Sample records for flow thermal reactors

  1. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Brown, N.W.; Vasil`ev, A.D.

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flowmore » situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.« less

  2. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  3. Thermal margin protection system for a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musick, C.R.

    1974-02-12

    A thermal margin protection system for a nuclear reactor is described where the coolant flow flow trip point and the calculated thermal margin trip point are switched simultaneously and the thermal limit locus is made more restrictive as the allowable flow rate is decreased. The invention is characterized by calculation of the thermal limit Locus in response to applied signals which accurately represent reactor cold leg temperature and core power; cold leg temperature being corrected for stratification before being utilized and reactor power signals commensurate with power as a function of measured neutron flux and thermal energy added to themore » coolant being auctioneered to select the more conservative measure of power. The invention further comprises the compensation of the selected core power signal for the effects of core radial peaking factor under maximum coolant flow conditions. (Official Oazette)« less

  4. Applying chemical engineering concepts to non-thermal plasma reactors

    NASA Astrophysics Data System (ADS)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  5. WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application of level sensing. Other applications were cross correlation velocimetry to determine bulk sodium flow rate and the characterization of coherent vortical structures in sodium with temperature frequency data. The data harvested, instrumentation developed and techniques refined in this work will help in the design of more robust reactors as well as validate computational models for licensing sodium fast reactors.

  7. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  8. Evaluation of infrared thermography as a diagnostic tool in CVD applications

    NASA Astrophysics Data System (ADS)

    Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.

    1998-05-01

    This research is focused on the feasibility of using infrared temperature measurements on the exterior of a chemical vapor deposition (CVD) reactor to ascertain both real-time information on the operating characteristics of a CVD system and provide data which could be post-processed to provide quantitative information for research and development on CVD processes. Infrared thermography techniques were used to measure temperatures on a horizontal CVD reactor of rectangular cross section which were correlated with the internal gas flow field, as measured with the laser velocimetry (LV) techniques. For the reactor tested, thermal profiles were well correlated with the gas flow field inside the reactor. Correlations are presented for nitrogen and hydrogen carrier gas flows. The infrared data were available to the operators in real time with sufficient sensitivity to the internal flow field so that small variations such as misalignment of the reactor inlet could be observed. The same data were post-processed to yield temperature measurements at known locations on the reactor surface. For the experiments described herein, temperatures associated with approximately 3.3 mm 2 areas on the reactor surface were obtained with a precision of ±2°C. These temperature measurements were well suited for monitoring a CVD production reactor, development of improved thermal boundary conditions for use in CFD models of reactors, and for verification of expected thermal conditions.

  9. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  10. A Plasma Reactor for the Synthesis of High-Temperature Materials: Electro Thermal, Processing and Service Life Characteristics

    NASA Astrophysics Data System (ADS)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-08-01

    The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.

  11. Gas-core reactor power transient analysis

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1972-01-01

    The gas core reactor is a proposed device which features high temperatures. It has applications in high specific impulse space missions, and possibly in low thermal pollution MHD power plants. The nuclear fuel is a ball of uranium plasma radiating thermal photons as opposed to gamma rays. This thermal energy is picked up before it reaches the solid cavity liner by an inflowing seeded propellant stream and convected out through a rocket nozzle. A wall-burnout condition will exist if there is not enough flow of propellant to convect the energy back into the cavity. A reactor must therefore operate with a certain amount of excess propellant flow. Due to the thermal inertia of the flowing propellant, the reactor can undergo power transients in excess of the steady-state wall burnout power for short periods of time. The objective of this study was to determine how long the wall burnout power could be exceeded without burning out the cavity liner. The model used in the heat-transfer calculation was one-dimensional, and thermal radiation was assumed to be a diffusion process.

  12. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less

  13. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    DOEpatents

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trianti, Nuri, E-mail: nuri.trianti@gmail.com; Nurjanah,; Su’ud, Zaki

    Thermalhydraulic of reactor core is the thermal study on fluids within the core reactor, i.e. analysis of the thermal energy transfer process produced by fission reaction from fuel to the reactor coolant. This study include of coolant temperature and reactor power density distribution. The purposes of this analysis in the design of nuclear power plant are to calculate the coolant temperature distribution and the chimney height so natural circulation could be occurred. This study was used boiling water reactor (BWR) with cylinder type reactor core. Several reactor core properties such as linear power density, mass flow rate, coolant density andmore » inlet temperature has been took into account to obtain distribution of coolant density, flow rate and pressure drop. The results of calculation are as follows. Thermal hydraulic calculations provide the uniform pressure drop of 1.1 bar for each channels. The optimum mass flow rate to obtain the uniform pressure drop is 217g/s. Furthermore, from the calculation it could be known that outlet temperature is 288°C which is the saturated fluid’s temperature within the system. The optimum chimney height for natural circulation within the system is 14.88 m.« less

  15. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  16. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  17. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y.

    2012-05-01

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  18. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor

    PubMed Central

    Chen, Pin-Chuan; Park, Daniel S.; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.

    2010-01-01

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow velocity, fragment length, and copy number. A 99 bp DNA fragment was successfully amplified at flow velocities from 1 mm/s to 3 mm/s, requiring from 8.16 minutes for 20 cycles (24.48 s/cycle) to 2.72 minutes for 20 cycles (8.16 s/cycle), respectively. Yield compared to the same amplification sequence performed using a bench top thermal cycler decreased nonlinearly from 73% (at 1 mm/s) to 13% (at 3 mm/s) with shorter residence time at the optimal temperatures for the reactions due to increased flow rate primarily responsible. Six different DNA fragments with lengths between 99 bp and 997 bp were successfully amplified at 1 mm/s. Repeatable, successful amplification of a 99 bp fragment was achieved with a minimum of 8000 copies of the DNA template. This is the first demonstration and characterization of continuous flow thermal reactors within the 8 mm × 8 mm footprint of a 96-well micro-titer plate and is the smallest continuous flow PCR to date. PMID:20871807

  19. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  20. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  1. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  2. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Sessions 17-24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    1995-09-01

    Technical papers accepted for presentation at the Seventh International Topical Meeting on Nuclear Reactor Thermal-Hydraulics are included in the present Proceedings. Except for the invited papers in the plenary session, all other papers are contributed papers. The topics of the meeting encompass all major areas of nuclear thermal-hydraulics, including analytical and experimental works on the fundamental mechanisms of fluid flow and heat transfer, the development of advanced mathematical and numerical methods, and the application of advancements in the field in the development of novel reactor concepts. Because of the complex nature of nuclear reactors and power plants, several papers dealmore » with the combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. The participation in the conference by the authors from several countries and four continents makes the Proceedings a comprehensive review of the recent progress in the field of nuclear reactor thermal-hydraulics worldwide. Individual papers have been cataloged separately.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less

  4. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  5. Shuttle APS propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Fulton, D. L.

