor column towards the region closer to the thick wires and later, when thick wires also present breakages, it continues moving away from the original array position as a complicated and disperse object subject to MHD instabilities.

  12. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-01

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources - planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  13. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    SciTech Connect

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-15

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima {approx}10 kA and 50 {mu}s. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  14. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1

    NASA Astrophysics Data System (ADS)

    Meng, Shijian; Hu, Qingyuan; Ning, Jiaming; Ye, Fan; Huang, Zhanchang; Qin, Yi; Wang, Dong; Xu, Zeping; Xu, Rongkun

    2017-01-01

    Axial radiation properties in Z-pinch dynamic hohlraum is investigated experimentally for the first time at Julong-1 facility in China, employing a load that contains a cylindrical CHO foam placed at the central axis position of the nested tungsten wire array. Time-resolved axially radiating images indicate that the velocity of the radiating shock is 31.9 ± 5.6 cm/μs in shot 0181. At t = -6.5 ns with respect to the peak of radially radiated power at stagnation, the annular width is estimated to be ˜1 mm and the intensities distribution in the shock implies a good azimuthal symmetry of radiation pressure. Axial power is found to peak prior to the arrival of the shock to the axis, which is explained by the balance between shock heating and radiating cooling. Utilizing the end-on radiation images and axial power, the peak radiation temperature in dynamic hohlraum is obtained to be ˜65 eV.

  15. Nanosecond CO2 laser interaction with a dense helium Z-pinch plasma

    NASA Astrophysics Data System (ADS)

    Voss, D. F.

    A short pulse CO2 laser system was constructed to investigate the interaction of intense electromagnetic radiation with dense plasma. The laser was focused perpendicular to the axis of a linear helium Z-pinch plasma and properties of the transmitted beam were monitored. Transmitted beam intensity and spatial distribution were measured as functions of incident intensity and interaction time. The results of the experiments with the overdense plasma were found to be consistent with plasma hydrodynamic theory. A 40 nanosecond pulse was sufficiently long to burn through the plasma, but a 4 nanosecond pulse was not. The 4 nanosecond pulse was long enough to form a local density depression in the underdense plasma and density gradients steep enough to produce Fresnel diffraction, despite the absence of a critical surface. The resultant change in refractive index could cause thermal self-focusing. The transmission measurement was not found to be consistent with a simple model of inverse bremsstrahlung absorption. At an intensity of 10 to the 12th power W/cu/cm there was a sharp decrease in transmission. This suggests the possibility of either increased absorption due to enhanced ionization or increased reflection due to simulated Brillouin backscatter.

  16. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    NASA Astrophysics Data System (ADS)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Theoretical prediction of β and τE in a hard core Z pinch

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Freidberg, J. P.; Kesner, J.

    2007-10-01

    The energy confinement time and maximum achievable pressure are critical figures of merit for any proposed magnetic fusion concept. The present work focuses on these issues for a hard core Z pinch, which is the cylindrical limit of a large aspect ratio levitated dipole configuration. An analysis is presented that theoretically predicts both τE and β for this configuration. The model makes the optimistic assumption that transport is purely classical in the region of the profile that is magnetohydrodynamically (MHD) stable against interchange modes. In the interchange-unstable region use is made of the quasilinear theory described in the accompanying paper [A. Kouznetsov, J. Freidberg, and J. Kesner, Phys. Plasmas 14, 102501 (2007)] which shows that the plasma pressure relaxes to the MHD marginally stable profile while the density evolves to n ∝[∮dl/B]-1. Analytic and numerical calculations lead to explicit scaling relations for τE and β which can be tested in future LDX experiments.

  18. Analyzing Spatially Resolved Z-pinch Spectra to Determine the Nature of ``Bright Spots''*

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ampleford, D. J.; Jones, B.; Coverdale, C. A.

    2011-10-01

    Wire array Z-pinch implosions which access the K-shell stages of their load elements are usually characterized by spatially nonuniform emission. But, is the existence of the ``bright spots'' due to density enhancement, higher temperature, or some combination of the two? Does the answer vary with atomic number of the load? To investigate this issue we have analyzed spatially resolved spectra from Cu and Al pinches driven by the Z generator. Correlation studies and regression analyses from the derived conditions are employed in order to infer the cause(s) of the local enhancements of K-shell powers. Work supported by U. S. Department of Energy, National Nuclear Security Administration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000. JPA is a consultant to NRL through L3 Communications, Chantilly, VA 20151.

  19. Imposed Axial Mass Modulations in Wire Array Z-Pinches on MAGPIE

    NASA Astrophysics Data System (ADS)

    Jones, B.; Deeney, C.; McKenney, J.; Bland, S.; Lebedev, S.; Chittenden, J.; Bott, S.; Ampleford, D.

    2003-10-01

    The role of 3D effects in wire array z-pinch dynamics is a topic of increasing interest. To study 3D structure in a controlled manner, 15 μm diameter Al wires were etched at Sandia, seeding 20% radial perturbations with variable axial wavelength. Laser shadowgram and x-ray pinhole data suggest faster ablation and earlier implosion of the low-mass segments of an 8-wire, λ=5 mm modulated array imploded on MAGPIE at Imperial College. Less mass was left behind in the low-mass regions. Similar behavior is seen in 3D MHD modeling. Modification of the x-ray pulse shape will be discussed. Coronal plasma structure matching the seeded mode was seen in early-time shadowgrams, with λ=0.5 mm radial flares (typical in MAGPIE Al arrays) superimposed. Future experiments include shorter wavelength modulations that may compete with the naturally occurring radial flares, and unique 3D geometries potentially useful for code validation.

  20. Kinetic Modeling of Ion Beams in Dense Plasma Focus Z-Pinches

    NASA Astrophysics Data System (ADS)

    Link, A.; Bennett, N.; Falabella, S.; Higginson, D. P.; Olsen, R.; Podpaly, Y. A.; Povilus, A.; Shaw, B.; Sipes, N.; Welch, D. R.; Schmidt, A.

    2016-10-01

    Dense plasma focus (DPF) Z-pinches are compact devices capable of producing MeV ion beams, x-rays, and (for D or DT gas fill) neutrons. We report on predictions of ion beam generation using the particle-in-cell code LSP. These simulations include full-scale electrodes, an external pulse power circuit and model through the run-down phase as a fluid, transitioning to a fully kinetic simulation during the run-in phase and through the pinch. Simulations of a deuterium filled DPF predict a substantial number of ions accelerated to energies greater than 50 keV escape the dense plasma in the pinch region and could be used to enhance total neutron yield by employing a solid target. Results of the simulations will be presented and compared to experimental observations. LLNL-ABS-697617 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  1. Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06

    SciTech Connect

    Meier, W R; Moir, R W; Abbott, R

    2006-09-19

    This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.

  2. The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion

    SciTech Connect

    MEHLHORN,THOMAS A.; DESJARLAIS,MICHAEL P.; HAILL,THOMAS A.; LASH,JOEL S.; ROSENTHAL,STEPHEN E.; SLUTZ,STEPHEN A.; STOLTZ,PETER H.; VESEY,ROGER A.; OLIVER,B.

    1999-11-08

    Peak x-ray powers as high as 280 {+-} 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments.

  3. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu.; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Krasa, J.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.; Velyhan, A.; Wagner, R.

    2016-03-01

    A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 ± 0.5) × 1012 was emitted within 20 ns implying the production rate of 1020 neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 1016 and 1013, respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-lived isotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of 13N isotopes via the 12C(d,n)13N reaction. Furthermore, the first z-pinch generated neutron radiograph produced by ≈20 ns pulses is presented in this paper.

  4. Measuring of spatio-temporal characteristics Z-pinch from deuterated polyethylene

    NASA Astrophysics Data System (ADS)

    Akunets, A. A.; Anan'ev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Bryzgunov, V. A.; Chernenko, A. S.; Dan'ko, S. A.; Kazakov, E. D.; Korolev, V. D.; Meshcherov, B. R.; Nedoseev, S. L.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Vikhrev, V. V.; Volobuyev, I. V.; Zelenin, A. A.

    2009-08-01

    On the S-300 installation at currents up to 2 MA with rise time 100 ns, the investigation of the formation process of high-temperature plasma in fast Z-pinch was carried out. The central part of the loads was made from agar-agar and represented a deuterated polyethylene cylinder with small density 50 and 75 mg/sm3 and 1-2 mm diameter. On the ICT images, obtained in optical and soft X-ray range of a spectrum with 3-5 ns exposition, it is visible that on the axis of the polyethylene cylinder at the current`s rise time a cord is formed and it is separated into bright formations. They were observed on a background of a luminous area which occupied the initial neck volume. On time-integrated pinhole pictures obtained in SXR range (E > 1-4 keV), hot points with minimal size of 50 microns were registered. From the chronograms results, obtained by means of the optical high-speed-streak camera mount along the neck axis with time resolution < 1 ns, it follows that luminous formations arise sequentially during the different time moments (in 10-30 ns). Occurrence of luminous formations was accompanied by X-ray radiation occurrence with energy E > 1 keV with short duration of 2-4 ns. Simultaneously with X-ray radiation neutrons with the maximal yield of 4.5×109 were registered. The average energy measured in 4 directions under angles with an axis of: 0○ (above the anode), 90○, 180○ (under the cathode) and 270○, were accordingly: 2.4±0.2, 2.5±0.1, 2.5±0.1, 2.5±0.1 MeV.

  5. The quest for a z-pinch based fusion energy source—a historical perspective

    NASA Astrophysics Data System (ADS)

    Sethian, John

    1997-05-01

    Ever since 1958, when Oscar Anderson observed copious neutrons emanating from a "magnetically self-constricted column of deuterium plasma," scientists have attempted to develop the simple linear pinch into a fusion power source. After all, simple calculations show that if one can pass a current of slightly less than 2 million amperes through a stable D-T plasma, then one could achieve not just thermonuclear break-even, but thermonuclear gain. Moreover, several reactor studies have shown that a simple linear pinch could be the basis for a very attractive fusion system. The problem is, of course, that the seemingly simple act of passing 2 MA through a stable pinch has proven to be quite difficult to accomplish. The pinch tends to disrupt due to instabilities, either by the m=0 (sausage) or m=1 (kink) modes. Curtailing the growth of these instabilities has been the primary thrust of z-pinch fusion research, and over the years a wide variety of formation techniques have been tried. The early pinches were driven by relatively slow capacitive discharges and were formed by imploding a plasma column. The advent of fast pulsed power technology brought on a whole new repertoire of formation techniques, including: fast implosions, laser or field-enhanced breakdown in a uniform volume of gas, a discharge inside a small capillary, a frozen deuterium fiber isolated by vacuum, and staged concepts in which one pinch implodes upon another. And although none of these have yet to be successful, some have come tantalizingly close. This paper will review the history of this four-decade long quest for fusion power.

  6. Shock waves in a Z-pinch and the formation of high energy density plasma

    SciTech Connect

    Rahman, H. U.; Wessel, F. J.; Ney, P.; Presura, R.; Ellahi, Rahmat; Shukla, P. K.

    2012-12-15

    A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

  7. K-α emission spectroscopic analysis from a Cu Z-pinch

    SciTech Connect

    Dasgupta, A.; Clark, R. W.; Giuliani, J. L.; Ouart, N. D.; Jones, B.; Ampleford, D. J.; Hansen, S. B.

    2013-06-01

    Advances in diagnostic techniques at the Sandia Z-facility have facilitated the production of very detailed spectral data. In particular, data from the copper nested wire-array shot Z1975 provides a wealth of information about the implosion dynamics and ionization history of the pinch. Besides the dominant valence K- and L-shell lines in Z1975 spectra, K-α lines from various ionization stages were also observed. K-shell vacancies can be created from inner-shell excitation and ionization by hot electrons and from photo-ionization by high-energy photons; these vacancies are subsequently filled by Auger decay or resonance fluorescence. The latter process produces the K-α emission. For plasmas in collisional equilibrium, K-α emission usually occurs from highly charged ions due to the high electron temperatures required for appreciable excitation of the K-α transitions. Our simulation of Z1975 was carried out with the NRL 1-D DZAPP non-LTE radiation-hydrodynamics model, and the resulting K- and L-shell synthetic spectra are compared with measured radiation data. Our investigation will focus on K-α generation by both impacting electrons and photons. Synthetic K-α spectra will be generated either by self-consistently calculating the K-shell vacancy production in a full Z-pinch simulation, or by post-processing data from a simulation. The analysis of these K-α lines as well as K- and L-shell emission from valence electrons should provide quantitative information about the dynamics of the pinch plasma.

  8. K-α emission spectroscopic analysis from a Cu Z-pinch

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Giuliani, J. L.; Ouart, N. D.; Jones, B.; Ampleford, D. J.; Hansen, S. B.

    2013-06-01

    Advances in diagnostic techniques at the Sandia Z-facility have facilitated the production of very detailed spectral data. In particular, data from the copper nested wire-array shot Z1975 provides a wealth of information about the implosion dynamics and ionization history of the pinch. Besides the dominant valence K- and L-shell lines in Z1975 spectra, K-α lines from various ionization stages were also observed. K-shell vacancies can be created from inner-shell excitation and ionization by hot electrons and from photo-ionization by high-energy photons; these vacancies are subsequently filled by Auger decay or resonance fluorescence. The latter process produces the K-α emission. For plasmas in collisional equilibrium, K-α emission usually occurs from highly charged ions due to the high electron temperatures required for appreciable excitation of the K-α transitions. Our simulation of Z1975 was carried out with the NRL 1-D DZAPP non-LTE radiation-hydrodynamics model, and the resulting K- and L-shell synthetic spectra are compared with measured radiation data. Our investigation will focus on K-α generation by both impacting electrons and photons. Synthetic K-α spectra will be generated either by self-consistently calculating the K-shell vacancy production in a full Z-pinch simulation, or by post-processing data from a simulation. The analysis of these K-α lines as well as K- and L-shell emission from valence electrons should provide quantitative information about the dynamics of the pinch plasma.

  9. Bow shocks in ablated plasma streams for nested wire array z-pinches: A laboratory astrophysics testbed for radiatively cooled shocks

    SciTech Connect

    Ampleford, D. J.; Jennings, C. A.; Cuneo, M. E.; Hall, G. N.; Lebedev, S. V.; Bland, S. N.; Suzuki-Vidal, F.; Palmer, J. B. A.; Chittenden, J. P.; Bott, S. C.; Frank, A.; Blackman, E. G.; Ciardi, A.

    2010-05-15

    Astrophysical observations have demonstrated many examples of bow shocks, for example, the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. For such systems where supersonic and super-Alfvenic flows and radiative cooling are all important, carefully scaled laboratory experiments can add insight into the physical processes involved. The early stage of a wire array z-pinch implosion consists of the steady ablation of material from fine metallic wires. Ablated material is accelerated toward the array axis by the JxB force. This flow is highly supersonic (M>5) and becomes super-Alfvenic (M{sub A}>2). Radiative cooling is significant in this flow and can be controlled by varying the material in the ablated plasma. The introduction of wires as obstructions in this steady flow leads to the formation of bow shocks, which can be used as a laboratory testbed for astrophysical bow shocks. The magnetic field associated with this obstruction wire can be controlled by varying the current through it. Differences in the shock for different cooling rates and different magnetic fields associated with the obstruction will be discussed, along with comparisons of dimensionless parameters in the experiments to astrophysical systems.

  10. Numerical studies of the effects of precursor plasma on the performance of wire-array Z-pinches

    SciTech Connect

    Ning Cheng; Sun Shunkai; Xiao Delong; Zhang Yang; Ding Ning; Huang Jun; Xue Chuang; Shu Xiaojian

    2010-06-15

    This paper is to numerically investigate, in one dimension, the effects of precursor plasma resulted from wire-array ablation on the performance of its following implosion after the ablation. The wire-array ablation is described by an analytic model, which consists of a rocket model or Sasorov's expression of wire-array mass ablation rate, the evolution equation of magnetic field, and several roughly reasonable assumptions. The following implosion is governed by the radiation magnetohydrodynamics. The implosion processes of wire-array Z-pinch from plasma shells prefilled and un-prefilled by the low-density plasma inside them are studied, and that from the wire-array ablations, which may be changed through varying the ablation time, ablation rate, and ablation velocity V{sub abl}, are also simulated. The obtained results reveal that the prefilled low-density plasma and the precursor plasma from the wire-array ablation help to enhance the plasma shell pinch and the final implosion of the wire array, respectively, compared to the pinch of un-prefilled plasma shell. With the same plasma masses, which are distributed in the interior of the array and the shell, and modified Spitzer resistivity, the implosions that start from the wire ablation develop faster than that from the plasma shell with the prefill. If more substance ablates from the wire array before the start of its implosion, the final Z-pinch performance could be better. The Z-pinch plasma is highly magnetized with driven current more than 3 MA.

  11. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun

    2016-03-01

    The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  12. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

    SciTech Connect

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Cikhardtova, B.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Krasa, J.; and others

    2016-03-15

    A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 ± 0.5) × 10{sup 12} was emitted within 20 ns implying the production rate of 10{sup 20} neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25 MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 10{sup 16} and 10{sup 13}, respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-lived isotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of {sup 13}N isotopes via the {sup 12}C(d,n){sup 13}N reaction. Furthermore, the first z-pinch generated neutron radiograph produced by ≈20 ns pulses is presented in this paper.

  13. Soldered contact and current risetime effects on negative polarity wire array Z pinches

    NASA Astrophysics Data System (ADS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.

    2009-08-01

    The experimental results described in this paper were motivated by earlier, low current, single wire experiments. In these experiments, single 10-25 μm diameter wires were driven by 1-5 kA current pulses with variable dI /dt from 5 to 60 A/ns. The amount of energy deposited in the wires, the expansion rate, and expansion uniformity that occurred before a plasma induced voltage collapse were found to depend on the polarity, dI /dt, and the quality of the contacts between the wires and the electrodes. This paper reports the results of experiments with cylindrical wire arrays driven by Cornell Beam Research Accelerator (COBRA) [J. B. Greenly, J. D. Douglas, D. A. Hammer et al., Rev. Sci. Instrum. 79, 073501 (2008)] current pulses that reached 1 MA. The pulse lengths were varied from 100 to 200 ns. These larger current pulses drove the wires of the array through the initiation phase studied in the single wire experiments and through ablation and Z-pinch implosion to stagnation on the cylindrical axis of the array. Regardless of the current pulse length, the COBRA dI /dt per wire during initiation reached approximately 175 A/ns and resistive voltage breakdown occurred at ˜13 ns. Wire-electrode contacts were modified by soldering the cathode ends of the wires to the brass electrode. With the 100 ns COBRA pulse, voltage monitor data suggested that soldering produced a smaller radius pinch, but bolometer data showed that this did not affect the total energy emitted from the array compared to nonsoldered contacts. With the 200 ns COBRA pulse and soldered contacts, the bolometer data showed an average of 69% increase in time integrated x-ray emission and the photoconducting detector data showed an increase in x-ray power and yield compared with nonsoldered contacts. Under these same conditions the four-frame extreme ultraviolet images showed a more pronounced "Christmas tree" effect at the cathode.

