Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Field Detection of Chemical Assimilation in A Basaltic Lava Flow
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows
NASA Technical Reports Server (NTRS)
Slater, John W.
2002-01-01
Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.
An analytical study on groundwater flow in drainage basins with horizontal wells
NASA Astrophysics Data System (ADS)
Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong
2014-06-01
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.
Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram.
Stovold, Elizabeth; Beecher, Deirdre; Foxlee, Ruth; Noel-Storr, Anna
2014-05-29
Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates.A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results.There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates.
Impact of L/D on 90 Degree Sharp-Edge Orifice Flow with Manifold Passage Cross Flow (Preprint)
2007-04-30
that are observed by measurement as the flow transitions from non-cavitation to cavitation (turbulent flow), supercavitation , and finally separation in...include inception of cavitation, supercavitation , and separation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...cavitation to cavitation (turbulent flow), supercavitation , and finally separation in sharp-edge 90 degree orifices. This study includes orifice L/D from
Debris flow hazards mitigation--Mechanics, prediction, and assessment
Chen, C.-L.; Major, J.J.
2007-01-01
These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.
Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram
2014-01-01
Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates. A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results. There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates. PMID:24886533
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey
1996-01-01
This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.
Ozkan, Bugra; Cagliyan, Caglar E; Elbasan, Zafer; Uysal, Onur K; Kalkan, Gulhan Y; Bozkurt, Mehmet; Tekin, Kamuran; Bozdogan, Sevcan T; Ozalp, Ozge; Duran, Mustafa; Sahin, Durmus Y; Cayli, Murat
2012-09-01
In this study, we examined the relationship between PAI-1 4G/5G polymorphism and patency of the infarct-related artery after thrombolysis in patients with ST-elevation myocardial infarction (STEMI). Acute STEMI patients who received thrombolytic therapy within first 12 h were included in our study. The PAI-1 4G/5G promoter region insertion/deletion polymorphism was studied from venous blood samples. Patients with the PAI-1 4G/5G gene polymorphism were included in group 1 and the others were included in group 2. Coronary angiography was performed in all patients in the first 24 h after receiving thrombolytic therapy. Thrombolysis in myocardial infarction (TIMI) 0-1 flow in the infarct-related artery was considered as 'no flow', TIMI 2 flow as 'slow flow', and TIMI 3 flow as 'normal flow'. A total of 61 patients were included in our study. Thirty patients (49.2%) were positive for the PAI-1 4G/5G gene polymorphism, whereas 31 of them (50.8%) were in the control group. There were significantly more patients with 'no flow' (14 vs. 6; P=0.02) and less patients with 'normal flow' (8 vs. 19; P=0.02) in group 1. In addition, time to thrombolytic therapy (TTT) was maximum in the 'no flow' group and minimum in the 'normal flow' group (P=0.005). In the logistic regression analysis, TTT (odds ratio: 0.9898; 95% confidence interval: 0.982-0.997; P=0.004) and the PAI-1 4G/5G gene polymorphism (odds ratio: 4.621; 95% confidence interval: 1.399-15.268; P<0.01) were found to be independently associated with post-thrombolytic 'no flow'. The PAI-1 4G/5G gene polymorphism and TTT are associated independently with 'no flow' after thrombolysis in patients with STEMI.
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: New approach to turbulence modeling; Second moment closure analysis of the backstep flow database; Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers; Turbulent flame propagation in partially premixed flames; Ensemble averaged dynamic modeling. Also included a study of the turbulence structures of wall-bounded shear flows; Simulation and modeling of the elliptic streamline flow.
Capturing Flow in the Business Classroom
ERIC Educational Resources Information Center
Guo, Yi Maggie; Ro, Young K.
2008-01-01
This study focuses on the flow experience in business education. Flow experience, characterized by concentration, control, and enjoyment, can lead to better learning outcomes. Leading preconditions of flow include the balance of challenge and skill, feedback, and goal clarity. Other situational factors affect the flow experience through the…
A new contrast-assisted method in microcirculation volumetric flow assessment
NASA Astrophysics Data System (ADS)
Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang
2007-03-01
Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.
NASA Astrophysics Data System (ADS)
Varghese, Joffin; Jayakumar, J. S.
2017-09-01
Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.
Biofluid mechanics--an interdisciplinary research area of the future.
Liepsch, Dieter
2006-01-01
Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Shock tunnel studies of scramjet phenomena, supplement 5
NASA Technical Reports Server (NTRS)
Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.
1990-01-01
A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.
Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA
NASA Astrophysics Data System (ADS)
Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.
2007-12-01
Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.
Aeropropulsion Technology (APT). Task 23 - Stator Seal Cavity Flow Investigation
NASA Technical Reports Server (NTRS)
Heidegger, N. J.; Hall, E. J.; Delaney, R. A.
1996-01-01
The focus of NASA Contract NAS3-25950 Task 23 was to numerically investigate the flow through an axial compressor inner-banded stator seal cavity. The Allison/NASA developed ADPAC code was used to obtain all flow predictions. Flow through a labyrinth stator seal cavity of a high-speed compressor was modeled by coupling the cavity flow path and the main flow path of the compressor. A grid resolution study was performed to guarantee adequate grid spacing was used. Both unsteady rotor-stator-rotor interactions and steady-state isolated blade calculations were performed with and without the seal cavity present. A parameterized seal cavity study of the high-speed stator seal cavity collected a series of solutions for geometric variations. The parameter list included seal tooth gap, cavity depth, wheel speed, radial mismatch of hub flowpath, axial trench gap, hub corner treatments, and land edge treatments. Solution data presented includes radial and pitchwise distributions of flow variables and particle traces describing the flow character.
The art and science of flow control - case studies using flow visualization methods
NASA Astrophysics Data System (ADS)
Alvi, F. S.; Cattafesta, L. N., III
2010-04-01
Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.
Fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.; Ostrach, S.
1978-01-01
The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.
Geometry of thin liquid sheet flows
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.
1994-01-01
Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.
Documenting Chemical Assimilation in a Basaltic Lava Flow
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.
Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Cambier, Jean-Luc; Papadopoulos, Perikles
1994-01-01
Much of the work involved the Ames 16-Inch Shock Tunnel facility. The facility was reactivated and upgraded, a data acquisition system was configured and upgraded several times, several facility calibrations were performed and test entries with a wedge model with hydrogen injection and a full scramjet combustor model, with hydrogen injection, were performed. Extensive CFD modeling of the flow in the facility was done. This includes modeling of the unsteady flow in the driver and driven tubes and steady flow modeling of the nozzle flow. Other modeling efforts include simulations of non-equilibrium flows and turbulence, plasmas, light gas guns and the use of non-ideal gas equations of state. New experimental techniques to improve the performance of gas guns, shock tubes and tunnels and scramjet combustors were conceived and studied computationally. Ways to improve scramjet engine performance using steady and pulsed detonation waves were also studied computationally. A number of studies were performed on the operation of the ram accelerator, including investigations of in-tube gasdynamic heating and the use of high explosives to raise the velocity capability of the device.
Tremie Concrete for Bridge Piers and Other Massive Underwater Placements
DOT National Transportation Integrated Search
1981-09-01
This study reviewed the placement of mass concrete under water using a tremie. Areas investigated included (a) Mixture design of tremie concrete including the use of pozzolanic replacement of portions of the cement; (b) Flow patterns and flow related...
Analytical and experimental studies of flow-induced vibration of SSME components
NASA Technical Reports Server (NTRS)
Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.
1987-01-01
Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.
Information Flow Analysis of Level 4 Payload Processing Operations
NASA Technical Reports Server (NTRS)
Danz, Mary E.
1991-01-01
The Level 4 Mission Sequence Test (MST) was studied to develop strategies and recommendations to facilitate information flow. Recommendations developed as a result of this study include revised format of the Test and Assembly Procedure (TAP) document and a conceptualized software based system to assist in the management of information flow during the MST.
Patel, Rajan P; Sitton, Clark W; Ketonen, Leena M; Hou, Ping; Johnson, Jason M; Romo, Seferino; Fletcher, Stephen; Shah, Manish N; Kerr, Marcia; Zaky, Wafik; Rytting, Michael E; Khatua, Soumen; Sandberg, David I
2018-03-01
Nuclear medicine studies have previously been utilized to assess for blockage of cerebrospinal fluid (CSF) flow prior to intraventricular chemotherapy infusions. To assess CSF flow without nuclear medicine studies, we obtained cine phase-contrast MRI sequences that assess CSF flow from the fourth ventricle down to the sacrum. In three clinical trials, 18 patients with recurrent malignant posterior fossa tumors underwent implantation of a ventricular access device (VAD) into the fourth ventricle, either with or without simultaneous tumor resection. Prior to infusing therapeutic agents into the VAD, cine MRI phase-contrast CSF flow sequences of the brain and total spine were performed. Velocity encoding (VENC) of 5 and 10 cm/s was used to confirm CSF flow from the fourth ventricular outlets to the cervical, thoracic, and lumbar spine. Qualitative CSF flow was characterized by neuroradiologists as present or absent. All 18 patients demonstrated CSF flow from the outlets of the fourth ventricle down to the sacrum with no evidence of obstruction. One of these patients, after disease progression, subsequently showed obstruction of CSF flow. No patient required a nuclear medicine study to assess CSF flow prior to initiation of infusions. Fourteen patients have received infusions to date, and none has had neurological toxicity. CSF flow including the fourth ventricle and the total spine can be assessed noninvasively with phase-contrast MRI sequences. Advantages over nuclear medicine studies include avoiding both an invasive procedure and radiation exposure.
Reduced Gravity Gas and Liquid Flows: Simple Data for Complex Problems
NASA Technical Reports Server (NTRS)
McQuillen, John; Motil, Brian
2001-01-01
While there have been many studies for two-phase flow through straight cylindrical tubes, more recently, a new group of studies have emerged that examine two-phase flow through non-straight, non-cylindrical geometries, including expansions, contractions, tees, packed beds and cyclonic separation devices. Although these studies are still, relatively speaking, in their infancy, they have provided valuable information regarding the importance of the flow momentum, and the existence of liquid dryout due to sharp comers in microgravity.
Transonic flow about a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.; Levy, L. L., Jr.; Deiwert, G. S.
1975-01-01
An experimental and theoretical study of transonic flow over a thick airfoil, prompted by a need for adequately documented experiments that could provide rigorous verification of viscous flow simulation computer codes, is reported. Special attention is given to the shock-induced separation phenomenon in the turbulent regime. Measurements presented include surface pressures, streamline and flow separation patterns, and shadowgraphs. For a limited range of free-stream Mach numbers the airfoil flow field is found to be unsteady. Dynamic pressure measurements and high-speed shadowgraph movies were taken to investigate this phenomenon. Comparisons of experimentally determined and numerically simulated steady flows using a new viscous-turbulent code are also included. The comparisons show the importance of including an accurate turbulence model. When the shock-boundary layer interaction is weak the turbulence model employed appears adequate, but when the interaction is strong, and extensive regions of separation are present, the model is inadequate and needs further development.
A stochastic model of particle dispersion in turbulent reacting gaseous environments
NASA Astrophysics Data System (ADS)
Sun, Guangyuan; Lignell, David; Hewson, John
2012-11-01
We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.
Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts
2015-09-01
Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.
Numerical studies of laminar and turbulent drag reduction, part 2
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Orszag, S. A.
1983-01-01
The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.
An Evaluation of the NEKTON Program
1990-09-01
features could be studied. Test cases were chosen for which experimental data or analytic solutions exist. These test cases verify NEKTON’s unsteady flow ...including steady and unsteady incompressible flow problems in two or three spatial dimensions. NEKTON version 2.6, which was evaluated for this... unsteady flow decay of a free surface moderate [7] 2-D laminar flow flow past a cylinder 100 [7] 3-D Stokes flow spiral groove thrust bearing < 1 [8
Guidance for conducting hazardous materials flow surveys
DOT National Transportation Integrated Search
1995-01-01
This report provides guidance on how to conduct a commodity flow study for hazardous materials moving by highway. It discusses the need for this type of study and details how to review baseline information and design the study. It includes examples a...
NASA Technical Reports Server (NTRS)
Volino, Ralph
2012-01-01
This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies. The folders in this supplement contain processed data in ASCII format. Streamwise pressure profiles and velocity profiles are included. The velocity profiles were acquired using single sensor and cross sensor hot-wire probes which were traversed from the wall to the freestream at various streamwise locations. In some of the flow control cases (3D Trips and Jets) profiles were acquired at multiple spanwise locations.
An experimental facility for the visual study of turbulent flows.
NASA Technical Reports Server (NTRS)
Brodkey, R. S.; Hershey, H. C.; Corino, E. R.
1971-01-01
An experimental technique which allows visual observations of the wall area in turbulent pipe flow is described in detail. It requires neither the introduction of any injection or measuring device into the flow nor the presence of a two-phase flow or of a non-Newtonian fluid. The technique involves suspending solid MgO particles of colloidal size in trichloroethylene and photographing their motions near the wall with a high speed movie camera moving with the flow. Trichloroethylene was chosen in order to eliminate the index of refraction problem in a curved wall. Evaluation of the technique including a discussion of limitations is included. Also the technique is compared with previous methods of visual observations of turbulent flow.
Zhao, Gang; Mi, Jingyi; Rui, Yongjun; Pan, Xiaoyun; Yao, Qun; Qiu, Yang
2017-01-01
Abstract Cold intolerance is a common complication of digital replantation. The exact etiology is unclear, but it is considered to be multifactorial, including nonsurgical characteristics, vascular, and neurologic conditions. Blood flow may play a significant role in cold intolerance. This study was designed to evaluate the correlation of digital blood flow, including volumetric flow rate (VFR) and skin blood flow (SkBF), with cold intolerance in replanted fingers. A retrospective study was conducted among patients who underwent digital replantation between 2010 and 2013. Patients were selected into study cohort based on the inclusion criteria. Surgical data was collected on each patient, including age, sex, injury mechanism, amputation level, ischemia time, number of arteries repaired, and whether or not vascular crisis occurred. Patients were included as study cohort with both nerves repaired and without chronic disease. Cold intolerance was defined as a Cold Intolerance Symptom Severity (CISS) score over 30. The arterial flow velocity and caliber were measured by Color Doppler Ultrasound and the digital VFR was calculated. The SkBF was measured by Laser Speckle Imager. Both VFR and SkBF were calculated as a percentage of the contralateral fingers. Comparative study of surgical data and blood flow was performed between the patient with and without cold intolerance. Correlation between VFR and SkBF was also analyzed. A total of 93 patients met inclusion criteria for the study. Approximately, 42 patients were identified as having cold intolerance. Fingers that survived vascular crisis had a higher incidence of cold intolerance with a lower VFR and SkBF. The VFR was higher in 2-artery replantation, but the SkBF and incidence of cold intolerance did not differ significantly. No differences were found in age, sex, injury mechanism, amputation level, or ischemia time. Furthermore, no correlation was found between VFR and SkBF. Cold intolerance of digital replantation is associated with decreased SkBF and VFR in the replanted fingers, which survived vascular crisis. Further work will be focused on how vascular crisis cause the decreasing of SkBF and VFR and the increasing chance of cold intolerance. PMID:29390590
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
Fluid flow sensing with ionic polymer-metal composites
NASA Astrophysics Data System (ADS)
Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.
2016-04-01
Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.
Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.
2016-09-19
A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.
Numerical Study of Tip Vortex Flows
NASA Technical Reports Server (NTRS)
Dacles-Mariani, Jennifer; Hafez, Mohamed
1998-01-01
This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.
Experimental performance of three design factors for ventral nozzles for SSTOVL aircraft
NASA Technical Reports Server (NTRS)
Esker, Barbara S.; Perusek, Gail P.
1992-01-01
An experimental study of three variations of a ventral nozzle system for supersonic short-takeoff and vertical-landing (SSTOVL) aircraft was performed at the NASA LeRC Powered Lift Facility. These test results include the effects of an annular duct flow into the ventral duct, a blocked tailpipe, and a short ventral duct length. An analytical study was also performed on the short ventral duct configuration using the PARC3D computational dynamics code. Data presented include pressure losses, thrust and flow performance, internal flow visualization, and pressure distributions at the exit plane of the ventral nozzle.
Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.
Water tunnel flow visualization using a laser
NASA Technical Reports Server (NTRS)
Beckner, C.; Curry, R. E.
1985-01-01
Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.
NASA Technical Reports Server (NTRS)
Arrington, E. A.; Pickett, Mark T.
1992-01-01
A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low Speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Pickett, Mark T.
1992-01-01
A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.
Flowing together: a longitudinal study of collective efficacy and collective flow among workgroups.
Salanova, Marisa; Rodríguez-Sánchez, Alma M; Schaufeli, Wilmar B; Cifre, Eva
2014-01-01
The aim of this study is to extend the Channel Model of Flow (Csikszentmihalyi, 1975, 1990) at the collective level (workgroups) by including collective efficacy beliefs as a predictor of collective flow based on the Social Cognitive Theory (Bandura, 1997, 2001). A two-wave longitudinal lab study was conducted with 250 participants working in 52 small groups. Longitudinal results from Structural Equation Modeling with data aggregated at the group level showed, as expected, that collective efficacy beliefs predict collective flow over time, both being related reciprocally. Findings and their theoretical and practical implications in the light of Social Cognitive Theory are discussed.
Experimental Studies of Low-Pressure Turbine Flows and Flow Control
NASA Technical Reports Server (NTRS)
Volino, Ralph J.
2012-01-01
This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
Lockheed laminar-flow control systems development and applications
NASA Technical Reports Server (NTRS)
Lange, Roy H.
1987-01-01
Progress is summarized from 1974 to the present in the practical application of laminar-flow control (LFC) to subsonic transport aircraft. Those efforts included preliminary design system studies of commercial and military transports and experimental investigations leading to the development of the leading-edge flight test article installed on the NASA JetStar flight test aircraft. The benefits of LFC on drag, fuel efficiency, lift-to-drag ratio, and operating costs are compared with those for turbulent flow aircraft. The current activities in the NASA Industry Laminar-Flow Enabling Technologies Development contract include summaries of activities in the Task 1 development of a slotted-surface structural concept using advanced aluminum materials and the Task 2 preliminary conceptual design study of global-range military hybrid laminar flow control (HLFC) to obtain data at high Reynolds numbers and at Mach numbers representative of long-range subsonic transport aircraft operation.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
NASA Astrophysics Data System (ADS)
Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.
2013-03-01
Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.
Methods for determination of optic nerve blood flow.
Glazer, L. C.
1988-01-01
A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres. PMID:3284212
Control of flow separation and mixing by aerodynamic excitation
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Abbott, John M.
1990-01-01
The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.
Overview of Laminar Flow Control
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1998-01-01
The history of Laminar Flow Control (LFC) from the 1930s through the 1990s is reviewed and the current status of the technology is assessed. Early studies related to the natural laminar boundary-layer flow physics, manufacturing tolerances for laminar flow, and insect-contamination avoidance are discussed. Although most of this publication is about slot-, porous-, and perforated-suction LFC concept studies in wind tunnel and flight experiments, some mention is made of thermal LFC. Theoretical and computational tools to describe the LFC aerodynamics are included for completeness.
Free turbulent shear flows. Volume 2: Summary of data
NASA Technical Reports Server (NTRS)
Birch, S. F.
1973-01-01
The proceedings of a conference on free turbulent shear flows are presented. Objectives of the conference are as follows: (1) collect and process data for a variety of free mixing problems, (2) assess present theoretical capability for predicting mean velocity, concentration, and temperature distributions in free turbulent flows, (3) identify and recommend experimental studies to advance knowledge of free shear flows, and (4) increase understanding of basic turbulent mixing process for application to free shear flows. Examples of specific cases of jet flow are included.
Topography significantly influencing low flows in snow-dominated watersheds
NASA Astrophysics Data System (ADS)
Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei
2018-03-01
Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.
Knight, K A; Moug, S J; West, M A
2017-03-01
Exercise in the preoperative period, or prehabilitation, continues to evolve as an important tool in optimising patients awaiting major intra-abdominal surgery. It has been shown to reduce rates of post-operative morbidity and length of hospital stay. The mechanism by which this is achieved remains poorly understood. Adaptations in mesenteric flow in response to exercise may play a role in improving post-operative recovery by reducing rates of ileus and anastomotic leak. To systematically review the existing literature to clarify the impact of exercise on mesenteric arterial blood flow using Doppler ultrasound. PubMed, EMBASE and the Cochrane library were systematically searched to identify clinical trials using Doppler ultrasound to investigate the effect of exercise on flow through the superior mesenteric artery (SMA). Data were extracted including participant characteristics, frequency, intensity, timing and type of exercise and the effect on SMA flow. The quality of each study was assessed using the Downs and Black checklist. Sixteen studies, comprising 305 participants in total, were included. Methodological quality was generally poor. Healthy volunteers were used in twelve studies. SMA flow was found to be reduced in response to exercise in twelve studies, increased in one and unchanged in two studies. Clinical heterogeneity precluded a meta-analysis. The weight of evidence suggests that superior mesenteric arterial flow is reduced immediately following exercise. Differences in frequency, intensity, timing and type of exercise make a consensus difficult. Further studies are warranted to provide a definitive understanding of the impact of exercise on mesenteric flow.
Analytical and experimental study of axisymmetric truncated plug nozzle flow fields
NASA Technical Reports Server (NTRS)
Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.
1972-01-01
Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This is the second unit of a 15-unit School Mathematics Study Group (SMSG) mathematics text for high school students. Topics presented in the first chapter (Informal Algorithms and Flow Charts) include: changing a flat tire; algorithms, flow charts, and computers; assignment and variables; input and output; using a variable as a counter; decisions…
NASA Astrophysics Data System (ADS)
Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.
2014-12-01
Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.
Kundi, Harun; Gok, Murat; Kiziltunc, Emrullah; Topcuoglu, Canan; Cetin, Mustafa; Cicekcioglu, Hulya; Ugurlu, Burcu; Ulusoy, Feridun Vasfi
2017-07-01
The aim of this study was to investigate the relationship between endocan levels with the presence of slow coronary flow (SCF). In this cross-sectional study, a total of 88 patients, who admitted to our hospital, were included in this study. Of these, 53 patients with SCF and 35 patients with normal coronary flow were included in the final analysis. Coronary flow rates of all patients were determined by the Timi Frame Count (TFC) method. In correlation analysis, endocan levels revealed a significantly positive correlation with high sensitive C-reactive protein and corrected TFC. In multivariate logistic regression analysis, the endocan levels were found as independently associated with the presence of SCF. Finally, using a cutoff level of 2.3, endocan level predicted the presence of SCF with a sensitivity of 77.2% and specificity of 75.2%. In conclusion, our study showed that higher endocan levels were significantly and independently related to the presence of SCF.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ogden, F. L.; Zhu, J.
2016-12-01
Bioturbated soil layers (BTLs) play a significant role in hydrological response and provisioning of ecosystem services in steep, saprolitic, tropical lowlands catchments. In this study, a new physically-based model formulation was developed for testing of runoff generation hypotheses. A main feature in the model formulation is explicit simulation of hydrological processes in the BTL including macropores, which our field observations show are ubiquitous, and deep groundwater stores that provide streamflow during the dry season The numerical model developed includes two main flow paths in the BTL, including one-dimensional (1D) vertical infiltration and two-dimensional (2D) lateral flows in both macropores and the soil matrix. Hydrological processes incorporated along with the BTL processes include intercepted rainfall, evapotranspiration, 2D surface flow and 1D deep groundwater discharge. This model was first tested in a 6.5 ha secondary succession catchment, that is under study by the Smithsonian Tropical Research Institute, Agua Salud project in Panama, which is dominated by steep slopes. With the incorporation of lateral macropore flow mechanism in the BTL, the model performs better than only including soil matrix flow in the BTL especially in simulating baseflow dynamics, which illustrates the importance of preferential flow from the BTL to stream discharge dynamics. The increase in the BTL thickness promotes more flow through the BTL and increases storage in both the BTL and the deep groundwater reservoir, but decreases the total streamflow and overland flow. Lateral macropore diameter distribution influences flows more than the macropore number or distribution type. The model has thus far passed falsification tests during the early wet season. Complexity in subsurface storage and base flow generation offer a new challenge for this model. The overall objective is to develop a model formulation that is useful in practical applications related to land-use management, provisioning of ecosystem services, and water security in similar tropical settings with distinct dry and wet seasons or in the humid tropics during periods of drought.
Shaidakov, E V; Rosukhovsky, D A; Grigoryan, A G; Bulatov, V L; Ilyukhin, E A
2016-01-01
In the intersaphenous vein (ISV) there may take place the so-called "antegrade" or "paradoxical" reflux. This type of blood flow is revealed in a series of patients during muscular diastole and is a link of the pathogenesis of varicose disease, but has, as distinct from the "classical" reflux, an antegrade direction. An incompetent saphenopopliteal junction (SPJ) is a source of the antegrade diastolic blood flow (ADBF) through the ISV. Descriptions of possible variants of impaired blood flow through the ISV are fragmentary and their interpretations are controversial. Prevalence and pathogenesis of these disorders impairments have not yet been studied. A cross-sectional study: over 4 years three centres examined a total of 1,413 patients diagnosed with class C2-C6 varicose veins according the CEAP classification. All patients underwent ultrasound duplex scanning of lower limb veins. The ADBF was determined as a unidirectional antegrade blood flow with the duration of not more than 0.5 second, observed after the crus was relived of compression (in the diastole). Of the patients included into the study who had no varicose veins on the contralateral extremity with the ISV being spotted we sequentially selected 40 subjects including them into the Study Group for the analysis of blood flow and the diameter of the ISV in health. Impairments of blood flow in the ISV were revealed in 61 (4.8%) of 1,265 extremities included into the study: the "classical" reflux in 9 (14.8%) limbs, ADBF was revealed in 37 (60.7%) limbs, a combination of the "classical" blood flow and ADBF - in 15 (24.6%) limbs. Hence, the patients were subdivided into three groups. Studying the nature of blood flow through the ISV in the control group on 40 lower limbs revealed no blood flow disorders. The mean ISV diameter amounted to 1.68 mm (ME=1 mm). The ISV diameter was considerably higher in all studied groups as compared with the control one (p<0.0001). The diameter of the ISV in its proximal portion averagely amounted to 4.48 mm (SD 1.337 mm, SE 0.171 mm). The diameter in the distal portion amounted to 5.39 mm (SD 1.725 mm, SE 0.221 mm).
Nielsen, Karina; Cleal, Bryan
2010-04-01
Flow (a state of consciousness where people become totally immersed in an activity and enjoy it intensely) has been identified as a desirable state with positive effects for employee well-being and innovation at work. Flow has been studied using both questionnaires and Experience Sampling Method (ESM). In this study, we used a newly developed 9-item flow scale in an ESM study combined with a questionnaire to examine the predictors of flow at two levels: the activities (brainstorming, planning, problem solving and evaluation) associated with transient flow states and the more stable job characteristics (role clarity, influence and cognitive demands). Participants were 58 line managers from two companies in Denmark; a private accountancy firm and a public elder care organization. We found that line managers in elder care experienced flow more often than accountancy line managers, and activities such as planning, problem solving, and evaluation predicted transient flow states. The more stable job characteristics included in this study were not, however, found to predict flow at work. Copyright 2010 APA, all rights reserved.
Eriksson, Hannah K; Nordström, Jakob; Gabrysch, Katja; Hailer, Nils P; Lazarinis, Stergios
2018-05-01
Measuring alpha-defensin concentrations in synovial fluid may help to diagnose periprosthetic joint infection (PJI). There are two commercially available methods for measuring alpha-defensin in synovial fluid: the enzyme-linked immunosorbent assay-based Synovasure® alpha-defensin immunoassay, which gives a numeric readout within 24 hours, and the Synovasure lateral flow test, which gives a binary readout within 20 minutes. There is no compilation of the existing literature to support the use of one of these two tests over the other. Does the immunoassay or the lateral flow test have better diagnostic value (sensitivity and specificity) in diagnosing PJI? We followed PRISMA guidelines and identified all studies on alpha-defensin concentration in synovial fluid as a PJI diagnostic marker, indexed to April 14, 2017, in PubMed, JSTOR, Google Scholar, and OVID databases. The search retrieved 1578 records. All prospective and retrospective studies on alpha-defensin as a PJI marker (PJI classified according to the criteria of the Musculoskeletal Infection Society) after THA or TKA were included in the analysis. All studies used only one of the two commercially available test methods, but none of them was comparative. After excluding studies with overlapping patient populations, four studies investigating the alpha-defensin immunoassay and three investigating the lateral flow test remained. Alpha-defensin immunoassay studies included 482 joints and lateral flow test studies included 119. The quality of the trials was assessed according to the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The heterogeneity among studies was evaluated by the I index, indicating that the heterogeneity of the included studies was low. Pooled sensitivity, specificity, positive and negative likelihood ratios, and receiver operating curves were calculated for each method and compared with each other. The alpha-defensin immunoassay had superior overall diagnostic value compared with the lateral flow test (area under the curve, 0.98 versus 0.75) with higher sensitivity (96% [90%-98%] versus 71% [55%-83%], p < 0.001), but no difference in specificity with the numbers available (96% [93%-97%] versus 90% [81%-95%], p = 0.060). Measurement of alpha-defensin in synovial fluid is a valuable complement to existing diagnostic criteria, and the immunoassay test detects PJI more accurately than the lateral flow test. The lateral flow test has lower sensitivity, making it difficult to rule out infection, but its relatively high specificity combined with the advantage of a quick response time can make it useful to rule in infection perioperatively. Level III, diagnostic study.