    1971-01-01

    The conditioner design concept selected for evaluation consists of an integral reactor and baffle-type heat exchanger. Heat exchange is accomplished by flowing reactor hot gases past a series of slotted and formed plates, through which the conditioned propellant flows. Heat transfer analysis has resulted in the selection of a reactor hot gas nominal mixture ratio of 1.0, giving a combustion temperature of 1560 F with a hydrogen inlet temperature of 275 R. Worst case conditions result in a combustion gas temperature of 2060 F, satisfying the condition of no damage to the conditioner in case of failure to flow cold fluid. In addition, evaluation of hot gas flow requirements and conditioner weight has resulted in the selection of a reactor hot gas exhaust temperature of 750 R.

  6. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  7. Reactor design rules for GaN epitaxial layer growths on sapphire in metal-organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kim, Keunjoo; Noh, Sam Kyu

    2000-08-01

    The thermal process of the growth of GaN-based semiconductors was analysed for two home-made horizontal reactors. The reactors were designed to make the ammonia gas flow in the opposite direction to the main gas flow. For two horizontal reactors different in dimension, the low Reynolds numbers of Re = 2.94 and 4.15 were chosen for stable laminar flow and the Rayleigh numbers governing the heat convection were optimized to the values of Ra = 6.0 and 76.2, respectively. The qualities of GaN and InGaN films were characterized by Hall effect measurement, x-ray diffraction and photoluminescence and compared with respect to the reactor dependency.

  8. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  9. Research Program of a Super Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is notmore » breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)« less

  10. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  11. Neutronic reactor thermal shield

    DOEpatents

    Wende, Charles W. J.

    1976-06-15

    1. The method of operating a water-cooled neutronic reactor having a graphite moderator which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40-60 volume percent of the mixture, in contact with the graphite moderator.

  12. Nuclear design of a vapor core reactor for space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.

    1993-01-01

    Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.

  13. Flow reversal and thermal limit in a heated rectangular channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.; Yang, B.W.

    The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less

  14. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less

  15. Thermal Stratification Analysis for Sodium Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, James; Anderson, Mark; Baglietto, Emilio

    The sodium fast reactor (SFR) is the most mature reactor concept of all the generation-IV nuclear systems and is a promising reactor design that is currently under development by several organizations. The majority of sodium fast reactor designs utilize a pool type arrangement which incorporates the primary coolant pumps and intermediate heat exchangers within the sodium pool. These components typically protrude into the pool thus reducing the risk and severity of a loss of coolant accidents. To further ensure safe operation under even the most severe transients a more comprehensive understanding of key thermal hydraulic phenomena in this pool ismore » desired. One of the key technology gaps identified for SFR safety is determining the extent and the effects of thermal stratification developing in the pool during postulated accident scenarios such as a protected or unprotected loss of flow incident. In an effort to address these issues, detailed flow models of transient stratification in the pool during an accident can be developed. However, to develop the calculation models, and ensure they can reproduce the underlying physics, highly spatially resolved data is needed. This data can be used in conjunction with advanced computational fluid dynamic calculations to aid in the development of simple reduced dimensional models for systems codes such as SAM and SAS4A/SASSYS-1.« less

  16. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.

    1987-11-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less

  17. Neutron radiography experiments for verification of soluble boron mixing and transport modeling under natural circulation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Morlang, G.M.

    1996-06-01

    The use of neutron radiography for visualization of fluid flow through flow visualization modules has been very successful. Current experiments at the Penn State Breazeale Reactor serve to verify the mixing and transport of soluble boron under natural flow conditions as would be experienced in a pressurized water reactor. Different flow geometries have been modeled including holes, slots, and baffles. Flow modules are constructed of aluminum box material 1 1/2 inches by 4 inches in varying lengths. An experimental flow system was built which pumps fluid to a head tank and natural circulation flow occurs from the head tank throughmore » the flow visualization module to be radiographed. The entire flow system is mounted on a portable assembly to allow placement of the flow visualization module in front of the neutron beam port. A neutron-transparent fluorinert fluid is used to simulate water at different densities. Boron is modeled by gadolinium oxide powder as a tracer element, which is placed in a mixing assembly and injected into the system by remote operated electric valve, once the reactor is at power. The entire sequence is recorded on real-time video. Still photographs are made frame-by-frame from the video tape. Computers are used to digitally enhance the video and still photographs. The data obtained from the enhancement will be used for verification of simple geometry predictions using the TRAC and RELAP thermal-hydraulic codes. A detailed model of a reactor vessel inlet plenum, downcomer region, flow distribution area and core inlet is being constructed to model the AP600 plenum. Successive radiography experiments of each section of the model under identical conditions will provide a complete vessel/core model for comparison with the thermal-hydraulic codes.« less

  18. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  19. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less

  20. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heatmore » from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet temperature. The peak cladding, hot pool, cold pool and reactor inlet temperatures were calculated during LOFC. The results indicate that there are two phases during LOFC transient – the initial thermal equilibration phase and the long term decay heat removal phase. The initial thermal equilibration phase occurs over a few hundred seconds, as the system adjusts from forced circulation to natural circulation flow. Subsequently, during long-term heat removal phase all temperatures evolve very slowly due to the large thermal inertia of the primary and buffer pool systems. The results clearly show that passive safety PRACS can effectively transfer decay heat from the primary system to the buffer pool by natural circulation. The DRACS system in turn can effectively transfer the decay heat to the environment.« less

  1. Heated-Pressure-Ball Monopropellant Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D.

    2005-01-01

    A recent technology disclosure presents a concept for a monopropellant thermal spacecraft thruster that would feature both the simplicity of a typical prior pressure-fed propellant supply system and the smaller mass and relative compactness of a typical prior pump-fed system. The source of heat for this thruster would likely be a nuclear- fission reactor. The propellant would be a cryogenic fluid (a liquefied low-molecular-weight gas) stored in a tank at a low pressure. The propellant would flow from the tank, through a feedline, into three thick-walled spherical tanks, denoted pressure balls, that would be thermally connected to the reactor. Valves upstream and downstream of the pressure balls would be operated in a three-phase cycle in which propellant would flow into one pressure ball while the fluid underwent pressurization through heating in another ball and pressurized propellant was discharged from the remaining ball into the reactor. After flowing through the reactor, wherein it would be further heated, the propellant would be discharged through an exhaust nozzle to generate thrust. A fraction of the pressurized gas from the pressure balls would be diverted to maintain the desired pressure in the tank.