  14. A detailed postprocess analysis of an argon gas puff Z-pinch plasma using SPEC2D

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Kammash, T.; Davis, J.

    1997-05-01

    A postprocess analysis of a single time frame hydrodynamic profile from the PRISM two-dimensional MHD simulation of an argon gas puff Z-pinch plasma experiment on Double-Eagle generator at Physics Internationals, Co. is presented. In addition, spatially resolved emission spectra and filtered (K- and L-shell radiation) x-ray pinhole images, generated using the SPEC2D code, are examined toward the understanding of the emission characteristics of the hot spots and the formation of the Rayleigh-Taylor instability in the plasma.

  15. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE PAGES

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; ...

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  16. Demonstration of Radiation Pulse Shaping with Nested-Tungsten-Wire-Array Z Pinches for High-Yield Inertial Confinement Fusion

    SciTech Connect

    Cuneo, M.E.; Vesey, R.A.; Sinars, D.B.; Waisman, E.M.; Lemke, R.W.; Bliss, D.E.; Stygar, W.A.; Porter, J.L.; Mazarakis, M.G.; Chandler, G.A.; Mehlhorn, T.A.; Chittenden, J.P.; Lebedev, S.V.; Schroen, D.G.

    2005-10-28

    Nested wire-array Z pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH{sub 2} foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  17. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    PubMed

    Rochau, Gregory A; Bailey, J E; Macfarlane, J J

    2005-12-01

    High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

  18. Optical Tomography of the ZaP Flow Z-Pinch Plasma

    DTIC Science & Technology

    2005-01-01

    the Abel inversion through the use of linear algebra and a numerical methods program such as MATLAB. The Abel inversion follows the general equation Le...θ, where e0 (r) = { r3 for 0 < r ≤ 0.5 (1− r)3 for 0.5 < r ≤ 1.0 . 29 linear algebra routine as the one-dimensional case allows for the generation of...algorithm, the two-dimensional profile lends itself to matrix computation and linear algebra . Rewriting equation 3.15 so that each shell 30 profile e (r) = e0

  19. The effect of load thickness on Rayleigh-Taylor mitigation in high velocity, annular z pinch implosion

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; RODERICK,NORMAN F.

    2000-05-16

    Numerical calculations have been performed to investigate the role that load thickness may play in the performance of fast annular z pinch implosions. In particular, the effects of load thickness on the mitigation of the magnetically-driven Rayleigh-Taylor (RT) instability and energy coupling between the load and generator are addressed. using parameters representative of the Z accelerator [R.B.Spielman et al., Phys.Plasmas, 5, 2105 (1998)] at Sandia National Laboratories, two dimensional magnetohydrodynamic (MHD) simulations show that increased shell thickness results in lower amplitude, slightly longer wavelength RT modes. In addition, there appears to be an optimum in load velocity which is directly associated with the thickness of the sheath and subsequent RT growth. Thin, annular loads, which should couple efficiently to the accelerator, show a large reduction in implosion velocity due to extreme RT development and increased load inductance. As a consequence, thicker loads on the order of 5 mm, couple almost as efficiently to the generator since the RT growth is reduced. This suggests that z-pinch loads can be tailored for different applications, depending on the need for uniformity or high powers.

  20. Development of a spectroscopic technique for simultaneous magnetic field, electron density, and temperature measurements in Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Presura, Radu; Covington, Aaron; Mancini, Roberto; Darling, Timothy; Angermeier, William

    2016-10-01

    Visible spectroscopic techniques are often used in plasma experiments to measure B-field induced Zeeman splitting, electron densities via Stark broadening, and temperatures from Doppler broadening. However, when electron densities and temperatures are sufficiently high, the broadening of the Stark and Doppler components can dominate the emission spectra and obscure the Zeeman component. In this research, we are developing a time-resolved multi-axial technique for measuring the Zeeman, Stark, and Doppler broadened line emission of dense magnetized plasmas for Z-pinch. In parallel, we are developing a line-shape modeling code that incorporates the broadening effects due to Stark, Doppler, and Zeeman effects for dense magnetized plasma. Experiments were conducted at the University of Nevada (Reno) at the Nevada Terawatt Facility (NTF) using the 1 MA Z-pinch (Zebra). The research explored the optical emission of Al III doublet, 4P 2P3/2 to 4S 2S1/2 and 4P 2P1/2 to 4s 2S1/2 transitions and used it to measure Zeeman, Stark, and Doppler broadened emission. The initial parameters for the line shape code are varied to simulate emission spectra. The simulated spectra are compared to experimental results. These results are used to infer temperature, electron density, and B-fields in the magnetized plasma.

  1. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    SciTech Connect

    Li, J. Huang, X. B. Cai, H. C. Yang, L. B. Xie, W. P. Duan, S. C.

    2014-12-15

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  2. Experimental Results from Plasma Shell on Deuterium Gas-puff Z-pinch on the Current Level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2013-10-01

    The experiments with a plasma shell on deuterium gas-puff Z-pinch were carried out on the GIT-12 generator at IHCE in Tomsk. We diagnosed Z-pinch shots with deuterium linear mass of about 100 μg/cm. The outer shell of the load was formed by 48 plasma guns positioned on diameter of 350 mm, the diameter of the nozzle producing deuterium inner shell gas-puff was 80 mm. Results obtained from X-ray and neutron diagnostics, especially neutron time-of-flight signals, where 15 MeV neutrons (in radial direction) and 22 MeV neutrons (in axial direction) were registered, are presented. Obtained implosion velocity of the gas-puff had the value of 4 . 5 ×107 cm/s, neutron yield from D(d,n)3He reaction was in order of 1012 neutrons/shot on a current level of about 2.7 MA. The time correlations of the TOF diagnostics with other diagnostics such as electrical characteristics, an MCP frames, and a visible streak camera are also presented. Work supported by MEYS CR research programs No. ME090871, No. LG13029, by GACR grant No. P205/12/0454, grant CRA IAEA No. 17088 and RFBR research project No. 13-08-00479-a.

  3. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-06-15

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.

  4. Formation of hot spots in the plasma of a Z-pinch produced from low-density deuterated polyethylene

    SciTech Connect

    Akunets, A. A.; Anan'ev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Bryzgunov, V. A.; Vikhrev, V. V.; Volobuev, I. V.; Dan'ko, S. A.; Zelenin, A. A.; Kazakov, E. D.; Korolev, V. D.; Meshcherov, B. R.; Nedoseev, S. L.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Chernenko, A. S.; Shchagin, V. A.

    2010-08-15

    Results are presented from experimental studies of the plasma formation dynamics in a Z-pinch produced from a cylindrical microporous agar-agar load. The experiments were performed on the S-300 facility at a current of 2 MA and current rise time of 100 ns. To enhance the energy concentration, a deuterated polyethylene neck with a mass density of 50-75 {mu}g/cm{sup 3} and diameter of 1-2 mm was made in the central part of the load. The spatiotemporal characteristics of the Z-pinch were studied using an optical streak camera and fast frame photography in the optical and soft X-ray spectral ranges. X-ray emission was detected using semiconductor and vacuum diodes, and neutron emission was studied by means of the time-of-flight method. It is found that, in the course of continuous plasma production, hot spots with a diameter of 100 {mu}m form in the pinch plasma. The hot spots emit short soft X-ray pulses with a duration of 2-4 ns, as well as neutron pulses with an average neutron energy of about 2.45 MeV. The maximum neutron yield was found to be 4.5 x 10{sup 9} neutrons per shot. The scenario of hot spot formation is adequately described by two-dimensional MHD simulations.

  5. X-ray absorption spectroscopy for wire-array Z-pinches at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Chittenden, J. P.; Anderson, A.; Shevelko, A. P.; Wiewior, P.; Durmaz, T.; Altemara, S. D.; Papp, D.; Astanovitskiy, A. L.; Nalajala, V.; Chalyy, O.; Dmitriev, O.

    2011-12-01

    Absorption spectroscopy was applied to wire-array Z-pinches on the 1 MA pulsed-power Zebra generator at the Nevada Terawatt Facility (NTF). The 50 TW Leopard laser was coupled with the Zebra generator for X-ray backlighting of wire arrays at the ablation stage. Broadband X-ray emission from a laser-produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 Å. Two time-integrated X-ray conical spectrometers recorded reference and absorption spectra. The spectrometers were shielded from the bright Z-pinch X-ray burst by collimators. The comparison of plasma-transmitted spectra with reference spectra indicates absorption lines in the range of 8.1-8.4 Å. Analysis of Al K-shell absorption spectra with detailed atomic kinetics models shows a distribution of electron temperature in the range of 10-30 eV that was fitted with an effective two-temperature model. Temperature and density distributions in wire-array plasma were simulated with a three-dimension magneto-hydrodynamic code. Post-processing of this code's output yields synthetic transmission spectrum which is in general agreement with the data.

  6. Study of the effect of preliminary wire explosion on X-ray generation during wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Repin, P. B.; Selemir, V. D.; Selyavskiĭ, V. T.; Savchenko, R. V.; Orlov, A. P.; Repin, B. G.; Ibragimov, M. Sh.

    2009-01-01

    Results are presented from experimental studies and numerical simulations of the effect of preliminary wire explosion on the parameters of X-ray emission generated during wire array Z-pinch implosion. The wire array implosion was driven by a current pulse with an amplitude of 0.5 MA and a rise time of 0.5 μs, while the preliminary wire explosion was produced by a current pulse with an amplitude of 0.5-1 kA per wire, a rise time of 100 ns, and a full width at half maximum of ˜200 ns. The experiments showed that the current prepulse significantly impaired the parameters of X-ray pulses. In particular, along with a decrease in the amplitude and an increase in the duration of the X-ray pulse, its spiky structure became more pronounced. The results of numerical simulations with the use of a one-dimensional radiative MHD code are in good agreement with the parameters of Z-pinch emission in experiments with and without a current prepulse.

  7. Single crystal X-ray spectropolarimeter for HED plasmas and its use on wire array z-pinches

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Kastengren, Alan; Pereira, Nino; Presura, Radu

    2016-10-01

    When energetic electrons in a plasma have a preferred direction the resulting X-rays can be polarized. This makes plasma X-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution, and X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. For pulsed plasmas the spectrum's polarization is typically measured by obtaining each component of polarization separately, with two crystals both at a 45 degree Bragg angle or one on successive shots. However, obtaining the two orthogonal polarizations can be done using one crystal. Crystals with hexagonal symmetry present pairs of internal planes that diffract incident X-rays in two directions that are perpendicular to each other and the incident ray. The polarization splitting properties of quartz crystals were confirmed with linearly polarized X-rays from the APS. An X-cut crystal with (10-10) planes in polarization splitting orientation is now being used on wire array z-pinches at UNR. The design of a single crystal X-ray polarimeter, and what data obtained so far indicate about the anisotropy of wire array z-pinch plasmas will be presented. Work supported by U.S. DOE, NNSA Grant DE-NA0001834 and coop. agreement DE-FC52-06NA27616. Use of APS supported by U.S. DOE, OBES, Contract No. DE-AC02-06CH11357.

  8. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P.; Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  9. Optimization of nickel L-shell radiation from a wire array Z-pinch using initial array radius scaling

    NASA Astrophysics Data System (ADS)

    Deeney, C.; Nash, T.; LePell, P. D.; Krishnan, M.; Childers, K.

    1989-12-01

    Time-resolved diagnostics have been used to study nickel wire array Z-pinch experiments on the DNA/Double-EAGLE generator. When 4 MA currents are used to implode arrays of different initial diameters, a maximum yield of 40 kJ, around 1 keV from the nickel L-shell, is produced by an array with a diameter of 15 mm. Filtered X-ray pinhole photography and time-resolved crystal X-ray spectroscopy reveal that increasing the diameter beyond 15 mm causes a higher temperature but lower density plasma with the net effect of reducing the L-shell radiation. At diameters less than the optimum, the bulk plasma is too cold to produce nickel L-shell line emission except from localized hot spots.

  10. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.; Kusse, B. R.

    2009-01-01

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  11. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Litseva, E.; Tomaszewski, K.; Karpinski, L.; Paduch, M.; Scholz, M.

    2011-03-15

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10{sup 6} and 10{sup 12} per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  12. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  13. Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Nevrkla, M.; Jancarek, A.; Torrisi, A.; Parkman, T.; Turnova, J.; Stolcova, L.; Vrbova, M.; Limpouch, J.; Pina, L.; Wachulak, P.

    2016-07-01

    The development and demonstration of a table-top transmission soft X-ray (SXR) microscope, using a laboratory incoherent capillary discharge source has been carried out. This Z-pinching capillary discharge water-window SXR source, is a first of its kind to be used for high spatial resolution microscopy at λ = 2.88 nm (430 eV) . A grazing incidence ellipsoidal condenser mirror is used for focusing of the SXR radiation at the sample plane. The Fresnel zone plate objective lens is used for imaging of the sample onto a back-illuminated (BI) CCD camera. The achieved half-pitch spatial resolution of the microscope approaches 100 nm, as demonstrated by the knife-edge test. Details about the source, and the construction of the microscope are presented and discussed. Additionally, the SXR images of various samples, proving applicability of such microscope for observation of objects in the nanoscale, are shown.

  14. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.

    2009-01-21

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  15. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array sourcea)

    NASA Astrophysics Data System (ADS)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Ouart, N. D.

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (˜10-40 eV) plasmas than emission spectra (˜350-500 eV).

  16. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  17. Structure of the dense cores and ablation plasmas in the initiation phase of tungsten wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Douglass, J. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Bland, S. N.; Bott, S. C.; McBride, R. D.

    2007-01-01

    The early stages of tungsten (W) wire-array Z-pinch implosions have been studied using two-frame point projection x-ray backlighting on the 1MA COBRA pulsed power generator [J. D. Douglass, J. B. Greenly, D. A. Hammer, and B. R. Kusse, in Proceedings of the 15th IEEE International Pulsed Power Conference, Monterey, 2005 (to be published)]. X-pinch backlighter images with subnanosecond time resolution and 4-10μm spatial resolution have been obtained of individual W exploding wires in 8-wire arrays that show evolution of wire-core and coronal plasma structures. The timing of the X-pinch x-ray bursts relative to the Z-pinch initiation time was adjusted over a 50ns time interval by varying the X-pinch mass per unit length. Wire-cores seen in two images separated in view by 120° show that the expansion is remarkably azimuthally symmetric. A strong correlation is observed between the structure on the dense exploding wire-cores and the structure of the ⩾1018/cm3 ablation plasma being drawn from radial prominences. Plasma ablation velocity was estimated to have a lower bound of 24km/s. The wire-core expansion rate was found to be approximately constant with time over the interval 50-100ns after the start of the current pulse. Finally, micron-scale axial gaps, seen as early as 70ns into the current pulse and persisting from that time, were observed along the wire-core.

  18. Two and Three-dimensional Modelling of the Different Phases of Wire Array Z-pinch Evolution

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy P.

    2000-10-01

    The spectacular recent improvements in the performance of imploding Z-pinches formed from metallic wire arrays have yielded the world's most powerful laboratory X-ray source, with applications to inertial confinement fusion research and other high energy density applications. Achieving high yield fusion in a hohlraum driven by a wire array Z-pinch will require further substantial increases in X-ray power. Designing optimal loads for such future experiments requires an in-depth knowledge of what factors limit the X-ray power. The two main limiting factors in present generation experiments are the slow rate of wire ablation, which leads to injection of mass into the interior of the array prior to implosion and the development of the Rayleigh-Taylor instability. Computational modelling of these phenomena can be extremely complex due to the intrinsically three-dimensional nature of the problem. Whilst 3D resistive MHD codes are now becoming available, simulations of the entire experiment with adequate spatial resolution remains unfeasible. An alternative approach is to model different phases of the evolution using different specialised 2D and 3D models and attempt to link them together to form a composite model of the whole experiment. This has the added advantage that this series of simpler problems can be more readily compared to experiments for the all important code verification. 2D and 3D ``cold-start" or ``wire initiation" calculations are presented showing how the passage of current begins the plasma formation process but also excites the m=0 instability in each wire. 2D simulations in the r-theta plane then show how the mass injected between the wires determines the radial profile for the implosion. This model is also used to explore how nested arrays (where a second array is placed concentrically within the first) can be used to increase X-ray power. The results of these two models can then be used to construct the radial and axial structure of the plasma for

  19. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  20. Neutron Diagnostics of a Deuterium Gas-Puff Z-pinch on the Level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, Karel; Klir, Daniel; Kubes, Pavel; Kravarik, Jozef; Shishlov, Alexander; Labetsky, Aleksey; Ratakhin, Nicolai; GIT-12 Team

    2011-10-01

    The diagnostics of a deuterium gas-puff Z-pinch (outer shell with diam. of 100 or 80 mm, inner annular with diam. of 30 mm or solid-fill shell with diam. of 20 mm with linear mass varied in each shell in the range of 25 - 40 μg/cm) is presented. The experiments were carried out on the GIT-12 generator at IHCE in Tomsk (2.5 MJ bank energy, load current of 2.8 MA with the rise time of 250 ns) during the April-May campaign in 2011. Results from the neutron time-of-flight diagnostics including the determination of the neutron production time and reconstructed radial energy spectra are shown. Several methods which provided measurement of the total neutron yield indicated the number of neutrons in order of 1011 per one shot. The time correlations with other diagnostics such as electrical characteristics, soft X-rays, hard X-rays and a visible streak camera are also presented. Work supported by MEYS research programs No. LA08024, No. ME09087, No. LC528, by GACR grants No. 202-08-H057 and grant CRA IAEA No. 14817.

  1. Study of implosion dynamics of Z-pinch dynamic hohlraum on the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Zhang, Faqiang; Xu, Rongkun; Xu, Zeping; Yang, Jianlun; Li, Zhenghong; Xia, Guangxin; Ning, Jiamin; Li, Linbo; Chen, Dingyang; Chen, Jinchuan

    2015-02-01

    The Z-pinch dynamic hohlraum (ZPDH) is one of high-power X-ray sources that has been used in a variety of high energy-density experiments including inertial confinement fusion (ICF) studies. Dynamic hohlraums driven by a 12-mm and a 18-mm-diameter single tungsten wire arrays embedded with a C16H20O6 foam, respectively, exhibit no visible differences in radiation from the axial exit, although the radial radiation is a little higher in a large array. The analysis of the images suggests that the implosion of a large array is quasi-continuous and has a faster imploding velocity, indicating that the large array is matched to the embedded foam and, oppositely, the small array is mismatched. The analysis also shows that the Rayleigh-Taylor instability develops much harder in implosions of a large array, and this leads to a lower hohlraum temperature. The conclusion was drawn that, for the purpose of enhancing the hohlraum temperature, increasing the conversion efficiency of kinetic energy into thermal energy is more important than increasing the kinetic energy from wire plasma.