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Special opportunities in helicopter aerodynamics
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1983-01-01
Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.
Unal, Ozkan; Kartum, Alp; Avcu, Serhat; Etlik, Omer; Arslan, Halil; Bora, Aydin
2009-12-01
The aim of this study was cerebrospinal flow quantification in the cerebral aqueduct using cine phase-contrast magnetic resonance imaging (MRI) technique in both sexes and five different age groups to provide normative data. Sixty subjects with no cerebral pathology were included in this study. Subjects were divided into five age groups: < or =14 years, 15-24 years, 25-34 years, 35-44 years, and > or =45 years. Phase, rephase, and magnitude images were acquired by 1.5 T MR unit at the level of cerebral aqueduct with spoiled gradient echo through-plane, which is a cine phase-contrast sequence. At this level, peak flow velocity (cm/s), average flow rate (cm/ s), average flow (L/min), volumes in cranial and caudal directions (mL), and net volumes (mL) were studied. There was a statistically significant difference in peak flow between the age group of < or =14 years and the older age groups. There were no statistically significant differences in average velocity, cranial and caudal volume, net volume, and average flow parameters among different age groups. Statistically significant differences were not detected in flow parameters between sexes. When using cine-phase contrast MRI in the cerebral aqueduct, only the peak velocity showed a statistically significant difference between age groups; it was higher in subjects aged < or =14 years than those in older age groups. When performing age-dependent clinical studies including adolescents, this should be taken into consideration.
Hydrogeological characterization of flow system in a karstic aquifer, Seymareh dam, Iran
NASA Astrophysics Data System (ADS)
Behrouj Peely, Ahmad; Mohammadi, Zargham; Raeisi, Ezzatollah; Solgi, Khashayar; Mosavi, Mohammad J.; Kamali, Majid
2018-07-01
In order to determine the characteristics of the flow system in a karstic aquifer, an extensive hydrogeological study includes dye tracing test was conducted. The aquifer suited left abutment of Seymareh Dam, in Ravandi Anticline and discharges by more than 50 springs in the southern flank. Flow system in the aquifer is mainly controlled by the reservoir of Seymareh Dam. Time variations of the spring discharge and water table in the observation wells were highly correlated with the reservoir water level. The average groundwater velocity ranges from 0.2 to more than 14 m/h based on the dye tracing test. The probable flow paths were differentiated in two groups including the flow paths in the northern and southern flanks of Ravandi Anticline. Types of groundwater flow in the proposed flow paths are determined as diffuse or conduit flow type considering groundwater velocity and shape of the breakthrough curves. An index is proposed for differentiation of diffuse and conduit flow system based on relationship of groundwater velocity and hydraulic gradient. Dominant geometry of the flow routs (e.g., conduit diameter and fracture aperture) is estimated for the groundwater flow paths toward the springs. Based on velocity variations and variance coefficient of the water table and discharge of springs on map view a major karst conduit was probably developed in the aquifer. This research emphasizes applying of an extensive hydrogeological study for characterization of flow system in the karst aquifer.
Analysis of flow field characteristics in IC equipment chamber based on orthogonal design
NASA Astrophysics Data System (ADS)
Liu, W. F.; Yang, Y. Y.; Wang, C. N.
2017-01-01
This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.
Lonely GPFUTV-the movement of water under the action of unknown vacuum
NASA Astrophysics Data System (ADS)
Lin, Weiyi
2013-11-01
In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. The experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under the joint action of an unknown vacuum energy and the formation of non-aerated flow the water flow is full-pipe and continuous, high-speed and non-rotational as distinguished from turbulent flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, experimental study of Torricelli's experiment phenomenon in the vacuum environment, applied study of the potential for GPFUTV to be developed for deep seawater suction technology and lifting technology for deep ocean mining, theoretical study of flow stability and flow resistance under GPFUTV condition, etc. At last, the famous GPFUTV project is illustrated. 12 years of rigorous and independent survey research.
Project Themis: Water Visualization Study
2011-09-15
parameters and design space. Apparatus is discussed, including water flow loop and test section parts, as well as flow measurements, LDV, PLIF, and...release; distribution unlimited Project Themis: Water Visualization Study Allen Bishop AFRL/RZSE 15 Sept 2011 2 About Me • BS & MS Aerospace
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.
1976-01-01
A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.
Kefayati, Sarah; Amans, Matthew; Faraji, Farshid; Ballweber, Megan; Kao, Evan; Ahn, Sinyeob; Meisel, Karl; Halbach, Van; Saloner, David
2016-01-01
Aberrations in flow in the cerebral venous outflow tract (CVOT) have been implicated as the cause of several pathologic conditions including idiopathic intracranial hypertension (IIH), multiple sclerosis (MS), and pulsatile tinnitus (PT). The advent of 4D Flow magnetic resonance imaging (4D-Flow MRI) has recently allowed researchers to evaluate blood flow patterns in the arterial structures with great success. We utilized similar imaging techniques and found several distinct flow characteristics in the CVOT of subjects with and without lumenal irregularities. We present the flow patterns of 8 out of 38 subjects who have varying heights of the internal jugular bulb and varying lumenal irregularities including stenosis and diverticulum. In the internal jugular vein (IJV) with an elevated jugular bulb (JB), 4DFlow MRI revealed a characteristic spiral flow that was dependent on the level of JB elevation. Vortical flow was also observed in the diverticula of the venous sinuses and IJV. The diversity of flow complexity in the CVOT illustrates the potential importance of hemodynamic investigations in elucidating venous pathologies. PMID:27894675
Optimization Design of Bipolar Plate Flow Field in PEM Stack
NASA Astrophysics Data System (ADS)
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
Asymptotic methods for internal transonic flows
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Messiter, A. F.
1989-01-01
For many internal transonic flows of practical interest, some of the relevant nondimensional parameters typically are small enough that a perturbation scheme can be expected to give a useful level of numerical accuracy. A variety of steady and unsteady transonic channel and cascade flows is studied with the help of systematic perturbation methods which take advantage of this fact. Asymptotic representations are constructed for small changes in channel cross-section area, small flow deflection angles, small differences between the flow velocity and the sound speed, small amplitudes of imposed oscillations, and small reduced frequencies. Inside a channel the flow is nearly one-dimensional except in thin regions immediately downstream of a shock wave, at the channel entrance and exit, and near the channel throat. A study of two-dimensional cascade flow is extended to include a description of three-dimensional compressor-rotor flow which leads to analytical results except in thin edge regions which require numerical solution. For unsteady flow the qualitative nature of the shock-wave motion in a channel depends strongly on the orders of magnitude of the frequency and amplitude of impressed wall oscillations or fluctuations in back pressure. One example of supersonic flow is considered, for a channel with length large compared to its width, including the effect of separation bubbles and the possibility of self-sustained oscillations. The effect of viscosity on a weak shock wave in a channel is discussed.
Fuel quality/processing study. Volume 3: Fuel upgrading studies
NASA Technical Reports Server (NTRS)
Jones, G. E., Jr.; Bruggink, P.; Sinnett, C.
1981-01-01
The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen.
Rarefied-continuum gas dynamics transition for SUMS project
NASA Technical Reports Server (NTRS)
Cheng, Sin-I
1989-01-01
This program is to develop an analytic method for reducing SUMS data for the determination of the undisturbed atmosphere conditions ahead of the shuttle along its descending trajectory. It is divided into an internal flow problem, an external flow problem and their matching conditions. Since the existing method of Direct Simulation Monte Carlo (DSMC) failed completely for the internal flow problem, the emphasis is on the internal flow of a highly non-equilibrium, rarefied air through a short tube of a diameter much less than the gaseous mean free path. A two fluid model analysis of this internal flow problem has been developed and studied with typical results illustrated. A computer program for such an analysis and a technical paper published in Lecture Notes in Physics No. 323 (1989) are included as Appendices 3 and 4. A proposal for in situ determination of the surface accommodation coefficients sigma sub t and sigma e is included in Appendix 5 because of their importance in quantitative data reduction. A two fluid formulation for the external flow problem is included as Appendix 6 and a review article for AIAA on Hypersonic propulsion, much dependent on ambient atmospheric density, is also included as Appendix 7.
Ahearn, Elizabeth A.
2008-01-01
Flow durations, low-flow frequencies, and monthly median streamflows were computed for 91 continuous-record, streamflow-gaging stations in Connecticut with 10 or more years of record. Flow durations include the 99-, 98-, 97-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 25-, 20-, 10-, 5-, and 1-percent exceedances. Low-flow frequencies include the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low flow. Streamflow estimates were computed for each station using data for the period of record through water year 2005. Estimates of low-flow statistics for 7 short-term (operated between 3 and 10 years) streamflow-gaging stations and 31 partial-record sites were computed. Low-flow estimates were made on the basis of the relation between base flows at a short-term station or partial-record site and concurrent daily mean streamflows at a nearby index station. The relation is defined by the Maintenance of Variance Extension, type 3 (MOVE.3) method. Several short-term stations and partial-record sites had poorly defined relations with nearby index stations; therefore, no low-flow statistics were derived for these sites. The estimated low-flow statistics for the short-term stations and partial-record sites include the 99-, 98-, 97-, 95-, 90-, and 85-percent flow durations; the 7-day, 10-year (7Q10) low flow; 7-day, 2-year (7Q2) low flow; and 30-day, 2-year (30Q2) low-flow frequencies; and the August median flow. Descriptive information on location and record length, measured basin characteristics, index stations correlated to the short-term station and partial-record sites, and estimated flow statistics are provided in this report for each station. Streamflow estimates from this study are stored on USGS's World Wide Web application 'StreamStats' (http://water.usgs.gov/osw/streamstats/connecticut.html).
... gland. Other tests may include: Urine flow rate Post-void residual urine test to see how much urine is left in your bladder after you urinate Pressure-flow studies to measure the pressure in the bladder as ...
Low-flow profiles of the Tallapoosa River and tributaries in Georgia
Carter, R.F.; Hopkins, E.H.; Perlman, H.A.
1988-01-01
Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The report is the fourth in a series of reports presenting the results of a low flow study of all stream basins north of the Fall Line in Georgia. This report covers the part of the Tallapoosa River basin in the Piedmont province of Georgia. The low flow characteristic presented is the minimum average flow for 7 consecutive days with a 10-year recurrence interval (7Q10). The data are presented in tables and shown graphically as ' low flow profiles ' (low flow plotted against distance along a stream channel), and as ' drainage area profiles ' (drainage area plotted against distance along a stream channel). Low flow profiles were constructed by interpolation or extrapolation from points of known low flow data. Low flow profiles are included for all stream reaches where low flow data of sufficient accuracy are available to justify computation of the profiles. Drainage area profiles are included for all stream basins > 5 sq mi, except for those in a few remote areas. Flow records were not adjusted for diversions or other factors that cause measured flows to represent conditions other than natural flow. (Author 's abstract)
Vortex flows with suspended separation regions and long-range untwisted central jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovich, G.N.; Trofimov, R.S.
1988-05-01
A study is made of possible physicoaerodynamic configurations of vortical flow with suspended separation regions and untwisted central jets. Such flows are encountered in power plants (heat exchangers, combustion chambers, and chemical reactors) and in nature (tornadoes). The basic configurations of several flows of this type are described, including the structure of a flow formed by coaxial cocurrent twisted jets, the flow in a conical swirl chamber with the formation of an untwisted long-range axial jet, the flow pattern in a gas turbine engine chamber, and some considerations regarding the aerodynamics of a tornado.
Flow for Exercise Adherence: Testing an Intrinsic Model of Health Behavior
ERIC Educational Resources Information Center
Petosa, R. Lingyak; Holtz, Brian
2013-01-01
Background: Health behavior theory generally does not include intrinsic motivation as a determinate of health practices. Purpose: The purpose of this study was to test the flow theory of exercise adherence. Flow theory posits that exercise can be intrinsically rewarding if the experiences of self/time transcendence and control/mastery are achieved…
Flow Indicators in Art Therapy: Artistic Engagement of Immigrant Children with Acculturation Gaps
ERIC Educational Resources Information Center
Lee, Seung Yeon
2015-01-01
This qualitative study explored flow experiences in art therapy with three children from families that had immigrated to the United States from South Korea and were facing acculturation gaps. The children's flow experiences were examined through multiple data sources including videotaped art therapy sessions, children's post-session interviews,…
Grudzińska, Ewa; Modrzejewska, Monika
2018-01-01
Myopia is the most common refractive error and the subject of interest of various studies assessing ocular blood flow. Increasing refractive error and axial elongation of the eye result in the stretching and thinning of the scleral, choroid, and retinal tissues and the decrease in retinal vessel diameter, disturbing ocular blood flow. Local and systemic factors known to change ocular blood flow include glaucoma, medications and fluctuations in intraocular pressure, and metabolic parameters. Techniques and tools assessing ocular blood flow include, among others, laser Doppler flowmetry (LDF), retinal function imager (RFI), laser speckle contrast imaging (LSCI), magnetic resonance imaging (MRI), optical coherence tomography angiography (OCTA), pulsatile ocular blood flowmeter (POBF), fundus pulsation amplitude (FPA), colour Doppler imaging (CDI), and Doppler optical coherence tomography (DOCT). Many researchers consistently reported lower blood flow parameters in myopic eyes regardless of the used diagnostic method. It is unclear whether this is a primary change that causes secondary thinning of ocular tissues or quite the opposite; that is, the mechanical stretching of the eye wall reduces its thickness and causes a secondary lower demand of tissues for oxygen. This paper presents a review of studies assessing ocular blood flow in myopes.
Tilt rotor hover aeroacoustics
NASA Technical Reports Server (NTRS)
Coffen, Charles David
1992-01-01
The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.
Non-Laminar Flow Model for the Impedance of a Rod-Pinch Diode
NASA Astrophysics Data System (ADS)
Ottinger, Paul F.; Schumer, Joseph W.; Strasburg, Sean D.; Swanekamp, Stephen B.; Oliver, Bryan V.
2002-12-01
A previous laminar flow model for the rod-pinch diode is extended to include a transverse pressure term to study the effects of non-laminar flow. The non-laminar nature of the flow has a significant impact on the diode impedance. Results show that the introduction of the transverse pressure decreases the diode impedance predicted by the model bringing it into better agreement with experimental data.
Sandrock, H.E.
1982-05-06
Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldemar, G.; Vorstrup, S.; Andersen, A.R.
The effect of the angiotensin-converting enzyme (ACE) inhibitor captopril on regional cerebral blood flow (rCBF) was studied in 12 patients within 5 days after their first acute stroke. rCBF was studied by xenon-133 inhalation and single-photon emission computed tomography (SPECT) scan before and 1 h after oral administration of 25 mg captopril. No increase in rCBF was observed in any of the 12 patients included in the study. In only one patient was there a slight redistribution of blood flow in favor of the low-flow area, but the absolute flow value did not increase. Captopril did not cause any significantmore » change in mean hemispheric blood flow, mean arterial blood pressure (MAP), or end-expiratory CO2 fraction (FECO2). The assumption that ACE inhibition might increase cerebral blood flow in the periinfarct zone and preserve some still viable brain tissue could not be verified in the present study.« less
NASA Technical Reports Server (NTRS)
Simonson, M. R.; Smith, E. G.; Uhl, W. R.
1974-01-01
Analytical and experimental studies were performed to define the flowfield of annular jets, with and, without swirling flow. The analytical model treated configurations with variations of flow angularities, radius ratio, and swirl distributions. Swirl distributions characteristic of stator vanes and rotor blade rows, where the total pressure and swirl distributions are related were incorporated in the mathematical model. The experimental studies included tests of eleven nozzle models, both with and, without swirling exhaust flow. Flowfield surveys were obtained and used for comparison with the analytical model. This comparison of experimental and analytical studies served as the basis for evaluation of several empirical constants as required for application of the analysis to the general flow configuration. The analytical model developed during these studies is applicable to the evaluation of the flowfield and overall performance of the exhaust of statorless lift fan systems that contain various levels of exhaust swirl.
Study of the Transition Flow Regime using Monte Carlo Methods
NASA Technical Reports Server (NTRS)
Hassan, H. A.
1999-01-01
This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.
DEM study of granular flow around blocks attached to inclined walls
NASA Astrophysics Data System (ADS)
Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng
2017-06-01
Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.
Power flow control using quadrature boosters
NASA Astrophysics Data System (ADS)
Sadanandan, Sandeep N.
A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.
NASA Technical Reports Server (NTRS)
Tieleman, H. W.; Derrington, D. B., Jr.
1977-01-01
Turbulent flow, resembling an on-shore flow from the ocean crossing the beach at an oblique angle, is investigated. Measurements of this flow have been taken at high sample rates and include measurements at various heights, high enough to describe the portion of the mean wind and temperature profiles and fluxes that are of interest for the solution of practical engineering problems. These problems could include air pollution (fumigation and plume trapping), operation of low flying aircraft, crop-spraying and crop-dusting operations.
NASA Astrophysics Data System (ADS)
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
Influence of architecture and material properties on vanadium redox flow battery performance
NASA Astrophysics Data System (ADS)
Houser, Jacob; Clement, Jason; Pezeshki, Alan; Mench, Matthew M.
2016-01-01
This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport. For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop.
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Fluid Studies on the International Space Station
NASA Technical Reports Server (NTRS)
Motil, Brian J.
2016-01-01
Will discuss the recent activities on the international space station, including the adiabatic two phase flow, capillary flow and interfacial phenomena, and boiling and condensation. Will also give a historic introduction to Microgravity Studies at Glenn Research Center. Talk will be given to students and faculty at University of Louisville.
Flow-Field Surveys for Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.
A Mass Tracking Formulation for Bubbles in Incompressible Flow
2012-10-14
incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of...using the ideas from [19] to couple together incompressible flow with fully nonlinear compressible flow including shocks and rarefactions . The results...compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of simplifying assumptions on the air flow
Recent Advances in the Area of Groundwater
NASA Astrophysics Data System (ADS)
Bahr, J. M.
2017-12-01
Groundwater related papers published in Water Resources Research in the last year range from experimental and modeling studies of pore scale flow and reactive transport to assessments of changes in water storage at the scale of regional aquifers enabled by satellite observations. Important societal needs motivating these studies include sustainability of groundwater resources of suitable quantity and quality for human use, protection of groundwater-dependent ecosystems in streams, wetlands, lakes and coastal areas, and assessment of the feasibility of subsurface sequestration of carbon dioxide and long-lived radioactive wastes. Eight general areas that generated ten or more papers within the period July 2016 to June 2017 are the following: aquifer heterogeneity (including geostatistical and inverse methods for parameter estimation), flow and transport in the unsaturated zone (including recharge to and evaporative losses from aquifers), multiphase flow and transport (including processes relevant to carbon sequestration), groundwater-surface water interactions (particularly hyporheic exchange), flow and transport in fractured media, novel remote sensing and geophysical techniques for aquifer characterization and assessment of groundwater dynamics, freshwater-saltwater interactions (particularly in coastal aquifers), and reactive solute transport. This presentation will highlight selected findings in each of these areas.
Study Of Flow About A Helicopter Rotor
NASA Technical Reports Server (NTRS)
Tauber, Michael E.; Owen, F. Kevin
1989-01-01
Noninvasive instrument verifies computer program predicting velocities. Laser velocimeter measurements confirm predictions of transonic flow field around tip of helicopter-rotor blade. Report discusses measurements, which yield high-resolution orthogonal velocity components of flow field at rotor-tip. Mach numbers from 0.85 to 0.95, and use of measurements in verifying ability of computer program ROT22 to predict transonic flow field, including occurrences, strengths, and locations of shock waves causing high drag and noise.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Optical coherence tomography for the quantitative study of cerebrovascular physiology
Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A
2011-01-01
Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
NASA Astrophysics Data System (ADS)
Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.
2015-07-01
This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.
Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment
NASA Astrophysics Data System (ADS)
Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team
2014-11-01
A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference
Simulation of forming a flat forging
NASA Astrophysics Data System (ADS)
Solomonov, K.; Tishchuk, L.; Fedorinin, N.
2017-11-01
The metal flow in some of the metal shaping processes (rolling, pressing, die forging) is subjected to the regularities which determine the scheme of deformation in the metal samples upsetting. The object of the study was the research of the metal flow picture including the contour of the part, the demarcation lines of the metal flow and the flow lines. We have created an algorithm for constructing the metal flow picture, which is based on the representation of the metal flow demarcation line as an equidistant. Computer and physical simulation of the metal flow picture with the help of various software systems confirms the suggested hypothesis.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
König, K; Guy, K J; Walsh, G; Drew, S M; Watkins, A; Barfield, C P
2014-04-01
Preterm infants are at risk of circulatory compromise following birth. Functional neonatal echocardiography including superior vena cava (SVC) flow is increasingly used in neonatal medicine, and low SVC flow has been associated with adverse outcome. However, echocardiography is not readily available in many neonatal units and B-type natriuretic peptides (BNPs) may be useful in guiding further cardiovascular assessment. This study investigated the relationship between BNP, N-terminal pro-BNP (NTproBNP) and echocardiographic measurements of systemic blood flow in very preterm infants. This is a prospective observational study. Sixty preterm infants <32 weeks gestational age were included after the treating neonatologist had requested an echocardiogram for suspected cardiovascular compromise. BNP and NTproBNP were sampled just before the echocardiogram. Echocardiographic examination included fractional shortening (FS), SVC flow, left and right ventricular output (LVO and RVO). Statistical analysis included simple linear regression of BNP and NTproBNP with echocardiographic measures and multiple regression including potential confounding variables. Mean (s.d.) gestational age at birth was 27(5) (2(1)) weeks, median (interquartile range, IQR) birth weight was 995 (845 to 1175) grams. Neither BNP nor NTproBNP correlated with SVC flow (BNP 95% confidence interval (CI) -0.0014 to 0.013, P=0.12; NTproBNP 95% CI -0.00069 to 0.01, P=0.085); LVO (BNP 95% CI -0.00078 to 0.0072, P=0.11; NTproBNP 95% CI -0.0034 to 0.0034, P=0.99); RVO (BNP 95% CI -0.00066 to 0.0058, P=0.12; NTproBNP 95% CI -0.0012 to 0.0044, P=0.25); or FS (BNP 95% CI -0.053 to 0.051, P=0.96; NTproBNP 95% CI -0.061 to 0.019, P=0.3). Multivariate linear regression did not significantly alter results. In this cohort of very preterm infants, BNP and NTproBNP did not correlate with echocardiographic measurements of systemic blood flow within the first 72 h of life.
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.
1988-01-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
Minnesota Freight Flows, 1990 : a compilation of data by mode and commodity
DOT National Transportation Integrated Search
1995-02-01
Extensive transportation systems, which include highways, rivers, Great Lakes ports, railroads, airports, and pipelines, link Minnesota to markets throughout the North American Continent. This study provides a comprehensive source of freight flow inf...
Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields
NASA Technical Reports Server (NTRS)
Chen, C. P.; Shang, H. M.; Huang, J.
1993-01-01
Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.
Turbulence modelling of flow fields in thrust chambers
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.
PREFACE: The 15th International Couette-Taylor Worskhop
NASA Astrophysics Data System (ADS)
Mutabazi, Innocent; Crumeyrolle, Olivier
2008-07-01
The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of Research and the University Association of Mechanics have provided some support. Innocent Mutabazi and Olivier Crumeyrolle Proceedings editors Le Havre, France 15 July 2008
Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates
NASA Technical Reports Server (NTRS)
Deane, Anil E.
1996-01-01
Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.
Phenomenological study of subsonic turbulent flow over a swept rearward-facing step. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Selby, G. V.
1982-01-01
The phenomenology of turbulent, subsonic flow over a swept, rearward-facing step was studied. Effects of variations in step height, sweep angle, base geometry, and end conditions on the 3-D separated flow were examined. The separated flow was visualized using smoke wire, oil drop, and surface tuft techniques. Measurements include surface pressure, reattachment distance and swirl angle. Results indicate: (1) model/test section coupling affects the structure of the separated flow, but spanwise end conditions do not; (2) the independence principle is evidently valid for sweep angles up to 38 deg; (3) a sweep angle/swirl angle correlation exists; and (4) base modifications can significantly reduce the reattachment distance.
Flow visualization for investigating stator losses in a multistage axial compressor
NASA Astrophysics Data System (ADS)
Smith, Natalie R.; Key, Nicole L.
2015-05-01
The methodology and implementation of a powder-paint-based flow visualization technique along with the illuminated flow physics are presented in detail for application in a three-stage axial compressor. While flow visualization often accompanies detailed studies, the turbomachinery literature lacks a comprehensive study which both utilizes flow visualization to interrupt the flow field and explains the intricacies of execution. Lessons learned for obtaining high-quality images of surface flow patterns are discussed in this study. Fluorescent paint is used to provide clear, high-contrast pictures of the recirculation regions on shrouded vane rows. An edge-finding image processing procedure is implemented to provide a quantitative measure of vane-to-vane variability in flow separation, which is approximately 7 % of the suction surface length for Stator 1. Results include images of vane suction side corner separations from all three stages at three loading conditions. Additionally, streakline patterns obtained experimentally are compared with those calculated from computational models. Flow physics associated with vane clocking and increased rotor tip clearance and their implications to stator loss are also investigated with this flow visualization technique. With increased rotor tip clearance, the vane surface flow patterns show a shift to larger separations and more radial flow at the tip. Finally, the effects of instrumentation on the flow field are highlighted.
An economic study of an advanced technology supersonic cruise vehicle
NASA Technical Reports Server (NTRS)
Smith, C. L.; Williams, L. J.
1975-01-01
A description is given of the methods used and the results of an economic study of an advanced technology supersonic cruise vehicle. This vehicle was designed for a maximum range of 4000 n.mi. at a cruise speed of Mach 2.7 and carrying 292 passengers. The economic study includes the estimation of aircraft unit cost, operating cost, and idealized cash flow and discounted cash flow return on investment. In addition, it includes a sensitivity study on the effects of unit cost, manufacturing cost, production quantity, average trip length, fuel cost, load factor, and fare on the aircraft's economic feasibility.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-09-02
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-01-01
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Supersonic quiet-tunnel development for laminar-turbulent transition research
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1995-01-01
This grant supported research into quiet-flow supersonic wind-tunnels, between February 1994 and February 1995. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) development of the Purdue Quiet-Flow Ludwieg Tube, (2) computational evaluation of the square nozzle concept for quiet-flow nozzles, and (3) measurement of the presence of early transition on the flat sidewalls of the NASA LaRC Mach 3.5 supersonic low-disturbance tunnel. Since items (1) and (2) are described in the final report for companion grant NAG1-1133, only item (3) is described here. A thesis addressing the development of square nozzles for high-speed, low-disturbance wind tunnels is included as an appendix.
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
Investigation of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.
1985-01-01
Activities undertaken during the entire course of research are summarized. Studies were concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed nonreacting, turbulent, swirling flow conditions typical of gas turbine and ramjet combustion chambers. They included recirculation zone characterization, time-mean and turbulence simulation in swirling recirculating flow, sudden and gradual expansion flowfields, and furher complexities and parameter influences. The study included the investigation of: a complete range of swirl strengths; swirler performance; downstream contraction nozzle sizes and locations; expansion ratios; and inlet side-wall angles. Their individual and combined effects on the test section flowfield were observed, measured and characterized. Experimental methods included flow visualization (with smoke and neutrally-buoyant helium-filled soap bubbles), five-hole pitot probe time-mean velocity field measurements, and single-, double-, and triple-wire hot-wire anemometry measurements of time-mean velocities, normal and shear Reynolds sresses. Computational methods included development of the STARPIC code from the primitive-variable TEACH computer code, and its use in flowfield prediction and turbulence model development.
Reporting of participant flow diagrams in published reports of randomized trials.
Hopewell, Sally; Hirst, Allison; Collins, Gary S; Mallett, Sue; Yu, Ly-Mee; Altman, Douglas G
2011-12-05
Reporting of the flow of participants through each stage of a randomized trial is essential to assess the generalisability and validity of its results. We assessed the type and completeness of information reported in CONSORT (Consolidated Standards of Reporting Trials) flow diagrams published in current reports of randomized trials. A cross sectional review of all primary reports of randomized trials which included a CONSORT flow diagram indexed in PubMed core clinical journals (2009). We assessed the proportion of parallel group trial publications reporting specific items recommended by CONSORT for inclusion in a flow diagram. Of 469 primary reports of randomized trials, 263 (56%) included a CONSORT flow diagram of which 89% (237/263) were published in a CONSORT endorsing journal. Reports published in CONSORT endorsing journals were more likely to include a flow diagram (62%; 237/380 versus 29%; 26/89). Ninety percent (236/263) of reports which included a flow diagram had a parallel group design, of which 49% (116/236) evaluated drug interventions, 58% (137/236) were multicentre, and 79% (187/236) compared two study groups, with a median sample size of 213 participants. Eighty-one percent (191/236) reported the overall number of participants assessed for eligibility, 71% (168/236) the number excluded prior to randomization and 98% (231/236) the overall number randomized. Reasons for exclusion prior to randomization were more poorly reported. Ninety-four percent (223/236) reported the number of participants allocated to each arm of the trial. However, only 40% (95/236) reported the number who actually received the allocated intervention, 67% (158/236) the number lost to follow up in each arm of the trial, 61% (145/236) whether participants discontinued the intervention during the trial and 54% (128/236) the number included in the main analysis. Over half of published reports of randomized trials included a diagram showing the flow of participants through the trial. However, information was often missing from published flow diagrams, even in articles published in CONSORT endorsing journals. If important information is not reported it can be difficult and sometimes impossible to know if the conclusions of that trial are justified by the data presented.