  2. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen recombination before the flow exits the nozzle. A LPNTP system has other technical issues (e.g. flow instability and two-phase flow) besides hydrogen dissociation/recombination which affect the systems practicality. In this study, only the effects of hydrogen dissociation/recombination are examined.

  3. Three-dimensional time-dependent STAR reactor kinetics analyses coupled with RETRAN and MCPWR system response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1989-11-01

    The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less

  4. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    NASA Astrophysics Data System (ADS)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  5. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  6. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    NASA Astrophysics Data System (ADS)

    Aji, Indarta Kuncoro; Waris, Abdul; Permana, Sidik

    2015-09-01

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF2-ThF4-233UF4 respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  7. Pressurizer with a mechanically attached surge nozzle thermal sleeve

    DOEpatents

    Wepfer, Robert M

    2014-03-25

    A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle.

  8. Instability study for LOFT for L2-1, L2-2, and L2-3 pretest steady-state operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.

    The results are presented of a thermal-hydrodynamic flow instability study of the LOFT reactor for the L2-1, L2-2, and L2-3 pretest steady-state operating conditions. Comparison is made between the LOFT reactor and a typical PWR, and the effects on stability of differences in operating parameters and geometry are discussed. Results indicate that the LOFT reactor will be thermal-hydrodynamically stable for nominal and worst case operating conditions. The study supports the LOFT Experimental Safety Analyses for the L2-1, L2-2, and L2-3 tests.

  9. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  10. An approach to model reactor core nodalization for deterministic safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less

  11. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1993-10-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  12. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  13. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  14. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  15. Flow characteristics of Korea multi-purpose research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heonil Kim; Hee Taek Chae; Byung Jin Jun

    1995-09-01

    The construction of Korea Multi-purpose Research Reactor (KMRR), a 30 MW{sub th} open-tank-in-pool type, is completed. Various thermal-hydraulic experiments have been conducted to verify the design characteristics of the KMRR. This paper describes the commissioning experiments to determine the flow distribution of KMRR core and the flow characteristics inside the chimney which stands on top of the core. The core flow is distributed to within {+-}6% of the average values, which is sufficiently flat in the sense that the design velocity in the fueled region is satisfied. The role of core bypass flow to confine the activated core coolant inmore » the chimney structure is confirmed.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oktamuliani, Sri, E-mail: srioktamuliani@ymail.com; Su’ud, Zaki, E-mail: szaki@fi.itb.ac.id

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation atmore » inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.« less

  17. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  18. Heat and moisture flow in concrete as a function of temperature

    NASA Technical Reports Server (NTRS)

    Hundt, J.

    1978-01-01

    Due to temperature, reactors in operation cause heat and moisture flows in the thick walled prestressed pressure vessels. These flows were studied in three beams of concrete made with crushed limestone aggregate, and in three beams made of crushed gravel/sand aggregate. The flow phenomena were related to the structural development of the concrete by determining the amount of non-evaporatable water, the total porosity, and the pore size distribution. Local temperature and moisture conditions also influenced the technical properties. Compressive strength, changes in length due to shrinkage and contraction, thermal expansion, and thermal conductivity were determined.

  19. Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.

    1963-01-01

    An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher hydrogen flow rates offer the possibility of sufficiently high thrust-to-weight ratios, if they are not limited by short thermal-radiation path lengths.

  20. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Indarta Kuncoro, E-mail: indartaaji@s.itb.ac.id; Waris, Abdul, E-mail: awaris@fi.itb.ac.id; Permana, Sidik

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 datamore » library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.« less

  1. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  2. Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.

    2006-01-01

    Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.

  3. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  4. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  5. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.

    2017-07-01

    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  6. Summary of the thermal evaluation of LWBR (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, S.; McWilliams, K.D.; Stout, J.W.

    1980-03-01

    This report describes the thermal evaluation of the core for the Shippingport Light Water Breeder Reactor. This core contains unique thermal-hydraulic features such as (1) close rod-to-rod proximity, (2) an open-lattice array of fuel rods with two different diameters and rod-to-rod spacings in the same flow region, (3) triplate orifices located at both the entrance and exit of fuel modules and (4) a hydraulically-balanced movable-fuel system coupled with (5) axial-and-radial fuel zoning for reactivity control. Performance studies used reactor thermal principles such as the hot-and-nominal channel concept and related nuclear/engineering design allowances. These were applied to models of three-dimensional roddedmore » arrays comprising the core fuel regions.« less

  7. Study of Convection Heat Transfer in a Very High Temperature Reactor Flow Channel: Numerical and Experimental Results

    DOE PAGES

    Valentin, Francisco I.; Artoun, Narbeh; Anderson, Ryan; ...

    2016-12-01

    Very High Temperature Reactors (VHTRs) are one of the Generation IV gas-cooled reactor models proposed for implementation in next generation nuclear power plants. A high temperature/pressure test facility for forced and natural circulation experiments has been constructed. This test facility consists of a single flow channel in a 2.7 m (9’) long graphite column equipped with four 2.3kW heaters. Extensive 3D numerical modeling provides a detailed analysis of the thermal-hydraulic behavior under steady-state, transient, and accident scenarios. In addition, forced/mixed convection experiments with air, nitrogen and helium were conducted for inlet Reynolds numbers from 500 to 70,000. Our numerical resultsmore » were validated with forced convection data displaying maximum percentage errors under 15%, using commercial finite element package, COMSOL Multiphysics. Based on this agreement, important information can be extracted from the model, with regards to the modified radial velocity and property gas profiles. Our work also examines flow laminarization for a full range of Reynolds numbers including laminar, transition and turbulent flow under forced convection and its impact on heat transfer under various scenarios to examine the thermal-hydraulic phenomena that could occur during both normal operation and accident conditions.« less

  8. Rapid solar-thermal decarbonization of methane

    NASA Astrophysics Data System (ADS)