  2. Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV

    SciTech Connect

    SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.

    2000-07-10

    A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.

  3. Deuterium Gas-Puff Z-pinch as a Source of Fast Ions Producing Intensive Pulse of Neutrons

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Turek, K.

    2015-11-01

    A deuterium gas-puff with outer plasma shell has been examined on GIT-12 generator (on the current level of 3 MA) since 2013. Such a configuration caused more stable implosion at final stage of z-pinch. The consequence of this was a production of intensive pulses of fast ions. During last 4 campaigns in 2013-2015, fast ions were examined by several in-chamber diagnostics such as: stack detector (ion energy), pinhole camera (location of ion source), multi-pinhole camera (asymmetry and anisotropy of ion emission), and ion beam detector (dynamics of ion pulses). A CR-39 track detectors and also GAFCHROMIC HD-V2 films from these diagnostics will be presented. On the basis of obtained results, the solid sample for increasing of neutron yield up to 1e13 could be placed below the cathode mesh. Except of neutron yield, other properties such as: neutron energies (up to 33 MeV), neutron emission time (about 20 ns), and emission anisotropy of neutrons were measured. Such a short and intensive neutron pulse provides various applications. This work was supported by the MSMT project LH13283.

  4. Radiation Power Scaling of >75TW, >500kJ Tungsten Z-Pinch X-ray Sources.*

    NASA Astrophysics Data System (ADS)

    Deeney, C.; Spielman, R. B.; Porter, J. L.; Chandler, G. A.; Nash, T. J.; Seamen, J. F.; Saturn; Pbfaz Z-Pinch Teams; Peterson, D.; Matuska, W.; Macfarlane, J. J.; Whitney, K. G.; Thornhill, J. W.

    1996-11-01

    For fusion applications, there are significant efforts being devoted to the optimization of high Z radiators. Experiments on the 20-TW, 7- MA Saturn generator with increased wire number (T. Sanford, this meeting, C. Deeney & K.G. Whitney , sub. to PRE) and radius scaling demonstrated that the power from tungsten Z-pinches could be increased from 20 TW to 75110 TW ( C. Deeney et al, sub. to PRE). Analyses of the data, coupled with two-dimensional radiation- hydrodynamic simulationsfootnote(D.L. Peterson et al, Phys Plasmas 3, 368, (1996)), indicate that the pinch becomes tighter (1 mm in diameter versus 1.5 mm) and more uniform : XRDs also show increased higher energy emissions (G. Chandler , this meeting). We will present these data and calculations along with similar measurements from tungsten wire implosions on the new, 20 MA PBFA Z generator. PBFA Z(R.B. Spielman, Proc Beams 96) is predicted to produce >150 TW and >1.5 MJ of X-rays. *Supported by DOE , Cont. DE-AC04-94AL85000.

  5. The First Pulsed-Power Z-Pinch Liner-On-Target Hydrodynamics Experiment Diagnosed with Proton Radiography

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Reass, W. A.; Oro, D. M.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2014-10-01

    The first pulse-power driven, dynamic, liner-on-target experiment was successfully conducted at the Los Alamos proton radiography (pRad) facility. 100% data return was achieved on this experiment including a 21-image pRad movie. The experiment was driven with the PHELIX pulsed-power machine that utilizes a high-efficiency (k ~ 0.93) transformer to couple a small capacitor bank (U ~ 300 kJ) to a low inductance condensed-matter experimental load in a Z-pinch configuration. The current pulse (Ipeak = 3.7 MA, δt ~10 μs) was measured via a fiber optic Faraday rotation diagnostic. The experimental load consisted of a cylindrical Al liner (6 cm diam, 3 cm tall, 0.8 mm thick) and a cylindrical Al target (3 cm diam, 3 cm tall, 0.1 mm thick) that was coated with a thin (0.1 mm) uniform layer of tungsten powder (1 micron diam). It is observed that the shock-launched powder layer fully detaches from the target into a spatially correlated, radially converging (vr ~ 800 m/s) ring. The powder distribution is highly modulated in azimuth indicating particle interactions are significant. Results are compared to MHD simulations. Work supported by United States-DOE under Contract DE-AC52-06NA25396.

  6. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  7. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  8. One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation

    SciTech Connect

    Wong, K.L.; Springer, P.T.; Hammer, J.H.; Iglesias, C.A.; Osterheld, A.L.; Foord, M.E.; Bruns, H.C.; Emig, J.A.; Deeney, C.

    1996-10-01

    In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma -conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding -Ar-Ne plasma. An absolutely calibrated, high resolution space- and time- resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliunlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MM models predict a radiating region denser and cooler than measured.

  9. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  10. Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.

    2013-08-01

    This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.

  11. Seeding the m = 0 instability in dense plasma focus (DPF) Z-pinches with a hollow anode

    NASA Astrophysics Data System (ADS)

    Liu, Jason; Sears, Jason; McMahon, Matt; Higginson, Drew; Link, Anthony; Schmidt, Andrea

    2016-10-01

    The dense plasma focus (DPF) is a classic Z-pinch plasma device that has been long studied as a copious source of various types of radiation. The formation of the m = 0 plasma instability during the compression phase is linked to the generation of high-energy charged particle beams, which, when operated in deuterium, lead to beam-target fusion reactions and the generation of neutron yield. Here we present a novel technique of seeding the m = 0 instability by varying the anode's hollow inner diameter. As the plasma sheath moves along this hollow anode structure, a low density perturbation is formed and this seeds the instability. Dynamics of the low density perturbation and seeding of the m = 0 instability are studied in detail with fully kinetic plasma simulations performed in the LSP particle-in-cell code on a 60 kA device. It is discovered in the simulations that the neutron yield of the DPF may be significantly improved and made more consistent by employing an anode geometry with an appropriate inner hollow diameter. Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  12. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  13. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    SciTech Connect

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Quart, N. D.; DasGupta, A.; Jones, Brent M.; Jennings, Christopher Ashley

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  14. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  15. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    SciTech Connect

    Sheng, Liang; Peng, Bodong; Yuan, Yuan; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping; Li, Yang Li, Mo

    2016-01-15

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  16. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  17. Larger sized wire arrays on 1.5 MA Z-pinch generator

    SciTech Connect

    Safronova, A. S. Kantsyrev, V. L. Weller, M. E. Shlyaptseva, V. V. Shrestha, I. K. Esaulov, A. A. Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-15

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)

  18. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  19. The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    2008-10-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.

  20. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  1. The Wire Array Z-Pinch AN Efficient X-Ray Source for Icf and a New Ion Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    2009-07-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. First, the wires heat and form a surrounding vapor which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapor cores the plasma temperature and Reynolds' number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation the ion kinetic energy is thermalised and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated as soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m = 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2 to 3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly progress in capsule implosions and in application to inertial fusion energy is reported.

  2. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-01

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4to16mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500GW) and total energy yields (6-10kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6mmto785μm, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis—a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  3. What can spectroscopy and imaging of multi-planar wire arrays reveal about Z-pinch radiation physics?

    SciTech Connect

    Osborne, Glenn C.; Esaulov, Andrey A.; Apruzese, John P.; Shrestha, I.; Kantsyrev, Victor Leonidovich; Shlyaptseva, V.; Coverdale, Christine Anne; Rudakov, Leonid I.; Williamson, K. M.; Deeney, Christopher; Ouart, Nicholas D.; Weller, M. E.; Safronova, Alla S.

    2010-07-01

    The planar wire array research on Zebra at UNR that started in 2005 continues experiments with new types of planar loads with results for consideration and comprehensive analysis [see, for example, Kantsyrev et al, HEDP 5, 115 (2009)]. The detailed studies of radiative properties of such loads are important and spectroscopy and imaging constitute a very valuable and informative diagnostic tool. The set of theoretical codes is implemented which provides non-LTE kinetics, wire ablation dynamic, and MHD modeling. This talk is based on the results of new recent experiments with planar wire arrays on Zebra at UNR. We start with results on radiative properties of a uniform single planar wire array (SPWA) from alloyed Al wires and move to combined triple planar wire arrays (TPWA) made from two materials, Cu and Al. Such combined TPWA includes three planar wire rows that are parallel to each other and made of either Cu or Al alloyed wires. Three different configurations (Al/Cu/Al, Cu/Al/Cu, and Cu/Cu/Al) are considered and compared with each other, and with the results from SPWA of the same materials. X-ray time-gated and time integrated pinhole images and spectra are analyzed together with bolometer, PCD, and XRD measurements, and optical images. Emphasis is made on the radiative properties and temporal and spatial evolution of plasma parameters of such two-component plasmas. The opacity effects are considered and the important question of what causes K-shell Al lines to be optically thin in combined TPWAs is addressed. In conclusion, the new findings from studying multi-planar wire array implosions are summarized and their input to Z-pinch radiation physics is discussed.

  4. Characteristics of implosion and radiation for aluminum planar wire array z-pinch at 1.5 MA

    SciTech Connect

    Wang Liangping; Wu Jian; Li Mo; Han Juanjuan; Guo Ning; Wu Gang; Qiu Aici

    2012-12-15

    Planar wire arrays Z pinches were carried out on Qiangguang generator (1.5 MA, 100 ns). Loads with varied row widths (6-24 mm) and wire numbers (10-34) were employed in the experiments. The implosion dynamics of planar wire arrays has been studied. Meanwhile, the changes of the implosion time, radiation yield and power with array mass, inter-wire gap, and array width were investigated. The images of a soft X-ray camera exhibit that the trailing mass, precursor column, and R-T instability exist during the implosion phase, and when m = 0 maybe accompanied with m = 1, instability will rapidly develop after stagnation. The implosion trajectories show that loads will implode by the snowplow mode and about 50% of total initial array mass will participate in the final implosion. The maximum total X-ray energy is 22 kJ with a power of 630 GW, while the maximum K-shell yield is 3.9 kJ with a power of 158 GW. Experiments with different planar wire arrays show that the value of m{sub P}D{sub 0}{sup 2} (the product of line mass and squared width) is the critical factor which affects the implosion time and the X-ray products of the wire arrays. The optimum value of m{sub P}D{sub 0}{sup 2} should be in the range of 200-400 {mu}gcm and the inter-wire gap should be less than 1 mm.

  5. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    SciTech Connect

    Xiao, Delong; Ding, Ning; Sun, Shunkai; Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong

    2014-04-15

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J × B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4 mm to 6 mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  6. Low impedance z-pinch drivers without post-hole convolute current adders.

    SciTech Connect

    Savage, Mark Edward; Seidel, David Bruce; Mendel, Clifford Will, Jr.

    2009-09-01

    Present-day pulsed-power systems operating in the terawatt regime typically use post-hole convolute current adders to operate at sufficiently low impedance. These adders necessarily involve magnetic nulls that connect the positive and negative electrodes. The resultant loss of magnetic insulation results in electron losses in the vicinity of the nulls that can severely limit the efficiency of the delivery of the system's energy to a load. In this report, we describe an alternate transformer-based approach to obtaining low impedance. The transformer consists of coils whose windings are in parallel rather than in series, and does not suffer from the presence of magnetic nulls. By varying the pitch of the coils windings, the current multiplication ratio can be varied, leading to a more versatile driver. The coupling efficiency of the transformer, its behavior in the presence of electron flow, and its mechanical strength are issues that need to be addressed to evaluate the potential of transformer-based current multiplication as a viable alternative to conventional current adder technology.

  7. Time-resolved EUV spectra from nitrogen Z-pinching capillary discharge

    NASA Astrophysics Data System (ADS)

    Nevrkla, Michal; Jančárek, Alexandr; Nawaz, Fahad; Parkman, Tomáś; Vrbová, Miroslava

    2015-05-01

    Time-integrated spectra and time-resolved spectra (20 ns resolution) of nitrogen discharge plasma radiation were recorded and analyzed. Plasma was created by a 70 kA, 29 ns rise-time current pulse flowing through a 5 mm inner diameter, 224 mm long capillary filled with nitrogen to initial pressure ˜0.1 ÷ 1 kPa. Spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition1. Spectral lines were identified using the NIST database and the FLY kinetic code. Together with spectra the capillary current was measured. Due to the low inductance design of the driver, the pinch is observable directly from the measured current. 13.38 nm NVII 2 - 3 line was observed in gated, and also in time-integrated spectra for currents <60 kA. For higher gas-filling pressure also other Balmer series lines were observed.

  8. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  9. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  10. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  11. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    SciTech Connect

    BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.

    1999-11-01

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  12. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies

    SciTech Connect

    Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.

    1999-08-25

    Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {minus}85 eV for a duration of {approximately} 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approximately} 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approximately} 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A){sup 1/4}). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.

  13. Experimental study of emission Z-pinch spectra in the axial and radial directions at the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Alexandrov, V. V.; Volkov, G. S.; Grabovsky, E. V.; Gritsuk, A. N.; Mitrofanov, K. N.; Oleinik, G. M.; Shevelko, A. P.

    2016-12-01

    Data on the energy, power and spectra composition of the soft x-ray pulse of powerful Z-pinch plasmas in the axial and radial directions in the photon energy range of 0.02 - 2 keV are presented. The data are obtained from the analysis of experimental results on the implosion of cylindrical arrays with a diameter of 1.2 cm and a height of 1.6 cm of tungsten wires diameter of 6 μm, the linear mass of 220 μg/cm at a current in the range of 2.2 - 3.5 MA at the Angara-5-1 facility.

  14. The Ionization Equilibrium of Optically Thick Argon Z-Pinch Plasmas for Electron Temperatures between 25 and 65 eV.

    DTIC Science & Technology

    2014-09-26

    reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP " Ioni;ation equilibrium Argon plasma Gamble -Il generator Collisional pumping...highly attractive due to the large gain lengths (up to 4 cm) and immense energies (-1 MJ) available to couple to the plasma. The Gamble -II device at...previously observed1 5. These results suggest that Gamble -II would be an excellent device to test lasing concepts on a Z-pinch. Argon, stripped to the neon

  15. Planar Wire-Array Z-Pinch Implosion Dynamics and X-Ray Scaling at Multiple-MA Drive Currents for a Compact Multisource Hohlraum Configuration

    SciTech Connect

    Jones, B.; Ampleford, D. J.; Vesey, R. A.; Cuneo, M. E.; Coverdale, C. A.; Waisman, E. M.; Jones, M. C.; Fowler, W. E.; Stygar, W. A.; Serrano, J. D.; Vigil, M. P.; Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Chuvatin, A. S.; Rudakov, L. I.

    2010-03-26

    An indirect drive configuration is proposed wherein multiple compact Z-pinch x-ray sources surround a secondary hohlraum. Planar compact wire arrays allow reduced primary hohlraum surface area compared to cylindrical loads. Implosions of planar arrays are studied at up to 15 TW x-ray power on Saturn with radiated yields exceeding the calculated kinetic energy, suggesting other heating paths. X-ray power and yield scaling studied from 1-6 MA motivates viewfactor modeling of four 6-MA planar arrays producing 90 eV radiation temperature in a secondary hohlraum.

  16. K-shell radiation physics in low-to moderate-atomic-number z-pinch plasmas on the Z accelerator.

    SciTech Connect

    Clark, Robert W.; Maron, Yitzhak; Davis, J.; Apruzese, John P.; Whitney, Ken G.; LePell, Paul David; Velikovich, Aleksandr Lazarevich; Deeney, Christopher E.; McKenney, John Lee; Thornhill, Joseph W.; Oreshkin, V. I.; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S.

    2004-12-01

    Dense z-pinches produced by 100 ns implosions of wire arrays or gas puffs produce substantial soft X-ray power. One class of z-pinch radiation sources includes low- to moderate-atomic-number K-shell radiators, such as aluminum and iron. These loads are designed for 1-10 keV K-shell X-ray generation, and offer opportunities for crystal spectroscopy that can reveal fundamental properties of the plasma when studied using plasma spectroscopic modeling. Typically these plasmas are characterized by ion densities of {approx} 10{sup 20} cm{sup -3}, diameters of 1-5 mm, electron temperatures up to several keV, and a range of opacities of the K-shell lines. Measurements from wire arrays on Sandia's 20 MA Z accelerator are presented along with collisional radiative and hydrodynamic simulations. The impact of opacity and 3D structure on non-LTE, non-diffusive radiation transport and X-ray production is discussed.

  17. High energy axial ion beam generated by deuterium gas-puff Z-pinch at the current level of 3 MA

    NASA Astrophysics Data System (ADS)

    Rezac, K.; Klir, D.; Kubes, P.; Cikhardt, J.; Batobolotova, B.; Kravarik, J.; Orcikova, H.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Ratakhin, N.; GIT-12 Team

    2014-10-01

    The contribution presents results from Z-pinch experiments with a plasma shell on deuterium gas-puff (with deuterium linear mass of about 100 μg/cm) carried out on the GIT-12 generator at IHCE in Tomsk at the current level slightly below 3 MA. The first purpose of experiments was to study the influence of different parameters on the production of neutrons. Neutron yield up to 5 ×1012 neutrons/shot was measured in the shot with LiF catcher. The second purpose was the examination of high-energy ions generated on the Z-pinch axis using RCF and CR-39. Very interesting results were provided by ion pinhole camera, where the influence of magnetic field on the ion beam could be studied. One of the conclusions is that the ions with energy below 10 MeV were significantly deflected by magnetic field. Work supported by MEYS CR research Programs No. ME090871, No. LG13029, by GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR Grant No. 13-08-00479-a.

  18. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  19. Predictions of non-LTE spectra from large scale 3D magneto-hydrodynamic modelling of wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, Nicolas; Chittenden, Jeremy

    2012-10-01

    The last few years have seen considerable advances in the application of high performance computing techniques to 3D simulations of wire array Z-pinches. Whilst the intense soft X-ray radiation output is the principle application of wire arrays, the ability to encompass spectrally detailed models of this emission within such 3D calculations was thought to be computationally prohibitive. We have developed a non-LTE atomic and radiation physics model with detailed configuration accounting and n-l splitting which is sufficiently streamlined to run in-line with large scale 3D simulations. In order to handle the volume of data generated by the spectral treatment of the billions of numerical cells, a novel data structure derived from a self-balancing binary search tree was developed, enabling the use of non-LTE DCA calculations within large scale 3D simulations for the first time. A brief description of the model is provided and the application of the simulations to understanding the X-ray generation processes within wire array Z-pinches on the Z generator at Sandia National Laboratory is reported. The contribution of the ion temperature and the motion of the unstable plasma at stagnation to the Doppler widths of the lines is described in detail.