Investigation of parabolic computational techniques for internal high-speed viscous flows
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
2011-08-01
heat transfers [49, 52]. However, the DO method has not yet been applied to Boussinesq flows, and the numerical challenges of the DO decomposition for...used a PCE scheme to study mixing in a two-dimensional (2D) microchannel and improved the efficiency of their solution scheme by decoupling the...to several Navier-Stokes flows and their stochastic dynamics has been studied, including mean-mode and mode-mode energy transfers for 2D flows and
Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1987 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz (Editor); Reynolds, William C. (Editor); Kim, John (Editor)
1987-01-01
The focus was on the use of databases obtained from direct numerical simulations of turbulent flows, for study of turbulence physics and modeling. Topics addressed included: stochastic decomposition/chaos/bifurcation; two-point closure (or k-space) modeling; scalar transport/reacting flows; Reynolds stress modeling; and structure of turbulent boundary layers.
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover
NASA Technical Reports Server (NTRS)
Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan
1991-01-01
The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.
The early indicators of financial failure: a study of bankrupt and solvent health systems.
Coyne, Joseph S; Singh, Sher G
2008-01-01
This article presents a series of pertinent predictors of financial failure based on analysis of solvent and bankrupt health systems to identify which financial measures show the clearest distinction between success and failure. Early warning signals are evident from the longitudinal analysis as early as five years before bankruptcy. The data source includes seven years of annual statements filed with the Securities and Exchange Commission by 13 health systems before they filed bankruptcy. Comparative data were compiled from five solvent health systems for the same seven-year period. Seven financial solvency ratios are included in this study, including four cash liquidity measures, two leverage measures, and one efficiency measure. The results show distinct financial trends between solvent and bankrupt health systems, in particular for the operating-cash-flow-related measures, namely Ratio 1: Operating Cash Flow Percentage Change, from prior to current period; Ratio 2: Operating Cash Flow to Net Revenues; and Ratio 4: Cash Flow to Total Liabilities, indicating sensitivity in the hospital industry to cash flow management. The high dependence on credit from third-party payers is cited as a reason for this; thus, there is a great need for cash to fund operations. Five managerial policy implications are provided to help health system managers avoid financial solvency problems in the future.
Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors
NASA Technical Reports Server (NTRS)
Jenkins, Rhonald M.
1997-01-01
Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution.
NASA Astrophysics Data System (ADS)
Akinwumiju, Akinola S.; Olorunfemi, Martins O.
2018-05-01
This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.
NASA Technical Reports Server (NTRS)
Rohlik, Harold E; Wintucky, William T; Scibbe, Herbert W
1957-01-01
Detailed design information including overall performance parameters, velocity diagrams, and blade surface velocities is presented. Experimental performance includes maps based on rating as well as total-pressure ratios showing the effect of exit whirl. Also included are results of surveys at the stator exit and downstream of the rotor at design speed and specific work. This information will be used as a standard for comparison with subsequent secondary-flow work.
Criterion for Identifying Vortices in High-Pressure Flows
NASA Technical Reports Server (NTRS)
Bellan, Josette; Okong'o, Nora
2007-01-01
A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.
Flow-Field Surveys for Rectangular Nozzles. Supplement
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2012-01-01
Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.
Study of an engine flow diverter system for a large scale ejector powered aircraft model
NASA Technical Reports Server (NTRS)
Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.
1981-01-01
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.
An Overview of the RTO Symposium on Vortex Flow and High Angle of Attack Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, James M.
2002-01-01
In May of 2001 the Research and Technology Organization (RTO) sponsored a symposium on Vortex Flow and High Angle of Attack aerodynamics. Forty-six papers, organized into nine sessions, addressed computational and experimental studies of vortex flows pertinent to both aircraft and maritime applications. The studies also ranged from fundamental fluids investigations to flight test results. Selected highlights are included in this paper to provide a perspective toward the scope of the full symposium.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
Spadaro, Savino; Caramori, Gaetano; Rizzuto, Chiara; Mojoli, Francesco; Zani, Gianluca; Ragazzi, Riccardo; Valpiani, Giorgia; Dalla Corte, Francesca; Marangoni, Elisabetta; Volta, Carlo Alberto
2017-02-01
Postoperative pulmonary complications are major causes of postoperative morbidity and mortality. Although several risk factors have been associated with postoperative pulmonary complications, they are not consistent between studies and, even in those studies in which these factors were identified, the predictive power is low. We hypothesized that postoperative pulmonary complications would correlate with the presence of intraoperative expiratory flow limitation. Candidates for this prospective observational study were patients undergoing general anesthesia for major abdominal surgery. Preoperative data collection included age, body mass index, American Society of Anesthesiologists class, smoking and dyspnea history, and room air PO2. Expiratory flow limitation was assessed intraoperatively using the positive end-expiratory pressure test. Postoperative data collection included the incidence of postoperative pulmonary complications. Of the 330 patients we enrolled, 31% exhibited expiratory flow limitation. On univariate analysis, patients with expiratory flow limitation were more likely to have postoperative pneumonia (5% vs 0%, P < .001) and acute respiratory failure (11% vs 1%, P < .001) and a longer length of hospital stay (7 vs 9 days, P < .01). Multivariate analysis identified that expiratory flow limitation increased the risk of developing postoperative pulmonary complications by >50% (risk ratio, 2.7; 95% confidence interval, 1.7-4.2). Age and Medical Research Council dyspnea score were also significant multivariate risk factors for pulmonary complications. Our results show that intraoperative expiratory flow limitation correlates with that of postoperative pulmonary complication after major abdominal surgery. Further work is needed to better understand the relevance of expiratory flow limitation on postoperative pulmonary outcomes.
Study on the flow nonuniformity in a high capacity Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
You, X.; Zhi, X.; Duan, C.; Jiang, X.; Qiu, L.; Li, J.
2017-12-01
High capacity Stirling-type pulse tube cryocoolers (SPTC) have promising applications in high temperature superconductive motor and gas liquefaction. However, with the increase of cooling capacity, its performance deviates from well-accepted one-dimensional model simulation, such as Sage and Regen, mainly due to the strong field nonuniformity. In this study, several flow straighteners placed at both ends of the pulse tube are investigated to improve the flow distribution. A two-dimensional model of the pulse tube based on the computational fluid dynamics (CFD) method has been built to study the flow distribution of the pulse tube with different flow straighteners including copper screens, copper slots, taper transition and taper stainless slot. A SPTC set-up which has more than one hundred Watts cooling power at 80 K has been built and tested. The flow straighteners mentioned above have been applied and tested. The results show that with the best flow straightener the cooling performance of the SPTC can be significantly improved. Both CFD simulation and experiment show that the straighteners have impacts on the flow distribution and the performance of the high capacity SPTC.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
Computational study of duct and pipe flows using the method of pseudocompressibility
NASA Technical Reports Server (NTRS)
Williams, Robert W.
1991-01-01
A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.
Study of the structure of turbulent shear flows at supersonic speeds and high Reynolds number
NASA Technical Reports Server (NTRS)
Smits, A. J.; Bogdonoff, S. M.
1984-01-01
A major effort to improve the accuracies of turbulence measurement techniques is described including the development and testing of constant temperature hot-wire anemometers which automatically compensate for frequency responses. Calibration and data acquisition techniques for normal and inclined wires operated in the constant temperature mode, flow geometries, and physical models to explain the observed behavior of flows are discussed, as well as cooperation with computational groups in the calculation of compression corner flows.
Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.
2008-01-01
Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.
Laminar flow control, 1976 - 1982: A selected annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.; Maddalon, D. V.
1982-01-01
Laminar Flow Control technology development has undergone tremendous progress in recent years as focused research efforts in materials, aerodynamics, systems, and structures have begun to pay off. A virtual explosion in the number of research papers published on this subject has occurred since interest was first stimulated by the 1976 introduction of NASA's Aircraft Energy Efficiency Laminar Flow Control Program. The purpose of this selected bibliography is to list available, unclassified laminar flow (both controlled and natural) research completed from about 1975 to mid 1982. Some earlier pertinent reports are included but listed separately in the Appendix. Reports listed herein emphasize aerodynamics and systems studies, but some structures work is also summarized. Aerodynamic work is mainly limited to the subsonic and transonic sped regimes. Because wind-tunnel flow qualities, such as free stream disturbance level, play such an important role in boundary-layer transition, much recent research has been done in this area and it is also included.
Fluid-flow of a row of jets in crossflow - A numerical study
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Benson, T. J.
1992-01-01
A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.
Boesen, Anders Ploug; Boesen, Morten Ilum; Torp-Pedersen, Soren; Christensen, Robin; Boesen, Lars; Hölmich, Per; Nielsen, Michael Bachmann; Koenig, Merete Juhl; Hartkopp, Andreas; Ellegaard, Karen; Bliddal, Henning; Langberg, Henning
2012-03-01
Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear. Intratendinous flow is present and associated with pain in badminton players, and intratendinous flow and pain increase during a badminton season. Cohort study (prognosis); Level of evidence, 2. Ninety-five semiprofessional badminton players were included in the study at a tournament at the start of the badminton season. All players were interviewed regarding pain. The anterior knee tendons and Achilles tendons were studied. Each tendon was scored using a quantitative grading system (grades 0-5) and a qualitative scoring system (color fraction) using color Doppler ultrasound. Eight months later, 86 of the players (91%) were retested by the same investigators during an equivalent badminton tournament (including 1032 tendon regions; 86 players with 4 tendons each with 3 regions), thus forming the study group. At the start of the season, 24 players (28%) experienced pain in 37 tendons (11%), and at the end of the season, 31 players (36%) experienced pain in 51 tendons (15%), which was a statistically significant increase (P = .0002). Abnormal flow was found in 230 tendon regions in 71 players (83%) at the start of the season compared with 78 tendon regions in 41 players (48%) at the follow-up. The decrease in abnormal flow was statistically significant (P < .0001). Of the 37 painful tendons at the start of the season, 25 had abnormal flow (68%). In contrast, 131 tendons (85%) with abnormal flow at the start of the season were pain free. At the end of the season, 18 of the 51 painful tendons (35%) had abnormal flow. Ninety-six of the 131 pain-free tendons (73%) with abnormal flow at the start of the season were normalized (no pain and normal flow) at the end of the season. It was not possible to verify any association between intratendinous flow and pain at the start of the season or at the follow-up (end of the season). Intratendinous flow at the start of the season could not predict symptomatic outcome at the end of the season. The decrease in Doppler flow during the season might suggest that intratendinous flow could be part of a physiological adaptive response to loading and that intratendinous flow as previously believed is not always a sign of pathological changes.
Study of the flow mixing in a novel ARID raceway for algae production
Xu, Ben; Li, Peiwen; Waller, P.
2014-07-31
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
Study of the flow mixing in a novel ARID raceway for algae production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ben; Li, Peiwen; Waller, P.
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less
Screening Models of Aquifer Heterogeneity Using the Flow Dimension
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Roberts, R. M.; Valocchi, A. J.
2007-12-01
Despite advances in test interpretation and modeling, typical groundwater modeling studies only indirectly use the parameters and information inferred from hydraulic tests. In particular, the Generalized Radial Flow approach to test interpretation infers the flow dimension, a parameter describing the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling.
Seth J. Wenger; Daniel J. Isaak; Charlie Luce; Helen M. Neville; Kurt D. Fausch; Jason B. Dunham; Daniel C. Dauwalter; Michael K. Young; Marketa M. Elsner; Bruce E. Rieman; Alan F. Hamlet; Jack E. Williams
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout...
Study of Basin Recession Characteristics and Groundwater Storage Properties
NASA Astrophysics Data System (ADS)
Yen-Bo, Chen; Cheng-Haw, Lee
2017-04-01
Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage
NASA Astrophysics Data System (ADS)
Dijkstra, Yoeri M.; Brouwer, Ronald L.; Schuttelaars, Henk M.; Schramkowski, George P.
2017-07-01
The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the underlying physics and the testing of parameter sensitivity. A comparison of the model results to measurements shows a good qualitative agreement. iFlow is written in Python and is available as open source code under the LGPL license.
Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.
1994-01-01
A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.
Wright, N C; Foster, P J; Mudano, A S; Melnick, J A; Lewiecki, M E; Shergy, W J; Curtis, J R; Cutter, G R; Danila, M I; Kilgore, M L; Lewis, E C; Morgan, S L; Redden, D T; Warriner, A H; Saag, K G
2017-08-01
The Effectiveness of Discontinuing Bisphosphonates (EDGE) study is a planned pragmatic clinical trial to guide "drug holiday" clinical decision making. This pilot study assessed work flow and feasibility of such a study. While participant recruitment and treatment adherence were suboptimal, administrative procedures were generally feasible and minimally disrupted clinic flow. The comparative effectiveness of continuing or discontinuing long-term alendronate (ALN) on fractures is unknown. A large pragmatic ALN discontinuation study has potential to answer this question. We conducted a 6-month pilot study of the planned the EDGE study among current long-term ALN users (women aged ≥65 with ≥3 years of ALN use) to determine study work flow and feasibility including evaluating the administrative aspects of trial conduct (e.g., time to contract, institutional review board (IRB) approval), assessing rates of site and participant recruitment, and evaluating post-randomization outcomes, including adherence, bisphosphonate-associated adverse events, and participant and site satisfaction. We assessed outcomes 1 and 6 months after randomization. Nine sites participated, including seven community-based medical practices and two academic medical centers. On average (SD), contract execution took 3.4 (2.3) months and IRB approval took 13.9 (4.1) days. Sites recruited 27 participants (13 to continue ALN and 14 to discontinue ALN). Over follow-up, 22% of participants did not adhere to their randomization assignment: 30.8% in the continuation arm and 14.3% in the discontinuation arm. No fractures or adverse events were reported. Sites reported no issues regarding work flow, and participants were highly satisfied with the study. Administrative procedures of the EDGE study were generally feasible, with minimal disruption to clinic flow. In this convenience sample, participant recruitment was suboptimal across most practice sites. Accounting for low treatment arm adherence, a comprehensive recruitment approach will be needed to effectively achieve the scientific goals of the EDGE study.
Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.
Ene-Iordache, Bogdan; Remuzzi, Andrea
2017-09-01
Although our understanding of the failure mechanism of vascular access for hemodialysis has increased substantially, this knowledge has not translated into successful therapies. Despite advances in technology, it is recognized that vascular access is difficult to maintain, due to complications such as intimal hyperplasia. Computational studies have been used to estimate hemodynamic changes induced by vascular access creation. Due to the heterogeneity of patient-specific geometries, and difficulties with obtaining reliable models of access vessels, idealized models were often employed. In this review we analyze the knowledge gained with the use of computational such simplified models. A review of the literature was conducted, considering studies employing a computational fluid dynamics approach to gain insights into the flow field phenotype that develops in idealized models of vascular access. Several important discoveries have originated from idealized model studies, including the detrimental role of disturbed flow and turbulent flow, and the beneficial role of spiral flow in intimal hyperplasia. The general flow phenotype was consistent among studies, but findings were not treated homogeneously since they paralleled achievements in cardiovascular biomechanics which spanned over the last two decades. Computational studies in idealized models are important for studying local blood flow features and evaluating new concepts that may improve the patency of vascular access for hemodialysis. For future studies we strongly recommend numerical modelling targeted at accurately characterizing turbulent flows and multidirectional wall shear disturbances.
ERIC Educational Resources Information Center
Heaton, Christopher; Throsby, David
1998-01-01
Demonstrates the formulation and computation of major benefit and cost items included in an evaluation of social rates of return to foreign study. Considers incidence of measured effects between sending, host, and third countries, focusing on south/north flow of postgraduate students, specifically Fiji students studying at Australian universities.…
A study of the flow field surrounding interacting line fires
Trevor Maynard; Marko Princevac; David R. Weise
2016-01-01
The interaction of converging fires often leads to significant changes in fire behavior, including increased flame length, angle, and intensity. In this paper, the fluid mechanics of two adjacent line fires are studied both theoretically and experimentally. A simple potential flow model is used to explain the tilting of interacting flames towards each other, which...
Describing and Modeling Workflow and Information Flow in Chronic Disease Care
Unertl, Kim M.; Weinger, Matthew B.; Johnson, Kevin B.; Lorenzi, Nancy M.
2009-01-01
Objectives The goal of the study was to develop an in-depth understanding of work practices, workflow, and information flow in chronic disease care, to facilitate development of context-appropriate informatics tools. Design The study was conducted over a 10-month period in three ambulatory clinics providing chronic disease care. The authors iteratively collected data using direct observation and semi-structured interviews. Measurements The authors observed all aspects of care in three different chronic disease clinics for over 150 hours, including 157 patient-provider interactions. Observation focused on interactions among people, processes, and technology. Observation data were analyzed through an open coding approach. The authors then developed models of workflow and information flow using Hierarchical Task Analysis and Soft Systems Methodology. The authors also conducted nine semi-structured interviews to confirm and refine the models. Results The study had three primary outcomes: models of workflow for each clinic, models of information flow for each clinic, and an in-depth description of work practices and the role of health information technology (HIT) in the clinics. The authors identified gaps between the existing HIT functionality and the needs of chronic disease providers. Conclusions In response to the analysis of workflow and information flow, the authors developed ten guidelines for design of HIT to support chronic disease care, including recommendations to pursue modular approaches to design that would support disease-specific needs. The study demonstrates the importance of evaluating workflow and information flow in HIT design and implementation. PMID:19717802
NASA Technical Reports Server (NTRS)
Nahra, Henry (Compiler)
2004-01-01
Topic presentations are included on the following: biosensors to monitor the health of astronauts, microgravity effects on flammability, fire prevention and suppression, life support topics, waste management topics, heat transfer; gas flow and liquids flow, and combustion studies.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
Nimiroski, Mark T.; Wild, Emily C.
2005-01-01
The Woonasquatucket River Basin includes 51.0 square miles, and the Moshassuck River Basin includes 23.8 square miles in north-central Rhode Island. The study area comprises these two basins. The two basins border each other with the Moshassuck River Basin to the northeast of the Woonasquatucket River Basin. Seven towns are in the Woonasquatucket River Basin, and six towns are in the Moshassuck River Basin. To determine the water use and availability in the study area, water supply and discharge data were collected for these river basins for the 1995–99 period, and compared to estimated long-term water available. The study area is unique in the State of Rhode Island, because no withdrawals from major public suppliers were made during the study period. Withdrawals were, therefore, limited to self-supplied domestic use, two minor suppliers, and one self-supplied industrial user. Because no metered data were available, the summer water withdrawals were assumed to be the same as the estimates for the rest of the year. Seven major water suppliers distribute an average of 17.564 million gallons per day for use in the study area from sources outside of the study area. The withdrawals from minor water suppliers were 0.017 million gallons per day in the study area, all in the town of Smithfield in the Woonasquatucket River Basin. The remaining withdrawals in the study area were estimated to be 0.731 million gallons per day by self-supplied domestic, commercial, industrial, and agricultural users. Return flows in the study area included self-disposed water and disposal from permitted dischargers, including the Smithfield Sewage Treatment Plant. Return flows accounted for 4.116 million gallons per day in the study area. Most public-disposed water (15.195 million gallons per day) is collected by the Narragansett Bay Commission and is disposed outside of the basin in Narragansett Bay. The PART program, a computerized hydrograph-separation application, was used at one index stream-gaging station to determine water availability based on the 75th, 50th, and 25th percentiles of the total base flow, the base flow minus the 7-day, 10-year flow criteria, and the base flow minus the Aquatic Base Flow criteria. The index station selected was the Branch River at Forestdale, which is close to the study area and has a similar percentage of sand and gravel area. Water availability was estimated on the basis of baseflow contributions from sand and gravel deposits and till deposits at the index station. Flows were computed for June, July, August, and September 1957–2000, and a percentage of the total flow was determined to come from either sand and gravel deposits, or till, by using a regression equation. The base-flow contributions were converted to a flow per unit area at the station for the till and for the sand and gravel deposits and then applied to the deposits in the study area basins. These values were used to estimate the gross yield of base flow, as well as to subtract the two low flows (7-day, 10-year flow, and Aquatic Base Flow criteria). The results from the Branch River stream-gaging station were lowest in August at the 75th, 50th, and 25th percentile for total flow with either flow criteria subtracted. The estimated August gross yield at the 50th percentile from the Woonasquatucket River Basin was 12.94 million gallons per day, and 5.91 million gallons per day from the Moshassuck River Basin.A ratio was calculated that is equal to total withdrawals divided by water availability. Water-availability flow scenarios at the 75th, 50th, and 25th percentiles for the basins, which are based on total water available from base-flow contributions from till and sand and gravel deposits in the basins, were assessed. The ratios were the highest in July for the 50th percentile estimated gross yield minus Aquatic Base Flow (ABF) flow criteria, where withdrawals are close to the available water. Ratios are not presented if the available water is less than the flow criteria. The ratio of withdrawals to the July gross yield at the 50th percentile minus Aquatic Base Flow was 0.796 for the Woonasquatucket and 0.275 for the Moshassuck River Basin. A long-term hydrologic budget was calculated for the period of 1956–2000 for the Woonasquatucket River Basin and the period of 1964–2000 for the Moshassuck River Basin. The water withdrawals and return flows used in the budget were from 1995 through 1999. For the hydrologic budget, inflow was assumed to equal outflow and was about 120 million gallons per day in the Woonasquatucket River Basin and 56 million gallons per day in the Moshassuck River Basin. The estimated inflows from precipitation and water return flow were 97.3 and 2.7 percent, respectively, in the Woonasquatucket River Basin, and 98.3 and 1.7 percent, respectively, in the Moshassuck River Basin. The estimated outflows from evapotranspiration, streamflow, and water withdrawals were 43.4, 56.1, and 0.5 percent, respectively, in the Woonasquatucket River Basin, and 49.8, 50, and 0.2 percent, respectively, in the Moshassuck River Basin.
Viscous flow computations using a second-order upwind differencing scheme
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1988-01-01
In the present computations of a wide range of fluid flow problems by means of the primitive variables-incorporating Navier-Stokes equations, a mixed second-order upwinding scheme approximates the convective terms of the transport equations and the scheme's accuracy is verified for convection-dominated high Re number flow problems. An adaptive dissipation scheme is used as a monotonic supersonic shock flow capture mechanism. Many benchmark fluid flow problems, including the compressible and incompressible, laminar and turbulent, over a wide range of M and Re numbers, are presently studied to verify the accuracy and robustness of this numerical method.
NASA Technical Reports Server (NTRS)
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
Salinization Sources Along the Lower Jordan River Under Draught Conditions
NASA Astrophysics Data System (ADS)
Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.
2003-12-01
The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.
2016-12-01
Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow alluvial aquifers.
NASA Astrophysics Data System (ADS)
Adam, Saad; Premnath, Kannan
2016-11-01
Fluid mechanics of non-Newtonian fluids, which arise in numerous settings, are characterized by non-linear constitutive models that pose certain unique challenges for computational methods. Here, we consider the lattice Boltzmann method (LBM), which offers some computational advantages due to its kinetic basis and its simpler stream-and-collide procedure enabling efficient simulations. However, further improvements are necessary to improve its numerical stability and accuracy for computations involving broader parameter ranges. Hence, in this study, we extend the cascaded LBM formulation by modifying its moment equilibria and relaxation parameters to handle a variety of non-Newtonian constitutive equations, including power-law and Bingham fluids, with improved stability. In addition, we include corrections to the moment equilibria to obtain an inertial frame invariant scheme without cubic-velocity defects. After preforming its validation study for various benchmark flows, we study the physics of non-Newtonian flow over pairs of circular and square cylinders in a tandem arrangement, especially the wake structure interactions and their effects on resulting forces in each cylinder, and elucidate the effect of the various characteristic parameters.
Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen
2012-01-01
Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.
Precipitation patterns during channel flow
NASA Astrophysics Data System (ADS)
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Feaster, Toby D.; Guimaraes, Wladmir B.
2009-01-01
Part of the mission of the South Carolina Department of Health and Environmental Control and the South Carolina Department of Natural Resources is to protect and preserve South Carolina's water resources. Doing so requires an ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina. A particular need is information concerning the low-flow characteristics of streams; this information is especially important for effectively managing the State's water resources during critical flow periods such as the severe drought that occurred between 1998 and 2002 and the most recent drought that occurred between 2006 and 2009. In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. Under this agreement, the low-flow characteristics at continuous-record streamgaging stations will be updated in a systematic manner during the monitoring and assessment of the eight major basins in South Carolina as defined and grouped according to the South Carolina Department of Health and Environmental Control's Watershed Water Quality Management Strategy. Depending on the length of record available at the continuous-record streamgaging stations, low-flow frequency characteristics are estimated for annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day average flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years. Low-flow statistics are presented for 18 streamgaging stations in the Pee Dee River basin. In addition, daily flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance also are presented for the stations. The low-flow characteristics were computed from records available through March 31, 2007. The last systematic update of low-flow characteristics in South Carolina occurred more than 20 years ago and included data through March 1987. Of the 17 streamgaging stations included in this study, 15 had low-flow characteristics that were published in previous U.S. Geological Survey reports. A comparison of the low-flow characteristic for the minimum average flow for a 7-consecutive-day period with a 10-year recurrence interval from this study with the most recently published values indicated that 10 of the 15 streamgaging stations had values that were within ±25 percent of each other. Nine of the 15 streamgaging stations had negative percentage differences indicating the low-flow statistic had decreased since the previous study, 4 streamgaging stations had positive percent differences indicating that the low-flow statistic had increased since the previous study, and 2 streamgaging stations had a zero percent difference indicating no change since the previous study. The low-flow characteristics are influenced by length of record, hydrologic regime under which the record was collected, techniques used to do the analysis, and other changes that may have occurred in the watershed.
Microfluidic flows of wormlike micellar solutions.
Zhao, Ya; Cheung, Perry; Shen, Amy Q
2014-09-01
The widespread use of wormlike micellar solutions is commonly found in household items such as cosmetic products, industrial fluids used in enhanced oil recovery and as drag reducing agents, and in biological applications such as drug delivery and biosensors. Despite their extensive use, there are still many details about the microscopic micellar structure and the mechanisms by which wormlike micelles form under flow that are not clearly understood. Microfluidic devices provide a versatile platform to study wormlike micellar solutions under various flow conditions and confined geometries. A review of recent investigations using microfluidics to study the flow of wormlike micelles is presented here with an emphasis on three different flow types: shear, elongation, and complex flow fields. In particular, we focus on the use of shear flows to study shear banding, elastic instabilities of wormlike micellar solutions in extensional flow (including stagnation and contraction flow field), and the use of contraction geometries to measure the elongational viscosity of wormlike micellar solutions. Finally, we showcase the use of complex flow fields in microfluidics to generate a stable and nanoporous flow-induced structured phase (FISP) from wormlike micellar solutions. This review shows that the influence of spatial confinement and moderate hydrodynamic forces present in the microfluidic device can give rise to a host of possibilities of microstructural rearrangements and interesting flow phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
NASA Technical Reports Server (NTRS)
Chen, C. P.
1990-01-01
An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.
Uncertainty in hydrological signatures
NASA Astrophysics Data System (ADS)
McMillan, Hilary; Westerberg, Ida
2015-04-01
Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty magnitude and bias, and to test how uncertainty depended on the density of the raingauge network and flow gauging station characteristics. The uncertainties were sometimes large (i.e. typical intervals of ±10-40% relative uncertainty) and highly variable between signatures. Uncertainty in the mean discharge was around ±10% for both catchments, while signatures describing the flow variability had much higher uncertainties in the Mahurangi where there was a fast rainfall-runoff response and greater high-flow rating uncertainty. Event and total runoff ratios had uncertainties from ±10% to ±15% depending on the number of rain gauges used; precipitation uncertainty was related to interpolation rather than point uncertainty. Uncertainty distributions in these signatures were skewed, and meant that differences in signature values between these catchments were often not significant. We hope that this study encourages others to use signatures in a way that is robust to data uncertainty.
A microcomputer model for simulating pressurized flow in a storm sewer system : interim report.
DOT National Transportation Integrated Search
1988-01-01
A study is being conducted on the development of a microcomputer model for simulating storm sewer flow under surcharged or pressurized conditions. Several existing models, including the EPA Storm Water Management Hodel (SYMM) and the Illinois Urban D...
A New Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.
Turbofan aft duct suppressor study program listing and user's guide
NASA Technical Reports Server (NTRS)
Joshi, M. C.; Kraft, R. E.
1983-01-01
A description of the structure of the Annular Flow Duct Program (AFDP) for the calculation of acoustic suppression due to treatment in a finite length annular duct carrying sheared flow is presented. Although most appropriate for engine exhaust ducts, this program can be used to study sound propagation in any duct that maintains annular geometry over a considerable length of the duct. The program is based on the modal analysis of sound propagation in ducts with axial segments of different wall impedances. For specified duct geometry, wall impedance, flow and acoustic conditions in the duct (including mode amplitude distribution of the source) and duct termination reflection characteristics, the program calculates the suppression due to the treatment in the duct. The presence of forward and backward traveling modes in the duct due to the reflection and redistribution of modes at segment interfaces and duct end terminations are taken into account in the calculations. The effects of thin wall boundary layers (with a linear or mean flow velocity profile) on the acoustic propagation are also included in the program. A functional description of the major subroutines is included and a sample run is provided with an explanation of the output.
Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.
2011-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.
Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)
2002-01-01
This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.
Study of low Reynolds number nozzle flows, including radial pressure gradients
NASA Technical Reports Server (NTRS)
Rae, W. J.
1972-01-01
An analysis is presented of the laminar, axisymmetric flow in a nozzle, including both axial and radial variations of the pressure. The system of equations derived is believed to contain all of the terms necessary for describing the flow through a relatively sharp throat (i.e., one for which the longitudinal radius of curvature of the throat is comparable to, or less than, the transverse radius). A finite difference approximation of these equations is described, together with a computer program for finding numerical solutions. An instability was found in the starting solution; a series of attempts to eliminate this instability is described.
Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico
NASA Astrophysics Data System (ADS)
von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.
2013-12-01
Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe. Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.
Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.
2014-01-01
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414
NASA Technical Reports Server (NTRS)
Barra, V.; Panunzio, S.
1976-01-01
Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.
Collins, Dannie L.; Flynn, Kathleen M.
1979-01-01
This report summarizes and makes available to other investigators the measured hydraulic data collected during a series of experiments designed to study the effect of patterned bed roughness on steady and unsteady open-channel flow. The patterned effect of the roughness was obtained by clear-cut mowing of designated areas of an otherwise fairly dense coverage of coastal Bermuda grass approximately 250 mm high. All experiments were conducted in the Flood Plain Simulation Facility during the period of October 7 through December 12, 1974. Data from 18 steady flow experiments and 10 unsteady flow experiments are summarized. Measured data included are ground-surface elevations, grass heights and densities, water-surface elevations and point velocities for all experiments. Additional tables of water-surface elevations and measured point velocities are included for the clear-cut areas for most experiments. One complete set of average water-surface elevations and one complete set of measured point velocities are tabulated for each steady flow experiment. Time series data, on a 2-minute time interval, are tabulated for both water-surface elevations and point velocities for each unsteady flow experiment. All data collected, including individual records of water-surface elevations for the steady flow experiments, have been stored on computer disk storage and can be retrieved using the computer programs listed in the attachment to this report. (Kosco-USGS)
Fundamental Studies of SUBSONIC and Transonic Flow Separation. Part 3. Third Phase Summary Report
1979-10-01
circular bump using a laser velocimeter and pitot probe. They point out that external probes like pitot probes or rakes of different kinds may...numerical Navier-Stokes solutions for high Reynolds number two-dimenslonal flow. The flow conditions have been extended to include low supersonic free...Setups . . . . . . . . . . . 19 Shock Holder and Its Orientation in the Tunnel . . . . . . . . . . . . . . 21 Pitot and Cone Probes Mounted on
Study of Varying Boundary Layer Height on Turret Flow Structures
2011-06-01
fluid dynamics. The difficulties of the problem arise in modeling several complex flow features including separation, reattachment, three-dimensional...impossible. In this case, the approach is to create a model to calculate the properties of interest. The main issue with resolving turbulent flows...operation and their effect is modeled through subgrid scale models . As a result, the the most important turbulent scales are resolved and the
Relative ages of lava flows at Alba Patera, Mars
NASA Technical Reports Server (NTRS)
Schneeberger, Dale M.; Pieri, David C.
1987-01-01
Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves.
Rarefaction effects in microchannel gas flow driven by rhythmic wall contractions
NASA Astrophysics Data System (ADS)
Chatterjee, Krishnashis; Staples, Anne; Department of Biomedical Engineering; Mechanics, Virginia Tech Collaboration
2015-11-01
Current state of the art microfluidic devices employ precise and timely operation of a complex arrangement of micropumps and valves for fluid transport. A much more novel flow transport mechanism is found in entomological respiratory systems, which involve rhythmic wall contractions for driving the fluid flow. The practical viability of using this technique in future microfluidic devices has been studied earlier. The present study investigates the incorporation of rarefaction effects in the above model of microscale gas flow by including slip boundary conditions. The Navier Stokes equations for gas flow in rectangular microchannel are solved analytically with microscale and lubrication theory assumptions. First order slip boundary conditions are incorporated to account for the rarefaction effects. The dependence of fluid velocities and pressure gradient on the slip boundary conditions is studied. Time averaged unidirectional fluid flow rates are plotted for different phase lags between the contractions, with and without slip in order to obtain an optimum range under different conditions.
Flow Behavior Around a Fast-Starting Robotic Fish
NASA Astrophysics Data System (ADS)
Ma, Ganzhong; Currier, Todd; Modarres-Sadeghi, Yahya
2017-11-01
A robotic fish is used to study the flow behavior around the body of a fast-starting fish as it experiences a fast-start. The robotic fish is designed and built emulating a Northern Pike, Esox Lucius, which can accelerate at up to 245 m/s2. In previous studies, we had focused on the flow around the tail during the fast-start, by using a tail which acted flexibly in the preparatory stage and rigidly in the propulsive stage. We have extended that study by including the fish body in the experimental setup, where the body can bend into a C-shape, so that the influence of the body motion on the resulting flow around the structure can be understood as well. In the tests, the fish can rotate about a vertical axis, where a multi-axis force sensor measures flow forces acting on the body. Synchronized with the force measurement, flow visualizations using bubble image velocimetry are conducted, and the observed shed vortices are related to the peak forces observed during the maneuver.
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers.
Stonebridge, P A; Suttie, S A; Ross, R; Dick, J
2016-11-01
Spiral laminar flow was suggested as potentially the predominant arterial blood flow pattern many years ago. Computational fluid dynamics and flow rig testing have suggested there are advantages to spiral laminar flow. The aim of this study was to identify whether spiral laminar is the predominant flow pattern in a cohort of volunteers. This study included 42 volunteers (mean age 66.8 years). Eleven arterial sites were examined, comprising bilateral examination of the common carotid artery, internal carotid artery, external carotid artery, common femoral artery, superficial femoral artery, and the infra renal aorta. The presence or absence of spiral laminar flow, the peak systolic velocity, and the rotational velocity were assessed by colour Duplex scanning. The incidence of spiral laminar flow ranged from 81% in the internal carotid artery to 90% in the common carotid artery and the infra renal aorta. Overall, in 58% of all right-sided arteries the rotation was clockwise and 42% anticlockwise. In all left-sided arteries these numbers were reversed. Analysis on the basis of volunteer rather than examination site showed that 41/42 (97%) had more sites with spiral laminar flow than without. Only one volunteer had more sites exhibiting non-spiral laminar flow. Spiral laminar flow was the predominant flow pattern in the study population. This observation raises questions and suggests a need for further studies concerning the form and function of the left ventricle, the geometry of the arterial system, and the function of the arterial wall. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.
Morales, Hernán G; Bonnefous, Odile
2015-02-26
Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compressible Navier-Stokes equations: A study of leading edge effects
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Karbhari, P. R.
1987-01-01
A computational method is developed that allows numerical calculations of the time dependent compressible Navier-Stokes equations.The current results concern a study of flow past a semi-infinite flat plate.Flow develops from given inflow conditions upstream and passes over the flat plate to leave the computational domain without reflecting at the downstream boundary. Leading edge effects are included in this paper. In addition, specification of a heated region which gets convected with the flow is considered. The time history of this convection is obtained, and it exhibits a wave phenomena.
Strauch, Louise S; Eriksen, Rie Ø; Sandgaard, Michael; Kristensen, Thomas S; Nielsen, Michael B; Lauridsen, Carsten A
2016-07-21
The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT) as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The initial search yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow are important perfusion values for predicting treatment outcome. However, the heterogeneity in scan protocols, scan parameters, and time between scans makes it difficult to compare the included studies.
Technical activities report: Heat, water, and mechanical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, W.K.
1951-10-04
Topics in the heat studies section include: front and rear face reflector shields at the C-pile; process tube channel thermocouples; water temperature limits for horizontal rods; slug temperature and thermal conductivity calculations; maximum slug-end cap temperature; boiling consideration studies; scram time limit for Panellit alarm; heat transfer test; slug stresses; thermal insulation of bottom tube row at C-pile; flow tests; present pile enrichment; electric analog; and measurement of thermal contact resistance. Topics in the water studies section include: 100-D flow laboratory; process water studies; fundamental studies on film formation; coatings on tip-offs; can difference tests; slug jacket abrasion at highmore » flow rates; corrosion studies; front tube dummy slugs; metallographic examination of tubes from H-pile; fifty-tube mock-up; induction heating facility; operational procedures and standards; vertical safety rod dropping time tests; recirculation; and power recovery. Mechanical development studies include: effect of Sphincter seal and lubricant VSR drop time; slug damage; slug bubble tester; P-13 removal; chemical slug stripper; effect of process tube rib spacing and width; ink facility installation; charging and discharging machines; process tube creep; flapper nozzle assembly test; test of single gun barrel assembly; pigtail fixture test; horizontal rod gland seal test; function test of C-pile; and intermediate test of Ball 3-X and VSR systems.« less
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
Jet-controlled freeze valve for use in a glass melter
Routt, K.R.
1985-07-29
A drain valve for use in furnace for the melting of thermoplastic material is disclosed. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace.
Reporting of participant flow diagrams in published reports of randomized trials
2011-01-01
Background Reporting of the flow of participants through each stage of a randomized trial is essential to assess the generalisability and validity of its results. We assessed the type and completeness of information reported in CONSORT (Consolidated Standards of Reporting Trials) flow diagrams published in current reports of randomized trials. Methods A cross sectional review of all primary reports of randomized trials which included a CONSORT flow diagram indexed in PubMed core clinical journals (2009). We assessed the proportion of parallel group trial publications reporting specific items recommended by CONSORT for inclusion in a flow diagram. Results Of 469 primary reports of randomized trials, 263 (56%) included a CONSORT flow diagram of which 89% (237/263) were published in a CONSORT endorsing journal. Reports published in CONSORT endorsing journals were more likely to include a flow diagram (62%; 237/380 versus 29%; 26/89). Ninety percent (236/263) of reports which included a flow diagram had a parallel group design, of which 49% (116/236) evaluated drug interventions, 58% (137/236) were multicentre, and 79% (187/236) compared two study groups, with a median sample size of 213 participants. Eighty-one percent (191/236) reported the overall number of participants assessed for eligibility, 71% (168/236) the number excluded prior to randomization and 98% (231/236) the overall number randomized. Reasons for exclusion prior to randomization were more poorly reported. Ninety-four percent (223/236) reported the number of participants allocated to each arm of the trial. However, only 40% (95/236) reported the number who actually received the allocated intervention, 67% (158/236) the number lost to follow up in each arm of the trial, 61% (145/236) whether participants discontinued the intervention during the trial and 54% (128/236) the number included in the main analysis. Conclusions Over half of published reports of randomized trials included a diagram showing the flow of participants through the trial. However, information was often missing from published flow diagrams, even in articles published in CONSORT endorsing journals. If important information is not reported it can be difficult and sometimes impossible to know if the conclusions of that trial are justified by the data presented. PMID:22141446
Studying Fast Reactions: Construction and Use of a Low-Cost Continuous-Flow Instrument
ERIC Educational Resources Information Center
Bisson, Patrick J.; Whitten, James E.
2006-01-01
The construction and use of a low-cost continuous-flow instrument for measuring the kinetics of fast reaction which include the use of an light emitting diode light source, a photodiode-on-a-chip detector, and a position sensor is demonstrated. The instrument is suitable for the physical chemistry laboratory and could be used to study the kinetics…
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
Relationship between platelet-to-lymphocyte ratio and coronary slow flow.
Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri
2015-05-01
The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.
Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics
NASA Technical Reports Server (NTRS)
Csatho, Beata M.
2003-01-01
Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.
NASA Astrophysics Data System (ADS)
Cholemari, Murali R.; Arakeri, Jaywant H.
2005-08-01
We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.
Monodisperse microdroplet generation and stopping without coalescence
Beer, Neil Reginald
2015-04-21
A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.
Monodisperse microdroplet generation and stopping without coalescence
Beer, Neil Reginald
2016-02-23
A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.
Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro
2016-02-11
Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.
NASA Astrophysics Data System (ADS)
Koch, Caleb; Winfrey, Leigh
2014-10-01
Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.
WATER QUALITY MODELING AND SAMPLING STUDY IN A DISTRIBUTION SYSTEM
A variety of computer based models have been developed and used by the water industry to access the movement and fate of contaminants within the distribution system. uch models include: ynamic and steady state hydraulic models which simulate the flow quantity, flow direction, and...
SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...
ERIC Educational Resources Information Center
Wankat, Phillip C.
1984-01-01
Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)
Investigation of the asymptotic state of rotating turbulence using large-eddy simulation
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude
1993-01-01
Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.
Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight
NASA Technical Reports Server (NTRS)
Talay, T. A.
1975-01-01
General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.
Computational Methods Development at Ames
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Smith, Charles A. (Technical Monitor)
1998-01-01
This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.
Validation of numerical models for flow simulation in labyrinth seals
NASA Astrophysics Data System (ADS)
Frączek, D.; Wróblewski, W.
2016-10-01
CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.
3D-printed devices for continuous-flow organic chemistry.
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy
2013-01-01
We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Grosch, C. E.
1984-01-01
A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts
Zarriello, Phillip J.; Carlson, Carl S.
2009-01-01
A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.
Novel multi-functional fluid flow device for studying cellular mechanotransduction
Lyons, James S.; Iyer, Shama R.; Lovering, Richard M.; Ward, Christopher W.; Stains, Joseph P.
2016-01-01
Cells respond to their mechanical environment by initiating multiple mechanotransduction signaling pathways. Defects in mechanotransduction have been implicated in a number of pathologies; thus, there is need for convenient and efficient methods for studying the mechanisms underlying these processes. A widely used and accepted technique for mechanically stimulating cells in culture is the introduction of fluid flow on cell monolayers. Here, we describe a novel, multifunctional fluid flow device for exposing cells to fluid flow in culture. This device integrates with common lab equipment including routine cell culture plates and peristaltic pumps. Further, it allows the fluid flow treated cells to be examined with outcomes at the cell and molecular level. We validated the device using the biologic response of cultured UMR-106 osteoblast-like cells in comparison to a commercially available system of laminar sheer stress to track live cell calcium influx in response to fluid flow. In addition, we demonstrate the fluid flow-dependent activation of phospho-ERK in these cells, consistent with the findings in other fluid flow devices. This device provides a low cost, multi-functional alternative to currently available systems, while still providing the ability to generate physiologically relevant conditions for studying processes involved in mechanotransduction in vitro. PMID:27887728
Wallace, Adam N; Grossberg, Jonathan A; Almandoz, Josser E Delgado; Kamran, Mudassar; Roy, Anil K; Kayan, Yasha; Austin, Matthew J; Howard, Brian M; Moran, Christopher J; Cawley, C Michael; Cross, DeWitte T; Dion, Jacques E; Kansagra, Akash P; Osbun, Joshua W
2018-03-08
Flow diversion of posterior cerebral artery (PCA) aneurysms has not been widely reported, possibly owing to concerns regarding parent vessel size and branch vessel coverage. To examine the safety and effectiveness of PCA aneurysm flow diverter treatment. Retrospective review of PCA aneurysms treated with the Pipeline Embolization Device (PED; Medtronic Inc, Dublin, Ireland) at 3 neurovascular centers, including periprocedural complications and clinical and angiographic outcomes. Systematic review of the literature identified published reports of PCA aneurysms treated with flow diversion. Rates of aneurysm occlusion and complications were calculated, and outcomes of saccular and fusiform aneurysm treatments were compared. Ten PCA aneurysms in 9 patients were treated with the PED. There were 2 intraprocedural thromboembolic events (20%), including 1 symptomatic infarction and 1 delayed PED thrombosis. Eight of 10 patients returned to or improved from their baseline functional status. Complete aneurysm occlusion with parent vessel preservation was achieved in 75% (6/8) of cases at mean follow-up of 16.7 mo. Eleven of 12 (92%) major branch vessels covered by a PED remained patent. Including the present study, systematic review of 15 studies found a complete aneurysm occlusion rate of 88% (30/34) and complication rate of 26% (10/38), including 5 symptomatic ischemic strokes (13%; 5/38). Fusiform aneurysms more frequently completely occluded compared with saccular aneurysms (100% vs 70%; P = .03) but were associated with a higher complication rate (43% vs 9%; P = .06). The safety and effectiveness profile of flow diverter treatment of PCA aneurysms may be acceptable in select cases.
Hepatic Hemodynamics and Portal Flow Modulation: The A2ALL Experience.
Emond, Jean C; Goodrich, Nathan P; Pomposelli, James J; Baker, Talia B; Humar, Abhinav; Grant, David R; Abt, Peter; Friese, Chris E; Fisher, Robert A; Kam, Igal; Sherker, Averell H; Gillespie, Brenda W; Merion, Robert M
2017-10-01
A principal aim of the Adult-to-Adult Living Donor Liver Transplantation Cohort Study was to study hepatic blood flow and effect of portal flow modulation on graft outcomes in the setting of increasing use of smaller and left lobe grafts. Recipients of 274 living donor liver transplant were enrolled in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study, including 233 (85.0%) right lobes, 40 (14.6%) left lobes, and 1 (0.5%) left lateral section. Hepatic hemodynamics were recorded after reperfusion. A total of 57 portal flow modulations were performed on 52 subjects. Modulation lowered portal pressure in 68% of subjects with inconsistent effects on hepatic arterial and portal flow. A higher rate of graft dysfunction was observed in modulated vs. unmodulated subjects (31% vs. 18%; P = 0.03); however, graft survival in modulated subjects was not different from unmodulated subjects at 3 years. These results suggest the need for a study using a prespecified portal flow modulation protocol with defined indications to better define the effects of these interventions.
NASA Astrophysics Data System (ADS)
Leonard, T.; Spence, S.; Early, J.; Filsinger, D.
2013-12-01
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle - the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters. Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model. Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle. The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
Flow Diverters for Intracranial Aneurysms
Alderazi, Yazan J.; Kass-Hout, Tareq; Prestigiacomo, Charles J.; Gandhi, Chirag D.
2014-01-01
Flow diverters (pipeline embolization device, Silk flow diverter, and Surpass flow diverter) have been developed to treat intracranial aneurysms. These endovascular devices are placed within the parent artery rather than the aneurysm sac. They take advantage of altering hemodynamics at the aneurysm/parent vessel interface, resulting in gradual thrombosis of the aneurysm occurring over time. Subsequent inflammatory response, healing, and endothelial growth shrink the aneurysm and reconstruct the parent artery lumen while preserving perforators and side branches in most cases. Flow diverters have already allowed treatment of previously untreatable wide neck and giant aneurysms. There are risks with flow diverters including in-stent thrombosis, perianeurysmal edema, distant and delayed hemorrhages, and perforator occlusions. Comparative efficacy and safety against other therapies are being studied in ongoing trials. Antiplatelet therapy is mandatory with flow diverters, which has highlighted the need for better evidence for monitoring and tailoring antiplatelet therapy. In this paper we review the devices, their uses, associated complications, evidence base, and ongoing studies. PMID:24967131
Støverud, Karen-Helene; Langtangen, Hans Petter; Ringstad, Geir Andre; Eide, Per Kristian; Mardal, Kent-Andre
2016-01-01
Previous computational fluid dynamics (CFD) studies have demonstrated that the Chiari malformation is associated with abnormal cerebrospinal fluid (CSF) flow in the cervical part of the subarachnoid space (SAS), but the flow in the SAS of the posterior cranial fossa has received little attention. This study extends previous modelling efforts by including the cerebellomedullary cistern, pontine cistern, and 4th ventricle in addition to the cervical subarachnoid space. The study included one healthy control, Con1, and two patients with Chiari I malformation, P1 and P2. Meshes were constructed by segmenting images obtained from T2-weighted turbo spin-echo sequences. CFD simulations were performed with a previously verified and validated code. Patient-specific flow conditions in the aqueduct and the cervical SAS were used. Two patients with the Chiari malformation and one control were modelled. The results demonstrated increased maximal flow velocities in the Chiari patients, ranging from factor 5 in P1 to 14.8 in P2, when compared to Con1 at the level of Foramen Magnum (FM). Maximal velocities in the cervical SAS varied by a factor 2.3, while the maximal flow in the aqueduct varied by a factor 3.5. The pressure drop from the pontine cistern to the cervical SAS was similar in Con1 and P1, but a factor two higher in P2. The pressure drop between the aqueduct and the cervical SAS varied by a factor 9.4 where P1 was the one with the lowest pressure jump and P2 and Con1 differed only by a factor 1.6. This pilot study demonstrates that including the posterior cranial fossa is feasible and suggests that previously found flow differences between Chiari I patients and healthy individuals in the cervical SAS may be present also in the SAS of the posterior cranial fossa.
Selected Streamflow Statistics for Streamgaging Stationsin Northeastern Maryland, 2006
Ries, Kernell G.
2006-01-01
Streamflow statistics were calculated for 47 U.S. Geological Survey (USGS) streamgaging stations in northeastern Maryland, in cooperation with (1) the University of Maryland, Baltimore County, Center for Urban Environmental Research and Education; (2) the Baltimore City Department of Public Works; and (3) the Baltimore County Department of Environmental Protection and Resource Management. The statistics include the mean, minimum, maximum, and standard deviation of the daily mean discharges for the periods of record at the stations, as well as flow-duration and low-flow frequency statistics. The flow-duration statistics include the 1-, 2-, 5-, 10-, 15-, 20-, 25-, 30-, 40-, 50-, 60-, 70-, 75-, 80-, 85-, 90-, 95-, 98-, and 99-percent duration discharges. The low-flow frequency statistics include the average discharges for 1, 7, 14, and 30 days that recur, on average, once in 1.01, 2, 5, 10, 20, 50, and 100 years. The statistics were computed only for the 25 stations with periods of record of 10 years or more. The statistics were computed from records available through September 30, 2004 using standard methods and computer software developed by the USGS. A comparison between low-flow frequency statistics computed for this study and for a previous study that used data available through September 30, 1989 was done for seven stations. The comparison indicated that, for the 7-day mean low flow, the newer values were 19.8 and 15.3 percent lower for the 20- and 10-year recurrence intervals, respectively, and 2.1 percent higher for the 2-year recurrence interval, than the older values. For the 14-day mean low flow, the newer 20- and 10-year values were 25.2 and 15.5 percent lower, respectively, and the 2-year value was 2.9 percent higher than the older values. For the 30-day mean low flow, the newer 20-, 10-, and 2-year values were 10.8, 7.9, and 0.8 percent lower, respectively, than the older values. The newer values are generally lower than the older ones most likely because two major droughts have occurred since the older study was completed.
LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards
NASA Astrophysics Data System (ADS)
Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.
2014-12-01
Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.
Investigating Jupiter's Deep Flow Structure using the Juno Magnetic and Gravity Measurements
NASA Astrophysics Data System (ADS)
Duer, K.; Galanti, E.; Cao, H.; Kaspi, Y.
2017-12-01
Jupiter's flow below its cloud-level is still largely unknown. The gravity measurements from Juno provide now an initial insight into the depth of the flow via the relation between the gravity field and the flow field. Furthermore, additional constraints could be put on the flow if the expected Juno magnetic measurements are also used. Specifically, the gravity and magnetic measurements can be combined to allow a more robust estimate of the deep flow structure. However, a complexity comes from the fact that both the radial profile of the flow, and it's connection to the induced magnetic field, might vary with latitude. In this study we propose a method for using the expected Juno's high-precision measurements of both the magnetic and gravity fields, together with latitude dependent models that relate the measurements to the structure of the internal flow. We simulate possible measurements by setting-up specific deep wind profiles and forward calculate the resulting anomalies in both the magnetic and gravity fields. We allow these profiles to include also latitude dependency. The relation of the flow field to the gravity field is based on thermal wind balance, and it's relation to the magnetic field is via a mean-field electrodynamics balance. The latter includes an alpha-effect, describing the mean magnetic effect of turbulent rotating convection, which might also vary with latitude. Using an adjoint based optimization process, we examine the ability of the combined magnetic-gravity model to decipher the flow structure under the different potential Juno measurements. We investigate the effect of different latitude dependencies on the derived solutions and their associated uncertainties. The novelty of this study is the combination of two independent Juno measurements for the calculation of a latitudinal dependent interior flow profile. This method might lead to a better constraint of Jupiter's flow structure.
Flow visualization techniques in the Airborne Laser Laboratory program
NASA Technical Reports Server (NTRS)
Walterick, R. E.; Vankuren, J. T.
1980-01-01
A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.
Studies on scaling of flow noise received at the stagnation point of an axisymmetric body
NASA Astrophysics Data System (ADS)
Arakeri, V. H.; Satyanarayana, S. G.; Mani, K.; Sharma, S. D.
1991-05-01
A description of the studies related to the problem of scaling of flow noise received at the stagnation point of axisymmetric bodies is provided. The source of flow noise under consideration is the transitional/turbulent regions of the boundary layer flow on the axisymmetric body. Lauchle has recently shown that the noise measured in the laminar region (including the stagnation point) corresponds closely to the noise measured in the transition region, provided that the acoustic losses due to diffraction are accounted for. The present study includes experimental measurement of flow noise at the stagnation point of three different shaped axisymmetric headforms. One of the body shapes chosen is that used by Lauchle in similar studies. This was done to establish the effect of body size on flow noise. The results of the experimental investigations clearly show that the flow noise received at the stagnation point is a strong function of free stream velocity, a moderately strong function of body scale but a weak function of boundary layer thickness. In addition, there is evidence that when body scale change is involved, flow noise amplitude scales but no frequency shift is involved. A scaling procedure is proposed based on the present observations along with those of Lauchle. At a given frequency, the amplitude of noise level obtained under model testing conditions is first scaled to account for differences in the velocity and size corresponding to the prototype conditions; then a correction to this is applied to account for losses due to diffraction, which are estimated on the basis of the geometric theory of diffraction (GTD) with the source being located at the predicted position of turbulent transition. Use of the proposed scaling law to extrapolate presently obtained noise levels to two other conditions involving larger-scale bodies show good agreement with actually measured levels, in particular at higher frequencies. Since model scale results have been used successfully to predict levels on larger-sized bodies tested in a totally different environment, the present data along with the proposed scaling procedure can be used to predict the expected flow noise levels at prototype scales during preliminary design studies.
Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.
NASA Astrophysics Data System (ADS)
Ferdos, F.; Dargahi, B.
2015-12-01
Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of magnitude, resulting in non-linear turbulent flow regimes in the downstream shoulder of the dam and, ultimately, dam failure. While the modelling was limited by a lack of reliable geometrical and geotechnical data, the results of the study do highlight the importance of including groundwater-surface water interactions in dam safety assessments.
Palkovits, Stefan; Lasta, Michael; Told, Reinhard; Schmidl, Doreen; Werkmeister, René; Cherecheanu, Alina Popa; Garhöfer, Gerhard; Schmetterer, Leopold
2015-01-01
Cerebral and retinal blood flow are dependent on local neuronal activity. Several studies quantified the increase in cerebral blood flow and oxygen consumption during activity. In the present study we investigated the relation between changes in retinal blood flow and oxygen extraction during stimulation with diffuse luminance flicker and the influence of breathing gas mixtures with different fractions of O2 (FiO2; 100% 15% and 12%). Twenty-four healthy subjects were included. Retinal blood flow was studied by combining measurement of vessel diameters using the Dynamic Vessel Analyser with measurements of blood velocity using laser Doppler velocimetry. Oxygen saturation was measured using spectroscopic reflectometry and oxygen extraction was calculated. Flicker stimulation increased retinal blood flow (57.7 ± 17.8%) and oxygen extraction (34.6 ± 24.1%; p < 0.001 each). During 100% oxygen breathing the response of retinal blood flow and oxygen extraction was increased (p < 0.01 each). By contrast, breathing gas mixtures with 12% and 15% FiO2 did not alter flicker–induced retinal haemodynamic changes. The present study indicates that at a comparable increase in blood flow the increase in oxygen extraction in the retina is larger than in the brain. During systemic hyperoxia the blood flow and oxygen extraction responses to neural stimulation are augmented. The underlying mechanism is unknown. PMID:26672758
Flow in a centrifugal fan impeller at off-design conditions
NASA Astrophysics Data System (ADS)
Wright, T.; Tzou, K. T. S.; Madhavan, S.
1984-06-01
A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.
Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan
2007-01-01
The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.
Radial inlet guide vanes for a combustor
Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S
2013-02-12
A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.
2008-04-22
SUPPLEMENTARY NOTES 14. ABSTRACT The present effort investigates the effects of practical roughness replicated from a turbine blade damaged by deposition of...Motivation Most practical wall-bounded turbulent flows of interest, like flows over turbine blades , through heat exchangers, and over aircraft and ship...significantly roughened over time due to harsh operating conditions. Examples of such conditions include cumulative damage to turbine blades (Bons, 2002
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of alternative sea/shore flow policies. In this study...remains, even if the system is optimized. In building a Discrete -Event Simulation model, we discovered key factors that should be included in the... Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model) and compared the results with the SSFM for one
High Reynolds Number Liquid Flow Measurements
1988-08-01
25. .n Fig. 25, the dotted line represents data taken from Eckelmann’s study in the thick viscous sublaver of an oil channel. Scatter in the...measurements of the fundamental physical quantities are not only an essencial part in an understanding of multiphase flows but also in the measurement process...technique. One of the most yloei’ used techniques, however, is some form of flow visualization. This includes the use o: tufts, oil paint films
GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube
NASA Astrophysics Data System (ADS)
Jin, K.; Vanka, S. P.; Agarwal, R. K.; Thomas, B. G.
2017-01-01
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.