    Dahl, Jaimee Kristen

    Due to the ever-increasing demand for energy and the concern over the environmental impact of continuing to produce energy using current methods, there is interest in developing a hydrogen economy. Hydrogen is a desirable energy source because it is abundant in nature and burns cleanly. One method for producing hydrogen is to utilize a renewable energy source to obtain high enough temperatures to decompose a fossil fuel into its elements. This thesis work is directed at developing a solar-thermal aerosol flow reactor to dissociate methane to carbon black and hydrogen. The technology is intended as a "bridge" between current hydrogen production methods, such as conventional steam-methane reformers, and future "zero emission" technology for producing hydrogen, such as dissociating water using a renewable heating source. A solar furnace is used to heat a reactor to temperatures in excess of 2000 K. The final reactor design studied consists of three concentric vertical tubes---an outer quartz protection tube, a middle solid graphite heating tube, and an inner porous graphite reaction tube. A "fluid-wall" is created on the inside wall of the porous reaction tube in order to prevent deposition of the carbon black co-product on the reactor tube wall. The amorphous carbon black produced aids in heating the gas stream by absorbing radiation from the reactor wall. Conversions of 90% are obtained at a reactor wall temperature of 2100 K and an average residence time of 0.01 s. Computer modeling is also performed to study the gas flow and temperature profiles in the reactor as well as the kinetics of the methane dissociation reaction. The simulations indicate that there is little flow of the fluid-wall gas through the porous wall in the hot zone region, but this can be remedied by increasing the inlet temperature of the fluid-wall gas and/or increasing the tube permeability only in the hot zone region of the wall. The following expression describes the kinetics of methane dissociation in a solar-thermal fluid-wall reactor: dXdt=5.8x108 exp-155,600RT 1-X 7.2s-1. The experimental and theoretical work reported in this thesis is the groundwork that will be utilized in scaling up the reactor to produce hydrogen in distributed or centralized facilities.

  9. Methods of conducting simultaneous exothermic and endothermic reactions

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Roberts, Gary L [West Richland, WA; Perry, Steven T [Galloway, OH; Fitzgerald, Sean P [Columbus, OH

    2005-11-29

    Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.

  10. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  11. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  12. Herpetofaunal and vegetational characterization of a thermally-impacted stream at the beginning of restoration

    Treesearch

    Catherine F. Bowers; Hugh G. Hanlin; David C. Guynn; John P. McLendon; James R. Davis

    2000-01-01

    Pen Branch, a third order stream on the Savannah River Site (SRS), located near Aiken, SC, USA, received thermal effluents from the cooling system of a nuclear production reactor from 1954 to 1988. The thermal effluent and increased flow destroyed vegetation in the stream corridor (i.e. impacted portion of the floodplain), and subsequent erosion created a braided...

  13. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  14. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  15. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

  16. Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor

    NASA Technical Reports Server (NTRS)

    Lyon, William F., III

    1991-01-01

    Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.

  17. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  18. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.

    PubMed

    Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin

    2015-11-01

    Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziane, M.; Eichwald, O.; Ducasse, O.

    The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-dischargemore » stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.« less

  20. Pressurized thermal shock: TEMPEST computer code simulation of thermal mixing in the cold leg and downcomer of a pressurized water reactor. [Creare 61 and 64

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.; Trent, D.S.

    The TEMPEST computer program was used to simulate fluid and thermal mixing in the cold leg and downcomer of a pressurized water reactor under emergency core cooling high-pressure injection (HPI), which is of concern to the pressurized thermal shock (PTS) problem. Application of the code was made in performing an analysis simulation of a full-scale Westinghouse three-loop plant design cold leg and downcomer. Verification/assessment of the code was performed and analysis procedures developed using data from Creare 1/5-scale experimental tests. Results of three simulations are presented. The first is a no-loop-flow case with high-velocity, low-negative-buoyancy HPI in a 1/5-scale modelmore » of a cold leg and downcomer. The second is a no-loop-flow case with low-velocity, high-negative density (modeled with salt water) injection in a 1/5-scale model. Comparison of TEMPEST code predictions with experimental data for these two cases show good agreement. The third simulation is a three-dimensional model of one loop of a full size Westinghouse three-loop plant design. Included in this latter simulation are loop components extending from the steam generator to the reactor vessel and a one-third sector of the vessel downcomer and lower plenum. No data were available for this case. For the Westinghouse plant simulation, thermally coupled conduction heat transfer in structural materials is included. The cold leg pipe and fluid mixing volumes of the primary pump, the stillwell, and the riser to the steam generator are included in the model. In the reactor vessel, the thermal shield, pressure vessel cladding, and pressure vessel wall are thermally coupled to the fluid and thermal mixing in the downcomer. The inlet plenum mixing volume is included in the model. A 10-min (real time) transient beginning at the initiation of HPI is computed to determine temperatures at the beltline of the pressure vessel wall.« less

  1. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors.

    PubMed

    Pieber, Bartholomäus; Shalom, Menny; Antonietti, Markus; Seeberger, Peter H; Gilmore, Kerry

    2018-01-29

    Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CO2 Dissociation by Low Current Gliding Discharge in the Reverse Vortex Flow

    NASA Astrophysics Data System (ADS)

    Gutsol, Alexander

    2012-10-01

    If performed with high energy efficiency, plasma-chemical dissociation of carbon dioxide can be a way of converting and storing energy when there is an excess of electric energy, for example generated by solar elements of wind turbines. CO2 dissociation with efficiency of up to 90% was reported earlier for low pressure microwave discharge in supersonic flow. A new plasma-chemical system uses a low current gliding discharge in the reverse vortex flow of plasma gas. The system is a development of the Gliding Arc in Tornado reactor. The system was used to study dissociation of CO2 in wide ranges of the following experimental parameters: reactor pressure (15-150 kPa), discharge current (50-500 mA), gas flow rate (3-30 liters per minute), and electrode gap length (1-10 cm). Additionally, the effect of thermal energy recuperation on CO2 dissociation efficiency was tested. Plasma chemical efficiency of CO2 dissociation is very low (about 3%) in a short discharge at low pressures (about 15 kPa) when it is defined by electronic excitation. The highest efficiency (above 40%) was reached at pressures 50-70 kPa in a long discharge with thermal energy recuperation. It means that the process is controlled by thermal dissociation with subsequent effective quenching. Plasma chemical efficiency was determined from the data of chromatographic analysis and oscilloscope electric power integration, and also was checked calorimetrically by the thermal balance of the system.

  3. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  4. A User Guide to PARET/ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Dionne, B.; Marin-Lafleche, A.