  20. Time and space resolved measurements of visible-light and soft x-ray emission from foam z-pinch plasmas and implosions

    SciTech Connect

    Lazier, S.E.; Barber, T.L.; Derzon, M.S.; Kellogg, J.W.

    1997-01-01

    We have developed a time-resolved imaging capability to make measurements of the emission profile or spot size for low density foam z-pinch targets on the Saturn accelerator. By lens-coupling visible emission from the z-pinch target to an array of fiber optics, we obtained an emission profile as a function of time with radial resolution of 200 {mu}m. To measure the emission at temperatures greater than {approx}40 eV, x rays from the source were slit-imaged or pinhole-imaged onto a scintillator. The emission was filtered to select 50{endash}80, 200{endash}280, and 400{endash}450 eV x rays. Nonuniformities were observed in both visible and x-ray emissions for solid foam targets. For wire array on foam targets, on-axis x-ray emission-spot implosion velocities calculated for the three spectral regions differed from the mass-implosion velocity. We describe the diagnostics, the image-unfold process, and results from the instrument for both visible and x-ray measurements. {copyright} {ital 1997 American Institute of Physics.}

  1. Study of Ablation and Implosion Stages of 1-MA Wire Array Z-Pinch using X-ray Laser-Based Backlighting

    NASA Astrophysics Data System (ADS)

    Anderson, Austin; Ivanov, Vladimir; Papp, Daniel; Talbot, Bjorn; Astanovitskiy, Alexey

    2013-10-01

    The ablation and implosion stages of wire array z-pinches were studied using laser-based x-ray imaging at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. X-ray backlighting at the wavelength of 6.65 Å was provided by hitting a Si target with the 50 TW Leopard laser. Laser-based radiography allows flexibility in both the timing and the position of the x-ray source. The issue of the method is the small energy of the laser pulse compared to radiation of the Z pinch. A spherically bent quartz crystal can give spatial resolution <10 microns and spectral linewidth of the x-ray on the order of 10-4. X-ray imaging allows viewing of the dense core of plasma column during the ablation stage. Wires with diameters 7.6-15 were resolved in test shots. Images of the wire-array at the ablation stage are discussed. Work was supported by the DOE grant DE-SC0008824 and DOE/NNSA UNR grant DE-FC52-06NA27616.

  2. Improving Agreement between the Neutron Yield Scaling Model of Fast Z-pinches with Experimental Data Using the Time Derivative of the Current

    NASA Astrophysics Data System (ADS)

    Bures, Brian; Krishnan, Mahadevan

    2012-10-01

    The Z-pinch community has accepted a power law scaling of the DD neutron yield with current (Y=aI^d) for decades. While the exponent, d, in the power law has received much of the attention in literature (3.5Z-pinch machines with peak currents ranging from 60 kA to 18 MA. The improved correlation of measured yield on both I and dI/dt motivates an examination of microscopic dynamics in these pinches., The dI/dt term is related to the pinch voltage that in turn is the source term for the fast ion spectrum that drives beam-target fusion.

  3. Simulation and mitigation of the magneto-Rayleigh-Taylor instabilities in Z-pinch gas discharge extreme ultraviolet plasma radiation sources

    SciTech Connect

    Huang, B.; Tomizuka, T.; Xie, B.; Sakai, Y.; Zhu, Q.; Song, I.; Okino, A.; Xiao, F.; Watanabe, M.; Hotta, E.

    2013-11-15

    The development and use of a single-fluid two-temperature approximated 2-D Magneto-Hydrodynamics code is reported. Z-pinch dynamics and the evolution of Magneto-Rayleigh-Taylor (MRT) instabilities in a gas jet type Extreme Ultraviolet (EUV) source are investigated with this code. The implosion and stagnation processes of the Z-pinch dynamics and the influence of initial perturbations (single mode, multi- mode, and random seeds) on MRT instability are discussed in detail. In the case of single mode seeds, the simulation shows that the growth rates for mm-scale wavelengths up to 4 mm are between 0.05 and 0.065 ns{sup −1}. For multi-mode seeds, the mode coupling effect leads to a series of other harmonics, and complicates MRT instability evolution. For perturbation by random seeds, the modes evolve to longer wavelengths and finally converge to a mm-scale wavelength approximately 1 mm. MRT instabilities can also alter the pinch stagnation state and lead to temperature and density fluctuations along the Z axis, which eventually affects the homogeneity of the EUV radiation output. Finally, the simulation results are related to experimental results to discuss the mitigations of MRT instability.

  4. Stability of laser heated flows

    NASA Technical Reports Server (NTRS)

    Wu, P. K. S.; Pirri, A. N.

    1976-01-01

    A local stability analysis is utilized to determine the stability of disturbances generated at each point along a nozzle of variable area ratio for a one-dimensional flow heated by laser radiation entering from the upstream direction. The governing equations for the quasi-one-dimensional flow without viscous dissipation, diffusion, and thermal conduction but including radiative heat transfer are given. The governing equations are combined to yield a relationship which governs the Mach number variation through the nozzle. The complete steady-state solution can be calculated from knowledge of the Mach number profile, the inlet conditions, and the laser power. The local stability analysis permits obtaining contour (or contours) of neutral stability. Solutions have been obtained for various nozzle configurations, but only one set of example calculations is presented. The results obtained indicate that the analysis serves as an important indicator as to where potential absorption wave phenomena may be initiated.

  5. Stability of swirling gas flows

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    1988-01-01

    The stability of inviscid swirling gas flows to small nonaxisymmetric perturbations is considered. For small Brunt-Vaisala frequencies, the problem reduces to the classical Sturm-Liouville form and the oscillation theorem can be applied. The resulting necessary and sufficient stability condition is compared to various criteria in the literature and a limited numerical study of isothermal rigidly rotating Poiseuille flow. For given azimuthal and axial wavenumbers, it is found numerically that the higher inertial modes become unstable for successively lower Rossby numbers and that this sequence of critical values approaches the theoretical value from above.

  6. Increasing the K-shell yield of line radiation in Z-pinch implosions using alloyed Al/Mg wire-arrays

    SciTech Connect

    Xiao Delong; Ding Ning; Xue Chuang; Huang Jun; Zhang Yang; Ning Cheng; Sun Shunkai

    2013-01-15

    The variation of the K-shell yield of pure aluminum wire-array Z-pinch implosions with load parameters is discussed. The mechanism and the efficiency of increasing the K-shell yield using alloyed Al/Mg wire-arrays are numerically investigated. It has been shown that the maximum K-shell yield from a pure aluminum wire-array Z-pinch implosion can be obtained at an optimal load mass for a given generator and at a fixed initial wire-array radius. This optimal load mass is determined by the load energy coupling with the generator, the capability of Z-pinch plasmas to emit the K-shell radiation, and the self absorption of K-shell lines. For different generators, the optimal load mass increases as the drive current increases, and the line absorption limits the further increase of K-shell radiation. The coupled energy per ion is likely decreasing with increased mass, so the plasma might not be able to ionize into the K-shell. Also, the ability of the plasma to radiatively cool can increase with mass, thus, making it difficult for the plasma to ionize into and remain in the K-shell during the stagnation phase of the implosion. Alloyed Al/Mg wire-arrays were thus suggested to be used to decrease the opacity of K-shell lines and to increase the overall K-shell yield. In this paper, we show that using alloyed Al/Mg wire-arrays will decrease the opacity and increase the K-shell yield remarkably if the plasma is optically thick. We will also show that the efficiency of increasing the K-shell yield with alloyed Al/Mg wire-arrays cannot increase indefinitely. The ratio of K-shell yield from an alloyed Al/Mg wire-array to that from a pure aluminum wire-array reaches a limit. For example, we show that when the mass share of magnesium is 10% then this limit is 1.2, and for a 50% mass share, the limit is 1.3.

  7. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  8. K-shell and extreme ultraviolet spectroscopic signatures of structured Ar puff Z-pinch loads with high K-shell x-ray yield

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Sze, H. M.; Banister, J. W.; Levine, J. S.; Qi, N.; Apruzese, J. P.; Lojewski, D. Y.

    2007-02-01

    Structured 12-cm-diam Ar gas-puff loads have recently produced Z-pinch implosions with reduced Rayleigh-Taylor instability growth and increased ≈3mm, consistent with the observed load inductance change and an imploded-mass consisting of a ≈1.5-mm-diam, hot, ⩾20% of load mass) increases the rise and fall times of the XUV emission to ⩾40ns, consistent with a more adiabatic compression and heating of the load. Axial measurements show that, despite differences in the XUV and K-shell emission time histories, the K-shell x-ray yield is insensitive to axial variations in load mass.

  9. Use of X-pinches of diagnose behavior of low density CH foams on axis of wire array Z-pinches

    SciTech Connect

    Bott, S.C.; Palmer, J.B.A.; Ampleford, D.J.; Bland, S.N.; Chittenden, J.P.; Lebedev, S.V.

    2004-10-01

    X-pinch radiography was used to analyze the interaction between streams of coronal plasma and on-axis foam targets in wire array z-pinch experiments on the MAGPIE generator (1 MA,240 ns). The implosion of the x-pinch, used in place of a current return conductor to the load, provided a short (<2 s) small ({approx}5 {mu}m) intense burst of soft x-rays, ideal for point projection backlighting. Timimg of the x-pinch was adjusted via the mass of its wires, allowing us to study the evolution of the foam during the experiment. Choice of the x-pinch materials, filters, and recording film determined the probing radiation, and hence the plasma/foam densities were resolved. Quantitative results will be discussed.

  10. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3

  11. The Effect of Varying the Fiber Diameter in Plasma-on-Wire (POW) Z-Pinch Configurations

    NASA Astrophysics Data System (ADS)

    Edison, N. S.; Etlicher, B.; Zehnter, P.; Attelan, S.; Rouillé, C.; Chuvatin, A. S.

    1994-03-01

    We are investigating the dependence of the fiber diameter in POW experiments on the dynamics of the implosion. Recent data from the JEX experiment at Troitsk suggest that the diameter of the fiber plays an important role in the dynamics of the implosion. In general, the smaller fiber diameter permits a more stable implosion possibly due to a higher impedance. High impedance in the fiber forces the current during the initial stages of the implosion to flow preferentially in the outer plasma shell and, thus, prevent the fiber from prematurely exploding. This suggests that there is a maximum diameter fiber that can be used to give a stable core during the compression phase of the implosion. In our experiment, an aluminum plasma jet is created from an exploding foil and then imploded onto a micron sized diameter copper wire (7-50 μm). In addition, an axial DC magnetic field (Bz0 ≤ 300 G) is applied externally to stabilize the imploding aluminum plasma and to study the interaction of the magnetic field with different diameter wires. We have found in previous experiments that the load configuration can significantly affect the magnetic field required to optimize the implosion. For example, peak x-ray production for a load consisting of a 25 μm copper wire occurs at fields of 150 G while the aluminum jet alone is optimized at 50 G. The pinch is driven by a 2 Ω, 0.1 TW generator (250 kA in 80 ns). Diagnostics include filtered PIN XRDs, time-resolved schlieren photography, and time-integrated multiple filtered pinholes.

  12. Comparative 2D Radiation MHD Simulations of Argon Gas Puff Z-pinch Plasma Experiments on the Sandia Z Machine Using the Radiative Diffusion and CRE Transport Models

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Thornhill Giuliani, J. W., Jr.; Apruzese, J. P.; Terry, R. E.; Davis, J.

    2001-10-01

    The recent development of the computationally efficient tabulated collisional radiative equilibrium (TCRE) radiation transport model(J.W. Thornhill, J.P. Apruzese, J. Davis, R.W. Clark, A.L. Velikovich, J.L. Giuliani, Jr., Y.K. Chong, K.G. Whitney, C. Deeney, C.A. Coverdale and F.L. Cochran, Phys. Plasmas 7, 3480 (2001).) has made possible full multidimensional radiation MHD simulations of hot dense Z-pinch plasmas with a realistic description of the non-LTE ionization dynamics and radiation transport physics. In this study, we focus on the implementation of the TCRE radiation transport model in the Mach2 2D radiation MHD code. An application of the model is made through a full dynamical simulation of an argon gas puff pinch driven by a circuit model of the Z generator. An analysis of the simulation, in particular, the K- and L-shell radiation yields, as well as the spectral and spatial characteristics of the radiation will be presented. In addition, a comparison of this multidimensional transport method will be made with the existing radiative diffusion model.

  13. Methods and results of studies of the radiation spectra of megampere Z-pinches at the angara-5-1 facility

    SciTech Connect

    Boldarev, A. S.; Bolkhovitinov, E. A.; Vichev, I. Yu.; Volkov, G. S.; Gasilov, V. A.; Grabovskii, E. V.; Gritsuk, A. N.; Dan’ko, S. A.; Zaitsev, V. I.; Novikov, V. G.; Oleinik, G. M.; Ol’khovskaya, O. G.; Rupasov, A. A.; Fedulov, M. V.; Shikanov, A. S.

    2015-02-15

    Methods and results of studies of the radiation spectra of high-current Z-pinches with different elemental compositions are presented. To examine a wide spectral range (E{sub hν} = 30–3000 eV), two diagnostics tools were used—a transmission grating and a reflecting mica crystal. The radiation characteristics of the pinch are determined by its elemental composition. For currents of 2–3 MA and low-Z elements (aluminum), the hard end of the radiation spectrum is represented by spectral lines with clearly pronounced K lines, while for high-Z elements (tungsten), the spectrum lies in the softer photon energy range and is quasi-continuous. Two methods of spectrum processing were used to determine the plasma parameters. The parameters of aluminum plasma were traditionally determined from the intensity ratios of the K lines taking into account the plasma transparency for these lines. The spectra of tungsten plasma were compared with the results of computer simulations of pinch compression with allowance for both magnetohydrodynamic and plasma radiation processes. The applicability of these methods of spectral analysis is discussed.

  14. Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).

    SciTech Connect

    Smith, David Lewis; Heames, Terence John; Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma

    2007-09-01

    This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.

  15. On the Evolution From Micrometer-Scale Inhomogeneity to Global Overheated Structure During the Intense Joule Heating of a z-Pinch Rod

    DOE PAGES

    Awe, T. J.; Yu, E. P.; Yates, K. C.; ...

    2017-02-21

    Ultrafast optical microscopy of metal z-pinch rods pulsed with megaampere current is contributing new data and critical insight into what provides the fundamental seed for the magneto-Rayleigh-Taylor (MRT) instability. A two-frame near infrared/visible intensified-charge-coupled device gated imager with 2-ns temporal resolution and 3-μm spatial resolution captured emissions from the nonuniformly Joule heated surfaces of ultrasmooth aluminum (Al) rods. Nonuniform surface emissions are consistently first observed from discrete, 10-μm scale, subelectronvolt spots. Aluminum 6061 alloy, with micrometer-scale nonmetallic resistive inclusions, forms several times more spots than 99.999% pure Al 5N; 5-10 ns later, azimuthally stretched elliptical spots and distinct strata (40-100more » μm wide by 10 μm tall) are observed on Al 6061, but not on Al 5N. In such overheat strata, aligned parallel to the magnetic field, we find that they are highly effective seeds for MRT instability growth. Our data give credence to the hypothesis that early nonuniform Joule heating, such as the electrothermal instability, may provide the dominant seed for MRT.« less

  16. Methods and results of studies of the radiation spectra of megampere Z-pinches at the angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Boldarev, A. S.; Bolkhovitinov, E. A.; Vichev, I. Yu.; Volkov, G. S.; Gasilov, V. A.; Grabovskii, E. V.; Gritsuk, A. N.; Dan'ko, S. A.; Zaitsev, V. I.; Novikov, V. G.; Oleinik, G. M.; Ol'khovskaya, O. G.; Rupasov, A. A.; Fedulov, M. V.; Shikanov, A. S.

    2015-02-01

    Methods and results of studies of the radiation spectra of high-current Z-pinches with different elemental compositions are presented. To examine a wide spectral range ( E hν = 30-3000 eV), two diagnostics tools were used—a transmission grating and a reflecting mica crystal. The radiation characteristics of the pinch are determined by its elemental composition. For currents of 2-3 MA and low- Z elements (aluminum), the hard end of the radiation spectrum is represented by spectral lines with clearly pronounced K lines, while for high- Z elements (tungsten), the spectrum lies in the softer photon energy range and is quasi-continuous. Two methods of spectrum processing were used to determine the plasma parameters. The parameters of aluminum plasma were traditionally determined from the intensity ratios of the K lines taking into account the plasma transparency for these lines. The spectra of tungsten plasma were compared with the results of computer simulations of pinch compression with allowance for both magnetohydrodynamic and plasma radiation processes. The applicability of these methods of spectral analysis is discussed.

  17. Specific features of the structure of the Z-pinch emitting region formed during the implosion of a foam-wire load at the ANGARA-5-1 facility

    SciTech Connect

    Mitrofanov, K. N. Grabovski, E. V.; Gritsuk, A. N.; Laukhin, Ya. N.; Aleksandrov, V. V.; Oleinik, G. M.; Medovshchikov, S. F.; Shevel'ko, A. P.

    2013-01-15

    Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100-200 {mu}m. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300-600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in

  18. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    NASA Astrophysics Data System (ADS)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  19. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    SciTech Connect

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-21

    The Sphinx machine{sup [1]} is a 6 MA, 1 {mu}S driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse{sup [2]}. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the {eta} parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  20. Channel entrance flow and its linear stability

    NASA Astrophysics Data System (ADS)

    Hifdi, Ahmed; Ouazzani Touhami, Mohammed; Khalid Naciri, Jaâfar

    2004-06-01

    In this work, we present a temporal linear stability analysis of developing channel flow. For the main flow, the considered solution is analytic. It is based on the hypothesis of small disturbances from fully developed flow and it is valid for intermediate Reynolds numbers. The disturbances are separated into symmetric and anti-symmetric eigenmodes of the velocity. We deal subsequently with the linear stability of this main flow, taking into account the nearly parallel flow assumption. The stability problem formulation leads to the Orr-Sommerfeld equation. This equation is then resolved using the Chebyshev spectral collocation method. The stability results depend essentially on the shape and amplitude of the velocity profiles imposed at the channel entry.