The effect of Lorentz-like force on collective flows of K + in Au+Au collisions at 1.5 GeV/nucleon
NASA Astrophysics Data System (ADS)
Du, YuShan; Wang, YongJia; Li, QingFeng; Liu, Ling
2018-06-01
Producing kaon mesons in heavy-ion collisions at beam energies below their threshold energy is an important way to investigate the properties of dense nuclear matter. In this study, based on the newly updated version of the ultrarelativistic quantum molecular dynamics model, we introduce the kaon-nucleon (KN) potential, including both the scalar and vector (also dubbed Lorentz-like) aspects. We revisit the influence of the KN potential on the collective flow of K + mesons produced in Au+Au collisions at E lab = 1.5 GeV/nucleon and find that the contribution of the newly included Lorentz-like force is very important, particulary for describing the directed flow of K +. Finally, the corresponding KaoS data of both directed and elliptic flows can be simultaneously reproduced well.
COLLECTION SYSTEM SOLIDS CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM
This paper presents an historical overview of the sewer-solids control projects conducted by the Wet-Weather Flow Research Program of the US EPA. Research includes studies of the causes of sewer-solids deposition and development/evaluation of control methods that can prevent sewe...
A workstation based simulator for teaching compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.
In vitro study of near-wall flow in a cerebral aneurysm model with and without coils.
Goubergrits, L; Thamsen, B; Berthe, A; Poethke, J; Kertzscher, U; Affeld, K; Petz, C; Hege, H-C; Hoch, H; Spuler, A
2010-09-01
Coil embolization procedures change the flow conditions in the cerebral aneurysm and, therefore, in the near-wall region. Knowledge of these flow changes may be helpful to optimize therapy. The goal of this study was to investigate the effect of the coil-packing attenuation on the near-wall flow and its variability due to differences in the coil structure. An enlarged transparent model of an ACA aneurysm was fabricated on the basis of CT angiography. The near-wall flow was visualized by using a recently proposed technique called Wall-PIV. Coil-packing attenuation of 10%, 15%, and 20% were investigated and compared with an aneurysmal flow without coils. Then the flow variability due to the coil introduction was analyzed in 10 experiments by using a packing attenuation of 15%. A small packing attenuation of 10% already alters the near-wall flow significantly in a large part of the aneurysmal sac. These flow changes are characterized by a slow flow with short (interrupted) path lines. An increased packing attenuation expands the wall area exposed to the altered flow conditions. This area, however, depends on the coil position and/or on the 3D coil structure in the aneurysm. To our knowledge, this is the first time the near-wall flow changes caused by coils in an aneurysm model have been visualized. It can be concluded that future hydrodynamic studies of coil therapy should include an investigation of the coil structure in addition to the coil-packing attenuation.
NASA Astrophysics Data System (ADS)
Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi
The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.
NASA Astrophysics Data System (ADS)
Thirel, Guillaume; de Lavenne, Alban; Wagner, Jean-Pierre; Perrin, Charles; Gerlinger, Kai; Drogue, Gilles; Renard, Benjamin
2016-04-01
Several projects studied the impact of climate change on the Rhine basin during the past years, using the CMIP3 projections (see Explore2070, FLOW MS, RheinBlick2050 or VULNAR), either on the French or German sides. These studies showed the likely decrease of low flows and a high uncertainty regarding the evolution of high flows. This may have tremendous impacts on several aspects related to discharge, including pollution, flood protection, irrigation, rivers ecosystems and drinking water. While focusing on the same basin (or part of it), many differences including the climate scenarios and models, the hydrological models and the study periods used for these projects make the outcomes of these projects difficult to compare rigorously. Therefore the MOSARH21 (stands for MOselle-SArre-RHine discharge in the 21st century) was built to update and homogenise discharge projections for the French tributaries of the Rhine basin. Two types of models were used: the physically-oriented LARSIM model, which is widely used in Germany and was used in one of the previous projects (FLOW MS), and the semi-distributed conceptual GRSD model tested on French catchments for various objectives. Through the use of these two hydrological models and multiple sets of parameters obtained by various calibrations runs, the structural and parametric uncertainties in the hydrological projections were quantified, as they tend to be neglected in climate change impact studies. The focus of the impact analysis is put on low flows, high flows and regime. Although this study considers only French tributaries of the Rhine, it will foster further cooperation on transboundary basins across Europe, and should contribute to propose better bases for the future definition of adaptation strategies between riverine countries.
NASA Astrophysics Data System (ADS)
Dvory, Noam Zach; Livshitz, Yakov; Kuznetsov, Michael; Adar, Eilon; Yakirevich, Alexander
2016-04-01
Groundwater recharge in fractured karstic aquifers is particularly difficult to quantify due to the rock mass's heterogeneity and complexity that include preferential flow paths along karst conduits. The present study's major goals were to assess how the changes in lithology, as well as the fractured karst systems, influence the flow mechanism in the unsaturated zone, and to define the spatial variation of the groundwater recharge at local scale. The study area is located within the fractured carbonate Western Mountain aquifer (Yarkon-Taninim), west of the city of Jerusalem at the Ein Karem (EK) production well field. Field monitoring included groundwater level observations in nine locations in the study area during years 1990-2014. The measured groundwater level series were analyzed with the aid of one-dimensional, dual permeability numerical model of water flow in variably saturated fractured-porous media, which was calibrated and used to estimate groundwater recharge at nine locations. The recharge values exhibit significant spatial and temporal variation with mean and standard deviation values of 216 and 113 mm/year, respectively. Based on simulations, relationships were established between precipitation and groundwater recharge in each of the nine studied sites and compared with similar ones obtained in earlier regional studies. Simulations show that fast and slow flow paths conditions also influence annual cumulative groundwater recharge dynamic. In areas where fast flow paths exist, most of the groundwater recharge occurs during the rainy season (60-80% from the total recharge for the tested years), while in locations with slow flow path conditions the recharge rate stays relatively constant with a close to linear pattern and continues during summer.
NASA Astrophysics Data System (ADS)
Mazur, Robert; Kałuża, Tomasz; Chmist, Joanna; Walczak, Natalia; Laks, Ireneusz; Strzeliński, Paweł
2016-08-01
This paper presents problems caused by organic material transported by flowing water. This material is usually referred to as plant debris or organic debris. Its composition depends on the characteristic of the watercourse. For lowland rivers, the share of the so-called small organic matter in plant debris is considerable. This includes both various parts of water plants and floodplain vegetation (leaves, stems, blades of grass, twigs, etc.). During floods, larger woody debris poses a significant risk to bridges or other water engineering structures. It may cause river jams and may lead to damming of the flowing water. This, in turn, affects flood safety and increases flood risk in river valleys, both directly and indirectly. The importance of fine plant debris for the phenomenon being studied comes down to the hydrodynamic aspect (plant elements carried by water end up on trees and shrubs, increase hydraulic flow resistance and contribute to the nature of flow through vegetated areas changed from micro-to macro-structural). The key part of the research problem under analysis was to determine qualitative and quantitative debris parameters and to establish the relationship between the type of debris and the type of land use of river valleys (crop fields, meadows and forested river sections). Another problem was to identify parameters of plant debris for various flow conditions (e.g. for low, medium and flood flows). The research also included an analysis of the materials deposited on the structure of shrubs under flood flow conditions during the 2010 flood on the Warta River.
Velocity field measurements in oblique static divergent vocal fold models
NASA Astrophysics Data System (ADS)
Erath, Byron
2005-11-01
During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.
Anderson, Travis M.; Pratt, Harry D.
2016-03-15
Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
NASA Astrophysics Data System (ADS)
Wu, C. L.; Knouft, J.; Chu, M.
2017-12-01
The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.
Two-Phase Flow in Microchannels with Non-Circular Cross Section
NASA Astrophysics Data System (ADS)
Eckett, Chris A.; Strumpf, Hal J.
2002-11-01
Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.
A Martian global groundwater model
NASA Technical Reports Server (NTRS)
Howard, Alan D.
1991-01-01
A global groundwater flow model was constructed for Mars to study hydrologic response under a variety of scenarios, improving and extending earlier simple cross sectional models. The model is capable of treating both steady state and transient flow as well as permeability that is anisotropic in the horizontal dimensions. A single near surface confining layer may be included (representing in these simulations a coherent permafrost layer). Furthermore, in unconfined flow, locations of complete saturation and seepage are determined. The flow model assumes that groundwater gradients are sufficiently low that DuPuit conditions are satisfied and the flow component perpendicular to the ground surface is negligible. The flow equations were solved using a finite difference method employing 10 deg spacing of latitude and longitude.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1986-01-01
An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
Microfluidic System Simulation Including the Electro-Viscous Effect
NASA Technical Reports Server (NTRS)
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
Synthesis of natural flows at selected sites in the upper Missouri River basin, Montana, 1928-89
Cary, L.E.; Parrett, Charles
1996-01-01
Natural monthly streamflows were synthesized for the years 1928-89 for 43 sites in the upper Missouri River Basin upstream from Fort Peck Lake in Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation. Recorded and historical flows at most sites have been affected by human activities including reservoir storage, diversions for irrigation, and municipal use. Natural flows at the sites were synthesized by eliminating the effects of these activities. Recorded data at some sites do not include the entire study period. The missing flows at these sites were estimated using a statistical procedure. The methods of synthesis varied, depending on upstream activities and information available. Recorded flows were transferred to nodes that did not have streamflow-gaging stations from the nearest station with a sufficient length of record. The flows at one node were computed as the sum of flows from three upstream tributaries. Monthly changes in reservoir storage were computed from monthend contents. The changes in storage were corrected for the effects of evaporation and precipitation using pan-evaporation and precipitation data from climate stations. Irrigation depletions and consumptive use by the three largest municipalities were computed. Synthesized natural flow at most nodes was computed by adding algebraically the upstream depletions and changes in reservoir storage to recorded or historical flow at the nodes.
NASA Astrophysics Data System (ADS)
Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino
2017-11-01
In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.
Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V
2017-02-01
The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
NASA Technical Reports Server (NTRS)
Clem, Michelle; Woike, Mark
2013-01-01
This is a presentation to be given at an internal NASA Advanced Schlieren Working Group Meeting. The presentation will cover the recent developments and applications of flow visualization methods at GRC. The topics being discussed will include the use of Background Oriented Schlieren (BOS) in the study of screech and its associated shock spacing as well as in the investigation of broadband shock noise reduction in the Jet-Surface Interaction Tests. In addition, other flow visualiztion methods will be discussed in an on-going study comparing schlieren, shadowgraph, BOS, and focusing schlieren.
Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods
NASA Astrophysics Data System (ADS)
Lin, Chia-Hsien; Chou, Dean-Yi
2018-06-01
The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.
Flow Behavior in the Left Heart Ventricle Following Apico-Aortic Bypass Surgery
NASA Astrophysics Data System (ADS)
Shahriari, Shahrokh; Jeyhani, Morteza; Labrosse, Michel; Kadem, Lyes
2013-11-01
Apico-aortic bypass (AAB) surgery is an alternative for transcatheter aortic valve implantation (TAVI) to reduce left ventricle (LV) overload in patients with severe aortic stenosis (AS). It consists in connecting the apex of the LV to the descending thoracic aorta with a valved conduit. Postoperative flow assessments show that two thirds of the outflow is conducted from the LV apex to the conduit, while only one third crosses the native aortic valve. In this study, we performed high speed particle image velocimetry (PIV) measurements of flow pattern within an in vitro elastic model of LV in the presence of a very severe AS, before and after AAB. Results indicate that AAB effectively relieves the LV outflow obstruction; however, it also leads to abnormal ventricular flow patterns. Normal LV flow dynamics is characterized by an emerging mitral jet flow followed by the development of a vortical flow with velocities directed towards the aortic valve, while measurements in the presence of AAB show systolic flow bifurcating to the apical conduit and to the aortic valve outflow tract. This study provides the first insight into the LV flow structure after AAB including outflow jets and disturbed stagnation regions.
On shapes and motion of an elongated bubble in downward liquid pipe flow
NASA Astrophysics Data System (ADS)
Fershtman, A.; Babin, V.; Barnea, D.; Shemer, L.
2017-11-01
In stagnant liquid, or in a steady upward liquid pipe flow, an elongated (Taylor) bubble has a symmetric shape. The translational velocity of the bubble is determined by buoyancy and the liquid velocity profile ahead of it. In downward flow, however, the symmetry of the bubble nose can be lost. Taylor bubble motion in downward flow is important in numerous applications such as chemical plants and cooling systems that often contain countercurrent gas-liquid flow. In the present study, the relation between the Taylor bubble shape and its translational velocity is investigated experimentally in a vertical pipe for various downward liquid flow rates. At higher downward velocities, the bubble may be forced by the background flow to propagate downward against buoyancy. In order to include those cases as well in our experimental analysis, the bubbles were initially injected into stagnant liquid, whereas the downward flow was initiated at a later stage. This experimental procedure allowed us to identify three distinct modes of translational velocities for a given downward background liquid flow; each velocity corresponds to a different bubble shape. Hydrodynamic mechanisms that govern the transition between the modes observed in the present study are discussed.
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Application of Effective Discharge Analysis to Environmental Flow Decision-Making.
McKay, S Kyle; Freeman, Mary C; Covich, Alan P
2016-06-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Don't go with the Flow: An Invitation to Magnetosheath and Foreshock Studies
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
2010-01-01
This talk reviews the predictions of gasdynamic, magnetohydrodynamic, and kinetic models for the magnetosheath and foreshock and compares these predictions with observations by the recent Cluster and THEMIS missions. Topics of interest include: the depletion layer, dawn/dusk asymmetries, the transmission of solar wind discontinuities, the formation of hot flow anomalies and cavities in the foreshock, and flows accelerated by field-line tension. We conclude by discussing opportunities for magnetosheath imaging.
Numerical optimization of conical flow waveriders including detailed viscous effects
NASA Technical Reports Server (NTRS)
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
NASA Technical Reports Server (NTRS)
Michal, Todd R.
1998-01-01
This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
U.S. Geological Survey ground-water studies in Missouri
Smith, B.J.
1993-01-01
The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)
Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step
NASA Astrophysics Data System (ADS)
Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon
2014-11-01
We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.
Dynamics of Deformable Active Particles under External Flow Field
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-10-01
In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.
Wagner, P; Sonek, J; Hoopmann, M; Abele, H; Kagan, K O
2016-10-01
To examine the performance of first-trimester ultrasound screening for trisomies 18 and 13, triploidy and Turner syndrome based on fetal nuchal translucency thickness (NT), additional fetal ultrasound markers including anatomy of the nasal bone (NB), blood flow across the tricuspid valve (TV) and through the ductus venosus (DV) and a detailed fetal anomaly scan at 11-13 weeks' gestation. This was a retrospective case-matched study involving pregnant women at 11-13 weeks' gestation. The study population consisted of fetuses with trisomy 18, trisomy 13, triploidy or Turner syndrome. For each fetus with an abnormal karyotype, 50 randomly selected euploid fetuses were added to the study population. In all cases, the crown-rump length and NT were measured. In addition NB, TV flow and DV flow were examined. The summed risk for trisomies 21, 18 and 13 was computed based on: first, maternal age (MA); second, MA and fetal NT; third, MA, NT and one of the markers NB, TV flow or DV flow; fourth, MA, NT and all these markers combined; fifth, MA, NT and fetal anomalies; and, finally, MA, NT, all markers and fetal anomalies. The study population consisted of 4550 euploid and 91 aneuploid fetuses. Median NT was 1.8 mm in euploid fetuses and 4.8, 6.8, 1.8 and 10.0 mm in fetuses with trisomy 18, trisomy 13, triploidy and Turner syndrome, respectively. The NB, TV flow and DV flow were abnormal in 48 (1.1%), 34 (0.7%) and 99 (2.2%) euploid fetuses, respectively, and in 42 (46.2%), 31 (34.1%) and 62 (68.1%) aneuploid fetuses, respectively. At least one defect was found in 60 (1.3%) euploid and in 76 (83.5%) aneuploid fetuses. For a false-positive rate of 3%, the detection rate for screening based on MA and fetal NT was 75.8%. It increased to 84.6-86.8% when including one of the additional ultrasound markers and it was 90.1% when all three markers were included. When screening was based on MA, fetal NT and a detailed anomaly scan, the detection rate was 94.5% and increased to 95.6% with the addition of NB, TV flow and DV flow. A detailed anomaly scan at 11-13 weeks' gestation can identify about 95% of fetuses with trisomy 18, trisomy 13, triploidy and Turner syndrome. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
3D-printed devices for continuous-flow organic chemistry
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J
2013-01-01
Summary We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. PMID:23766811
NASA Technical Reports Server (NTRS)
Gatski, Thomas B. (Editor); Sarkar, Sutanu (Editor); Speziale, Charles G. (Editor)
1992-01-01
Various papers on turbulence are presented. Individual topics addressed include: modeling the dissipation rate in rotating turbulent flows, mapping closures for turbulent mixing and reaction, understanding turbulence in vortex dynamics, models for the structure and dynamics of near-wall turbulence, complexity of turbulence near a wall, proper orthogonal decomposition, propagating structures in wall-bounded turbulence flows. Also discussed are: constitutive relation in compressible turbulence, compressible turbulence and shock waves, direct simulation of compressible turbulence in a shear flow, structural genesis in wall-bounded turbulence flows, vortex lattice structure of turbulent shear slows, etiology of shear layer vortices, trilinear coordinates in fluid mechanics.
Characterization of Unsteady Flow Structures Near Landing-Edge Slat. Part 2; 2D Computations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi; Choudhari, Meelan M.; Jenkins, Luther N.
2004-01-01
In our previous computational studies of a generic high-lift configuration, quasi-laminar (as opposed to fully turbulent) treatment of the slat cove region proved to be an effective approach for capturing the unsteady dynamics of the cove flow field. Combined with acoustic propagation via Ffowes Williams and Hawkings formulation, the quasi-laminar simulations captured some important features of the slat cove noise measured with microphone array techniques. However. a direct assessment of the computed cove flow field was not feasible due to the unavailability of off-surface flow measurements. To remedy this shortcoming, we have undertaken a combined experiment and computational study aimed at characterizing the flow structures and fluid mechanical processes within the slat cove region. Part I of this paper outlines the experimental aspects of this investigation focused on the 30P30N high-lift configuration; the present paper describes the accompanying computational results including a comparison between computation and experiment at various angles of attack. Even through predictions of the time-averaged flow field agree well with the measured data, the study indicates the need for further refinement of the zonal turbulence approach in order to capture the full dynamics of the cove's fluctuating flow field.
Turbulence generation through intense localized sources of energy
NASA Astrophysics Data System (ADS)
Maqui, Agustin; Donzis, Diego
2015-11-01
Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.
DNS study of speed of sound in two-phase flows with phase change
NASA Astrophysics Data System (ADS)
Fu, Kai; Deng, Xiaolong
2017-11-01
Heat transfer through pipe flow is important for the safety of thermal power plants. Normally it is considered incompressible. However, in some conditions compressibility effects could deteriorate the heat transfer efficiency and even result in pipe rupture, especially when there is obvious phase change, due to the much lower sound speed in liquid-gas mixture flows. Based on the stratified multiphase flow model (Chang and Liou, JCP 2007), we present a new approach to simulate the sound speed in 3-D compressible two-phase dispersed flows, in which each face is divided into gas-gas, gas-liquid, and liquid-liquid parts via reconstruction by volume fraction, and fluxes are calculated correspondingly. Applying it to well-distributed air-water bubbly flows, comparing with the experiment measurements in air water mixture (Karplus, JASA 1957), the effects of adiabaticity, viscosity, and isothermality are examined. Under viscous and isothermal condition, the simulation results match the experimental ones very well, showing the DNS study with current method is an effective way for the sound speed of complex two-phase dispersed flows. Including the two-phase Riemann solver with phase change (Fechter et al., JCP 2017), more complex problems can be numerically studied.
Method and apparatus for affecting a recirculation zone in a cross flow
Bathina, Mahesh [Andhra Pradesh, IN; Singh, Ramanand [Uttar Pradesh, IN
2012-07-17
Disclosed is a cross flow apparatus including a surface and at least one outlet located at the surface. The cross flow apparatus further includes at least one guide at the surface configured to direct an intersecting flow flowing across the surface and increase a velocity of a cross flow being expelled from the at least one outlet downstream from the at least one outlet.
Standardization of a simple method to study whole saliva: clinical use in different pathologies.
Tumilasci, Omar R; Cardoso, Estela M L; Contreras, Liliana N; Belforte, Juan; Arregger, Alejandro L; Ostuni, Mariano A
2006-01-01
The present study describes a methodology to assess the salivary flow rate in humans. Whole saliva was obtained from the floor of the mouth with a plastic dental ejector and a vacuum pump. Forty healthy subjects of both sexes and 51 patients with different pathologies (Sjögren Syndrome, Thyroid Dysfunction, Diabetes Mellitus) were included in the study. It was demonstrated that basal salivary flow rate was stable five minutes after the insertion of the oral ejector Salivary flow rate did not show significant differences between sexes and was independent of the negative pressure level of the vacuum pump. Stimulated salivary flow rate was quantified over a period of 3 minutes, starting 5 minutes after the introduction of the oral device. The stimulus was paper filter disks soaked in citric acid (2%) placed on the tongue dorsum. The use of this method confirmed the reduction of salivary flow rate in patients with Sjiigren Syndrome. In addition, a significant reduction in salivary flow rate was observed in patients with primary thyroid insufficiency and peripheral neurpathy secondary to Diabetes Mellitus.
Forest practices and stream flow in western Oregon.
R. Dennis. Harr
1976-01-01
Forest management activities, including roadbuilding, clearcut logging, and broadcast burning, can change certain portions of the forest hydrologic cycle. Watershed studies and other hydrologic research in the Coast and western Cascade Ranges of Oregon have shown that these changes may increase annual water yield up to 62 centimeters, double minimum flows in summer,...
Hot-wire anemometry in hypersonic helium flow
NASA Technical Reports Server (NTRS)
Wagner, R. D.; Weinstein, L. M.
1974-01-01
Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
[Evaporating Droplet and Imaging Slip Flows
NASA Technical Reports Server (NTRS)
Larson, R. G.
2002-01-01
In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.
Cardiovascular studies in the rhesus monkey. [brain circulation during stress
NASA Technical Reports Server (NTRS)
Stone, H. L.; Sandler, H.
1977-01-01
Criteria are given for selecting the macaca mulatta as the analogue of the human in the study of cerebral circulation, particularly the control of the cerebral vascular bed during normal and stressful conditions. Topics discussed include surgical preparation of subject; responses to changes in arterial pressure, oxygen, and carbon dioxide; innervation of cerebral vessels; cerebral flow response to acceleration; and cerebral blood flow and cerebellar stimulation.
Experimental Program to Stimulate Competitive Research (EPSCoR)
NASA Technical Reports Server (NTRS)
Dingerson, Michael R.
1997-01-01
Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.
An experimental investigation of the flow physics of high-lift systems
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.
1995-01-01
This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.
Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.; Flores, Jolen
1989-01-01
Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.
Low-flow profiles of the upper Savannah and Ogeechee Rivers and tributaries in Georgia
Carter, R.F.; Hopkins, E.H.; Perlman, H.A.
1988-01-01
Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval)(7Q10 flow plotted against distance along a stream channel) for all streams reaches of the Upper Savannah and Ogeechee Rivers and tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the third in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the Georgia part of the Savannah River basin from its headwaters down to and including McBean Creek, and Brier Creek from its headwaters down to and including Boggy Gut Creek. It also includes the Ogeechee River from its headwaters down to and including Big Creek, and Rocky Comfort Creek (tributary to Ogeechee River) down to the Glascock-Jefferson County line. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)
Ground Based Studies of Thermocapillary Flows in Levitated Drops
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.
1996-01-01
Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.
Numerical and experimental investigation of VG flow control for a low-boom inlet
NASA Astrophysics Data System (ADS)
Rybalko, Michael
The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)
Study of Convective Flow Effects in Endwall Casing Treatments in Transonic Compressor Rotors
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin W.; Schiffer, Heinz-Peter
2012-01-01
The unsteady convective flow effects in a transonic compressor rotor with a circumferential-groove casing treatment are investigated in this paper. Experimental results show that the circumferential-groove casing treatment increases the compressor stall margin by almost 50% for the current transonic compressor rotor. Steady flow simulation of the current casing treatment, however, yields only a 15% gain in stall margin. The flow field at near-stall operation is highly unsteady due to several self-induced flow phenomena. These include shock oscillation, vortex shedding at the trailing edge, and interaction between the passage shock and the tip clearance vortex. The primary focus of the current investigation is to assess the effects of flow unsteadiness and unsteady flow convection on the circumferential-groove casing treatment. Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) techniques were applied in addition to steady Reynolds-averaged Navier-Stokes (RANS) to simulate the flow field at near-stall operation and to determine changes in stall margin. The current investigation reveals that unsteady flow effects are as important as steady flow effects on the performance of the circumferential grooves casing treatment in extending the stall margin of the current transonic compressor rotor. The primary unsteady flow mechanism is unsteady flow injection from the grooves into the main flow near the casing. Flows moving into and out of the grooves are caused due to local pressure difference near the grooves. As the pressure field becomes transient due to self-induced flow oscillation, flow injection from the grooves also becomes unsteady. The unsteady flow simulation shows that this unsteady flow injection from the grooves is substantial and contributes significantly to extending the compressor stall margin. Unsteady flows into and out of the grooves have as large a role as steady flows in the circumferential grooves. While the circumferential-groove casing treatment seems to be a steady flow device, unsteady flow effects should be included to accurately assess its performance as the flow is transient at near-stall operation.
A parametric study of single-wall carbon nanotube growth by laser ablation
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.
2004-01-01
Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
NASA Astrophysics Data System (ADS)
Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.
2017-12-01
Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase microcrystals, strongly increasing the viscosity of the lava several orders of magnitude. The results of this study allows us to correlate T, X, η, φc, φb, and ρ to the lava flow morphology expressed as surface roughness, which can then be used as a tool to infer these physical properties of the rocks for open channel lava flows on other airless bodies, such as the Moon and Mercury, based on DTMs.
Study on internal flow and surface deformation of large droplet levitated by ultrasonic wave.
Abe, Yutaka; Hyuga, Daisuke; Yamada, Shogo; Aoki, Kazuyoshi
2006-09-01
It is expected that new materials will be manufactured with containerless processing under the microgravity environment in space. Under the microgravity environment, handling technology of molten metal is important for such processes. There are a lot of previous studies about droplet levitation technologies, including the use of acoustic waves, as the holding technology. However, experimental and analytical information about the relationship between surface deformation and internal flow of a large levitated droplet is still unknown. The purpose of this study is to experimentally investigate the large droplet behavior levitated by the acoustic wave field and its internal flow. To achieve this, first, numerical simulation is conducted to clarify the characteristics of acoustic wave field. Second, the levitation characteristic and the internal flow of the levitated droplet are investigated by the ultrasonic standing wave under normal gravity environment. Finally, the levitation characteristic and internal flow of levitated droplet are observed under microgravity in an aircraft to compare results with the experiment performed under the normal gravity environment.
Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia
Messinger, Terence
2009-01-01
Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel characteristics were intermediate among those from surrounding states and regions where comparable studies have been done. The stream reaches that were surveyed were selected for apparent stability, and to represent gradients of drainage area, elevation, and mean annual precipitation. Profiles of high-water marks left by bankfull and near-bankfull peaks were surveyed, either as part of slope-area flow measurements at ungaged reaches, or to transfer known flow information to cross sections for gaged reaches. The slope-area measurements made it possible to include ungaged sites in the study, but still relate bankfull dimensions to peak flow and frequency.
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
Zhou, Haiying; Gunsten, Sean P.; Zhegalova, Natalia G.; Bloch, Sharon; Achilefu, Samuel; Holley, J. Christopher; Schweppe, Daniel; Akers, Walter; Brody, Steven L.; Eades, William; Berezin, Mikhail Y.
2016-01-01
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as four-hours post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies. PMID:25808737
Suppressing Taylor vortices in a Taylor-Couette flow system with free surface
NASA Astrophysics Data System (ADS)
Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.
2016-11-01
Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.
Zochodne, Douglas W
2018-06-01
Over 3 decades ago, seminal work by Phillip Low and colleagues established exquisite physiology around the measurement of nerve blood flow (NBF). Although not widely explored recently, its connection to the clinic has awaited human methodology. While human studies have not achieved a convincing level of rigour, newer imaging technologies are offering early information. The peripheral nerve trunk has parallel blood flow compartments that include epineurial flow dominated by arteriovenous shunts and downstream endoneurial blood flow (EBF). NBF and EBF have lower values than central nervous system blood flow, lack autoregulation yet have sympathetic and peptidergic neurovascular control. Contrary to expectation, injury to nerves is often associated with rises in NBF rather than ischemia, a finding of biological interest corroborated by human studies. Despite its potential importance, quantitative human measurements of EBF and NBF are not yet available. However, with development, careful NBF analysis may present new insights into nerve disorders. Muscle Nerve 57: 884-895, 2018. © 2017 Wiley Periodicals, Inc.