    2015-01-01

    PARET was originally created in 1969 at what is now Idaho National Laboratory (INL), to analyze reactivity insertion events in research and test reactor cores cooled by light or heavy water, with fuel composed of either plates or pins. The use of PARET is also appropriate for fuel assemblies with curved fuel plates when their radii of curvatures are large with respect to the fuel plate thickness. The PARET/ANL version of the code has been developed at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy/NNSA, and has been used by the Reactor Conversion Program tomore » determine the expected transient behavior of a large number of reactors. PARET/ANL models the various fueled regions of a reactor core as channels. Each of these channels consists of a single flat fuel plate/pin (including cladding and, optionally, a gap) with water coolant on each side. In slab geometry the coolant channels for a given fuel plate are of identical dimensions (mirror symmetry), but they can be of different thickness in each channel. There can be many channels, but each channel is independent and coupled only through reactivity feedback effects to the whole core. The time-dependent differential equations that represent the system are replaced by an equivalent set of finite-difference equations in space and time, which are integrated numerically. PARET/ANL uses fundamentally the same numerical scheme as RELAP5 for the time-integration of the point-kinetics equations. The one-dimensional thermal-hydraulic model includes temperature-dependent thermal properties of the solid materials, such as heat capacity and thermal conductivity, as well as the transient heat production and heat transfer from the fuel meat to the coolant. Temperature- and pressure-dependent thermal properties of the coolant such as enthalpy, density, thermal conductivity, and viscosity are also used in determining parameters such as friction factors and heat transfer coefficients. The code first determines the steady-state solution for the initial state. Then the solution of the transient is obtained by integration in time and space. Multiple heat transfer, DNB and flow instability correlations are available. The code was originally developed to model reactors cooled by an open loop, which was adequate for rapid transients in pool-type cores. An external loop model appropriate for Miniature Neutron Source Reactors (MNSR’s) was also added to PARET/ANL to model natural circulation within the vessel, heat transfer from the vessel to pool and heat loss by evaporation from the pool. PARET/ANL also contains models for decay heat after shutdown, control rod reactivity versus time or position, time-dependent pump flow, and loss-of-flow event with flow reversal as well as logic for trips on period, power, and flow. Feedback reactivity effects from coolant density changes and temperature changes are represented by tables. Feedback reactivity from fuel heat-up (Doppler Effect) is represented by a four-term polynomial in powers of fuel temperature. Photo-neutrons produced in beryllium or in heavy water may be included in the point-kinetics equations by using additional delayed neutron groups.« less

  5. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE PAGES

    Hu, Rui

    2017-03-27

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  6. An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.

    Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less

  8. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Houts, Michael G.

    2011-01-01

    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  9. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  10. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  11. Process for making silicon from halosilanes and halosilicons

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  12. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  13. THERMAL COUPLE FOR MEASURING TEMPERATURE IN A REACTOR

    DOEpatents

    Kanne, W.

    1959-11-24

    A thermocouple device for measuring the temperature of a flowing fluid in a conduit within which is positioned a metallic rod is presented. A thermocouple junction is secured to the rod centrally, and thermal insulating support disks having a diameter greater than the rod are secured to the end portions of the rod and adapted to fit transversely in the conduit.

  14. Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

    2001-01-01

    The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

  15. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  16. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation

    NASA Astrophysics Data System (ADS)

    Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.

    2017-08-01

    Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.

  17. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    NASA Astrophysics Data System (ADS)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  18. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  19. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  20. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  1. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Poisoning of Heat Pipes

    NASA Technical Reports Server (NTRS)

    Gillies, Donald; Lehoczky, Sandor; Palosz, Witold; Carpenter, Paul; Salvail, Pat

    2007-01-01

    Thermal management is critical to space exploration efforts. In particular, efficient transfer and control of heat flow is essential when operating high energy sources such as nuclear reactors. Thermal energy must be transferred to various energy conversion devices, and to radiators for safe and efficient rejection of excess thermal energy. Applications for space power demand exceptionally long periods of time with equipment that is accessible for limited maintenance only. Equally critical is the hostile and alien environment which includes high radiation from the reactor and from space (galactic) radiation. In space or lunar applications high vacuum is an issue, while in Martian operations the systems will encounter a CO2 atmosphere. The effect of contact at high temperature with local soil (regolith) in surface operations on the moon or other terrestrial bodies (Mars, asteroids) must be considered.

  3. Core cooling under accident conditions at the high flux beam reactor (HFBR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, P.; Cheng, L.; Fauske, H.

    In certain accident scenarios, e.g. loss of coolant accidents (LOCA) all forced flow cooling is lost. Decay heating causes a temperature increase in the core coolant and the resulting thermal buoyancy causes a reversal of the flow direction to a natural circulation mode. Although there was experimental evidence during the reactor design period (1958--1963) that the heat removal capacity in the fully developed natural circulation cooling mode was relatively high, it was not possible to make a confident prediction of the heat removal capacity during the transition from downflow to natural circulation. In a LOCA scenario where even limited fuelmore » damage occurs and natural circulation is established, fission product gases could be carried from the damaged fuel by steam into areas where operator access is required to maintain the core in a coolable configuration. This would force evacuation of the building and lead to extensive core damage. As a result the HFBR was shut down by the Department of Energy (DOE) and an extensive review of the HFBR was initiated. In an effort to address this issue BNL developed a model designed to predict the heat removal limit during flow reversal that was found to be in good agreement with the test results. Currently a thermal-hydraulic test program is being developed to provide a more realistic and defensible estimate of the flow reversal heat removal limit so that the reactor power level can be increased.« less

  4. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  5. Elimination of numerical diffusion in 1 - phase and 2 - phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajamaeki, M.

    1997-07-01

    The new hydraulics solution method PLIM (Piecewise Linear Interpolation Method) is capable of avoiding the excessive errors, numerical diffusion and also numerical dispersion. The hydraulics solver CFDPLIM uses PLIM and solves the time-dependent one-dimensional flow equations in network geometry. An example is given for 1-phase flow in the case when thermal-hydraulics and reactor kinetics are strongly coupled. Another example concerns oscillations in 2-phase flow. Both the example computations are not possible with conventional methods.

  6. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less

  7. Improvement of INVS Measurement Uncertainty for Pu and U-Pu Nitrate Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinhoe, Martyn Thomas; Menlove, Howard Olsen; Marlow, Johnna Boulds

    2017-04-27

    In the Tokai Reprocessing Plant (TRP) and the Plutonium Conversion Development Facility (PCDF), a large amount of plutonium nitrate solution which is recovered from light water reactor (LWR) and advanced thermal reactor (ATR), FUGEN are being stored. Since the solution is designated as a direct use material, the periodical inventory verification and flow verification are being conducted by Japan Safeguard Government Office (JSGO) and International Atomic Agency (IAEA).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, goodmore » heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.« less

  9. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.S.; Bellan, J.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects frommore » thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.« less

  10. Experimental study of the thermal stability of hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Marteney, P. J.; Colket, M. B.; Vranos, A.