  1. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  2. Observations of altered instability structure for imploding z-pinch liners that are premagnetized with a uniform axial field

    NASA Astrophysics Data System (ADS)

    Awe, Thomas

    2013-10-01

    Magnetically driven implosions provide an energy-rich platform for inertial confinement fusion. The magnetized liner inertial fusion concept (MagLIF, Slutz et al., Phys. Plasmas 17, 056303 (2010)) uses a pulsed-power-driven metallic liner to compress and inertially confine preheated and premagnetized fusion fuel. The fuel is premagnetized with a uniform axial seed field Bz , 0 of 10 to 30 T, which is then compressed by the liner to nearly 1000 T. In the fuel, the ultra-high field reduces thermal conduction and enhances alpha-particle heating. Preheating the fuel to 100-300 eV eases requirements on liner-convergence; nonetheless, convergence ratios at stagnation of 20 or more may be necessary. The ability to maintain liner stability and uniformity through stagnation may ultimately determine the success of the MagLIF concept. The integrity of magnetically imploded liners is compromised both by electrode instabilities and by the magneto-Rayleigh Taylor (MRT) instability. Electrode instabilities form local perturbations that can mix liner material into the fuel prior to bulk compression. Recent experiments on the Z facility have shown that this instability is mitigated when the liner's ends implode onto a nylon ``cushion,'' which impedes local perturbation growth. Other recent experiments have, for the first time, studied the implosion dynamics of premagnetized (Bz , 0 > 0) MagLIF-type liners. When seeded with a 7 or 10 T axial field, these liners developed 3D-helix-like surface instabilities; such instabilities starkly contrast with the azimuthally-correlated MRT instabilities that have been consistently observed in many earlier unmagnetized (Bz , 0 = 0 T) experiments. Quite unexpectedly, the helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner surface for all but the earliest stages of the experiment. Thus far, no self-consistent model has reproduced this fundamentally 3D

  3. Stability of oscillatory two phase Couette flow

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.

    1993-01-01

    We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.

  4. Flow stabilization by subsurface phonons

    PubMed Central

    Hussein, M. I.; Biringen, S.; Bilal, O. R.; Kucala, A.

    2015-01-01

    The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid–structure interaction and a new paradigm for flow control. PMID:27547095

  5. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  6. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  7. Turbulent domain stabilization in annular flows

    SciTech Connect

    Hayot, F.; Pomeau, Y. Physique Statistique, Ecole Normale Superieure, 24, rue Lhomond, 75005 Paris )

    1994-09-01

    We point out a mechanism for stabilizing expanding turbulent domains in annular flows. This nonlocal mechanism is explained within the context of a Ginzburg-Landau equation for a real amplitude. The expression for the nonlocal term can be derived by analogy with existing calculations in Taylor-Couette flow for Taylor vortices. Numerical results are compared with experiment.

  8. On the stability of reverse flow vortices

    NASA Astrophysics Data System (ADS)

    Troshkin, O. V.

    2016-12-01

    The nonlinear stability of vortex zones of reverse flows in a plane-parallel ideal incompressible flow is proved. The zones originate at large values of a dimensionless parameter taken in the inflow part of the boundary, the so-called vorticity level. Positive or negative values of this parameter lead to a left- or right-hand oriented vortex, respectively.

  9. Stabilization of flow past a rounded cylinder

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  10. The sensitivity of stratified flow stability to base flow modifications

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Spedding, Geoffrey

    2016-11-01

    We present a novel theory that determines the sensitivity of linear stability to changes in the density or velocity of a base flow. The sensitivity is based on global direct and adjoint eigenmodes of the linearized Boussinesq equation, and is inspired by constant-density sensitivity analysis. The theory can be applied broadly to incompressible flows with small density variations, but it specifically provides new insight into the stability of density-stratified flows. Examples are given for the flows around a transverse thin plate at a Reynolds number of 30, a Prandtl number of 7.19, and Froude numbers of ∞ and 1. In the unstratified flow, the sensitivity is largest in the recirculation bubble; the stratified flow, however, exhibits high sensitivity in regions immediately upstream and downstream of the bluff body. Supported by the Viterbi Postdoctoral Fellowship, provided by the Viterbi School of Engineering at the University of Southern California.

  11. Phononic subsurface: Flow stabilization by crystals

    NASA Astrophysics Data System (ADS)

    Hussein, Mahmoud I.; Biringen, Sedat; Bilal, Osama R.; Kucala, Alec

    2015-11-01

    Flow control is a century-old problem where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport. In this work, we show that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept is demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting (TS) wave is introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, the TS wave is shown to stabilize, or destabilize, as needed. A theory of subsurface phonons is presented that provides an accurate prediction of this behavior without the need for a flow simulation. This represents an unprecedented capability to passively synchronize wave propagation across a fluid-structure interface and achieve favorable, and predictable, alterations to the flow properties. National Science Foundation, Grant No. 1131802.

  12. General Stability Criterion for Inviscid Parallel Flow

    ERIC Educational Resources Information Center

    Sun, Liang

    2007-01-01

    Arnol'd's second stability theorem is approached from an elementary point of view. First, a sufficient criterion for stability is found analytically as either -[mu][subscript 1] less than U[double prime]/U-U[subscript s] less than 0 or 0 less than U[double prime]/U-U[subscript s] in the flow, where U[subscript s] is the velocity at the inflection…

  13. General Stability Criterion for Inviscid Parallel Flow

    ERIC Educational Resources Information Center

    Sun, Liang

    2007-01-01

    Arnol'd's second stability theorem is approached from an elementary point of view. First, a sufficient criterion for stability is found analytically as either -[mu][subscript 1] less than U[double prime]/U-U[subscript s] less than 0 or 0 less than U[double prime]/U-U[subscript s] in the flow, where U[subscript s] is the velocity at the inflection…

  14. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  15. Stability of Flow around a Cylinder in Plane Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Ben, An-Qing; Fluid Mechanics Research Team

    2013-11-01

    Simulation of Navier-Stokes equations is carried out to study the stability of flow around a cylinder in plane Poiseuille flow. The energy gradient method is employed to analyze the mechanism of instability of cylinder wake. The ratio of the channel width to the cylinder diameter is 30, and the Reynolds number based on the cylinder diameter and incoming centerline velocity is 26 and 100, respectively. The incoming flow is given as being laminar. It is found that the instability of the cylinder wake, starting near the front stagnation point upstream. The recirculation zone behind the cylinder has no effect on the stability of the wake. In the wake behind the recirculation zone, the flow stability is controlled by the energy gradient in the shear layer along the two sides of the wake. At high Re, the energy gradient of averaged flow in the channel interacts with the wake vortex, strengthening the wake vortex structure. Due to the large ratio of the channel width to the cylinder diameter, the disturbance caused by the cylinder mainly occurs in the vicinity of the centerline and has little effect on the flow near the wall. The velocity profile on the two sides of the cylinder wake in the downstream channel remains laminar (parabolic profile). Professor in Fluid Mechanics; AIAA Associate Fellow.

  16. Flow structure and stability analysis for back-step flow

    NASA Astrophysics Data System (ADS)

    Mihaiescu, Adrian; Wesfreid, Jose Eduardo

    2005-11-01

    The structure and stability of the flow over a backward-facing step are studied using direct numerical simulation. Two-dimensional and three-dimensional simulations are conducted at a Reynolds number between 50 and 600. The reattachment length and velocity profiles are in agreement with the experimental and numerical results reported by J.-F. Beaudoin et al.(2003). The Rayleigh discriminant and the Gortler number are calculated for the stability study. Present results identify the same regions of instability as previously found by the two-dimensional simulations of Beaudoin et al., but the values of both Rayleigh discriminant and Gortler number are significantly different. Two Eckman structures close to the lateral walls, followed inside the flow domain by two Gortler structures, located downstream the step are identified. It is shown that other Gortler structures appear when a spanwise periodic perturbation of the inflow velocity is imposed. However, these longitudinal structures depend on the inflow conditions.

  17. Tearing Mode Stability with Sheared Toroidal Flows

    NASA Astrophysics Data System (ADS)

    White, Ryan; Coppi, Bruno

    2016-10-01

    Toroidal plasma flow induced by neutral beam heating has been found to increase the stability of tearing modes in tokamak plasmas. The need to extrapolate current (experimentally-based) knowledge of tearing mode onset to future machines, requiresa better understanding of the essential physics. We consider the physics of flow near the rational surfaces. For realistic flow profiles, the velocity shear near the rational surface can be treated as a perturbation, and is found to amplify the dominant stabilizing effect of magnetic curvature. This effect can be seen using a cylindrical model if large-aspect-ratio corrections to the magnetic curvature are incorporated. On the other hand, the physical effects of toroidal rotation are completely absent in a cylinder, and require a fully-toroidal calculation to study. The toroidal rotation near the rational surface is found to couple to a geometrical parameter which vanishes for up-down symmetric profiles. Physically, the dominant effects of rotation arise from a Coriolis force, leading to flow directional dependence. This work is supported by the US DOE.

  18. Control of jet flow mixing and stabilization

    NASA Astrophysics Data System (ADS)

    Yuan, Chih-Chung

    This dissertation examines the effect of feedback controllers on mixing and stabilization of unstable two-dimensional jet flows. The mixing enhancement control law uses a pair of actuators at the jet nozzle exit acting on the shear layers near the corners by blowing and subtracting fluid in an anti-symmetric fashion with a zero net mass flux. The sensor measures the pressure difference across the nozzle diameter and is either located at downstream or at the nozzle exit with time delay. If the length/time scale is long enough and the feedback gain is sufficiently large, this control strategy will provide a constant vortex generation pattern that successfully improves mixing. The evolution of a passive scalar and mixing of particles with mass in jet flows are visualized and quantified. Probability Density Functions based on the particle/scalar distribution are constructed as measures of mixing. The stabilization control law employs filaments with distributed sensors and actuators in the jet flow. The sensors measure the local pressure difference across nozzle diameter and the actuators act as a reaction body force in the normal direction. The instability is damped with sufficiently large feedback gain. The Reynolds numbers of jet flows studied are 100 and 150 that are in the transient range. The results are obtained by means of Direct Numerical Simulation. The Navier-Stokes equations are spatially discretized by second order finite-difference method and advanced in time using a fractional step technique with a hybrid Runge-Kutta/Crank-Nicolson time discretization. This hybrid technique is developed to gain a larger time step while numerical stability is maintained. Stretched and staggered grids are used in both stream-wise and normal directions. The simulation results are validated by comparison with previous works and through self-similar analysis.

  19. Stability Analysis of Flow Past a Wingtip

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2015-11-01

    Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  20. Stability of Flow Through Collapsible Tubes

    NASA Astrophysics Data System (ADS)

    Hamadiche, M.; Gad-El-Hak, M.

    2000-11-01

    The stability of the Hagen--Poiseuille flow of a Newtonian fluid in an incompressible, collapsible, viscoelastic tube is determined using linear stability analysis. The temporal stability of the system subjected to infinitesimal axisymmetric or non-axisymmetric disturbances is considered. A novel numerical strategy is introduced to study the stability of the coupled fluid--structure system. The strategy alleviates the need for an initial guess and thus ensuring that all the unstable modes within a given closed region in the complex eigenvalue plane will be found. The parameters of the system are chosen such that it is stable if the duct is not allowed to collapse, in this way the unstable modes found are expected to be unique to collapsible tubes. Three different unstable modes are found and the present results are in excellent agreement with the experiments of Bertram and Godbole (J. Fluids & Structures 9, pp. 257--277,1995). Two of the unstable modes have approximately the same frequency which is about a third of the frequency of the third mode. Moreover, the high-frequency mode is non-axisymmetric while one of the low-frequency modes is axisymmetric and the other one non-axisymmetric. The variation of all three unstable modes with the pliability of the duct and the other control parameters of the system will be discussed.

  1. On stability and turbulence of fluid flows

    NASA Technical Reports Server (NTRS)

    Heisenberg, Werner

    1951-01-01

    This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.

  2. Stability of fluid flow in a cylindrical annulus

    NASA Technical Reports Server (NTRS)

    Ludwieg, H.

    1984-01-01

    Helical flow in an annulus between two coaxial cylinders is investigated with regard to its stability against the formation of helical vortices of the type known as Taylor's annular vortices. Assuming the annulus to be small and the velocities to vary linearly with radius, it is shown that the problem can be reduced to the classical case of flow between two rotating cylinders. An appropriate stability criterion for helical flows is derived from Rayleigh's stability criterion applicable to such flows.

  3. Patterns and stability of a whirlpool flow

    NASA Astrophysics Data System (ADS)

    Carrión, Luis; Herrada, Miguel A.; Shtern, Vladimir N.; María López-Herrera, José

    2017-04-01

    This numerical study reveals stable multi-eddy patterns of a steady axisymmetric air-water flow driven by the rotating bottom disk in a vertical sealed cylindrical container. As rotation strength Re increases, eddies emerge, coalesce, separate, and disappear in both air and water. The topological scenario varies with water volume fraction H w according to the results obtained for H w = 0.3, 0.5, and 0.8. Interesting features are: (a) zipper-like chains of air and water eddies forming as the interface bends and (b) bubble-ring air eddies existing in the Re ranges specified in the paper. The stability analysis, performed with the help of a novel efficient technique for two-fluid flows, shows that these multi-eddy motions are stable. The shear-layer instability develops as the interface approaches either the top or bottom of the container and some eddies vanish. The physical reasoning behind the eddy formation and the flow instability is provided. The results are of fundamental interest and can have applications in bioreactors.

  4. Stability analysis for laminar flow control, part 1

    NASA Technical Reports Server (NTRS)

    Benney, D. J.; Orszag, S. A.

    1977-01-01

    The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.

  5. Hydrodynamic stability of three-dimensional homogeneous flow topologies

    NASA Astrophysics Data System (ADS)

    Mishra, Aashwin A.; Girimaji, Sharath S.

    2015-11-01

    This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow.

  6. Hydrodynamic stability of compressible plane Couette flow

    SciTech Connect

    Chagelishvili, G.D. Department of Plasma Physics, Space Research Institute, str. Profsoyuznaya 84 Rogava, A.D. ); Segal, I.N. Department of Plasma Physics, Space Research Institute, str. Profsoyuznaya 84/32, 117810 Moscow )

    1994-12-01

    The evolution of two-dimensional spatial Fourier harmonics in a compressible plane Couette flow is considered. A new mechanism of energy exchange between the mean flow and sound-type perturbations is discovered.

  7. Local Stability for an Exact Steady Purely Azimuthal Equatorial Flow

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia; Martin, Calin Iulian

    2016-12-01

    The aim of this paper is to present a short-wavelength stability analysis of an exact steady equatorial flow which does not vary in the azimuthal direction, but has an arbitrary variation with depth. We show that for some velocity profiles of the basic flow, this flow is locally stable to short-wavelength perturbations.

  8. Studies on dispersive stabilization of porous media flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2016-08-01

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types of interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a "turning point" Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.

  9. Studies on dispersive stabilization of porous media flows

    SciTech Connect

    Daripa, Prabir Gin, Craig

    2016-08-15

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types of interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.

  10. Elementary stratified flows with stability at low Richardson number

    SciTech Connect

    Barros, Ricardo; Choi, Wooyoung

    2014-12-15

    We revisit the stability analysis for three classical configurations of multiple fluid layers proposed by Goldstein [“On the stability of superposed streams of fluids of different densities,” Proc. R. Soc. A. 132, 524 (1931)], Taylor [“Effect of variation in density on the stability of superposed streams of fluid,” Proc. R. Soc. A 132, 499 (1931)], and Holmboe [“On the behaviour of symmetric waves in stratified shear layers,” Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability characteristics of stratified shear flows with sharp density transitions. When such flows are confined in a finite domain, it is shown that a large shear across the layers that is often considered a source of instability plays a stabilizing role. Presented are simple analytical criteria for stability of these low Richardson number flows.

  11. Elementary stratified flows with stability at low Richardson number

    NASA Astrophysics Data System (ADS)

    Barros, Ricardo; Choi, Wooyoung

    2014-12-01

    We revisit the stability analysis for three classical configurations of multiple fluid layers proposed by Goldstein ["On the stability of superposed streams of fluids of different densities," Proc. R. Soc. A. 132, 524 (1931)], Taylor ["Effect of variation in density on the stability of superposed streams of fluid," Proc. R. Soc. A 132, 499 (1931)], and Holmboe ["On the behaviour of symmetric waves in stratified shear layers," Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability characteristics of stratified shear flows with sharp density transitions. When such flows are confined in a finite domain, it is shown that a large shear across the layers that is often considered a source of instability plays a stabilizing role. Presented are simple analytical criteria for stability of these low Richardson number flows.

  12. Stability of stagnation via an expanding accretion shock wave

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-15

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  13. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  14. Implosion dynamics and K-shell x-ray generation in large diameter stainless steel wire array Z pinches with various nesting configurations

    SciTech Connect

    Jones, Brent; Coverdale, Christine A.; Deeney, Christopher; Sinars, Daniel B.; Waisman, Eduardo M.; Cuneo, Michael E.; Ampleford, David J.; LePell, P. David; Cochrane, Kyle R.; Thornhill, J. Ward; Apruzese, J. P.; Dasgupta, Arati; Whitney, Kenneth G.; Clark, Robert W.; Chittenden, Jeremy P.

    2008-12-15

    Nested stainless steel wire array variations were investigated on the 20 MA Z machine [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. In order to reach experimentally observed electron temperatures near 3.8 keV and excite the K shell, these {approx}6.7 keV photon energy x-ray sources must be of large initial diameter (45-80 mm) which poses a concern for magnetic Rayleigh-Taylor instability growth. We discuss the implosion dynamics in these large diameter wire arrays, including an analysis of the ablation phase indicating that the prefill material is snowplowed at large radius. Nested array configurations with various mass and radius ratios are compared for instability mitigation and K-shell scaling. Degradation of the K-shell x-ray power and yield was observed for shots that did not have simultaneous implosion of the outer and inner wire arrays. Shots that were designed per this constraint exhibited K-shell yield scaling consistent with the model of J. W. Thornhill et al. [IEEE Trans. Plasma Sci. 34, 2377 (2006)] which had been benchmarked to single array results. This lends confidence to K-shell yield predictions using this model for future shots on the refurbished Z machine. Initial results employing a triple nested wire array to stabilize the large diameter implosion are also reported.

  15. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  16. Linear stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1992-01-01

    A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.

  17. Magnetically insulated ion flow theory

    SciTech Connect

    Ottinger, P.F.; Schumer, J.W.

    2006-06-15

    Initiation of an anode plasma and ion emission into a magnetically insulated transmission line can cause serious current losses unless the ions are magnetically insulated as well as the electrons. A model for magnetically insulated ion flow in a vacuum transmission line is developed. Particle-in-cell simulations are presented that show that this model accurately predicts properties of this flow. The model is applied to determine the current required to magnetically insulate ion flow for a given voltage and vacuum line impedance. Relevance of this work to system designs for Z-pinch-driven inertial confinement fusion is discussed.