Blood Flow Characterization According to Linear Wall Models of the Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Williamson, Shobha; Rayz, Vitaliy; Berger, Stanley; Saloner, David
2004-11-01
Previous studies of the arterial wall include linearly isotropic, isotropic with residual stresses, and anisotropic models. This poses the question of how the results of each method differ when coupled with flow. Hence, the purpose of this study was to compare flow for these material models and subsequently determine if variations exist. Results show that displacement at the bifurcation and internal carotid bulb was noticeably larger in the orthotropic versus the isotropic model with subtle differences toward the inlet and outlets, which are fixed in space. In general, the orthotropic wall is further distended than the isotropic wall for the entire cycle. This apparent distention of the orthotropic wall clearly affects the flow. In diastole, the combination of slower flow and larger wall distention due to lumen pressure creates a sinuous velocity profile, particularly in the orthotropic model where the recirculation zone created displaces the core flow to a smaller area thereby increasing the velocity magnitudes nearly 60
Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity
NASA Astrophysics Data System (ADS)
Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei
2015-06-01
In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.
Estimated water use and availability in the East Narragansett Bay study area, Rhode Island, 1995-99
Wild, Emily C.
2007-01-01
Water availability became a concern in Rhode Island during a drought in 1999, and further investigation was needed to assess the current demands on the hydrologic system from withdrawals during periods of little to no precipitation. The low ground-water levels and streamflows measured in Rhode Island prompted initiation of a series of studies on water use and availability in each major drainage area in Rhode Island for the period 1995–99. The investigation of the East Narragansett Bay area is the last of these studies. The East Narragansett Bay study area (130.9 square miles) includes small sections of the Ten Mile and Westport River Basins in Rhode Island. The area was divided into three regions (islands and contiguous land areas separated by the bay) within each of which the freshwater water use and availability were assessed. During the study period from 1995 through 1999, three major public water suppliers in the study area withdrew 7.601 million gallons per day (Mgal/d) from ground-water and surface-water reservoirs. The estimated water withdrawals by minor public water suppliers during the study period were 0.063 Mgal/d. Total self-supply domestic, industrial, commercial, and agricultural withdrawals from the study area averaged 1.891 Mgal/d. Total water use in the study area averaged 16.48 Mgal/d, of which about 8.750 Mgal/d was imported from other basins. The average return flow to freshwater within the basin was 2.591 Mgal/d, which included effluent from permitted facilities and septic systems. The average return flow to saltwater (Narragansett Bay) outside of the basin was about 45.21 Mgal/d and included discharges by permitted facilities (wastewater-treatment plants and Rhode Island Pollutant Discharge Elimination Systems). The PART program, a computerized hydrographseparation application, was used for the data collected at two selected index stream-gaging stations in the East Narragansett Bay study area to determine water availability on the basis of the 75th, 50th, and 25th percentiles of the total base flow; the base flow for the 7-day, 10-year low-flow scenario; and the base flow for the Aquatic Base Flow scenario for both stations. Base flows in the study area were lowest in September for the 75th, 50th, and 25th percentiles. The safe yields determined for the surface-water reservoirs (14.10 Mgal/d) were added to the estimated available ground water (gross yield) in the Southeastern Narragansett and East Narragansett Islands regions to give the total available water. The water availability in the study area at the 50th percentile ranged from 33.18 Mgal/d in September to 94.62 Mgal/d in June, water availability for the 7-day, 10-year low-flow scenario at the 50th percentile ranged from 21.87 Mgal/d in September to 83.03 Mgal/d in June, and water availability for the Aquatic Base Flow scenario at the 50th percentile ranged from 14.10 Mgal/d in August and September to 65.48 Mgal/d in June. Because water withdrawals and use are greater during the summer than at other times of the year, water availability in June, July, August, and September was compared to water withdrawals in the three regions. For the study period, the withdrawals in July were higher than in the other summer months. For the 50th percentile, the ratios of water withdrawn to water available were close to one in August for the estimated basic and Aquatic Base Flow scenarios and in September for the estimated 7-day, 10-year low-flow scenario. For the 25th percentile, the ratios were close to one in August for the estimated basic and for the 7-day, 10-year low-flow scenario, and were close to one in July for the estimated Aquatic Base Flow scenario. A long-term water budget was calculated for the East Narragansett Bay study area to identify and assess inflows and outflows by region. The water withdrawals and return flows used in the budget were from 1995 through 1999. Total inflow and outflow were calculated separately for each region. Inflow was assumed to equal outflow; the total water budget was 292.1 Mgal/d for the study area. Precipitation and return flow were 99 and less than 1 percent of the total estimated inflow to the study area, respectively. Evapotranspiration, streamflow, and water withdrawals were 47, 49, and 3 percent of the total outflow from the study area, respectively.
Pemp, Berthold; Polska, Elzbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold
2010-09-01
To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. Total retinal blood flow was higher in diabetic patients (53 +/- 16 microl/min) than in healthy subjects (43 +/- 16 microl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 +/- 1.7 to 5.3 +/- 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 +/- 15 microl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy.
NASA Astrophysics Data System (ADS)
de Boer-Euser, Tanja; Bouaziz, Laurène; De Niel, Jan; Brauer, Claudia; Dewals, Benjamin; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick
2017-01-01
International collaboration between research institutes and universities is a promising way to reach consensus on hydrological model development. Although model comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the comparison methods used, which focus too much on a good overall performance instead of focusing on a variety of specific events. In this study, we use an approach that focuses on the evaluation of specific events and characteristics. Eight international research groups calibrated their hourly model on the Ourthe catchment in Belgium and carried out a validation in time for the Ourthe catchment and a validation in space for nested and neighbouring catchments. The same protocol was followed for each model and an ensemble of best-performing parameter sets was selected. Although the models showed similar performances based on general metrics (i.e. the Nash-Sutcliffe efficiency), clear differences could be observed for specific events. We analysed the hydrographs of these specific events and conducted three types of statistical analyses on the entire time series: cumulative discharges, empirical extreme value distribution of the peak flows and flow duration curves for low flows. The results illustrate the relevance of including a very quick flow reservoir preceding the root zone storage to model peaks during low flows and including a slow reservoir in parallel with the fast reservoir to model the recession for the studied catchments. This intercomparison enhanced the understanding of the hydrological functioning of the catchment, in particular for low flows, and enabled to identify present knowledge gaps for other parts of the hydrograph. Above all, it helped to evaluate each model against a set of alternative models.
Dimensions of flow during an experiential wilderness science program
NASA Astrophysics Data System (ADS)
Wang, Robert
Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and developing intrinsic and extrinsic motivation. The instructional dimension included: selecting appropriate subject matter, using proper instructional methods, utilizing appropriate activity levels, and selecting proper goals.
Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.
2011-01-01
A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.
Experimental study of near-field entrainment of moderately overpressured jets
Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.
2011-01-01
Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.
Song, Xinwei; Wood, Houston G; Olsen, Don
2004-04-01
The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.
Performance study of a data flow architecture
NASA Technical Reports Server (NTRS)
Adams, George
1985-01-01
Teams of scientists studied data flow concepts, static data flow machine architecture, and the VAL language. Each team mapped its application onto the machine and coded it in VAL. The principal findings of the study were: (1) Five of the seven applications used the full power of the target machine. The galactic simulation and multigrid fluid flow teams found that a significantly smaller version of the machine (16 processing elements) would suffice. (2) A number of machine design parameters including processing element (PE) function unit numbers, array memory size and bandwidth, and routing network capability were found to be crucial for optimal machine performance. (3) The study participants readily acquired VAL programming skills. (4) Participants learned that application-based performance evaluation is a sound method of evaluating new computer architectures, even those that are not fully specified. During the course of the study, participants developed models for using computers to solve numerical problems and for evaluating new architectures. These models form the bases for future evaluation studies.
Heating and cooling system for an on-board gas adsorbent storage vessel
Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio
2017-06-20
In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.
An operational GLS model for hydrologic regression
Tasker, Gary D.; Stedinger, J.R.
1989-01-01
Recent Monte Carlo studies have documented the value of generalized least squares (GLS) procedures to estimate empirical relationships between streamflow statistics and physiographic basin characteristics. This paper presents a number of extensions of the GLS method that deal with realities and complexities of regional hydrologic data sets that were not addressed in the simulation studies. These extensions include: (1) a more realistic model of the underlying model errors; (2) smoothed estimates of cross correlation of flows; (3) procedures for including historical flow data; (4) diagnostic statistics describing leverage and influence for GLS regression; and (5) the formulation of a mathematical program for evaluating future gaging activities. ?? 1989.
NASA Astrophysics Data System (ADS)
Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.
2017-12-01
As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation
Jones, Joseph L.; Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.
2011-01-01
This report presents information used to characterize the groundwater flow system in the Chimacum Creek basin. It includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal fluctuations in groundwater level; interactions between aquifers and the surface-water system; and a groundwater budget. The study area covers 124 square miles in northeastern Jefferson County, Washington, and includes the Chimacum Creek basin, which drains an area of about 37 square miles. The area is underlain by a north-thickening sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and igneous bedrock units that crop out along the margins and western interior of the study area. Six hydrogeologic units consisting of unconsolidated aquifers and confining units, along with an underlying bedrock unit, were identified. A surficial hydrogeologic map was developed and used with well information from 187 drillers' logs to construct 4 hydrogeologic sections, and maps showing the extent and thickness of the units. Natural recharge was estimated using precipitation-recharge relation regression equations developed for western Washington, and estimates were calculated for return flow from data on domestic indoor and outdoor use and irrigated agriculture. Results from synoptic streamflow measurements and water table elevations determined from monthly measurements at monitoring wells are presented and compared with those from a study conducted during 2002-03. A water budget was calculated comprising long-term average recharge, domestic public-supply withdrawals and return flow, self-supplied domestic withdrawals and return flow, and irrigated agricultural withdrawals and return flow.
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.
2017-11-01
A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
Carter, Janet M.; Driscoll, Daniel G.; Hamade, Ghaith R.; Jarrell, Gregory J.
2001-01-01
The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area of South Dakota and Wyoming. Quantification and evaluation of various hydrologic budget components are important for managing and understanding these aquifers. Hydrologic budgets are developed for two scenarios, including an overall budget for the entire study area and more detailed budgets for subareas. Budgets generally are combined for the Madison and Minnelusa aquifers because most budget components cannot be quantified individually for the aquifers. An average hydrologic budget for the entire study area is computed for water years 1987-96, for which change in storage is approximately equal to zero. Annual estimates of budget components are included in detailed budgets for nine subareas, which consider periods of decreasing storage (1987-92) and increasing storage (1993-96). Inflow components include recharge, leakage from adjacent aquifers, and ground-water inflows across the study area boundary. Outflows include springflow (headwater and artesian), well withdrawals, leakage to adjacent aquifers, and ground-water outflow across the study area boundary. Leakage, ground-water inflows, and ground-water outflows are difficult to quantify and cannot be distinguished from one another. Thus, net ground-water flow, which includes these components, is calculated as a residual, using estimates for the other budget components. For the overall budget for water years 1987-96, net ground-water outflow from the study area is computed as 100 ft3/s (cubic feet per second). Estimates of average combined budget components for the Madison and Minnelusa aquifers are: 395 ft3/s for recharge, 78 ft3/s for headwater springflow, 189 ft3/s for artesian springflow, and 28 ft3/s for well withdrawals. Hydrologic budgets also are quantified for nine subareas for periods of decreasing storage (1987-92) and increasing storage (1993-96), with changes in storage assumed equal but opposite. Common subareas are identified for the Madison and Minnelusa aquifers, and previous components from the overall budget generally are distributed over the subareas. Estimates of net ground-water flow for the two aquifers are computed, with net ground-water outflow exceeding inflow for most subareas. Outflows range from 5.9 ft3/s in the area east of Rapid City to 48.6 ft3/s along the southwestern flanks of the Black Hills. Net groundwater inflow exceeds outflow for two subareas where the discharge of large artesian springs exceeds estimated recharge within the subareas. More detailed subarea budgets also are developed, which include estimates of flow components for the individual aquifers at specific flow zones. The net outflows and inflows from the preliminary subarea budgets are used to estimate transmissivity of flow across specific flow zones based on Darcy?s Law. For estimation purposes, it is assumed that transmissivities of the Madison and Minnelusa aquifers are equal in any particular flow zone. The resulting transmissivity estimates range from 90 ft2/d to about 7,400 ft2/d, which is similar to values reported by previous investigators. The highest transmissivity estimates are for areas in the northern and southwestern parts of the study area, and the lowest transmissivity estimates are along the eastern study area boundary. Evaluation of subarea budgets provides confidence in budget components developed for the overall budget, especially regarding precipitation recharge, which is particularly difficult to estimate. Recharge estimates are consistently compatible with other budget components, including artesian springflow, which is a dominant component in many subareas. Calculated storage changes for subareas also are consistent with other budget components, specifically artesian springflow and net ground-water flow, and also are consistent with water-level fluctuations for observation wells. Ground-water budgets and flowpaths are especially complex i
An in vitro experimental study of flow past aortic valve under varied pulsatile conditions
NASA Astrophysics Data System (ADS)
Zhang, Ruihang; Zhang, Yan
2017-11-01
Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).
Non-homogeneous flow profiles in sheared bacterial suspensions
NASA Astrophysics Data System (ADS)
Samanta, Devranjan; Cheng, Xiang
Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.
NASA Astrophysics Data System (ADS)
Yamamoto, Keisuke; Nakayama, Katsuyuki
2017-11-01
Development or decay of a vortex in terms of the local flow topology has been shown to be highly correlated with its topological feature, i.e., vortical flow symmetry (skewness), in an isotropic homogeneous turbulence. Since a turbulent flow might include vortices in multi-scales, the present study investigates the characteristics of this relationships between the development or decay of a vortex and the vortical flow symmetry in several scales in an isotropic homogeneous turbulence in low Reynols number. Swirlity is a physical quantity of an intensity of swirling in terms of the geometrical average of the azimuthal flow, and represents the behavior of the development or decay of a vortex in this study. Flow scales are decomposed into three scales specified by the Fourier coefficients of the velocity applying the band-pass filter. The analysis shows that vortices in the different scales have a universal feature that the time derivative of swirlity and that of the symmetry have high correlation. Especially they have more stronger correlation at their birth and extinction.
Flow rate limitation in open wedge channel under microgravity
NASA Astrophysics Data System (ADS)
Wei, YueXing; Chen, XiaoQian; Huang, YiYong
2013-08-01
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.
NASA Astrophysics Data System (ADS)
Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine
2018-03-01
Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.
Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1995-01-01
For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.
Network structure of subway passenger flows
NASA Astrophysics Data System (ADS)
Xu, Q.; Mao, B. H.; Bai, Y.
2016-03-01
The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.
Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.
2002-01-01
A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.
CVD facility electrical system captor/dapper study
DOE Office of Scientific and Technical Information (OSTI.GOV)
SINGH, G.
1999-10-28
Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.
Bubble Dynamics on a Heated Surface
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Rashidnia, Nasser
1996-01-01
In this work, we study the combined thermocapillary and natural convective flow generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. On earth, the volumetric forces are dominant, especially, in apparatuses with large volume to surface ratio. But in the reduced gravity environment of orbiting spacecraft, surface forces become more important and the effects of Marangoni convection are easily unmasked. In order to delineate the roles of the various interacting phenomena, a combined numerical-experimental approach is adopted. The temperature field is visualized using Mach-Zehnder interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the two-dimensional momentum and energy equations and includes the effects of bubble surface deformation. Steady state temperature and velocity fields predicted by the finite element model are in excellent qualitative agreement with the experimental results. A parametric study of the interaction between Marangoni and natural convective flows including conditions pertinent to microgravity space experiments is presented. Numerical simulations clearly indicate that there is a considerable difference between 1-g and low-g temperature and flow fields induced by the bubble.
Rapp, Jennifer L.; Reilly, Pamela A.
2017-11-14
BackgroundThe U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Environmental Quality (DEQ), reviewed a previously compiled set of linear regression models to assess their utility in defining the response of the aquatic biological community to streamflow depletion.As part of the 2012 Virginia Healthy Watersheds Initiative (HWI) study conducted by Tetra Tech, Inc., for the U.S. Environmental Protection Agency (EPA) and Virginia DEQ, a database with computed values of 72 hydrologic metrics, or indicators of hydrologic alteration (IHA), 37 fish metrics, and 64 benthic invertebrate metrics was compiled and quality assured. Hydrologic alteration was represented by simulation of streamflow record for a pre-water-withdrawal condition (baseline) without dams or developed land, compared to the simulated recent-flow condition (2008 withdrawal simulation) including dams and altered landscape to calculate a percent alteration of flow. Biological samples representing the existing populations represent a range of alteration in the biological community today.For this study, all 72 IHA metrics, which included more than 7,272 linear regression models, were considered. This extensive dataset provided the opportunity for hypothesis testing and prioritization of flow-ecology relations that have the potential to explain the effect(s) of hydrologic alteration on biological metrics in Virginia streams.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor); Bugaj, Shari L. (Inventor)
2018-01-01
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
Molecular gas dynamics applied to low-thrust propulsion
NASA Astrophysics Data System (ADS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-11-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Molecular gas dynamics applied to low-thrust propulsion
NASA Technical Reports Server (NTRS)
Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.
1993-01-01
The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.
Shuttle filter study. Volume 3: Appendix
NASA Technical Reports Server (NTRS)
1974-01-01
Test data obtained from flow resistance and contaminant tolerance tests on the various porous media evaluated in the different fluids are presented in both graphical and tabular forms. Test procedures for both flow resistance and contaminant tolerance testing are presented, and the development of a system for continuously adding contaminant at a predetermined rate to a flowing fluid stream is described. Also included is a section describing the development effort of the self-indexing filter. This concept was adapted during this program for various shuttle applications.
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Parametric Study of Carbon Nanotube Production by Laser Ablation Process
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl
2002-01-01
Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.
A laboratory model of the aortic root flow including the coronary arteries
NASA Astrophysics Data System (ADS)
Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone
2016-08-01
Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with no coronary flow.
Müller, Martin; Seidenberg, Ruth; Schuh, Sabine K; Exadaktylos, Aristomenis K; Schechter, Clyde B; Leichtle, Alexander B; Hautz, Wolf E
2018-01-01
Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected.
Seidenberg, Ruth; Schuh, Sabine K.; Exadaktylos, Aristomenis K.; Schechter, Clyde B.; Leichtle, Alexander B.; Hautz, Wolf E.
2018-01-01
Objective Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. Methods This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Results Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Conclusions Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected. PMID:29474463
Turbulence and modeling in transonic flow
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.; Viegas, John R.
1989-01-01
A review is made of the performance of a variety of turbulence models in the evaluation of a particular well documented transonic flow. This is done to supplement a previous attempt to calibrate and verify transonic airfoil codes by including many more turbulence models than used in the earlier work and applying the calculations to an experiment that did not suffer from uncertainties in angle of attack and was free of wind tunnel interference. It is found from this work, as well as in the earlier study, that the Johnson-King turbulence model is superior for transonic flows over simple aerodynamic surfaces, including moderate separation. It is also shown that some field equation models with wall function boundary conditions can be competitive with it.
Ellingson, William A.; Forster, George A.
1999-11-02
Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.
2017-01-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
NASA Technical Reports Server (NTRS)
Hassan, M. I.; Kuwana, K.; Saito, K.
2001-01-01
In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
NASA Astrophysics Data System (ADS)
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
NASA Astrophysics Data System (ADS)
Ferroud, Anouck; Chesnaux, Romain; Rafini, Silvain
2018-01-01
The flow dimension parameter n, derived from the Generalized Radial Flow model, is a valuable tool to investigate the actual flow regimes that really occur during a pumping test rather than suppose them to be radial, as postulated by the Theis-derived models. A numerical approach has shown that, when the flow dimension is not radial, using the derivative analysis rather than the conventional Theis and Cooper-Jacob methods helps to estimate much more accurately the hydraulic conductivity of the aquifer. Although n has been analysed in numerous studies including field-based studies, there is a striking lack of knowledge about its occurrence in nature and how it may be related to the hydrogeological setting. This study provides an overview of the occurrence of n in natural aquifers located in various geological contexts including crystalline rock, carbonate rock and granular aquifers. A comprehensive database is compiled from governmental and industrial sources, based on 69 constant-rate pumping tests. By means of a sequential analysis approach, we systematically performed a flow dimension analysis in which straight segments on drawdown-log derivative time series are interpreted as successive, specific and independent flow regimes. To reduce the uncertainties inherent in the identification of n sequences, we used the proprietary SIREN code to execute a dual simultaneous fit on both the drawdown and the drawdown-log derivative signals. Using the stated database, we investigate the frequency with which the radial and non-radial flow regimes occur in fractured rock and granular aquifers, and also provide outcomes that indicate the lack of applicability of Theis-derived models in representing nature. The results also emphasize the complexity of hydraulic signatures observed in nature by pointing out n sequential signals and non-integer n values that are frequently observed in the database.
Interactions between hyporheic flow produced by stream meanders, bars, and dunes
Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.
2013-01-01
Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1982-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.
Rainfall threshold calculation for debris flow early warning in areas with scarcity of data
NASA Astrophysics Data System (ADS)
Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang
2018-05-01
Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.
NASA Astrophysics Data System (ADS)
Ellwood, Robin; Abrams, Eleanor
2017-02-01
This research investigated how student social interactions within two approaches to an inquiry-based science curriculum could be related to student motivation and achievement outcomes. This qualitative case study consisted of two cases, Off-Campus and On-Campus, and used ethnographic techniques of participant observation. Research participants included eight eighth grade girls, aged 13-14 years old. Data sources included formal and informal participant interviews, participant journal reflections, curriculum artifacts including quizzes, worksheets, and student-generated research posters, digital video and audio recordings, photographs, and researcher field notes. Data were transcribed verbatim and coded, then collapsed into emergent themes using NVIVO 9. The results of this research illustrate how setting conditions that promote focused concentration and communicative interactions can be positively related to student motivation and achievement outcomes in inquiry-based science. Participants in the Off-Campus case experienced more frequent states of focused concentration and out performed their peers in the On-Campus case on 46 % of classroom assignments. Off-Campus participants also designed and implemented a more cognitively complex research project, provided more in-depth analyses of their research results, and expanded their perceptions of what it means to act like a scientist to a greater extent than participants in the On-Campus case. These results can be understood in relation to Flow Theory. Student interactions that promoted the criteria necessary for initiating flow, which included having clearly defined goals, receiving immediate feedback, and maintaining a balance between challenges and skills, fostered enhanced student motivation and achievement outcomes. Implications for science teaching and future research include shifting the current focus in inquiry-based science from a continuum that progresses from teacher-directed to open inquiry experiences to a continuum that also deliberately includes and promotes the necessary criteria for establishing flow. Attending to Flow Theory and incorporating student experiences with flow into inquiry-based science lessons will enhance student motivation and achievement outcomes in science and bolster the success of inquiry-based science.
Ries, Kernell G.
1999-01-01
A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.
The Flow Dimension and Aquifer Heterogeneity: Field evidence and Numerical Analyses
NASA Astrophysics Data System (ADS)
Walker, D. D.; Cello, P. A.; Valocchi, A. J.; Roberts, R. M.; Loftis, B.
2008-12-01
The Generalized Radial Flow approach to hydraulic test interpretation infers the flow dimension to describe the geometry of the flow field during a hydraulic test. Noninteger values of the flow dimension often are inferred for tests in highly heterogeneous aquifers, yet subsequent modeling studies typically ignore the flow dimension. Monte Carlo analyses of detailed numerical models of aquifer tests examine the flow dimension for several stochastic models of heterogeneous transmissivity, T(x). These include multivariate lognormal, fractional Brownian motion, a site percolation network, and discrete linear features with lengths distributed as power-law. The behavior of the simulated flow dimensions are compared to the flow dimensions observed for multiple aquifer tests in a fractured dolomite aquifer in the Great Lakes region of North America. The combination of multiple hydraulic tests, observed fracture patterns, and the Monte Carlo results are used to screen models of heterogeneity and their parameters for subsequent groundwater flow modeling. The comparison shows that discrete linear features with lengths distributed as a power-law appear to be the most consistent with observations of the flow dimension in fractured dolomite aquifers.
Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling
NASA Astrophysics Data System (ADS)
Yavuz, Mehmet Metin; Guden, Yigitcan
2014-11-01
Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.
2012-09-18
STS083-302-002 (4-8 April 1997) --- At the MidDeck Glove Box (MGBX), astronaut Donald A. Thomas, mission specialist, prepares to conduct the Internal Flows in Free Drops (IFFD) experiment. The IFFD is meant to study drops of several liquids, including water, water/glycerin and silicon oil. Flows within the drops and shape and stability are studied under varying acoustic pressure. The MGBX is the overall facility that holds experiments on materials that are not approved for study in the open Spacelab environment.
Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.
2012-01-01
This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.
Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.
2012-01-01
This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM
Method and apparatus for high-efficiency direct contact condensation
Bharathan, D.; Parent, Y.; Hassani, A.V.
1999-07-20
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
1999-01-01
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow
Kikuchi, Colin P.
2013-01-01
The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were estimated during field investigations on several small streams. Regional groundwater flow patterns were characterized by synthesizing previous water-table maps with a synoptic water-level measurement conducted during 2009. Time-series water-level data were collected at groundwater and lake monitoring stations over the study period (2009–present). Comparison of historical groundwater-level records with time-series groundwater-level data collected during this study showed similar patterns in groundwater-level fluctuation in response to precipitation. Groundwater-age data collected during previous studies show that water moves quickly through the groundwater system, suggesting that the system responds quickly to changes in climate forcing. Similarly, the groundwater system quickly returns to long-term average conditions following variability due to seasonal or interannual changes in precipitation. These analyses indicate that the groundwater system is in a state of dynamic equilibrium, characterized by water-level fluctuation about a constant average state, with no long-term trends in aquifer-system storage. To address the second study goal, a steady-state groundwater flow model was developed to simulate regional groundwater flow patterns. The groundwater flow model was bounded by physically meaningful hydrologic features, and appropriate internal model boundaries were specified on the basis of conceptualization of the groundwater system resulting in a three-layer model. Calibration data included 173 water‑level measurements and 18 measurements of streamflow gains and losses along small streams. Comparison of simulated and observed heads and flows showed that the model accurately simulates important regional characteristics of the groundwater flow system. This model is therefore appropriate for studying regional-scale groundwater availability. Mismatch between model-simulated and observed hydrologic quantities is likely because of the coarse grid size of the model and seasonal transient effects. Next steps towards model refinement include the development of a transient groundwater flow model that is suitable for analysis of seasonal variability in hydraulic heads and flows. In addition, several important groundwater budget components remain poorly quantified—including groundwater outflow to the Matanuska River, Little Susitna River, and Knik Arm.
NASA Astrophysics Data System (ADS)
Wang, Weishi; Oswald, Sascha; Munz, Matthias; Strasser, Daniel
2017-04-01
As a pretreatment for conventional drinking water supply, bank filtration (BF) is widely used in Europe, while in Germany it contributes 16% of potable water supply. There are usually two crucial issues for BF influencing its treatment effect, which are separately the spatial and temporal distribution of travelling times and distinguishing between the flow contribution of BF versus inflow from the ambient groundwater. Modelling is a strong tool for analyzing the behavior and development of the flow field, especially for quantification of the river recharge rate of BF and estimation of travel time distribution. Though 3-D modelling of the flow field as a comprehensive tool has been used in several studies, many simulations are limited to pure water flow. Since heads are only partially able to constrain the flow field, model non-uniqueness might lead to misinterpretation of the real flow field, especially in complex geological conditions. Some studies have shown that by including tracers, the model non-uniqueness could be reasonably constrained and the accuracy of flux estimation could be improved. Natural tracers thus are used in groundwater modelling, while differences in their properties or input may cause dissimilar behavior during the transport process. In this study, we have set up a numerical 3-D groundwater flow model of a bank filtration site with strong geological heterogeneity and used the data of several years monitoring activities as the data basis. We were particularly interested in the seasonal dynamics but also structural changes induced by a reconstruction of the surface water including excavation and rebuilding the bank construction. By combining separately electrical conductivity and heat as tracers in the model we were able to i) understand flow field mechanisms and its changes caused by the excavation ii) conclude from the deviations of the tracer concentrations and dynamics simulated compared to the measurements on deficiencies of the flow field; and thus by the tracer study flow field could be improved iii) compare the individual behavior of the tracers in this realistic setting of transport processes also relevant for judging water quality in the pumping wells now and in the future.
Evaluation of hydrothermal resources of North Dakota. Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, K.L.; Howell, F.L.; Winczewski, L.M.
1981-06-01
The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1961-01-01
A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.
Numerical study of fairing installed between brackets based on CFD
NASA Astrophysics Data System (ADS)
Xi, Peng; Xiong, Ying; Tang, Xin
2017-10-01
In view of the low speed and instability of the flow between the two arms of the bracket in front of the propeller, the fairing is installed between the arms of the bracket taking example of compensating duct, in order to speed up the flow between the bracket arms and improve the flow quality. A four-propeller surface ship was studied and an integral mathematic model including hull, appendage and propellers was established. Using a RANS solver, its installation height, angle and airfoil is optimized. Then ship models with fairing and without fairing are calculated. The result shows that fairing improves propeller efficiency behind ship with 1.1% of the outer propeller and 1.6% of the inner propeller, which indicates that fairing helps improve the flow quality
Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor
Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.
2013-09-10
An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.
Hypersonic, nonequilibrium flow over the FIRE 2 forebody at 1634 sec
NASA Technical Reports Server (NTRS)
Chambers, Lin Hartung
1994-01-01
The numerical simulation of hypersonic flow in thermochemical nonequilibrium over the forebody of the FIRE 2 vehicle at 1634 sec in its trajectory is described. The simulation was executed on a Cray C90 with the program Langley Aerodynamic Upwind Relaxation Algorithm (LAURA) 4.0.2. Code setup procedures and sample results, including grid refinement studies, are discussed. This simulation relates to a study of radiative heating predictions on aerobrake type vehicles.