    1982-01-01

    The thermal stability of two hydrocarbon fuels (premium diesel and regular diesel) was determined in a flow reactor under conditions representing operation of an aircraft gas turbine engine. Temperature was varied from 300 to 750 F (422 to 672 K) for fuel flows of 2.84 to 56.8 liters/hr (corresponding to 6.84 x 0.00010 to 1.63 x 0.010 kg/sec for regular diesel fuel and 6.55 x 0.00010 to 1.37 x 0.010 kg/sec for premium diesel fuel); test times varied between 1 and 8 hr. The rate of deposition was obtained through measurement of weight gained by metal discs fixed along the channel wall. The rate of deposit formation is best correlated by an Arrhenius expression. The sample discs in the flow reactor were varied among stainless steel, aluminum and brass; fuels were doped with quinoline, indole, and benzoyl perioxide to yield nitrogen or oxygen concentrations of approximately 1000 ppm. The most substantial change in rate was an increase in deposits for brass discs; other disc materials or the additives caused only small perturbations. Tests were also conducted in a static reactor at temperatures of 300 to 800 F for times of 30 min to 2 1/2 hr. Much smaller deposition was found, indicating the importance of fluid transport in the mechanism.

  11. Kinetics of Death of Bacterial Spores at Elevated Temperatures

    PubMed Central

    Wang, Daniel I-C.; Scharer, Jeno; Humphrey, Arthur E.

    1964-01-01

    The kinetics of death of Bacillus stearothermophilus spores (FS 7954) suspended in phosphate buffer (pH 7) were studied over a temperature range of 127.2 to 143.8 C and exposure times of 0.203 to 4.150 sec. These short exposure were achieved by use of a tubular flow reactor in which a suspension of spores was injected into a hot flowing stream at the entrance of the reactor. Thermal equilibria of the suspension with the hot stream was achieved within 0.0006 sec. After flow through a fixed length of reactor, the stream containing the spores was cooled by flash vaporization and then assayed for viable count. The death rate data were fitted by a logarithmic expression. However, logarithmic death rate was only approximated in the tail or high-kill regions of exposure. Death rate constants obtained from this portion of the data were found to correlate by Arrhenius as well as Absolute Reaction Rate Theory relationships. Thermal-death time curves were found to correlate the data rather poorly. The activation energy and frequency constant for an Arrhenius relationship fit of the data were found to be 83.6 kcal/gmole and 1047.2 min-1, respectively. The standard enthalpy and entropy changes for an Absolute Reaction Rate Theory relationship fit of the data were found to be 84.4 kcal/gmole and 157 cal/gmole-K, respectively. PMID:14215978

  12. Comparison of computational results of the SABRE LMFBR pin bundle blockage code with data from well-instrumented out-of-pile test bundles (THORS bundles 3A and 5A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dearing, J.F.

    The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less

  13. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less

  15. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less

  16. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  17. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    DOE PAGES

    Modestov, M.; Kolemen, E.; Fisher, A. E.; ...

    2017-11-06

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less

  18. Electromagnetic control of heat transport within a rectangular channel filled with flowing liquid metal

    NASA Astrophysics Data System (ADS)

    Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.

    2018-01-01

    The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J  ×  B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.

  19. Recirculating Thermocatalytic Air Purifier for Collective Protection

    DTIC Science & Technology

    2006-01-01

    stearothermophilus (Bs) spores, which are generally accepted to be more heat resistant than anthrax spores. The results for the Bg and Bs spore...7 who performed thermal deactivation tests using Bg spores in a different reactor geometry. Shankle’s data imply complete sterilization of Bg...400 CFM Catalytic Air Purifier Model, Book 2: Effects of Heat Transfer and Flow on Thermal Sterilization . CB-67-2738-12.2, Physical Protection

  20. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  1. Upgrading producer gas quality from rubber wood gasification in a radio frequency tar thermocatalytic treatment reactor.

    PubMed

    Anis, Samsudin; Zainal, Z A

    2013-12-01

    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars

    DOE PAGES

    Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.; ...

    2017-07-12

    Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less

  3. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  4. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  5. Development of the cascade inertial-confinement-fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, J.H.

    Caqscade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670 K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less

  6. Development of the cascade inertial-confinement-fusion reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, J.H.

    Cascade, originally conceived as a football-shaped, steel-walled reactor containing a Li/sub 2/O granule blanket, is now envisaged as a double-cone-shaped reactor containing a two-layered (three-zone) flowing blanket of BeO and LiAlO/sub 2/ granules. Average blanket exit temperature is 1670/sup 0/K and gross plant efficiency (net thermal conversion efficiency) using a Brayton cycle is 55%. The reactor has a low-activation SiC-tiled wall. It rotates at 50 rpm, and the granules are transported to the top of the heat exchanger using their peripheral speed; no conveyors or lifts are required. The granules return to the reactor by gravity. After considerable analysis andmore » experimentation, we continue to regard Cascade as a promising reactor concept with the advantages of safety, efficiency, and low activation.« less

  7. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  8. Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less

  9. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-01

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  10. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  11. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  12. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  13. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.G.; Wendel, M.W.; Chen, N.C.J.

    A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 hmore » is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.« less

  14. Experimental Investigation of Natural-Circulation Flow Behavior Under Low-Power/Low-Pressure Conditions in the Large-Scale PANDA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auban, Olivier; Paladino, Domenico; Zboray, Robert

    2004-12-15

    Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity.more » The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.« less

  15. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Astrophysics Data System (ADS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m3/hr.

  16. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  17. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    NASA Astrophysics Data System (ADS)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.

  18. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.

  19. Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    NASA Astrophysics Data System (ADS)

    Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.

    2017-11-01

    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.

  20. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  1. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    NASA Astrophysics Data System (ADS)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  2. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma.

    PubMed

    Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan

    2005-12-09

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.

  3. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  4. Method of producing pyrolysis gases from carbon-containing materials

    DOEpatents

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  5. Intelligent uranium fission converter for neutron production on the periphery of the nuclear reactor core (MARIA reactor in Swierk - Poland)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryzinski, M.A.; Wielgosz, M.