  18. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, K.; Chow, C.

    1992-01-01

    The objectives of this paper are to: (1) develop both analytical and numerical tools that can be used to predict the onset of instability and subsequently to simulate the transition process by which the originally laminar flow evolves into a turbulent flow; and (2) conduct the preliminary investigations with the purpose of understanding the mechanisms of the vortical structures of the compressible flow between tow concentric cylinders.

  19. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, K.; Chow, C.

    1992-01-01

    The objectives of this paper are to: (1) develop both analytical and numerical tools that can be used to predict the onset of instability and subsequently to simulate the transition process by which the originally laminar flow evolves into a turbulent flow; and (2) conduct the preliminary investigations with the purpose of understanding the mechanisms of the vortical structures of the compressible flow between tow concentric cylinders.

  20. Stability of erythrocyte suspensions layered on stationary and flowing liquids

    NASA Technical Reports Server (NTRS)

    Omenyi, S. N.; Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    The apparent stability of erythrocyte suspensions layered on stationary and flowing Ficoll solutions was studied considering the effects of particle concentration, type and size, and the different flow rates of the particle suspensions and chamber liquid. The data from the flowing system were empirically fitted and, when extrapolated to zero chamber liquid flow rate, gave values comparable to the data from the stationary system, thus confirming the validity of the data and our approach to obtain that data.

  1. Stability of flows in fluidized beds

    SciTech Connect

    Not Available

    1993-04-01

    We study the linearized stability of the state of uniform fluidization, within the context of the theory of mixtures. The mixture is assumed to be made up of a classical linearly viscous fluid mixed with solid particles. In marked departure from most of the previous studies, we model the solid as a granular material and assume a constitutive relation that stems from classical motions in continuum mechanics. The linearized stability analysis of the state of uniform fluidization, in general, leads to an eighth order equation for the characteristic whose root implies instability, when positive. We find that the characteristic equation can be factored and one of the factors is precisely the equation that governs the stability when we use a simplified analysis akin to that of the earlier study of Anderson and Jackson.

  2. On stability of premixed flames in stagnation - Point flow

    NASA Technical Reports Server (NTRS)

    Sivashinsky, G. I.; Law, C. K.; Joulin, G.

    1982-01-01

    A quantitative description of flame stabilization in stagnation-point flow is proposed. Asymptotic and stability analyses are made for a flame model where the density of the gas is assumed to be constant and the reaction zone is assumed to be narrow and concentrated over the flame front. It is shown that, if blowing is sufficiently strong, the corrugations disappear and a plane flame results. The phenomena cannot be fully described by means of classical linear stability analysis.

  3. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.

    2016-05-01

    Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter family of regular Sturm-Liouville problems, which can determine the stability boundaries more efficiently than solving the Taylor-Goldstein equation directly. By arguing for the non-existence of a marginally unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh-Fjørtoft criterion for unstratified shear flows.

  4. Z-Pinch Plasma Neutron Sources

    DTIC Science & Technology

    2006-03-24

    6. 0. A. Anderson, W. R. Baker, S. A. Colgate , H. P. Furth, J. Ise, R. V. Pyle and R. E. Wright, "Neutron production in a linear deuterium pinch...34 Phys. Rev. 109, 612 (1958). 7. 0. A. Anderson, W. R. Baker, S. A. Colgate , H. P. Furth, J. Ise, and R. V. Pyle, "Neutron production in linear deuterium

  5. Estimating Z-Pinch computing resources.

    SciTech Connect

    Brunner, Thomas A.

    2007-04-01

    The Z facility at Sandia National Laboratories produces high energy density environments. Computer simulations of the experiments provide key insights and help make the most efficient use of the facility. This document estimates the computer resources needed in order to support the experimental program. The resource estimate is what we would like to have in about five years and assumes that we will have a robust, scalable simulation capability as well as enough physicists to run the simulations.

  6. Microfabricated wire arrays for Z-pinch.

    SciTech Connect

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  7. On the linear stability of compressible plane Couette flow

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1991-01-01

    The linear stability of compressible plane Couette flow is investigated. The correct and proper basic velocity and temperature distributions are perturbed by a small amplitude normal mode disturbance. The full small amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instability can occur, although the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wavespeed of the disturbances approaches the velocity of either of the walls, and these regimes are also analyzed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.

  8. On the stability of compressible flow past axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Spall, R. E.

    1991-01-01

    Compressible linear stability theory for axisymmetric flows is presented. The theory is applied to flow past a cylinder and a sharp cone at a Mach number of 5 with adiabatic wall conditions. The effect of transverse curvature and body divergence is studied. It is found that transverse curvature has a stabilizing influence on axisymmetric (first and second mode) disturbances while it has a destabilizing influence on the asymmetric (oblique first mode) disturbances. The body divergence effects are stabilizing for both symmetric and asymmetric disturbances. Comparisons made with the results of planar stability theory show that, for a cylinder, curvature effects become more pronounced with increasing distance along the cylinder. For a sharp cone, these effects become less significant further away from the cone tip since the body radius increases faster than the growth of the boundary layer. The effect of cone angle on stability is also studied.

  9. Stability of stratified two-phase flows in inclined channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  10. Stability of low-speed reacting flows

    NASA Technical Reports Server (NTRS)

    Mahalingham, S.; Cantwell, B. J.; Ferziger, J. H.

    1991-01-01

    Small perturbation, linear, inviscid stability theory is developed and applied to coflowing chemically reacting jets. A necessary condition for the existence of axisymmetric and azimuthal instabilities is derived. The eigenfunction structure provides considerable insight into the underlying physical mechanism. In nonpremixed cases, high temperature tends to occur in regions where the shear layer tries to roll up; this reduces the available momentum, suppressing the growth of instabilties. It is found that chemical reaction during the growth of instabilities is unimportant, suggesting that this effect could be ignored in a viscous theory. Both nonpremixed and premixed flames in axisymmetric shear layers are generally more stable to small perturbations than in the corresponding cold case. However, while for nonpremixed flames the frequency of the most amplified wave decreases with increasing heat release, the opposite occurs for premixed cases.

  11. The influence of preferential flow on slope stability

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom A.; Bakker, Mark

    2013-04-01

    Slope failures triggered by heavy rainfall are common geological disasters around the world, because rainfall caused pore-pressure increase will reduce the soil shear strength and influence the slope stability. Physically-based subsurface hydrological models are frequently integrated with slope stability analysis methods to evaluate which areas are susceptible for landslides. In structured soil, preferential flow can change the pattern of the infiltration process, resulting in more rapid and deeper water movement. For highly-heterogeneous slopes, the influence of preferential flow on the distribution of pore water pressure and slope stability has not been studied thoroughly yet. In this study, the COMSOL Multiphysics finite element software package is used to model the hydrological and soil mechanical processes. A two-dimensional hydro-mechanical model framework composed of a subsurface flow module and a slope stability analysis module was built to evaluate the influence of preferential flow on subsurface flow and consequent slope stability. The subsurface flow module consists of a dual-permeability model, which can be used to quantify the influence of preferential flow on distribution and timing of the pressure head in a slope. The dual-permeability model divides the soil into matrix domain and preferential flow domain, and the water flow is described by two coupled Richard's equations. The slope stability analysis module is composed of an elastic solid mechanics model and a local factor of safety algorithm. The total principle stress distribution is calculated by a solid mechanics module for plane-strain elastic analyses. The local factor of safety is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. In this study the focus will be on the temporal and spatial distribution of the local factor of safety. Eventually, the influence of preferential flow on

  12. flowVS: channel-specific variance stabilization in flow cytometry.

    PubMed

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-07-28

    Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances. We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation are optimally selected by Bartlett's likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test. With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays. The homogeneity of variance in cell populations across FC samples is desirable when extracting features uniformly and comparing cell populations with

  13. The inviscid stability of supersonic flow past axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).

  14. The inviscid stability of supersonic flow past axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).

  15. Stabilization of flow past a cylinder with rounded corners

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Samtaney, Ravi

    2015-11-01

    We present results of global linear stability analysis for flow past a cylinder in the low Reynolds number regime Re = 50 - 110 . The four corners of the square cylinder are rounded with a radius of curvature R+ = R / D in which R is the rounding radius and D is the cylinder diameter. Analysis is carried out for R+ = 0 . 00 (square cylinder with sharp corners) to R+ = 0 . 50 (circular cylinder) to investigate its effect on the stability characteristics of the flow. The results reveal that the flow may be stabilized by the rounding of the corners for Re <= 100 , up to the minimum point beyond which further rounding has a destabilizing effect on the flow. The stabilization is less effective as the Reynolds number increases and for Re = 110 the square (resp. circular) cylinder has the least (resp. most) unstable growth rate. As R+ increases, the peak of the perturbation kinetic energy growth shifts closer to the cylinder and rapidly damps in the downstream region. The perturbation kinetic energy budget is examined and with the largest contribution due to the transfer of energy from the shear of the base flow. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01.The IBM Blue Gene/P Shaheen at KAUST was utilized for the simulations.

  16. The linear and nonlinear stability of thread-annular flow.

    PubMed

    Walton, Andrew G

    2005-05-15

    The surgical technique of thread injection of medical implants is modelled by the axial pressure-gradient-driven flow between concentric cylinders with a moving core. The linear stability of the flow to both axisymmetric and asymmetric perturbations is analysed asymptotically at large Reynolds number, and computationally at finite Reynolds number. The existence of multiple regions of instability is predicted and their dependence upon radius ratio and thread velocity is determined. A discrepancy in critical Reynolds numbers and cut-off velocity is found to exist between experimental results and the predictions of the linear theory. In order to account for this discrepancy, the high Reynolds number, nonlinear stability properties of the flow are analysed and a nonlinear, equilibrium critical layer structure is found, which leads to an enhanced correction to the basic flow. The predictions of the nonlinear theory are found to be in good agreement with the experimental data.

  17. Complex eigenvalues for the stability of Couette flow

    NASA Technical Reports Server (NTRS)

    Diprima, R. C.; Hall, P.

    1983-01-01

    The eigenvalue problem for the linear stability of Couette flow between rotating concentric cylinders to axisymmetric disturbances is considered. It is shown by numerical calculations and by formal perturbation methods that when the outer cylinder is at rest there exist complex eigenvalues corresponding to oscillatory damped disturbances. The structure of the first few eigenvalues in the spectrum is discussed. The results do not contradict the principle of exchange of stabilities, namely, for a fixed axial wavenumber the first mode to become unstable as the speed of the inner cylinder is increased is nonoscillatory as the stability boundary is crossed.

  18. Electron Flow Stability in Magnetically Insulated Vacuum Transmission Lines

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R.; Stygar, W. A.

    2010-11-01

    We evaluate the stability of electron current flow in high power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic TM waves [1] which is solved numerically to obtain growth rates for unstable modes in various density profiles. These results are compared with 2D particle-in-cell (PIC) simulations of electron flow in high power MITLs. We find that the macroscopic properties (charge and current density, self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar flow model of [1]. Idealized simulations of sheared flow in electron sheaths show that unstable, sharp-cutoff radial density profiles rapidly evolve into stable flows with a more gradual density gradient. Growth rates for both long (diocotron) and short (magnetron) wavelength instabilities observed in the simulations agree well with the dispersion analysis. We conclude that electron sheaths in high power 2D MITL flows form stable profiles and that sheath expansion is not caused by flow instability. Subsequently, we investigate the impact of electrode plasma formation and evolution on sheath stability and gap closure using PIC simulations. We compare MITL simulations with experimental measurements. [1] R. C. Davidson, et al., Phys. Fluids 27, 2332 (1984).

  19. The linear stability of Hunt-Rayleigh-Bénard flow

    NASA Astrophysics Data System (ADS)

    Qi, Tian-Yu; Liu, Chan; Ni, Ming-Jiu; Yang, Juan-Cheng

    2017-06-01

    The stability of a pressure driven flow in a duct heated from below and subjected to a vertical magnetic field (Hunt-Rayleigh-Bénard flow) is studied. We use the Chebyshev collocation approach to solve the eigenvalue problem for the small-amplitude perturbations. It is demonstrated that the magnetic field can stabilize the flow, while the temperature field can disturb the flow. There exists a threshold for the Hartmann number below which the growth rate changes with the Prandtl number non-monotonously (first increases and then decreases) with a critical Prandtl number for the maximum growth rate. By comparing the R e - α neutral curves at different Rayleigh numbers, we find that the critical Reynolds number decreases with the increase in the Rayleigh number, which has an obvious influence on the long-wave instability and a little influence on the short-wave instability. The dominant mode of the long-wave instability changes from the boundary layer instability to the inflectional instability with the increase in the growth rate, which forms a new flow map. We also compare the R a - α curves and find that the critical Rayleigh number decreases with the increase in the Reynolds number. The obtained results gain an insight into the flow stability affected by the temperature field and the magnetic field.

  20. Inertialess multilayer film flow with surfactant: Stability and traveling waves

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Blyth, M. G.

    2016-10-01

    Multilayer film flow down an inclined plane in the presence of an insoluble surfactant is investigated with particular emphasis on determining flow stability and investigating the possibility of traveling-wave solutions. The investigation is conducted for two or three layers under conditions of Stokes flow and, separately, on the basis of a long-wave assumption. A normal mode linear stability analysis for Stokes flow shows that adding surfactant to one of the film surfaces can destabilize an otherwise stable flow configuration. For the long-wave system, periodic traveling-wave branches are detected and traced, revealing solutions with pulselike solitary waves on each film surface traveling in phase with each other, traveling waves with capillary ridge structures, and solutions with two of the film surfaces almost in contact. Time-periodic traveling-wave solutions are also found. The stability of the traveling waves is determined by solving initial-value problems and by computing eigenvalue spectra. Boundary element simulations for Stokes flow confirm the existence of traveling waves outside the long-wave regime.

  1. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  2. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  3. Remarks on the stability analysis of reactive flows

    NASA Technical Reports Server (NTRS)

    Scheurer, B.

    1987-01-01

    A simple model of compressible reacting flow is studied. First, a dispersion relation is derived for the linearized problem making a distinction between frozen and equilibrium sound speed. Second, the stability of the Von Neumann-Richtmyer scheme applied to this model is studied. A natural generalization of the C.F.L. condition is found.

  4. Stability sensitivity to gravity and base flow density modifications

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Spedding, Geoffrey

    2015-11-01

    We present the novel theory of Boussinesq stability sensitivity to the gravitational force and to base flow density modifications. Given a steady-state flow with small density variations, the sensitivity of the stability eigenvalues is computed from the direct and adjoint modes of the linearized Boussinesq equations. Various combinations of the density and velocity components of these modes reveal multiple production and transport mechanisms that contribute to the eigenvalue sensitivity. This sensitivity theory is largely inspired by the study of stable density stratification, which can have seemingly contradictory effects on flow stability. On one hand, stable stratification increases the coherence and persistence of turbulent wakes; on the other hand, it can destabilize vortex structures, such as vortex pairs and rings. We present an application of the sensitivity theory to a stably density-stratified flow around a flat plate at a 90 degree angle of attack. The global mode analysis reveals lightly damped lee wave undulations, and the sensitivity theory shows that regions both immediately upstream and immediately downstream of the plate contribute most significantly to the stability sensitivity. This research was supported by the Viterbi Postdoctoral Fellowship, provided by the Viterbi School of Engineering at the University of Southern California.

  5. Global stability of the focusing effect of fluid jet flows.

    PubMed

    Montanero, J M; Rebollo-Muñoz, N; Herrada, M A; Gañán-Calvo, A M

    2011-03-01

    The global stability of the steady jetting mode of liquid jets focused by coaxial gas streams is analyzed both theoretically and experimentally. Numerical simulations allow one to identify the physical mechanisms responsible for instability in the low viscosity and very viscous regimes of the focused liquid. The characteristic flow rates for which global instability takes place are estimated by a simple scaling analysis. These flow rates do not depend on the pressure drop (energy) applied to the system to produce the microjet. Their dependencies on the liquid viscosity are opposite for the two extremes studied: the characteristic flow rate increases (decreases) with viscosity for very low (high) viscosity liquids. Experiments confirmed the validity of these conclusions. The minimum flow rates below which the liquid meniscus becomes unstable are practically independent of the applied pressure drop for sufficiently large values of this quantity. For all the liquids analyzed, there exists an optimum value of the capillary-to-orifice distance for which the minimum flow rate attains a limiting value. That limiting value represents the lowest flow rate attainable with a given experimental configuration in the steady jetting regime. A two-dimensional stability map with a high degree of validity is plotted on the plane defined by the Reynolds and capillary numbers based on the limiting flow rate.

  6. Stability of flow over axisymmetric bodies with porous suction strips

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Reed, H. L.

    1982-01-01

    Linear triple deck, closed form solutions for mean-flow quantities are developed for axisymmetric incompressible flow past a body with porous strips. The solutions account for upstream influence and are linear superpositions of the flow past the body without suction plus the perturbations due to the suction strips. Flow past the suctionless body is calculated using the Transition Analysis Program System, and a simple linear optimization scheme to determine number, spacing, and mass flow rate through the strips on an axisymmetric body is developed using the linear, triple-deck, closed-form solutions. The theory is demonstrated by predicting optimal strip distributions, and the effect of various adverse pressure-gradient situations on stability is studied.

  7. Efficient polynomials based method for a temporal stability investigation in a swirling flow stability problem

    NASA Astrophysics Data System (ADS)

    Dragomirescu, Florica Ioana

    2012-11-01

    The main motivation for a temporal stability investigation of initially localized perturbations in a swirling flow stability problem consists in pointing out the critical frequencies at which instability can sets in, an important key in predicting and understanding the flow particularities. The linearized disturbance equations define a second order ordinary differential equation with non-constant coefficients which we solve in order to determine the critical frequency in different physical parameters spaces. A non-classical polynomials based spectral method is proposed for the numerical treatment of the resulting generalized eigenvalue problem governing the stability of the flow. Numerical investigation are performed in the inviscid case for a moderate level of swirl and dominant temporal instability modes are retrieved for each Fourier component pair. The obtained values of the growth rate associated with the most amplified wavenumber are compared with existing inviscid temporal instability evaluations and good agreements are found.

  8. Variational necessary and sufficient stability conditions for inviscid shear flow

    PubMed Central

    Hirota, M.; Morrison, P. J.; Hattori, Y.