NASA Astrophysics Data System (ADS)
Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.
2009-12-01
A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.
Numerical Study of Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad
2017-01-01
A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.
USDA-ARS?s Scientific Manuscript database
The objective of the present study was to evaluate the use of audible chart-recorded doppler ultrasonography (DUS) to monitor both uterine blood flow and fetal heart rate (FHR) during pregnancy in dairy cattle. Possible applications of DUS include the monitoring of fetal distress when a pregnancy be...
Optimizing the Experience of Flow for Adults with Aphasia: A Focus on Environmental Factors
ERIC Educational Resources Information Center
Sather, Thomas W.; Howe, Tami; Nelson, Nickola Wolf; Lagerwey, Mary
2017-01-01
Flow has been described as positive experiences of intense concentration, distorted time passage, and a loss of self-consciousness that result from matching task difficulty to a person's skill level. It has been studied in many different populations and has been associated with a number of positive outcomes, including improved life satisfaction…
Changes in storm peak flows after clearcut logging
Jack Lewis
1997-01-01
Streamflow in a rain-dominated, 473-ha watershed bearing second-growth redwood forest was monitored at 13 locations before and after 50% of the watershed was logged, primarily by clearcutting. Three gauged subwatersheds were maintained as unlogged controls through-out the 11-year study period. The analysis included 526 observations of peak flow from 59 storm events....
Silver nanoparticles (AgNPs) are increasingly being used in many consumer products as disinfectants. Through the use of these products, AgNPs could likely enter aquatic environments. Because recent studies have shown that AgNPs are toxic to various species, including microorgan...
NASA Technical Reports Server (NTRS)
Syed, Ali; Vogel, Wolfhard J.
1993-01-01
Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.
Studies on unsteady pressure fields in the region of separating and reattaching flows
NASA Astrophysics Data System (ADS)
Govinda Ram, H. S.; Arakeri, V. H.
1990-12-01
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Experimental Study of Flow Through Carotid Aneurysms
NASA Astrophysics Data System (ADS)
Masoomi, Faezeh; Mejia-Alvarez, Ricardo
2017-11-01
There is evidence that traditional endovascular techniques like coiling are not effective for treatment of wide-neck cerebral aneurysms. Flow Diverter Stents (FDS) have emerged as promising devices for treating complex aneurysms since they enable treatment of aneurysms that were considered untreatable before. Recent studies suggest a number of associated risks with FDS, including in-stent thrombosis, perianeurysmal edema, delayed hemorrhage, and perforator occlusions. Chong et al. simulated hemodynamic behavior using patient-specific data. From their study, it is possible to infer that the standard deviation of energy loss could be a good predictor for intervention success. The aim of this study is to investigate the flow in models of cerebral aneurysms before and after FDS insertion using PIV. These models will be based on actual clinical studies and will be fabricated with advanced additive manufacturing techniques. These data will then be used to explore flow parameters that could inform the likelihood of post-intervention aneurysm rupture, and help determine FDS designs that better suit any particular patient before its procedure.
NASA Technical Reports Server (NTRS)
Hathaway, D. H.; Fowlis, W. W.
1986-01-01
Experimental flow regime diagrams are determined for a new rotating cylindrical annulus configuration which permits a measure of control over the internal vertical temperature gradient. The new annulus has radial temperature gradients imposed on plane horizontal thermally conducting endwalls (with the cylindrical sidewalls as insulators) and is considered to be more relevant to atmospheric dynamics studies than the classical cylindrical annulus. Observations have revealed that, in addition to the axisymmetric flow and nonaxisymmetric baroclinic wave flow which occur in the classical annulus, two additional nonaxisymmetric flow types occur in the new annulus: boundary-layer thermal convection and deep thermal convection. Flow regime diagrams for three different values of the imposed vertical temperature difference are presented, and explanations for the flow transitions are offered. The new annulus provides scientific backup for the proposed Atmospheric General Circulation Experiment for Spacelab. The apparatus diagram is included.
Wells, Ray E.; Simpson, R.W.; Bentley, R.D.; Beeson, Melvin H.; Mangan, Margaret T.; Wright, Thomas L.
1989-01-01
Nearly twenty flows of the Columbia River Basalt Group (CRBG) can be paleomagnetically and chemically correlated westward as far as 500 km from the Columbia Plateau in Washington, through the Columbia Gorge, to the Coast Range of Oregon and Washington. In the Coast Range near Cathlamet, Washington, the CRBG flow stratigraphy includes 10 flows of Grande Ronde Basalt (1 low-MgO R2 flow, 6 low-MgO N2 flows, 3 high-MgO N2 flows), 2 flows of Wanapum Basalt (both flows of Sand Hollow from the Frenchman Springs Member), and the Pomona Member of the Saddle Mountains Basalt. Elsewhere in the Coast Range, additional Grande Ronde Basalt flows, including flows of Winterwater or Umtanum, and additional Wanapum flows, including the flows of Ginkgo, have been reported. Thus at least 18 to 20 CRBG flows reached the coast region. Several of these distal flows have distinctive chemical and magnetic characteristics that are shared by nearby isolated intrusions in Coast Range sedimentary rocks, thus strongly supporting recent suggestions that these intrusions are invasive bodies fed by CRBG flows. Magnetization directions from several flows indicate 16 to 30° of clockwise rotation of the coast with respect to the plateau since middle Miocene time.
Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. Proper management of the surface-water resources of the State requires an understanding of the long- and short-term variability in streamflow characteristics that may occur. The U.S. Geological Survey maintains a network of stream-gaging stations in Hawaii, including a number of stations with long-term streamflow records that can be used to evaluate long-term trends and short-term variability in flow characteristics. The overall objective of this study is to obtain a better understanding of long-term trends and variations in streamflow on the islands of Hawaii, Maui, Molokai, Oahu, and Kauai, where long-term stream-gaging stations exist. This study includes (1) an analysis of long-term trends in flows (both total flow and estimated base flow) at 16 stream-gaging stations, (2) a description of patterns in trends within the State, and (3) discussion of possible regional factors (including rainfall) that are related to the observed trends and variations. Results of this study indicate the following: 1. From 1913 to 2002 base flows generally decreased in streams for which data are available, and this trend is consistent with the long-term downward trend in annual rainfall over much of the State during that period. 2. Monthly mean base flows generally were above the long-term average from 1913 to the early 1940s and below average after the early 1940s to 2002, and this pattern is consistent with the detected downward trends in base flows from 1913 to 2002. 3. Long-term downward trends in base flows of streams may indicate a reduction in ground-water discharge to streams caused by a long-term decrease in ground-water storage and recharge. 4. From 1973 to 2002, trends in streamflow were spatially variable (up in some streams and down in others) and, with a few exceptions, generally were not statistically significant. 5. Short-term variability in streamflow is related to the seasons and to the EL Ni?o-Southern Oscillation phenomenon that may be partly modulated by the phase of the Pacific Decadal Oscillation. 6. At almost all of the long-term stream-gaging stations considered in this study, average total flow (and to a lesser extent average base flow) during the winter months of January to March tended to be low following El Ni?o periods and high following La Ni?a periods, and this tendency was accentuated during positive phases of the Pacific Decadal Oscillation. 7. The El Ni?o-Southern Oscillation phenomenon occurs at a relatively short time scale (a few to several years) and appears to be more strongly related to processes controlling rainfall and direct runoff than ground-water storage and base flow. Long-term downward trends in base flows of streams may indicate a reduction in ground-water storage and recharge. Because ground water provides about 99 percent of Hawaii's domestic drinking water, a reduction in ground-water storage and recharge has serious implications for drinking-water availability. In addition, reduction in stream base flows may reduce habitat availability for native stream fauna and water availability for irrigation purposes. Further study is needed to determine (1) whether the downward trends in base flows from 1913 to 2002 will continue or whether the observed pattern is part of a long-term cycle in which base flows may eventually return to levels measured during 1913 to the early 1940s, (2) the physical causes for the detected trends and variations in streamflow, and (3) whether regional climate indicators successfully can be used to predict streamflow trends and variations throughout the State. These needs for future study underscore the importance of maintaining a network of long-term-trend stream-gaging stations in Hawaii.
Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft
NASA Technical Reports Server (NTRS)
Lange, Roy H.
1988-01-01
A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.
Study of vortex generator influence on the flow in the wake of high-lift system wing
NASA Astrophysics Data System (ADS)
Bragin, N. N.; Ryabov, D. I.; Skomorokhov, S. I.; Slitinskaya, A. Yu.
2016-10-01
Passive vortex generators (VG) are known as one of the ways to improve the flow of the wings and other surfaces in the presence of flow separation. In particular, the VG are installed on the wings and nacelles of many foreign airplanes, including the most recent ones (for example, Boeing 787, Airbus A-350). The principle of the passive VG effects on flow is to transfer the kinetic energy of the external flow separation region by the vortices system arising from the flow VG themselves. For example, by increasing the angle of attack of the wing separation it is highly three-dimensional picture of the flow and sufficiently sensitive to external influences. Thus separated flow can be controlled when using the VG destroy large separation vortices. The VG effectiveness depends on many parameters. This is primarily the relative position of the second harmonic and the separation region on the wing and their size and position relative to each other, the orientation of the second harmonic relative to the local flow direction of the external flow, etc. Obviously, the VG effect will depend essentially on the intensity ratio of the second harmonic vortexes and nature of flow separation in the separation area. In the presence of intense flow separation the effect of conventional VG may be reduced or not occur at all. Until recently, investigations and selection of position of conventional VG were made only experimentally. Currently, the possibilities of calculation methods allow estimating the VG effect on the flow in the separation area. However, due to the phenomenon complexity the accuracy of these calculations is low. The experimental data are required to validate the computational methods, including information not only about the total impact, but also about the flow structure in the separation area. To obtain such information is the subject of this paper. In the test model of high-lift devices swept wing with modern supercritical profile the parametric studies were performed on the VG effects on the flow in the intensive separation zone on flaps. A number of VG types is considered that differ by configuration, size, location in relation to the area of flow separation on the flap, as well as the orientation relative to the incoming flow. The major part of standard of VG positions is investigated. The VG influence on head velocity loss and the characteristics of the amplitude-frequency spectra of pressure fluctuations in the wake of the wing are obtained, as well as the flow spectra are obtained by means of fluorescent mini-tufts.
NASA Astrophysics Data System (ADS)
Pan, Wen-hao; Liu, Shi-he; Huang, Li
2018-02-01
This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
Putnam, Larry D.; Long, Andrew J.
2009-01-01
The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater-flow model, was used to simulate flow in the Minnelusa and Madison hydrogeologic units with five layers. Layer 1 represented the fractured sandstone layers in the upper 250 ft of the Minnelusa hydrogeologic unit, and layer 2 represented the lower part of the Minnelusa hydrogeologic unit. Layer 3 represented the upper 150 ft of the Madison hydrogeologic unit, and layer 4 represented the less permeable lower part. Layer 5 represented an approximation of the underlying Deadwood aquifer to simulate upward flow to the Madison hydrogeologic unit. The finite-difference grid, oriented 23 degrees counterclockwise, included 221 rows and 169 columns with a square cell size of 492.1 ft in the detailed study area that surrounded Rapid City. The northern and southern boundaries for layers 1-4 were represented as no-flow boundaries, and the boundary on the east was represented with head-dependent flow cells. Streamflow recharge was represented with specified-flow cells, and areal recharge to layers 1-4 was represented with a specified-flux boundary. Calibration of the model was accomplished by two simulations: (1) steady-state simulation of average conditions for water years 1988-97 and (2) transient simulations of water years 1988-97 divided into twenty 6-month stress periods. Flow-system components represented in the model include recharge, discharge, and hydraulic properties. The steady-state streamflow recharge rate was 42.2 cubic feet per second (ft3/s), and transient streamflow recharge rates ranged from 14.1 to 102.2 ft3/s. The steady-state areal recharge rate was 20.9 ft3/s, and transient areal recharge rates ranged from 1.1 to 98.4 ft3/s. The upward flow rate from the Deadwood aquifer to the Madison hydrogeologic unit was 6.3 ft3/s. Discharge included springflow, water use, flow to overlying units, and regional outflow. The estimated steady-state springflow of 32.8 ft3/s from seven springs was similar to the simulated springflow of 31.6 ft3/s, which included 20.5 ft3
Molecular tagging techniques and their applications to the study of complex thermal flow phenomena
NASA Astrophysics Data System (ADS)
Chen, Fang; Li, Haixing; Hu, Hui
2015-08-01
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.
Oscillations and Multiple Equilibria in Microvascular Blood Flow.
Karst, Nathaniel J; Storey, Brian D; Geddes, John B
2015-07-01
We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.
Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.
NASA Astrophysics Data System (ADS)
Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing
1991-03-01
The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.
Numerical investigation of separated nozzle flows
NASA Technical Reports Server (NTRS)
Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.
1994-01-01
A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.
Senior, Lisa A.; Cinotto, Peter J.
2007-01-01
On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.
Olds, Daniel; Page, Katharine; Paecklar, Arnold A.; ...
2017-03-17
Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N 2 by Ca-exchanged zeolite-X (Na 78–2xCa xAl 78Si 144O 384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N 2 adsorption sites in the structure, with both static gas loadingmore » and gas flow. A steady-state isotope transient kinetic analysis of N 2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N 2 and 14N 2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. As a result, available flow conditions, sample considerations, and future applications are discussed.« less
Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test
NASA Technical Reports Server (NTRS)
Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel
2013-01-01
Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.
Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.
2011-01-01
This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow model is based on the potentially limiting assumptions that tracer transport is advective and that no mixing occurs. Additional uncertainties can arise from tracer degradation, sorption, contamination, or fractionation; terrigenic (natural) sources of tracers; spatially variable atmospheric tracer concentrations; and incomplete understanding of mechanisms of recharge or of the conditions under which atmospheric tracers were partitioned to recharge. The effects of some of these uncertainties are considered herein. For example, degradation, contamination, or fractionation often can be identified or inferred. However, detailed analysis of the effects of such uncertainties on the tracer-based piston-flow ages is constrained by sparse data and an absence of complementary lines of evidence, such as detailed solute transport simulations. Thus, the tracer-based piston-flow ages compiled in this report represent only an initial interpretation of the tracer data.
Controlled pilot oxidizer for a gas turbine combustor
Laster, Walter R.; Bandaru, Ramarao V.
2010-07-13
A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.
Vortex methods for separated flows
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.
1988-01-01
The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.
Lemiale, Virginie; Resche-Rigon, Matthieu; Mokart, Djamel; Pène, Frédéric; Argaud, Laurent; Mayaux, Julien; Guitton, Christophe; Rabbat, Antoine; Girault, Christophe; Kouatchet, Achille; Vincent, François; Bruneel, Fabrice; Nyunga, Martine; Seguin, Amélie; Klouche, Kada; Colin, Gwenahel; Kontar, Loay; Perez, Pierre; Meert, Anne-Pascale; Benoit, Dominique D; Papazian, Laurent; Demoule, Alexandre; Chevret, Sylvie; Azoulay, Elie
2017-03-01
In immunocompromised patients with acute respiratory failure, invasive mechanical ventilation remains associated with high mortality. Choosing the adequate oxygenation strategy is of the utmost importance in that setting. High-flow nasal oxygen has recently shown survival benefits in unselected patients with acute respiratory failure. The objective was to assess outcomes of immunocompromised patients with hypoxemic acute respiratory failure treated with high-flow nasal oxygen. We performed a post hoc analysis of a randomized controlled trial of noninvasive ventilation in critically ill immunocompromised patients with hypoxemic acute respiratory failure. Twenty-nine ICUs in France and Belgium. Critically ill immunocompromised patients with hypoxemic acute respiratory failure. A propensity score-based approach was used to assess the impact of high-flow nasal oxygen compared with standard oxygen on day 28 mortality. Among 374 patients included in the study, 353 met inclusion criteria. Underlying disease included mostly malignancies (n = 296; 84%). Acute respiratory failure etiologies were mostly pneumonia (n = 157; 44.4%) or opportunistic infection (n = 76; 21.5%). Noninvasive ventilation was administered to 180 patients (51%). Invasive mechanical ventilation was ultimately needed in 142 patients (40.2%). Day 28 mortality was 22.6% (80 deaths). Throughout the ICU stay, 127 patients (36%) received high-flow nasal oxygen whereas 226 patients received standard oxygen. Ninety patients in each group (high-flow nasal oxygen or standard oxygen) were matched according to the propensity score, including 91 of 180 (51%) who received noninvasive ventilation. High-flow nasal oxygen was neither associated with a lower intubation rate (hazard ratio, 0.42; 95% CI, 0.11-1.61; p = 0.2) nor day 28 mortality (hazard ratio, 0.80; 95% CI, 0.45-1.42; p = 0.45). In immunocompromised patients with hypoxemic acute respiratory failure, high-flow nasal oxygen when compared with standard oxygen did not reduce intubation or survival rates. However, these results could be due to low statistical power or unknown confounders associated with the subgroup analysis. A randomized trial is needed.
Influence of vorticity distribution on singularities in linearized supersonic flow
NASA Astrophysics Data System (ADS)
Gopal, Vijay; Maddalena, Luca
2018-05-01
The linearized steady three-dimensional supersonic flow can be analyzed using a vector potential approach which transforms the governing equation to a standard form of two-dimensional wave equation. Of particular interest are the canonical horseshoe line-vortex distribution and the resulting induced velocity field in supersonic flow. In this case, the singularities are present at the vortex line itself and also at the surface of the cone of influence originating from the vertices of the horseshoe structure. This is a characteristic of the hyperbolic nature of the flow which renders the study of supersonic vortex dynamics a challenging task. It is conjectured in this work that the presence of the singularity at the cone of influence is associated with the step-function nature of the vorticity distribution specified in the canonical case. At the phenomenological level, if one considers the three-dimensional steady supersonic flow, then a sudden appearance of a line-vortex will generate a ripple of singularities in the induced velocity field which convect downstream and laterally spread, at the most, to the surface of the cone of influence. Based on these findings, this work includes an exploration of potential candidates for vorticity distributions that eliminate the singularities at the cone of influence. The analysis of the resulting induced velocity field is then compared with the canonical case, and it is observed that the singularities were successfully eliminated. The manuscript includes an application of the proposed method to study the induced velocity field in a confined supersonic flow.
Three dimensional flow field inside compressor rotor, including blade boundary layers
NASA Technical Reports Server (NTRS)
Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.
1982-01-01
The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.
2007-09-01
is necessary to convert the solids to a 3-D computational mesh. The user must decide how many layers of mesh elements are required for each material ...together to define the geology gives the user more control over the material contacts. Secondly, the tool to convert directly to a 3-D mesh from the...included in the model. Rocks, cracks , fissures, and plant material can affect the flow character- istics, but cannot be included in a model on this scale
Research in Natural Laminar Flow and Laminar-Flow Control, part 2
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.
Filter desulfation system and method
Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.
2010-08-10
A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Icerman, L.; Starkey, A.; Trentman, N.
1981-08-01
Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, andmore » Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.« less
The three scales of submarine groundwater flow and discharge across passive continental margins
Bratton, John F.
2010-01-01
Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1983-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393
Galanzha, Ekaterina I; Tuchin, Valery V; Zharov, Vladimir P
2007-01-01
Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed. PMID:17226898
Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.
2000-01-01
The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.
In Vivo Flow Cytometry: A Horizon of Opportunities
Tuchin, Valery V.; Tárnok, Attila; Zharov, Vladimir P.
2012-01-01
Flow cytometry has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo flow cytometry which provides detection and imaging of circulating normal and abnormal cells directlyin blood or lymph flow. The goal of this mini-review is to provide a brief history, features and challenges of this new generation of flow cytometry methods and instruments. Spectrum of possibilities of in vivo flow cytometry in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform. PMID:21915991
Low Dimensional Study of a Supersonic Multi-Stream Jet Flow
NASA Astrophysics Data System (ADS)
Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques
2017-11-01
In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
Pemp, Berthold; Polska, Elżbieta; Garhofer, Gerhard; Bayerle-Eder, Michaela; Kautzky-Willer, Alexandra; Schmetterer, Leopold
2010-01-01
OBJECTIVE To compare total retinal blood flow in diabetic patients with no or mild nonproliferative diabetic retinopathy and healthy control subjects and to investigate in patients whether there is a difference between retinal blood flow before morning insulin and under normoglycemic conditions using a glucose clamp. RESEARCH DESIGN AND METHODS Twenty patients with type 1 diabetes with no or mild diabetic retinopathy were included in this open parallel-group study, and 20 healthy age- and sex-matched subjects were included as control subjects. Retinal blood flow was assessed by combining velocity measurements using laser Doppler velocimetry and diameter measurements using a commercially available dynamic vessel analyzer. Measurements were performed before and during a euglycemic clamp. RESULTS Total retinal blood flow was higher in diabetic patients (53 ± 16 μl/min) than in healthy subjects (43 ± 16 μl/min; P = 0.034 between groups). When plasma glucose in diabetic patients was reduced from 9.3 ± 1.7 to 5.3 ± 0.5 mmol/l (P < 0.001) retinal blood flow decreased to 49 ± 15 μl/min (P = 0.0003 vs. baseline). Total retinal blood flow during the glucose clamp was not significantly different from blood flow in normal control subjects (P = 0.161). CONCLUSIONS Type 1 diabetic patients with no or only mild diabetic retinopathy have increased retinal blood flow before their morning insulin dosage. Blood flow is reduced toward normal during euglycemic conditions. Retinal blood flow may fluctuate significantly with fluctuating plasma glucose levels, which may contribute to the microvascular changes seen in diabetic retinopathy. PMID:20585003
Hospital level analysis to improve patient flow.
Khanna, Sankalp; Boyle, Justin; Good, Norm; Bugden, Simon; Scott, Mark
2013-01-01
The complexity of hospital operations ensures that one-size-fits-all solutions seldom work. As hospitals turn to evidence based strategies to redesign flow, it is critical that they tailor the strategies to suit their individual service. This paper analyses the effect of hospital occupancy on inpatient and emergency department patient flow parameters at the Caboolture hospital in Queensland, Australia, and identifies critical levels, or choke points, that result in performance decline. The effect of weekdays and weekends on patient flow is also investigated. We compare these findings to a previous study that has analysed patient flow across Queensland hospitals grouped by size, and discover several differences in the interaction between rising occupancy and patient flow parameters including rates of patient flow, length of stay, and access block. We also identify significantly higher choke points for Caboolture hospital as compared to other similarly sized Queensland hospitals, which suggest that patient flow here can be redesigned to operate at higher levels of occupancy without degrading flow performance. The findings support arguments for hospitals to analyse patient flow at a service level to deliver optimum service improvement.
Air flow measurement techniques applied to noise reduction of a centrifugal blower
NASA Astrophysics Data System (ADS)
Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin
2005-09-01
The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.
Bassani, Mariana Almada; Caldas, Jamil Pedro Siqueira; Netto, Abimael Aranha; Marba, Sérgio Tadeu Martins
2016-06-01
To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. This is an intervention study, which included 40 preterm infants (≤34 weeks) aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5minutes. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50), the end diastolic flow velocity (p=0.17), the mean flow velocity (p=0.07), the resistance index (p=0.41) and the pulsatility index (p=0.67) over time. The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong
2018-04-01
The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Ground based studies of thermocapillary flows in levitated drops
NASA Technical Reports Server (NTRS)
Sadhal, Satwindar Singh; Trinh, Eugene H.
1994-01-01
Analytical studies along with ground-based experiments are presently being carried out in connection with thermocapillary phenomena associated with drops and bubbles in a containerless environment. The effort here focuses on the thermal and the fluid phenomena associated with the local heating of acoustically levitated drops, both at 1-g and at low-g. In particular, the Marangoni effect on drops under conditions of local spot-heating and other types of heating are being studied. With the experiments conducted to date, fairly stable acoustic levitation of drops has been achieved and successful flow visualization by light scattering from smoke particles has been carried out. The results include situations with and without heating. As a preliminary qualitative interpretation of these experimental results, we consider the external flow pattern as a superposition of three discrete circulation cells operating on different spatial scales. The observations of the flow fields also indicate the existence of a steady state torque induced by the streaming flows. The theoretical studies have been concentrated on the analysis of streaming flows in a gaseous medium with the presence of a spherical particle undergoing periodic heating. A matched asymptotic analysis was carried out for small parameters derived from approximations in the high frequency range. The heating frequency being 'in tune' with the acoustic frequency results in a nonzero time-averaged thermal field. This leads to a steady heat flow across the equatorial plane of the sphere.
Why replication is important in landscape genetics: American black bear in the Rocky Mountains
Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.
2011-01-01
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.
The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques
NASA Astrophysics Data System (ADS)
Tang, Chao
Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.
The effect of convection and shear on the damping and propagation of pressure waves
NASA Astrophysics Data System (ADS)
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.
Type 1 diabetes mellitus, xerostomia, and salivary flow rates.
Moore, P A; Guggenheimer, J; Etzel, K R; Weyant, R J; Orchard, T
2001-09-01
The Oral Health Science Institute at the University of Pittsburgh has completed a cross-sectional epidemiologic study of 406 subjects with type 1 diabetes and 268 control subjects without diabetes that assessed the associations between oral health and diabetes. This report describes the prevalence of dry-mouth symptoms (xerostomia), the prevalence of hyposalivation in this population, and the possible interrelationships between salivary dysfunction and diabetic complications. The subjects with diabetes were participants in the Pittsburgh Epidemiology of Diabetes Complications study who were enrolled in an oral health substudy. Control subjects were spouses or best friends of participants or persons recruited from the community through advertisements in local newspapers. Assessments of salivary function included self-reported xerostomia measures and quantification of resting and stimulated whole saliva flow rates. Subjects with diabetes reported symptoms of dry mouth more frequently than did control subjects. Salivary flow rates were also impaired in the subjects with diabetes. Regression models of potential predictor variables were created for the 3 self-reported xerostomia measures and 4 salivary flow rate variables. Of the medical diabetic complications studied (ie, retinopathy, peripheral and autonomic neuropathy, nephropathy, and peripheral vascular disease), only neuropathy was found to be associated with xerostomia and decreased salivary flow measures. A report of dry-mouth symptoms was associated with current use of cigarettes, dysgeusia (report of a bad taste), and more frequent snacking behavior. Xerogenic medications and elevated fasting blood glucose concentrations were significantly associated with decreased salivary flow. Resting salivary flow rates less than 0.01 mL/min were associated with a slightly higher prevalence of dental caries. Subjects who reported higher levels of alcohol consumption were less likely to have lower rates of stimulated salivary flow. Subjects with type 1 diabetes who had developed neuropathy more often reported symptoms of dry mouth as well as symptoms of decreased salivary flow rates. Because of the importance of saliva in the maintenance and the preservation of oral health, management of oral diseases in diabetic patients should include a comprehensive evaluation of salivary function.
NASA Astrophysics Data System (ADS)
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-01-01
Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.; ...
2017-01-04
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
Environmental flows in the context of unconventional natural gas development in the Marcellus Shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.
Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
Hydrodynamics beyond Navier-Stokes: the slip flow model.
Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V
2008-07-01
Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.
NASA Astrophysics Data System (ADS)
Stukan, M. R.; Boek, E. S.; Padding, J. T.; Crawshaw, J. P.
2008-05-01
Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.
Issues and approach to develop validated analysis tools for hypersonic flows: One perspective
NASA Technical Reports Server (NTRS)
Deiwert, George S.
1992-01-01
Critical issues concerning the modeling of low-density hypervelocity flows where thermochemical nonequilibrium effects are pronounced are discussed. Emphasis is on the development of validated analysis tools. A description of the activity in the Ames Research Center's Aerothermodynamics Branch is also given. Inherent in the process is a strong synergism between ground test and real-gas computational fluid dynamics (CFD). Approaches to develop and/or enhance phenomenological models and incorporate them into computational flow-field simulation codes are discussed. These models have been partially validated with experimental data for flows where the gas temperature is raised (compressive flows). Expanding flows, where temperatures drop, however, exhibit somewhat different behavior. Experimental data for these expanding flow conditions are sparse; reliance must be made on intuition and guidance from computational chemistry to model transport processes under these conditions. Ground-based experimental studies used to provide necessary data for model development and validation are described. Included are the performance characteristics of high-enthalpy flow facilities, such as shock tubes and ballistic ranges.
Water Flow in the High Plains Aquifer in Northwestern Oklahoma
Luckey, Richard R.; Osborn, Noel I.; Becker, Mark F.; Andrews, William J.
2000-01-01
The High Plains is a major agricultural area, supported primarily by water from the High Plains aquifer, which is used to irrigate wheat and corn and to raise cattle and swine. The U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB) began a study of the High Plains aquifer in 1996. One purpose of the study was to develop a ground-water flow model that the OWRB could use to allocate the amount of water withdrawn from the a aquifer. The study area in Oklahoma covers all or parts of Beaver, Cimarron, Dewey, Ellis, Harper, Texas, and Woodward Counties. To provide appropriate hydrologic boundaries for the ground-water flow model, the study area was expanded to include parts of Colorado, Kansas, New Mexico, and Texas.
System Study at SUNY College Bookstore/Oswego
ERIC Educational Resources Information Center
DeVita, Richard; And Others
1975-01-01
A system study of the textbook ordering department is presented including systems flow chart, chart of activities, and description of operations and procedures for utilizing the computer system. Changes based on the study are noted. (JT)
Flow field and performance characteristics of combustor diffusers: A basic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hestermann, R.; Kim, S.; Ben Khaled, A.