    The multipurpose, high flux research reactor MARIA in Otwock - Swierk is an open-pool type, water and beryllium moderated and graphite reflected. There are two not occupied experimental H1 and H2 horizontal channels with complex of empty rooms beside them. Making use of these two channels is not in conflict with other research or commercial employing channels. They can work simultaneously, moreover commercial channels covers the cost of reactor working. Such conditions give beneficial possibility of creating epithermal neutron stand for researches in various field at the horizontal channel H2 of MARIA reactor (co-organization of research at H1 channel ismore » additionally planned). At the front of experimental channels the neutron flux is strongly thermalized - neutrons with energies above 0.625 eV constitute only ∼2% of the total flux. This thermalized neutron flux will be used to achieve high flux of epithermal neutrons at the level of 2x10{sup 9} n cm{sup -2}s{sup -1} by uranium neutron converter (fast neutron production - conversion of reactor core thermal neutrons to fast neutrons - and then filtering, moderating and finally cutting of unwanted gamma radiation). The intelligent converter will be placed in the reactor pool, near the front of the H2 channel. It will replace one graphite block at the periphery of MARIA graphite reflector. The converter will consist of 20 fuel elements - low enriched uranium plates. A fuel plate will be a part which will measure 110 mm wide by 380 mm long and will consist of a thin layer of uranium sealed between two aluminium plates. These plates, once assembled, form the fuel element used in converter. The plates will be positioned vertically. There are several important requirements which should be taken into account at the converter design stage: -maximum efficiency of the converter for neutrons conversion, -cooling of the converter need to be integrated with the cooling circuit of the reactor pool and if needed equipped with self-cooling system (enhanced comparing to the cooling properties inherent with regular rector pool water flows), -proper cooling conditions can be ensured by an appropriate water flow, so the resistance to flow has to be optimised, -the requirement of the minimum resistance to water flow leads to the openwork design of the fuel element separator, which, on the other hand, has to be strong enough to ensure the needed strength for mechanical load due to the fuel weight and forces associated with the water flow, -the possibility of changing beam and flux qualities by rotating the converter or repositioning the converter plates by moving or replacing with another materials. In order to minimize the neutron activation of the fuel in the converter, the possibility was predicted to remove the converter and to replace it with an aluminium dummy for the time when the beam at the channel H2 is not used. This means that both, the converter and the dummy, have to be easily removable from the converter socket. There has to be also the place in the water pool, near the research stand or in technological pool, where the converter can be safely stored (this place have to be proper for operation with plates i.e. changing amount of plates). Thermal and neutron load of the fuel plates in the converter will be inhomogeneous. In order to equalize these loads, the converter should be designed in such way that it would be possible to change the order of fuel plates. Moreover replacing the amount of the plates gives the opportunity to obtain different fluxes of neutrons (quantitatively and qualitatively i.e. energetically). The project of the converter is based on Monte Carlo calculation concerning neutron production and on Computational Fluid Dynamics (CFD) i.e. modelling of converter for thermodynamical aspects. (authors)« less

  6. Direct Production of Propene from the Thermolysis of Poly(..beta..-hydroxybutyrate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Pilath, Heidi M.; Johnson, David K.

    To transform biomass components into hydrocarbon fuels it is clear that there are two main transformations that need to occur, i.e., deoxygenation and carbon chain extension. The potential routes for decreasing the oxygen content of biomass intermediates include dehydration, hydrodeoxygenation and decarboxylation. One route that is examined here is the conversion of polyhydroxyalkanoates (PHA) to alkenes that would be intermediates to hydrocarbon fuels.Thermal breakdown of PHA proceeds via an intermediate carboxylic acid, which can then be decarboxylated to an alkene. Oligomerization of alkenes by well-known commercial technologies would permit production of a range of hydrocarbon fuels from a carbohydrate derivedmore » intermediate. Moreover, polyhydroxybutyrate (PHB) can be produced in Cupriavidus necator (formerly known as Ralstonia eutropha) and Alcaligenes eutrophus on a variety of carbon sources including glucose, fructose and glycerol with PHB accumulation reaching 75 percent of dry cell mass. We conducted thermal conversion of PHB and pure crotonic acid (CA), the intermediate carboxylic acid produced by thermal depolymerization of PHB, in a flow-through reactor. The results of initial experiments on the thermal conversion of CA showed that up to 75 mole percent yields of propene could be achieved by optimizing the residence time and temperature of the reactor. Further experiments are being investigated to optimize the reactor parameters and enhance propene yields via thermal conversion of PHB.« less

  7. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  8. A Novel Multi-Scale Domain Overlapping CFD/STH Coupling Methodology for Multi-Dimensional Flows Relevant to Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Grunloh, Timothy P.

    The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.

  9. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    NASA Technical Reports Server (NTRS)

    Ramsthaler, J. H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs.

  10. Fluid dynamics of the shock wave reactor

    NASA Astrophysics Data System (ADS)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter dependence of shock recompression in ducts. Distinct variation of the flow Reynolds and Mach numbers and section height allow unique mapping of each of these parameter dependencies. Agreement with a new one-dimensional model is demonstrated, predicting an exponential pressure profile characterized by two key parameters, the maximum pressure recovery and a characteristic length scale. Transition from one to two-dimensional dependence of the length parameter is observed as the duct aspect ratio varies significantly from unity.

  11. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Per; Greenspan, Ehud

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less

  12. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  13. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  14. A User’s Guide to the PLTEMP/ANL Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Kalimullah, M.; Feldman, E. E.

    2016-07-25

    PLTEMP/ANL V4.2 is a program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of codes originally used for plate temperatures, hence “PLTEMP”, developed at Argonne National Laboratory over several decades. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each withmore » its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates or tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as onset-of-nucleate boiling ratio(ONBR), departure from nucleate boiling ratio (DNBR), and onset of flow instability ratio (OFIR). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst’s time.« less

  15. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  16. Helium retention and Hydrogen absorption in FLiRE

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin

    2005-10-01

    The FLiRE (Flowing Lithium Retention Experiment) facility consists of a flow loop which contains a two sections to observe flow along ramps in an upper chamber. As the Li exits the upper chamber it makes a vacuum seal isolation of the upper chamber from a lower one where thermal desporption spectroscopy can take place. By applying an ion beam or a plasma pulse to the open-channel Li flow on the ramp, studies can be made of He and H retention by measuring the partial pressure of He in the lower TDS chamber. Previous studies have shown about a 1% to 2% retention of He over a time scale sufficient to exit a potential flowing Li-walled reactor. The significance of such a result is very high and needs to be verified. It is possible that He implanted in the ramp before flow was initiated was absorbed leading to the observed increase. The experiment has been altered to address this and other concerns. Research on hydrogen absorption in liquid lithium exposed to hydrogen plasma has also been conducted. Overall results and their implications towards large scale fusion reactors are given.