    2014-01-01

    A necessary and sufficient condition for linear stability of inviscid parallel shear flow is formulated by developing a novel variational principle, where the velocity profile is assumed to be monotonic and analytic. It is shown that unstable eigenvalues of Rayleigh's equation (which is a non-self-adjoint eigenvalue problem) can be associated with positive eigenvalues of a certain self-adjoint operator. The stability is therefore determined by maximizing a quadratic form, which is theoretically and numerically more tractable than directly solving Rayleigh's equation. This variational stability criterion is based on the understanding of Kreĭn signature for continuous spectra and is applicable to other stability problems of infinite-dimensional Hamiltonian systems. PMID:25484600

  9. Stability of Branched Flow from a Quantum Point Contact

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Heller, Eric J.

    2013-12-01

    In classically chaotic systems, small differences in initial conditions are exponentially magnified over time. However, it was observed experimentally that the (necessarily quantum) “branched flow” pattern of electron flux from a quantum point contact (QPC) traveling over a random background potential in two-dimensional electron gases remains substantially invariant to large changes in initial conditions. Since such a potential is classically chaotic and unstable to changes in initial conditions, it was conjectured that the origin of the observed stability is purely quantum mechanical, with no classical analog. In this Letter, we show that the observed stability is a result of the physics of the quantum point contact and the nature of the experiment. We show that the same stability can indeed be reproduced classically, or quantum mechanically. In addition, we explore the stability of the branched flow with regards to changes in the eigenmodes of the quantum point contact.

  10. The stabilizing effect of compressibility in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1994-01-01

    Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.

  11. Stability of a rivulet in a co-flowing microchannel

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel A.; Mohamed, Ahmed S.; Montanero, Jose M.; Ganan-Calvo, Alfonso

    2014-11-01

    We here analyze the stability of a gas (liquid) rivulet on a hydrophobic (hydrophilic) strip along one of the inner sides of a quadrangular microfluidic channel where a liquid (gas) co-flows. The results essentially differ from those of co-flowing cylindrical capillary jets because the contact-line-anchorage conditions affect the rivulet's instability nature. The temporal stability analysis shows that the rivulet becomes unstable not only for (unperturbed) contact angles larger than 90° (as can be expected) but also for values smaller than that angle. The maximum growth factor exhibits a non-monotonic dependence with respect to the Reynolds number (i.e., the viscosities). In fact, there are intervals of that parameter where the fluid system becomes unstable, while all the perturbations are damped outside that interval. The gaseous rivulet does not stabilize as the Reynolds number decreases, which means that it can be unstable even in the Stokes limit and for contact angles less than 90°. In addition, the stability of a flowing liquid rivulet is not determined by its contact angle exclusively (as occurs in the static case), but by the Reynolds number as well. Liquid rivulets with contact angles less than 90? can be unstable for sufficiently high Reynolds numbers. Partial support from the Ministry of Science and Education, Junta de Extremadura, and Junta de Andalucía (Spain) through Grants Nos. DPI2010-21103, GR10047, and P08-TEP-04128, respectively, is gratefully acknowledged.

  12. Stability of steam-water countercurrent stratified flow

    SciTech Connect

    Lee, S C

    1985-10-01

    Two flow instabilities which limit the normal condensation processes in countercurrent stratified steam-water flow have been identified experimentally: flooding and condensation-induced waterhammer. In order to initiate condensation-induced waterhammer in nearly horizontal or moderately-inclined steam/subcooled-water flow, two conditions, the appearance of a wavy interface and complete condensation of the incoming steam, are necessary. Analyses of these conditions are performed on a basis of flow stability and heat transfer considerations. Flooding data for several inclinations and channel heights are collected. Effects of condensation, inclination angle and channel height on the flooding characteristics are discussed. An envelope theory for the onset of flooding in inclined stratified flow is developed, which agrees well with the experimental data. Some empirical information on basic flow parameters, such as mean film thickness and interfacial friction factor required for this theory are measured. The previous viewpoints on flooding appear not to conflict with the present experimental data in nearly horizontal flow but the flooding phenomena in nearly vertical flow appear to be more complicated than those described by these viewpoints because of liquid droplet entrainment.

  13. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    SciTech Connect

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Gilgenbach, R. M.; Hoff, B. W.

    2015-08-15

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property in the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.

  14. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  15. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  16. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  17. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  18. Stability analysis of wall driven nanofluid flow through a tube

    NASA Astrophysics Data System (ADS)

    Hossain, M. Mainul; Khan, M. A. H.

    2017-06-01

    Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.

  19. A Nonlinear Stability Theory for Plane Boundary-Layer Flows

    DTIC Science & Technology

    1980-07-01

    AD-A094 078 DYNAMICS TECHNOLOGY INC TORRANCE CA F/G 20/4 A NONLINEAR STABILITY THEORY FOR PLANE BOUNDARY-LAYER FLOWS(U2 JUL 80 T KUBOTA, T CHAN, A K...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 963-A cc ,:LEVEL’i ’ Dynamics Technology, Inc. ~DT-7802-11 A NONLINEAR STABILITY THEORY FOR... Theory for Plane - T( 0 r y rFos Technical 7~pt. Dynaics echnlogy nc ARE a W R E RT NUMBER II. ~ ~ ~ ~ ~ ~~ I COTOLIGOFIENMEADADRS OficKo Nva Rese~ach

  20. The stability of a flexible cantilever in viscous channel flow

    NASA Astrophysics Data System (ADS)

    Cisonni, Julien; Lucey, Anthony D.; Elliott, Novak S. J.; Heil, Matthias

    2017-05-01

    Most studies of the flow-induced flutter instability of a flexible cantilever have assumed inviscid flow because of the high flow speeds and the large scale of the structures encountered in the wide range of applications of this fluid-structure interaction (FSI) system. However, for instance, in the fields of energy harvesting and biomechanics, low flow speeds and small- and micro-scale systems can give relatively low Reynolds numbers so that fluid viscosity needs to be explicitly accounted for to provide reliable predictions of channel-immersed-cantilever stability. In this study, we employ a numerical model coupling the Navier-Stokes equations and a one-dimensional elastic beam model. We conduct a parametric investigation to determine the conditions leading to flutter instability of a slender flexible cantilever immersed in two-dimensional viscous channel flow for Reynolds numbers lower than 1000. The large set of numerical simulations carried out allows predictions of the influence of decreasing Reynolds numbers and of the cantilever confinement on the single-mode neutral stability of the FSI system and on the pre- and post-critical cantilever motion. This model's predictions are also compared to those of a FSI model containing a two-dimensional solid model in order to assess, primarily, the effect of the cantilever slenderness in the simulations. Results show that an increasing contribution of viscosity to the hydrodynamic forces significantly alters the instability boundaries. In general, a decrease in Reynolds number is predicted to produce a stabilisation of the FSI system, which is more pronounced for high fluid-to-solid mass ratios. For particular fluid-to-solid mass ratios, viscous effects can lower the critical velocity and lead to a change in the first unstable structural mode. However, at constant Reynolds number, the effects of viscosity on the system stability are diminished by the confinement of the cantilever, which strengthens the importance of

  1. Long Term Stability of Coriolis Flow Meters: DESY experience

    NASA Astrophysics Data System (ADS)

    Boeckmann, T.; Bozhko, Y.; Escherich, K.; Petersen, B.; Putselyk, S.; Schnautz, T.; Sellmann, D.; Zhirnov, A.

    2017-02-01

    The measurement of coolant flow is important operational parameter for reliable operation of cryogenic system with superconducting magnets or cavities as well as for the system diagnostics in case of non-steady-state operation, e.g. during cool-down/warm-up or other transients. Proper flowmeter is chosen according to the different parameters, e.g. turn-down, operating temperature range, leak-tightness, pressure losses, long-term stability, etc. For helium cryogenics, the Venturi tube or Orifice, as well as Coriolis flow meters are often applied. For the present time, the orifices are usually used due to their simplicity and low costs, however, low turn-down range, large pressure drop, restriction of flow area, susceptibility to thermoacoustic oscillations limit their useful operation range. Operational characteristics of Venturi tubes is substantially improved in comparison to orifices, however, relative high costs and susceptibility to thermoacoustic oscillations still limit their application to special cases. The Coriolis flow meters do not have typical drawbacks of Venturi tube and orifices, however long-term stability over many years was not demonstrated yet. This paper describes the long-term behaviour of Coriolis flow meters after many years of operation at AMTF and XMTS facilities.

  2. Stability of inviscid shear flow over a flexible boundary

    NASA Astrophysics Data System (ADS)

    Miles, John

    2001-05-01

    The stability of an inviscid flow that comprises a thin shear layer and a uniform outer flow over a flexible boundary is investigated. It is shown that the flow is temporally unstable for all wavenumbers. This instability is either Kelvin Helmholtz-like or induced by the phase shift across the critical layer. The threshold of absolute instability is determined in the form F = F[low asterisk](1 + C[epsilon]n) for [epsilon] [double less-than sign] 1, where F (a Froude number) and [epsilon] are, respectively, dimensionless measures of the flow speed and the shear-layer thickness, F[low asterisk] is the limiting value of F for a uniform flow, C < 0 and n = 1 in the absence (as for a broken-line velocity profile) of a phase shift across the critical layer, and C > 0 and n = 2/3 in the presence of such a phase shift. Explicit results are determined for an elastic plate (and, in an Appendix, for a membrane) with a broken-line, parabolic, or Blasius boundary-layer profile. The predicted threshold for the broken-line profile agrees with Lingwood & Peake's (1999) result for [epsilon] [double less-than sign] 1, but that for the Blasius profile contradicts their conclusion that the threshold for [epsilon] [downward arrow] 0 is a ‘singular and unattainable limit’.

  3. Test experience with multiterminal HVDC load flow and stability programs

    SciTech Connect

    Chapman, D.G.; Davies, J.B. ); McNichol, J.R. ); Gulachenski, E.M.; Doe, S. ); Balu, N.J. )

    1988-07-01

    A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

  4. Magnetohydrodynamic stability spectrum with flow and a resistive wall

    NASA Astrophysics Data System (ADS)

    Smith, Sterling Paul

    Magnetically confined fusion plasmas are known to develop a variety of instabilities. Some of these instabilities can be understood with the ideal magnetohydrodynamic (MHD) model. A plasma in MHD equilibrium can be unstable to small perturbations, which are always present in experiments. One particular instability is the external kink mode. While this mode might be stabilized by a perfectly conducting wall, actual walls have some finite resistivity such that the kink still grows on the L/R time of the wall---it is a resistive wall mode (RWM). In this dissertation, the RWM is studied with the ideal MHD equilibrium and stability equations that include equilibrium flow. The stability equation is a nonlinear eigenvalue problem, which is transformed by the use of an auxiliary variable into a set of linear eigenvalue equations. For a flowing cylindrical plasma, these equations are formulated as a matrix eigenvalue problem by expanding the radial dependence of the perturbations as finite elements. The perturbations at the edge of the plasma are coupled to the surrounding resistive wall by the use of a Green's function for the vacuum fields and by the introduction of an additional unknown that represents the induced current in the wall. The matrix eigenvalue formulation of the RWM problem was solved numerically with a new finite element eigenvalue code. The code is benchmarked both analytically and numerically for the boundary conditions of a close fitting conducting wall, no wall, a perfectly conducting wall, and a resistive wall. The RWM is shown to be stabilized by flow for a window of wall positions, both with and without parallel viscosity, the latter requiring an extrapolation to a grid step size of zero in the region of resonance between the RWM and the sound continuum. Finally, flow shear is introduced, which reveals that the RWM does not move with the plasma at the resonance location, but rather with the plasma at a radial location which is independent of the

  5. Synthetic Jets Flow Control on a vertical stabilizer

    NASA Astrophysics Data System (ADS)

    Rathay, Nicholas; Boucher, Matthew; Amitay, Michael

    2011-11-01

    The vertical stabilizer on most commercial transport aircraft is much larger than required for stability and control. The tail is significantly oversized in order to maintain controllability in the event of asymmetric engine failure and meet flying qualities requirements related to dynamic motion. Using aerodynamic flow control techniques, it may be possible to reduce the size of the tail while maintaining similar control authority during inclement flight conditions. Reducing the size of the tail decreases the weight and the drag of the airplane, which results in considerable savings in fuel costs. In this work, it is shown that synthetic jet (zero-net-mass-flux) actuators are capable of reattaching the separated flow on the rudder and augmenting the performance of the stabilizer. Experiments were conducted in an open-return wind tunnel on a 1/25th scale model of a vertical stabilizer and a partial fuselage section. The surface pressure, aerodynamic loads and data acquired with a Stereo PIV system were used to investigate the effectiveness of this technology as well as provide a more detailed analysis of the flowfield and showed that the synthetic jets are capable of augmenting the side-force by up to 20%.

  6. flowVS: channel-specific variance stabilization in flow cytometry

    DOE PAGES

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-07-28

    Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances.

  7. Influence of flow on interface shape stability in low gravity

    NASA Technical Reports Server (NTRS)

    Steen, Paul H.

    1994-01-01

    The objectives are to: (1) Understand the influence in low gravity of flow on interface shape. For example, document and control the influence of axial flow on the Plateau-Rayleigh instability of a liquid bridge; and (2) Extend the ground-based density-matching technique of low gravity simulation to situations with flow; that is, develop Plateau chamber experiments for which flow can be controlled. Containerless containment of liquid by surface tension has broad importance in low gravity. For space vehicles, the behavior of liquid/gas interfaces is crucial to successful liquid management systems. In microgravity science, free interfaces are exploited in various applications. Examples include float-zone crystal growth, phase separation near the critical point of liquid mixtures (spinoidal decomposition) and quenching of miscibility gap molten metal alloys. In some cases, it is desired to stabilize the capillary instability while in others it is desired to induce capillary breakup. In all cases, understanding the stability of interface shape in the presence of liquid motion is central.

  8. The inviscid stability of supersonic flow past a sharp cone

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Shaw, Stephen J.

    1990-01-01

    The laminar boundary layer which forms on a sharp cone in a supersonic freestream, where lateral curvature plays a key role in the physics of the problem is considered. This flow is then analyzed from the point of view of linear, temporal, inviscid stability. The basic, non-axisymmetric disturbance equations are derived for general flows of this class, and a so called triply generalized inflexion condition is found for the existence of subsonic neutral modes of instability. This condition is analogous to the well-known generalized inflexion condition found in planar flows, although in the present case the condition depends on both axial and aximuthal wavenumbers. Extensive numerical results are presented for the stability problem at a freestream Mach number of 3.8, for a range of streamwise locations. These results reveal that a new mode of instability may occur, peculiar to flows of this type involving curvature. Additionally, asymptotic analyses valid close to the tip of the cone, far downstream of the cone are presented, and these give a partial (asymptotic) description of this additional mode of instability.

  9. Linear stability and control of swept Hiemenz flow

    NASA Astrophysics Data System (ADS)

    Guegan, Alan; Schmid, Peter; Huerre, Patrick

    2004-11-01

    Perturbations at the leading edge of swept wings may feed the downstream flow and trigger early boundary layer transition. Control strategies focusing on the leading edge boundary layer may provide significant improvement of flow stability over the wing surface. To this end, a gradient-based optimization algorithm is implemented to find the perturbations that experience the highest energy growth in swept Hiemenz flow over a finite time interval, under the Görtler-Hämmerlin assumption. A two-dimensional mechanism resembling the Orr-mechanism in the spanwise-wall-normal plane is shown to generate energy growth of up to three orders of magnitude for a Reynolds number Re=2000 and a spanwise wavenumber k=0.1. A similar algorithm is used to compute the wall-normal blowing/sucking sequence that most efficiently damps the energy amplification. The maximum energy is then found to decrease by more than 70%.

  10. Probing protein mechanical stability with controlled shear flows

    NASA Astrophysics Data System (ADS)

    Dusting, Jonathan; Ashton, Lorna; Leontini, Justin; Blanch, Ewan; Balabani, Stavroula

    2009-11-01

    Understanding and controlling protein aggregation or misfolding is of both fundamental and medical interest. The structural changes experienced by proteins in response to forces such as those generated within flows have not been well characterised, despite the importance of mechanics in many biological processes. By monitoring the structural conformation of proteins in different concentric cylinder flows using Raman Spectroscopy we have quantified the relative stability of β-sheet dominated proteins compared with those containing a greater proportion of α-helix. To ensure that the fluid stresses are quantified accurately, a combined DNS and PIV approach has been undertaken for flow cell characterisation across the full range of operating Re. This is important for practical concentric cylinder geometries where the shear components are non-zero and spatially dependent, with the peak stresses located near the endwalls. Furthermore, recirculation regions appear well below the crtical Reynolds number for Taylor vortex formation.

  11. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  12. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  13. A general method to determine the stability of compressible flows

    NASA Technical Reports Server (NTRS)

    Guenther, R. A.; Chang, I. D.

    1982-01-01

    Several problems were studied using two completely different approaches. The initial method was to use the standard linearized perturbation theory by finding the value of the individual small disturbance quantities based on the equations of motion. These were serially eliminated from the equations of motion to derive a single equation that governs the stability of fluid dynamic system. These equations could not be reduced unless the steady state variable depends only on one coordinate. The stability equation based on one dependent variable was found and was examined to determine the stability of a compressible swirling jet. The second method applied a Lagrangian approach to the problem. Since the equations developed were based on different assumptions, the condition of stability was compared only for the Rayleigh problem of a swirling flow, both examples reduce to the Rayleigh criterion. This technique allows including the viscous shear terms which is not possible in the first method. The same problem was then examined to see what effect shear has on stability.

  14. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  15. Melt flow effect on interface stability during directional solidification

    NASA Astrophysics Data System (ADS)

    Fedorov, O. P.; Mashkovskiy, A. G.

    2015-03-01

    In the framework of the phenomenological macroscopic continuum theory using the approximation of a flat frontier layer the stability of solid-liquid interface at the directional solidification under melt motion along the interface is studied. The stability conditions are reduced to determination of eigenvalues of boundary value problem for infinitesimal disturbances of stationary process. In case of stagnant melt it is shown that in the plane "wave number-pulling rate" there are two areas of instability for low and large pulling rates divided by the area of steady-steady growth. Neutral stability curve calculated for rather large pulling rates for succinonitrile-acetone (SCN-Ac) system is close to the relevant values received by Mullins and Sekerka, while the absolute values of critical growth rates are of the same order of magnitude as the experimental ones. Melt flow along the interface leads to emergence of the third area of instability which is characterized by small values of wave numbers. When increasing the melt flow rate the area of instability extends towards great values of wave numbers.