1995-10-01
Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less
Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002
Robinson, John A.; Haugh, Connor J.
2004-01-01
Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps. Change in flow per square mile for each sub-basin was calculated using data from each base-flow measurement period. The calculated values were used to define the areas of surplus or deficient flow for high and low base-flow conditions. Many areas of deficient flow were present throughout the study area under high and low base-flow conditions. Most areas of deficient flow were in the headwater basins. Fewer areas of surplus flow were present under low base-flow conditions than during the high base-flow conditions. The flow per square mile for each major tributary basin in the study area also was calculated. The values of flow per square mile for the Dry Creek, Spring Creek, and Wiley Creek basins were greatest under both high and low base-flow conditions.
NASA Technical Reports Server (NTRS)
Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris
2000-01-01
The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).
Sinks as limited resources? A new indicator for evaluating anthropogenic material flows
Kral, Ulrich; Brunner, Paul H.; Chen, Pi-Cheng; Chen, Sih-Rong
2014-01-01
Besides recyclables, the use of materials inevitably yields non-recyclable materials such as emissions and wastes for disposal. These flows must be directed to sinks in a way that no adverse effects arise for humans and the environment. The objective of this paper is to present a new indicator for the assessment of substance flows to sinks on a regional scale. The indicator quantifies the environmentally acceptable mass share of a substance in actual waste and emission flows, ranging from 0% as worst case to 100% as best case. This paper consists of three parts: first, the indicator is defined. Second, a methodology to determine the indicator score is presented, including (i) substance flows analysis and (ii) a distant-to-target approach based on an adaptation of the Ecological Scarcity Method 2006. Third, the metric developed is applied in three case studies including copper (Cu) and lead (Pb) in the city of Vienna, and perfluorooctane sulfonate (PFOS) in Switzerland. The following results were obtained: in Vienna, 99% of Cu flows to geogenic and anthropogenic sinks are acceptable when evaluated by the distant-to-target approach. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters are beyond the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, and 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The examples demonstrate the need (i) for appropriate data of good quality to calculate the sink indicator and (ii) for standards, needed for the assessment of substance flows to urban soils and receiving waters. This study corroborates that the new indicator is well suited as a base for decisions regarding the control of hazardous substances in waste and environmental management. PMID:25368543
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Tanji, F. T.
1983-01-01
The two-dimensional interaction of an oblique shock wave with a turbulent boundary layer that included the effect of bleed was examined experimentally using a shock generator mounted across a supersonic wind tunnel The studies were performed at Mach numbers 2.5 and 2.0 and unit Reynolds number of approximately 2.0 x 10 to the 7th/meter. The study includes surface oil flow visualization, wall static pressure distributions and boundary layer pitot pressure profiles. In addition, the variation of the local bleed rates were measured. The results show the effect of the bleed on the boundary layer as well as the effect of the flow conditions on the local bleed rate.
Axial Flow Conditioning Device for Mitigating Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)
2017-01-01
A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.
NASA Astrophysics Data System (ADS)
Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.
2012-06-01
Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.
Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho
Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin
1995-01-01
This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.
Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints
NASA Technical Reports Server (NTRS)
Feron, Eric; Bilimoria, Karl (Technical Monitor)
2001-01-01
The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."
Increased hippocampal blood volume and normal blood flow in schizophrenia
Talati, Pratik; Rane, Swati; Skinner, Jack; Gore, John; Heckers, Stephan
2015-01-01
Neuroimaging studies have provided compelling evidence for abnormal hippocampal activity in schizophrenia. Most studies made inferences about baseline hippocampal activity using a single hemodynamic parameter (e.g., blood volume or blood flow). Here we studied several hemodynamic measures in the same cohort to test the hypothesis of increased hippocampal activity in schizophrenia. We used dynamic susceptibility contrast- (DSC-) magnetic resonance imaging to assess blood volume, blood flow, and mean transit time in the hippocampus of 15 patients with chronic schizophrenia and 15 healthy controls. Left and right hippocampal measurements were combined for absolute measures of cerebral blood volume (CBV), blood flow (CBF), and mean transit time (MTT). We found significantly increased hippocampal CBV, but normal CBF and MTT, in schizophrenia. The uncoupling of CBV and CBF could be due to several factors, including antipsychotic medication, loss of cerebral perfusion pressure, or angiogenesis. Further studies need to incorporate several complementary imaging modalities to better characterize hippocampal dysfunction in schizophrenia. PMID:25896442
Effect of Turbulence Modeling on Hovering Rotor Flows
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.
2015-01-01
The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.
Simulation of the cumulative hydrological response to green infrastructure
NASA Astrophysics Data System (ADS)
Avellaneda, P. M.; Jefferson, A. J.; Grieser, J. M.; Bush, S. A.
2017-04-01
In this study, we evaluated the cumulative hydrologic performance of green infrastructure in a residential area of the city of Parma, Ohio, draining to a tributary of the Cuyahoga River. Green infrastructure included the following spatially distributed devices: 16 street-side bioretention cells, 7 rain gardens, and 37 rain barrels. Data consisted of rainfall and outfall flow records for a wide range of storm events, including pretreatment and treatment periods. The Stormwater Management Model was calibrated and validated to predict the hydrologic response of green infrastructure. The calibrated model was used to quantify annual water budget alterations and discharge frequency over a 6 year simulation period. For the study catchment, we observed a treatment effect with increases of 1.4% in evaporation, 7.6% in infiltration, and a 9.0% reduction in surface runoff. The hydrologic performance of green infrastructure was evaluated by comparing the flow duration curve for pretreatment and treatment outfall flow scenarios. The flow duration curve shifted downward for the green infrastructure scenario. Discharges with a 0.5, 1, 2, and 5 year return period were reduced by an average of 29%. Parameter and predictive uncertainties were inspected by implementing a Bayesian statistical approach.
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
Maruyoshi, Kazunobu; Song, Jaewon
2017-02-14
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
Evaluating vortex generator jet experiments for turbulent flow separation control
NASA Astrophysics Data System (ADS)
von Stillfried, F.; Kékesi, T.; Wallin, S.; Johansson, A. V.
2011-12-01
Separating turbulent boundary-layers can be energized by streamwise vortices from vortex generators (VG) that increase the near wall momentum as well as the overall mixing of the flow so that flow separation can be delayed or even prevented. In general, two different types of VGs exist: passive vane VGs (VVG) and active VG jets (VGJ). Even though VGs are already successfully used in engineering applications, it is still time-consuming and computationally expensive to include them in a numerical analysis. Fully resolved VGs in a computational mesh lead to a very high number of grid points and thus, computational costs. In addition, computational parameter studies for such flow control devices take much time to set-up. Therefore, much of the research work is still carried out experimentally. KTH Stockholm develops a novel VGJ model that makes it possible to only include the physical influence in terms of the additional stresses that originate from the VGJs without the need to locally refine the computational mesh. Such a modelling strategy enables fast VGJ parameter variations and optimization studies are easliy made possible. For that, VGJ experiments are evaluated in this contribution and results are used for developing a statistical VGJ model.
$$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyoshi, Kazunobu; Song, Jaewon
Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less
NASA Astrophysics Data System (ADS)
Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu
2017-09-01
Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.
Preliminary design of a supercritical CO2 wind tunnel
NASA Astrophysics Data System (ADS)
Re, B.; Rurale, A.; Spinelli, A.; Guardone, A.
2017-03-01
The preliminary design of a test-rig for non-ideal compressible-fluid flows of carbon dioxide is presented. The test-rig is conceived to investigate supersonic flows that are relevant to the study of non-ideal compressible-fluid flows in the close proximity of the critical point and of the liquid-vapor saturation curve, to the investigation of drop nucleation in compressors operating with supercritical carbon dioxide and and to the study of flow conditions similar to those encountered in turbines for Organic Rankine Cycle applications. Three different configurations are presented and examined: a batch-operating test-rig, a closed-loop Brayton cycle and a closed-loop Rankine cycle. The latter is preferred for its versatility and for economic reasons. A preliminary design of the main components is reported, including the heat exchangers, the chiller, the pumps and the test section.
Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim
2015-07-01
Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Microscopic modeling of multi-lane highway traffic flow
NASA Astrophysics Data System (ADS)
Hodas, Nathan O.; Jagota, Anand
2003-12-01
We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.
Shanthi, C; Pappa, N
2017-05-01
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence
NASA Astrophysics Data System (ADS)
Pogudalina, S. V.; Fedorova, N. N.
2018-03-01
The results of simulations of the oscillations of an elastic rod placed normally to the external air flow and rigidly fixed on a substrate are presented. The computations were carried out in ANSYS using the technology of two-way fluid-structure interaction (2FSI). Calculations of the problem were performed for various flow velocities, geometric parameters and properties of the rod material. The frequencies, amplitudes and shapes of vortex induced vibration were studied including those that are close to the lock-in mode.
NASA Technical Reports Server (NTRS)
Nakamura, S.
1983-01-01
The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, Khairul; Fagan, Amy; Mankbadi, Mina
2016-01-01
An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.
Improved prediction of disturbed flow via hemodynamically-inspired geometric variables.
Bijari, Payam B; Antiga, Luca; Gallo, Diego; Wasserman, Bruce A; Steinman, David A
2012-06-01
Arterial geometry has long been considered as a pragmatic alternative for inferring arterial flow disturbances, and their impact on the natural history and treatment of vascular diseases. Traditionally, definition of geometric variables is based on convenient shape descriptors, with only superficial consideration of their influence on flow and wall shear stress patterns. In the present study we demonstrate that a more studied consideration of the actual (cf. nominal) local hemodynamics can lead to substantial improvements in the prediction of disturbed flow by geometry. Starting from a well-characterized computational fluid dynamics (CFD) dataset of 50 normal carotid bifurcations, we observed that disturbed flow tended to be confined proximal to the flow divider, whereas geometric variables previously shown to be significant predictors of disturbed flow included features distal to the flow divider in their definitions. Flaring of the bifurcation leading to flow separation was redefined as the maximum relative expansion of the common carotid artery (CCA), proximal to the flow divider. The beneficial effect of primary curvature on flow inertia, via suppression of flow separation, was characterized by the in-plane tortuosity of CCA as it enters the flare region. Multiple linear regressions of these redefined geometric variables against various metrics of disturbed flow revealed R(2) values approaching 0.6, better than the roughly 0.3 achieved using the conventional shape-based variables, while maintaining their demonstrated real-world reproducibility. Such a hemodynamically-inspired approach to the definition of geometric variables may reap benefits for other applications where geometry is used as a surrogate marker of local hemodynamics. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1995-01-01
A studyof highway freight vehicle utilizationof U.S. 395 north of Spokane was conducted as a supplement to the Eastern Washington Intermodal Transportation Study. The U.S. 395 study also includes an examination of passenger car flows across the inter...
NASA Astrophysics Data System (ADS)
Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin
2009-11-01
The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.
2004-01-01
Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, V.R.; Modlin, D.N.
1994-12-31
In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less
Soltani, M.; Chen, P.
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579
Characteristic correlation study of UV disinfection performance for ballast water treatment
NASA Astrophysics Data System (ADS)
Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei
2016-11-01
Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.
An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1
NASA Technical Reports Server (NTRS)
Beard, B. B.; Foley, W. H.
1982-01-01
The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.
Computational Modeling of Blood Flow and Valve Dynamics in Hearts with Hypertrophic Cardiomyopathy
NASA Astrophysics Data System (ADS)
Zheng, Xudong; Mittal, Rajat; Abraham, Theodore; Pinheiro, Aurelio
2010-11-01
Hypertrophic Cardiomyopathy (HCM) is a cardiovascular disease manifested by the thickening of the ventricular wall and often leads to a partial obstruction to the blood flow out of the left ventricle. HCM is recognized as one of the most common causes of sudden cardiac death in athletes. In a heart with HCM, the hypertrophy usually narrows the blood flow pathway to the aorta and produces a low pressure zone between the mitral valve and the hypertrophy during systole. This low pressure can suck the mitral valve leaflet back and completely block the blood flow into the aorta. In the current study, a sharp interface immersed boundary method flow solver is employed to study the hemodynamics and valve dynamics inside a heart with HCM. The three-dimensional motion and configuration of the left ventricle including mitral valve leaflets and aortic valves are reconstructed based on echo-cardio data sets. The mechanisms of aortic obstruction associated with HCM are investigated. The long term objective of this study is to develop a computational tool to aid in the assessment and surgical management of HCM.
El-Kadi, A. I.; Torikai, J.D.
2001-01-01
The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.
NASA Astrophysics Data System (ADS)
Tang, Yik Sau; Chiu, Tin Lok; Tsang, Anderson Chun On; Leung, Gilberto Ka Kit; Chow, Kwok Wing
2016-11-01
Intracranial aneurysm, abnormal swelling of the cerebral artery, can cause massive internal bleeding in the subarachnoid space upon aneurysm rupture, leading to a high mortality rate. Deployment of a flow diverting stent through endovascular technique can obstruct the blood flow into the aneurysm, thus reducing the risk of rupture. Patient-specific models with both bifurcation and sidewall aneurysms have been investigated. Computational fluid dynamics analysis with physiological boundary conditions has been performed. Several hemodynamic parameters including volume flow rate into the aneurysm and the energy (sum of the fluid kinetic and potential energy) loss between the inlet and outlets were analyzed and compared with the surgical outcome. Based on the simulation results, we conjecture that a clinically successful case might imply less blood flow into the aneurysm after stenting, and thus a smaller amount of energy loss in driving the fluid flow in that portion of artery. This study might provide physicians with quantitative information for surgical decision making. (Partial financial support by the Innovation and Technology Support Program (ITS/011/13 & ITS/150/15) of the Hong Kong Special Administrative Region Government)
Transition in Pulsatile Pipe Flow
NASA Astrophysics Data System (ADS)
Vlachos, Pavlos; Brindise, Melissa
2016-11-01
Transition has been observed to occur in the aorta, and stenotic vessels, where pulsatile flow exists. However, few studies have investigated the characteristics and effects of transition in oscillating or pulsatile flow and none have utilized a physiological waveform. In this work, we explore transition in pipe flow using three pulsatile waveforms which all maintain the same mean and maximum flow rates and range to zero flow, as is physiologically typical. Velocity fields were obtained using planar particle image velocimetry for each pulsatile waveform at six mean Reynolds numbers ranging between 500 and 4000. Turbulent statistics including turbulent kinetic energy (TKE) and Reynolds stresses were computed. Quadrant analysis was used to identify characteristics of the production and dissipation of turbulence. Coherent structures were identified using the λci method. We developed a wavelet-Hilbert time-frequency analysis method to identify high frequency structures and compared these to the coherent structures. The results of this study demonstrate that the different pulsatile waveforms induce different levels of TKE and high frequency structures, suggesting that the rates of acceleration and deceleration influence the onset and development of transition.
Beiner, J M; Olgivy, C S; DuBois, A B
1997-03-01
In mammals, the cerebrovascular response to increases in intracranial pressure may take the form of the Cushing response, which includes increased mean systemic arterial pressure, bradycardia and diminished respirations. The mechanism, effect and value of these responses are debated. Using laser-Doppler flowmetry to measure cerebral blood flow, we analyzed the cardiovascular responses to intracranial pressure raised by epidural infusion of mock cerebrospinal fluid in the bluefish and in the rabbit, and compare the results. A decline in cerebral blood flow preceding a rise in mean systemic arterial pressure was observed in both species. Unlike bluefish, rabbits exhibit a threshold of intracranial pressure below which cerebral blood flow was maintained and no cardiovascular changes were observed. The difference in response between the two species was due to the presence of an active autoregulatory system in the cerebral tissue of rabbits and its absence in bluefish. For both species studied, the stimulus for the Cushing response seems to be a decrement in cerebral blood flow. The resulting increase in the mean systemic arterial pressure restores cerebral blood flow to levels approaching controls.
Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.
Li, Xuan; Xiao, Xufeng; Cao, Li
2016-12-01
Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes
2013-11-01
Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.
Investigating low flow process controls, through complex modelling, in a UK chalk catchment
NASA Astrophysics Data System (ADS)
Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas
2017-04-01
The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.
NASA Technical Reports Server (NTRS)
Schweikhhard, W. G.; Chen, Y. S.
1983-01-01
Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.
2003-01-01
Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.
NASA Astrophysics Data System (ADS)
Jiang, Houshuo; Grosenbaugh, Mark A.
2002-11-01
Numerical simulations are used to study the laminar vortex ring formation in the presence of background flow. The numerical setup includes a round-headed axisymmetric body with a sharp-wedged opening at the posterior end where a column of fluid is pushed out by a piston inside the body. The piston motion is explicitly included into the simulations by using a deforming mesh. The numerical method is verified by simulating the standard vortex ring formation process in quiescent fluid for a wide range of piston stroke to cylinder diameter ratios (Lm/D). The results from these simulations confirm the existence of a universal formation time scale (formation number) found by others from experimental and numerical studies. For the case of vortex ring formation by the piston/cylinder arrangement in a constant background flow (i.e. the background flow is in the direction of the piston motion), the results show that a smaller fraction of the ejected circulation is delivered into the leading vortex ring, thereby decreasing the formation number. The mechanism behind this reduction is believed to be related to the modification of the shear layer profile between the jet flow and the background flow by the external boundary layer on the outer surface of the cylinder. In effect, the vorticity in the jet is cancelled by the opposite signed vorticity in the external boundary layer. Simulations using different end geometries confirm the general nature of the phenomenon. The thrust generated from the jet and the drag forces acting on the body are calculated with and without background flow for different piston programs. The implications of these results for squid propulsion are discussed.
A microfabricated microfluidic bioMEMS device to model human brain aneurisms: the aneurysm-on-a-chip
NASA Astrophysics Data System (ADS)
Reece, Lisa M.; Khor, Jian Wei; Thakur, Raviraj; Amin, Ahmed; Wereley, Steven T.; Leary, James F.
2015-03-01
Aneurysms are pockets of blood that collect outside blood vessel walls forming dilatations and leaving arterial walls very prone to rupture. There is little information concerning the causes of intracranial aneurysm formation, growth, and rupture. Current treatments include: (1) clipping, and (2) coil embolization, including stent-assisted coiling. Further, the evolution of any aneurysm is assumed to be caused by the remodeling of the affected blood vessel's material constituents (tunica intima, tunica media, or tunica adventitia). Velocity, pressure, and wall shear stresses aid in the disease development of aneurysmal growth, while the shear force mechanisms effecting wound closure are elusive. To study aneurysm pathogenesis, a lab-on-a-chip device is the key to discovering the underlying mechanisms of these lesions. A two-dimensional microfluidic model, the Aneurysm-on-a-Chip™ (AOC), was the logical answer to study particle flow within an aneurysm "sac". The AOC apparatus can track particles/cells when it is coupled to particle image velocimetry software (PIV) package. The AOC fluid flow was visualized using standard microscopy techniques with commercial microparticles and human aortic smooth muscle cells (HASMC). Images were taken during fluid flow experiments and PIV was utilized to monitor the flow of particles within the "sac" region, as well as particles entering and exiting the device. Quiver plots were generated from fluid flow experiments using standard 7 μm latex particles and fixed HASMC in PBS. PIV analysis shows that the particles flowed nicely from input to output. Wall shear stress provided evidence that there was some back flow at the edges of the "sac" - an indicator of aneurysm development in human patients.
Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.
Meruane, C; Tamburrino, A; Roche, O
2012-08-01
Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In order to obtain a good representation of these flows, the interaction mechanisms between the different constituents of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved numerically and validated by comparing the numerical results with experimental measurements of the front speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our results suggest that the model equations include the essential features that describe the dynamics of grains flows of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Sanders, B. F.
2011-12-01
Urban landscapes are at the forefront of current research efforts in the field of flood inundation modeling for two major reasons. First, urban areas hold relatively large economic and social importance and as such it is imperative to avoid or minimize future damages. Secondly, urban flooding is becoming more frequent as a consequence of continued development of impervious surfaces, population growth in cities, climate change magnifying rainfall intensity, sea level rise threatening coastal communities, and decaying flood defense infrastructure. In reality urban landscapes are particularly challenging to model because they include a multitude of geometrically complex features. Advances in remote sensing technologies and geographical information systems (GIS) have promulgated fine resolution data layers that offer a site characterization suitable for urban inundation modeling including a description of preferential flow paths, drainage networks and surface dependent resistances to overland flow. Recent research has focused on two-dimensional modeling of overland flow including within-curb flows and over-curb flows across developed parcels. Studies have focused on mesh design and parameterization, and sub-grid models that promise improved performance relative to accuracy and/or computational efficiency. This presentation addresses how fine-resolution data, available in Los Angeles County, are used to parameterize, initialize and execute flood inundation models for the 1963 Baldwin Hills dam break. Several commonly used model parameterization strategies including building-resistance, building-block and building hole are compared with a novel sub-grid strategy based on building-porosity. Performance of the models is assessed based on the accuracy of depth and velocity predictions, execution time, and the time and expertise required for model set-up. The objective of this study is to assess field-scale applicability, and to obtain a better understanding of advantages and drawbacks of each method, and to recommend best practices for future studies. The Baldwin Hills dam-break flood is interesting for a couple of reasons. First, the flood caused high velocity, rapidly varied flow through a residential neighborhood and extensive damage to dozens residential structures. These conditions pose a challenge for many numerical models, the test is a rigorous one. Second, previous research has shown that flood extent predictions are sensitive to topographic data and stream flow predictions are sensitive to resistance parameters. Given that the representation of buildings affects the modeling of topography and resistance, a sensitivity to the representation of buildings is expected. Lastly, the site is supported by excellent geospatial data including validation datasets, and is made available through the Los Angeles County Imagery Acquisition Consortium (LAR-IAC), a joint effort of many public agencies in Los Angeles County to provide county-wide data. Hence, a broader aim of this study is to characterize the most useful aspects of the LAR-IAC data from a flood mapping perspective.
NASA Astrophysics Data System (ADS)
Benjanirat, Sarun
Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri
2014-01-01
This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
Hydrodynamics of Low Reynolds Respiratory-type Flows
NASA Astrophysics Data System (ADS)
Connor, Erin; True, Aaron; Crimaldi, John
2017-11-01
Both aquatic and terrestrial animals inhale surrounding fluid for metabolic and sensory purposes. As organisms inhale and exhale, complex fluid interactions occur both internal and external to the physiological orifice. Using both numerical and experimental approaches, we model an idealized respiratory flow consisting of cyclic inhalation and exhalation through a single cylindrical tube. We investigate the effect of varying Reynolds number (Re) as well as the ratio of the inhalation time to the exhalation time (I:E ratio) for a fixed inhalation volume. The numerical model is used for laminar cases at lower Re, whereas the experimental model permits the study to be extended into higher Reynolds numbers that include transitions to turbulence. We map the spatial distribution of both inhaled and exhaled fluid volumes. By comparing these two maps, we can compute the volume of exhaled fluid that is reingested during the subsequent inhalation. The models of interacting inhalation and exhalation exhibit a rich range of flow behaviors across Re number and I:E ratio. This study builds a foundation for more complex studies of animal respiration that will include more realistic morphologies.
A study of information flow in hospice interdisciplinary team meetings
DEMIRIS, GEORGE; WASHINGTON, KARLA; OLIVER, DEBRA PARKER; WITTENBERG-LYLES, ELAINE
2009-01-01
The aim of this study was to explore the information flow of hospice interdisciplinary meetings focusing on information access, exchange and documentation. The study participants were members of four hospice interdisciplinary teams in the Midwestern United States. Team members included a diverse range of professionals including physicians, nurses, social workers, bereavement counselors, and others. A total of 81 patient care discussions were videotaped and transcribed. A content analysis revealed several themes that needed to be addressed to improve the overall information flow, such as access to and recording of information, documentation of services, obtaining information from absent team members, data redundancy and updating of recorded information. On average, 5% of all utterances when discussing a patient case were focused on soliciting information from the member who had access to the patient chart. In 12.3% of all discussions, members referred to an absent member who could have provided additional information. In 8.6% of all discussions the same facts were repeated three times or more. Based on the findings we propose guidelines that can address potential informational gaps and enhance team communication in hospice. PMID:19012142
Otto Laporte Award Talk - In light of Fluid Mechanics
NASA Astrophysics Data System (ADS)
Gharib, Morteza
2015-11-01
Fluid mechanics, in its inherent non-linear beauty, has been its own laboratory, testing our perseverance and dedication to a branch of science that, despite its perceived maturity, still has many surprises to offer. For many of us, the study of fluid flow has been our path to understanding the complexity of nature. My journey has taken me through many interesting projects including the development of new visualization tools, scrutinizing the rhythms of the human heart, observing flow vortices and studying the dynamics of soap films. But this lecture is mainly devoted to a new example of my research activities where light and flow physics interweave to display another intriguing multi-physics beauty of nature.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Hiller, B.; Hassa, C.; Booman, R. A.
1984-01-01
Techniques yielding simultaneous, multiple-point measurements of velocity in reacting or nonreacting flow fields have the potential to significantly impact basic and applied studies of fluid mechanics. This research program is aimed at investigating several candidate schemes which could provide such measurement capability. The concepts under study have in common the use of a laser source (to illuminate a column, a grid, a plane or a volume in the flow) and the collection of light at right angles (from Mie scattering, fluorescence, phosphorescence or chemiluminescence) using a multi-element solid-state camera (100 x 100 array of photodiodes). The work will include an overview and a status report of work in progress with particular emphasis on the method of Doppler-modulated absorption.
Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments
NASA Astrophysics Data System (ADS)
Inguva, Venkatesh; Perot, Blair
2015-11-01
Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.
Single-photon tomographic determination of regional cerebral blood flow in epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.
Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less
NASA Technical Reports Server (NTRS)
Seidel, B. S.; Matwey, M. D.; Adamczyk, J. J.
1980-01-01
In the present paper, a semi-actuator-disk theory is reviewed that was developed previously for the distorted inflow to a single-stage axial-flow compressor. Flow distortion occurs far upstream; it may be a distortion in stagnation temperature, stagnation pressure, or both. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis, and both subsonic and transonic relative Mach numbers are considered. The theory is compared with measurements made in a transonic fan stage, and a parameter study is carried out to determine the influence of solidity on the attenuation of distortions in stagnation pressure and stagnation temperature.
One-dimensional analysis of supersonic two-stage HVOF process
NASA Astrophysics Data System (ADS)
Katanoda, Hiroshi; Hagi, Junichi; Fukuhara, Minoru
2009-12-01
The one-dimensional calculation of the gas/particle flows of a supersonic two-stage high-velocity oxy-fuel (HVOF) thermal spray process was performed. The internal gas flow was solved by numerically integrating the equations of the quasi-one-dimensional flow including the effects of pipe friction and heat transfer. As for the supersonic jet flow, semi-empirical equations were used to obtain the gas velocity and temperature along the center line. The velocity and temperature of the particle were obtained by an one-way coupling method. The material of the spray particle selected in this study is ultra high molecular weight polyethylene (UHMWPE). The temperature distributions in the spherical UHMWPE particles of 50 and 150µm accelerated and heated by the supersonic gas flow was clarified.
Aerodynamics of advanced axial-flow turbomachinery
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.
1980-01-01
A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Nystrom, G. A.; Bardina, J.; Lombard, C. K.
1987-01-01
This paper describes the application of the conservative supra characteristic method (CSCM) to predict the flow around two-dimensional slot injection cooled cavities in hypersonic flow. Seven different numerical solutions are presented that model three different experimental designs. The calculations manifest outer flow conditions including the effects of nozzle/lip geometry, angle of attack, nozzle inlet conditions, boundary and shear layer growth and turbulance on the surrounding flow. The calculations were performed for analysis prior to wind tunnel testing for sensitivity studies early in the design process. Qualitative and quantitative understanding of the flows for each of the cavity designs and design recommendations are provided. The present paper demonstrates the ability of numerical schemes, such as the CSCM method, to play a significant role in the design process.
Statistic characteristics of the gas-liquid flow in a vertical minichannel
NASA Astrophysics Data System (ADS)
Kozulin, I. A.; Kuznetsov, V. V.
2010-03-01
The gas-liquid upward flow was studied in a rectangular minichannel of 1.75×3.8 mm and length of 0.7 m. The experiments were carried out within the range of the gas superficial velocity from 0.1 to 10 m/s and the liquid superficial velocity from 0.07 to 0.7 m/s for the co-current H2O/CO2 flow under the conditions of saturation. The method for the two-beam laser scanning of structure and determination of statistic characteristics of the two-phase flow was worked through. The slug-bubble, slug, transitional, churn, and annular flows were distinguished. The statistics characteristics of liquid and gas phases motion in a minichannel were obtained for the first time including the velocities of phase motion.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Adkar, Nikhil; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-09-01
A numerical simulation study was carried out to examine the transport phenomena occurring during the Top-Seeded Solution Growth (TSSG) process of SiC. The simulation model includes the contributions of radiative and conductive heat transfer in the furnace, mass transfer and fluid flow in the melt, and the induced electric and magnetic fields. Results show that the induced Lorentz force is dominant in the melt compared with that of buoyancy. At the relatively low coil frequencies, the effect of the Lorentz force on the melt flow is significant, and the corresponding flow patterns loose their axisymmetry and become almost fully disturbed. However, at the relatively higher frequency values, the flow is steady and the flow patterns remain axisymmetric.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less
Turbulent Flow past High Temperature Surfaces
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald
2014-11-01
Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.
Thompson, Ronald E.; Hoffman, Scott A.
2006-01-01
A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.