  16. Effects of particles on stability of flow-induced precursors

    NASA Astrophysics Data System (ADS)

    Zhu, Peng-Wei; Phillips, Andrew W.; Edward, Graham

    2012-02-01

    The effect of two colorant particles with different surface geometries on the stability of shear-induced precursors in isotactic polypropylene was studied after the cessation of shear flow at 140 °C. In the absence of particles, the shear-induced precursors survived for at least 100 s after the shear flow ended. The presence of particles was found to stabilize lower molecular weight chains assisting in the formation of additional shear-induced precursors. The precursors thus formed in the samples containing particles contained two oriented clusters with different molecular weights. Incorporation of lower molecular weight chains in the precursors led to increased dissolution rates of the shear-induced precursors. Particle surface geometry was found to influence precursor dissolution, with planar particles stabilizing the shear-induced precursors to a much greater extent than curved particles. The particles investigated thus act like structural probes to follow quantitatively the dissolution process of precursors after shear and importantly to infer the formation of precursors during shear.

  17. Stability of magnetic flux ropes with background flow

    NASA Astrophysics Data System (ADS)

    Goedbloed, Hans; Keppens, Rony

    2012-10-01

    MHD stability of magnetic flux ropes is usually studied from the view point of perturbing a static equilibrium background, whereas the significant background flow that is usually present completely modifies the stability of such systems. A new theory, based on energy conservation and self-adjoint operators, permits the computation of the full spectrum of waves and instabilities of stationary plasmas. It involves the construction of a network of curves (the spectral web) in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. Thus, for the first time, knowledge of the full complex spectrum of modes together with a connecting structure is obtained. This theory is applied to compute the complete spectrum of waves and instabilities of flux ropes in a thin accretion disk and of the rotating magnetized jets emitted from those disks. It yields specific stability criteria in terms of the helicities of the magnetic field and of the flow velocity that may be compared with observable parameters of the flux ropes.

  18. The stability of pipe entrance flows subjected to axisymmetric disturbances

    SciTech Connect

    Silva, D.F. da; Moss, E.A. . School of Mechanical Engineering)

    1994-03-01

    This paper reexamines an important unresolved problem in fluid mechanics--the discrepancy between measurements and predictions of stability in pipe entrance flows. Whereas measured critical Reynolds numbers are relatively insensitive to velocity profile shape in the streamwise direction, the theoretical results indicate a rapid increase, both as the equilibrium profile is approached, and toward the inlet. The current work uses the displacement thickness based Reynolds number as a rational basis on which to compare new stability predictions obtained by means of the Q-Z algorithm, with existing theoretical results. Although the present data are shown to be the only data that are consistent with the classical parallel boundary layer limit towards the inlet, they still deviate increasingly with axial distance from the only available experimental results. By examining pipe inlet stability data in relation to boundary layer measurements and predictions, the work effectively questions the commonly held belief that streamwise variations of flow alone are responsible for these deviations, suggesting that the finite amplitude nature of the applied disturbances is the most likely cause.

  19. Non-modal stability of Jeffery-Hamel flow

    NASA Astrophysics Data System (ADS)

    Jotkar, Mamta R.; Govindarajan, Rama

    2017-06-01

    The destabilization of modal perturbations in the classical diverging Jeffery-Hamel (JH) flow has been long-known. The converging JH flow is far less-studied, but it is known that convergence suppresses modal instabilities. We make a parallel-flow approximation following previous studies, to examine its non-modal stability at small convergent and divergent angles and show that non-modal growth is extremely sensitive to the angle of convergence/divergence at high Reynolds numbers. The transient growth of energy is significantly suppressed at high Reynolds numbers as the wall angle is varied from divergence to convergence by just a few hundredths of a degree. This finding is especially relevant for convergent channels, where the flow is stable to linear modal perturbations up to the Reynolds numbers of the order of 105 or larger. In all the cases, streamwise-aligned rolls (which are a characteristic of the lift-up mechanism) are the initial perturbations that display the largest energy growth. The spanwise separation between the rolls decreases significantly with channel convergence. Our findings indicate that extremely small imperfections in the wall alignment in channel flows can drastically affect the experimental measurements of algebraic growth of the disturbance kinetic energy, as minute amounts of wall convergence can strongly reduce the maximum transient growth.

  20. Electron flow stability in magnetically insulated vacuum transmission lines

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R.; Stygar, W. A.

    2011-03-01

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  1. Electron flow stability in magnetically insulated vacuum transmission lines

    SciTech Connect

    Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R.; Stygar, W. A.

    2011-03-15

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  2. Electron flow stability in magnetically insulated vacuum transmission lines.

    SciTech Connect

    Genoni, Thomas C.; Stygar, William A.; Welch, Dale Robert; Clark, R. E.; Rose, David V.

    2010-11-01

    We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles.

  3. Stability and transitions of the second grade Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Özer, Saadet; Şengül, Taylan

    2016-09-01

    In this study we consider the stability and transitions for the Poiseuille flow of a second grade fluid which is a model for non-Newtonian fluids. We restrict our attention to perturbation flows in an infinite pipe with circular cross section that are independent of the axial coordinate. We show that unlike the Newtonian (ɛ = 0) case, in the second grade model (ɛ > 0 case), the time independent base flow exhibits transitions as the Reynolds number R exceeds the critical threshold Rc = 8.505ɛ - 1 / 2 where ɛ is a material constant measuring the relative strength of second order viscous effects compared to inertial effects. At R =Rc, we find that the transition is either continuous or catastrophic and a small amplitude, time periodic flow with 3-fold azimuthal symmetry bifurcates. The time period of the bifurcated solution tends to infinity as R tends to Rc. Our numerical calculations suggest that for low ɛ values, the system prefers a catastrophic transition where the bifurcation is subcritical. We also show that there is a Reynolds number RE with RE flow is globally stable and attracts any initial disturbance with at least exponential speed. We show that the gap between RE and Rc vanishes quickly as ɛ increases.

  4. Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows

    DTIC Science & Technology

    2011-02-22

    curve for a Blasius boundary layer and for layers with adverse pressure gradient ( Panton , 2005). slip surface is the sheet vortex of uniform density...stability char- acteristics of incompressible boundary layers. AGARDograph 134, Paris, 1969. [Pan05] R. L. Panton . Incompressible flow. John Wiley and Sons

  5. Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Felde, David K; Riemer, Bernie; Abdou, Ashraf A; D'Urso, Brian R; West, David L

    2009-01-01

    The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.

  6. Stabilization of the turbulent flows in anisotropic viscoelastic tubes

    NASA Astrophysics Data System (ADS)

    Kizilova, N.; Hamadiche, M.

    Flow around the aircrafts and marine vehicles is turbulized that increases the skin-friction drag and fuel consumption. Here stability of the fully developed turbulent flow of an incompressible fluid in the viscoelastic tube is considered. The eddy viscosity concept is considered to be adequate and the flow velocity, wall displacement and pressures in the fluid and solid wall are timeaveraged quantities. Continuity conditions for the components of the velocity and stress tensor at the fluid-wall interface and no displacement condition at the outer wall of the tube are considered. Solution of the coupled system has been found in the form of the normal mode and the obtained system has been studied using the numerical technique described in [1,2]. The temporal and spatial eigenvalues and the dependencies of the temporal and spatial amplification rates on the rheological parameters of the wall have been computed. It was shown stability of the modes can be increased by a proper choice of the wall parameters. Successful combinations of the wall thickness, elasticity and viscosity have been found for a large variety of materials. It was shown a substantial reduction in the viscous wall shear stress accompanied by a decrease in the turbulence production or Reynolds stress can be reached via using the viscoelastic coating on the rigid surface. The obtained results are in a good agreement with recent direct numerical computations [3].

  7. Stability of three-layered core-annular flow

    NASA Astrophysics Data System (ADS)

    Pillai, Dipin; Pushpavanam, Subramaniam; Sundararajan, T.

    2016-11-01

    Stability of a three-layered core-annular flow is analyzed using the method of modal linear stability analysis. A temporal analysis shows that the flow becomes unstable to two modes of instability when inertial effects are negligible. An energy budget analysis reveals that these two modes correspond to capillary instability associated with each fluid-fluid interface. With an increase in Reynolds number, the system exhibits additional Reynolds stress modes of instabilities. These modes correspond to the Tollmien-Schlichting type of waves associated with high Reynolds number shear flows, and are considered precursor to transition to turbulence. An investigation of the parameter space reveals that the system may simultaneously show up to 5 distinct modes of instability, viz., the two capillary modes at each interface and three Reynolds stress modes in the bulk of each phase. In addition, a spatio-temporal analysis shows that the Reynolds stress modes are always convectively unstable whereas the capillary modes may undergo a transition from convective to absolute instability with decrease in Weber number. To obtain encapsulated droplets in experiments, the operating parameters must be chosen such that the system lies in the regime of convective instability. MHRD-Govt of India, NSF 0968313.

  8. Stability of model flocks in a vortical flow

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.

    2016-06-01

    We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model in which particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes: If alignment with orientation is dominant, the particles tend to be expelled from regions of high vorticity. In contrast, if anticipation is dominant, the particles accumulate in areas of large vorticity. In both regimes, the relative order of the flock is reduced. However, we show that there can be a critical balance of the two effects that stabilizes the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and it may also have applications in the design of flocking autonomous drones and artificial microswimmers.

  9. Stability of viscous flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Zebib, A.

    1987-01-01

    A spectral method which employs trigonometric functions and Chebyshev polynomials is used to compute the steady, incompressible laminar flow past a circular cylinder. Linear stability methods are used to formulate a pair of decoupled generalized eigenvalue problems for the growth of symmetric and asymmetric (about the dividing streamline) perturbations. It is shown that, while the symmetric disturbances are stable, the asymmetric perturbations become unstable at a Reynolds number about 40 with a Strouhal number about 0.12. The critical conditions are found to depend on the size of the computational domain in a manner similar to that observed in the laboratory.

  10. Improvement of transient stability using unified power flow controller

    SciTech Connect

    Mihalic, R.; Zunko, P.; Povh, D.

    1996-01-01

    The aim of the paper is to analyze the effect of an Unified Power Flow Controller (UPFC) on transient stability margin enhancement of a longitudinal system. To utilize the UPFC possibilities fully, the three controllable UPFC parameters were determined during the digital simulation process performed by the NETOMAC simulation program. The basis for determination of the suitable damping strategy and for determination of the optimal UPFC parameters is a mathematical model, which describes the interdependence between longitudinal transmission system parameters, operating conditions and UPFC parameters in the form of analytical equations. On the basis of the mathematical model, the theoretical UPFC limits were also detected, and their appearance explained.

  11. Symmetry and stability in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Golubitsky, M.; Stewart, I.

    1986-01-01

    The flow of a fluid between concentric rotating cylinders (the Taylor problem) is studied by exploiting the symmetries of the system. The Navier-Stokes equations, linearized about Couette flow, possess two zero and four purely imaginary eigenvalues at a suitable value of the speed of rotation of the outer cylinder. There is thus a reduced bifurcation equation on a six-dimensonal space which can be shown to commute with an action of the symmetry group 0(2) x S0(2). The group structure is used to analyze this bifurcation equation in the simplest (nondegenerate) case, and to compute the stabilities of solutions. In particular, when the outer cylinder is counterrotated, transitions which seem to agree with recent experiments of Andereck, Liu, and Swinney (1984) are obtained. It is also possible to obtain the 'main sequence' in this model. This sequence is normally observed in experiments when the outer cylinder is held fixed.

  12. Symmetry and stability in Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Golubitsky, M.; Stewart, I.

    1986-01-01

    The flow of a fluid between concentric rotating cylinders (the Taylor problem) is studied by exploiting the symmetries of the system. The Navier-Stokes equations, linearized about Couette flow, possess two zero and four purely imaginary eigenvalues at a suitable value of the speed of rotation of the outer cylinder. There is thus a reduced bifurcation equation on a six-dimensonal space which can be shown to commute with an action of the symmetry group 0(2) x S0(2). The group structure is used to analyze this bifurcation equation in the simplest (nondegenerate) case, and to compute the stabilities of solutions. In particular, when the outer cylinder is counterrotated, transitions which seem to agree with recent experiments of Andereck, Liu, and Swinney (1984) are obtained. It is also possible to obtain the 'main sequence' in this model. This sequence is normally observed in experiments when the outer cylinder is held fixed.

  13. Part-load flow and hydraulic stability of centrifugal pumps

    SciTech Connect

    Guelich, J.F.; Egger, R. )

    1992-03-01

    Unscheduled outages and deratings caused by problems with feed pumps cost utilities an estimated $460 million in replacement power costs 1985. Vibrations and pressure pulsations caused by the flow separation at partload operation are among the leading causes of feed pump failures. To reduce or avoid such failures, the flow mechanisms responsible for hydraulic instabilities must be understood. To increase this understanding was one of the main objectives of the hydraulic investigations carried out under the present research project and described in this report. A large number of parameters influencing the hydraulic performance and the stability of the head capacity characteristics have been investigated and guidelines have been derived for the selection of design parameters for impellers, diffusers, and volutes.

  14. Stability of Brillouin Flow in Slow-Wave Structures

    NASA Astrophysics Data System (ADS)

    Simon, David; Lau, Y. Y.; Greening, Geoffrey; Wong, Patrick; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    For the first time, we include a slow-wave structure (SWS) to study the stability of Brillouin flow in the conventional, planar, and inverted magnetron geometry. The resonant interaction of the SWS circuit mode and the corresponding smooth-bore diocotron-like mode is found to be the dominant cause for instability, overwhelming the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow. This resonant interaction is absent in a smooth bore magnetron. Work supported by ONR N00014-13-1-0566 and N00014-16-1-2353, AFOSR FA9550-15-1-0097, and L-3 Communications Electron Device Division.

  15. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part i: Stability

    NASA Astrophysics Data System (ADS)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    1999-08-01

    The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.

  16. Predicting the stability of a compressible periodic parallel jet flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    1996-01-01

    It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.

  17. Vortex Stability In Two -layer Rotating Shallow-water Flows

    NASA Astrophysics Data System (ADS)

    Carton, Xavier; Baey, Jean-Michel

    The stability of circular vortices subject to an initial normal-mode perturbation is studied in a two-layer shallow-water fluid with rigid lid, flat bottom and constant background rotation. Considerable similarity with quasi-geostrophic dynamics is found for linear (barotropic or baroclinic) instability, except in the frontal and nonlinear barotropic limits. This discrepancy is explained by asymptotic models. In many cases, the elliptical mode of deformation is the most unstable one. The ability of these perturbed circular vortices to stabilize nonlinearly as long-lived multipoles is then investigated. For elliptical perturbations, steady tripoles form from moderately unstable vortices as in the quasi-geostrophic limit. These tripoles, which exhibit various 3D structures, are robust when perturbed by non coherent disturbances. More unstable circular vortices break as two dipoles, propagating in opposite directions. Triangular perturbations can also lead to stationary quadrupoles or to dipolar breaking. The similarity with quasi-geostrophic dynamics, which ext ends to these nonlinear regimes, is related to the weakness of the divergent circulation, as shown by the analysis of the Lighthill equation. J.M. Baey &X. Carton, 2001: "Piecewise-constant vortices in a two-layer shallow - water flow". Advances in mathematical modelling of atmosphere and ocean dynamics, Kluwer Acad. Publ., 61, p.87-92. J.M. Baey &X. Carton, 2002: "Vortex multipoles in two-layer rotating shallow -water flows". To appear in J. Fluid Mech.

  18. Stability analysis of an impacting T-junction pipe flow

    NASA Astrophysics Data System (ADS)

    Chen, Kevin; Rowley, Clarence; Stone, Howard

    2013-11-01

    The flow through a T-shaped pipe bifurcation (with the inlet at the bottom of the ``T'') is a common occurrence in both natural and man-made systems, including blood vessels, industrial pipe networks, and microfluidic channels. Despite the ubiquitous nature of the geometry, many questions about the flow physics remain. We analyze the stability of Navier-Stokes equilibria by executing numerical continuation on the Reynolds number (based on the average inlet velocity), using a combination of linear extrapolation and the Newton-GMRES algorithm. We find that the qualitative nature of the equilibria's local bifurcations is highly sensitive to the grid resolution. On a sufficiently resolved grid, a rapid succession of supercritical Hopf bifurcations begins at Re ~ 550 . Visualizations of the neutrally stable eigenmodes reveal the physical nature of the instabilities. We also compare equilibria computed with different radii of curvature at the square corners of the ``T.'' Next, a wavemaker analysis reveals the locations in the T-junction where the stability is most sensitive to localized changes in the dynamics, e.g., via a change in geometry. This work was supported by the NSF GRFP.

  19. Flow stabilization of the ideal MHD resistive wall mode^1

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.

    2009-05-01

    We demonstrate for the first time in a numerical calculation that for a typical circular cylindrical equilibrium, the ideal MHD resistive wall mode (RWM) can be completely stabilized by bulk equilibrium plasma flow, V, for a window of wall locations without introducing additional dissipation into the system. The stabilization is due to a resonance between the RWM and the Doppler shifted ideal MHD sound continuum. Our numerical approach introduces^2 u=φξ+ iV .∇ξ and the perturbed wall current^3 as variables, such that the eigenvalue, φ, only appears linearly in the linearized stability equations, which allows for the use of standard eigenvalue solvers. The wall current is related to the plasma displacement at the boundary by a Green's function. With the introduction of the resistive wall, we find that it is essential that the finite element grid be highly localized around the resonance radius where the parallel displacement, ξ, becomes singular. We present numerical convergence studies demonstrating that this singular behavior can be approached in a limiting sense. We also report on progress toward extending this calculation to an axisymmetric toroidal geometry. ^1Work supported by a DOE FES fellowship through ORISE and ORAU. ^2L.Guazzotto, J.P Freidberg, and R. Betti, Phys.Plasmas 15, 072503 (2008). ^3S.P. Smith and S. C. Jardin, Phys. Plasmas 15, 080701 (2008).

  20. Stability of Inviscid Flow over Airfoils Admitting Multiple Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Xiong, Juntao; Liu, Feng; Luo, Shijun

    2012-11-01

    Multiple numerical solutions at the same flight condition are found of inviscid transonic flow over certain airfoils (Jameson et al., AIAA 2011-3509) within some Mach number range. Both symmetric and asymmetric solutions exist for a symmetric airfoil at zero angle of attack. Global linear stability analysis of the multiple solutions is conducted. Linear perturbation equations of the Euler equations around a steady-state solution are formed and discretized numerically. An eigenvalue problem is then constructed using the modal analysis approach. Only a small portion of the eigen spectrum is needed and thus can be found efficiently by using Arnoldi's algorithm. The least stable or unstable mode corresponds to the eigenvalue with the largest real part. Analysis of the NACA 0012 airfoil indicates stability of symmetric solutions of the Euler equations at conditions where buffet is found from unsteady Navier-Stokes equations. Euler solutions of the same airfoil but modified to include the displacement thickness of the boundary layer computed from the Navier-Stokes equations, however, exhibit instability based on the present linear stability analysis. Graduate Student.