  17. Temperature Dependences for the Reactions of O2- and O- with N and O Atoms in a Selected-Ion Flow Tube Instrument

    DTIC Science & Technology

    2013-10-07

    quadrupole mass filter, mass selected, and injected into the flow reactor via a Venturi - type inlet. Ions undergo ∼105 collisions with helium buffer... gas at pressures of 0.4 to 0.8 Torr resulting in complete or near-complete thermalization.10 The higher pressure was used when studying the high...butterfly gate valve resulting in lower pumping speeds and thus longer reaction times. Neutrals were injected 49 cm before the end of the flow tube and

  18. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    NASA Astrophysics Data System (ADS)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  19. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  20. TRAC-P1: an advanced best estimate computer program for PWR LOCA analysis. I. Methods, models, user information, and programming details

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-05-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less

  1. Development of a three-dimensional transient code for reactivity-initiated events of BWRs (boiling water reactors) - Models and code verifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uematsu, Hitoshi; Yamamoto, Toru; Izutsu, Sadayuki

    1990-06-01

    A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need.more » The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The experimental data obtained in reactivity accident tests performed with the SPERT III-E core are used to verify the entire code, including thermal-hydraulic models.« less

  2. [Municipal biowaste thermal-hydrolysis and ASBR anaerobic digestion].

    PubMed

    Hou, Hua-hua; Wang, Wei; Hu, Song; Xu, Yi-xian

    2010-02-01

    Thermal-hydrolysis can remarkably improve the solid organics dissolving efficiency of urban biomass waste, and anaerobic sequencing batch reactor (ASBR) was used to improve the efficiency of urban biomass waste anaerobic digestion. The optimum thermal-hydrolysis temperature and holding time was 175 degrees C and 60 min, the volatile suspended solid (VSS) dissolving ratio of kitchen waste, fruit-and-vegetable waste and sludge were 31.3%, 31.9% and 49.7%, respectively. Two ASBR and one continuous-flow stirred tank reactor (CSTR) were started at hydraulic retention time (HRT) = 20 d, COD organic loading rate (OLR) = 3.2-3.6 kg/(m3 x d). The biogas production volumes were 5656 mL/d(A1), 6335 mL/d(A2) and 3 103 mL/d(CSTR), respectively; VSS degradation ratios were 45.3% (A1), 50.87% (A2), 20.81% (CSTR), and the total COD (TCOD) removal rates were 88.1% (A1), 90% (A2), 72.6% (CSTR). In ASBR, organic solid and anaerobic microorganism were remained in the reactor during settling period. When HRT was 20 d, the solid retention time (SRT) was over 130 d, which made ASBR higher efficiency than CSTR.

  3. A simplified DEM-CFD approach for pebble bed reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ji, W.

    In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculatedmore » with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)« less

  4. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  5. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor

    PubMed Central

    2016-01-01

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339

  6. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.

    PubMed

    Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo

    2016-10-12

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.

  7. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    PubMed Central

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors. PMID:25097877

  8. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  9. SCW Pressure-Channel Nuclear Reactor Some Design Features

    NASA Astrophysics Data System (ADS)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  10. An Experimental Examination of the Loss-of-Flow Accident Phenomenon for Prototypical ITER Divertor Channels of Y = 0 and Y = 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Theron D.; McDonald, Jimmie M.; Cadwallader, Lee C.

    2000-01-15

    This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less

  11. An experimental examination of the loss-of-flow accident phenomenon for prototypical ITER divertor channels of Y=0 and Y=2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, T.D.; McDonald, J.M.; Cadwallader, L.C.

    2000-01-01

    This paper discusses the thermal response of two prototypical International Thermonuclear Experimental Reactor (ITER) divertor channels during simulated loss-of-flow-accident (LOFA) experiments. The thermal response was characterized by the time-to-burnout (TBO), which is a figure of merit on the mockups' survivability. Data from the LOFA experiments illustrate that (a) the pre-LOFA inlet velocity does not significantly influence the TBO, (b) the incident heat flux (IHF) does influence the TBO, and (c) a swirl tape insert significantly improves the TBO and promotes the initiation of natural circulation. This natural circulation enabled the mockup to absorb steady-state IHFs after the coolant circulation pumpmore » was disabled. Several methodologies for thermal-hydraulic modeling of the LOFA were attempted.« less

  12. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  13. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less

  15. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGES

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  16. Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the range of interest of fusion reactors thermal-hydraulic conditions, i.e. high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to light water reactors (LWR) thermal-hydraulic studies) in the above conditions. The reference dataset represents almost all available data (1865 data points) covering wide ranges of operating conditions in the frame of present interest (0.1 less than p less than 8.4 MPa; 0.3 less than D less than 25.4 mm; 0.1 less than L less than 0.61 m; 2 less than G less than 90.0 Mg/sq m/s; 90 less than delta T(sub sub,in) less than 230 K). Among the tens of predictive tools available in literature four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou, Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling.

  17. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  18. Low Thrust, Deep Throttling, US/CIS Integrated NTRE

    NASA Astrophysics Data System (ADS)

    Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.

    1994-07-01

    In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.

  19. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) andmore » Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.« less

  20. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  1. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  2. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  3. Cermet-fueled reactors for advanced space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, C.L.; Palmer, R.S.; Taylor, I.N.

    Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less

  4. Stability Estimation of ABWR on the Basis of Noise Analysis

    NASA Astrophysics Data System (ADS)

    Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun

    In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.

  5. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for Coolant-Line-Analysis Package. Versions were created that were both coupled to COBRA-TF and standalone, with the most recent version being a standalone code. This code performs a separate, simplified, 1-D solution of the conservation equations while making special considerations for coolant-line geometry and flow phenomena. The end of this project saw a functional code package that demonstrates a stable numerical solution and that has gone through a series of Validation and Verification tests using the Two-Phase Testing Facility (TPTF) experimental data[2]. The results indicate that CLAP is under-performing RELAP5-MOD3 in predicting the experimental void of the TPTF facility in some cases. There is no apparent pattern, however, to point to a consistent type of case that the code fails to predict properly (e.g., low-flow, high-flow, discharging to full vessel, or discharging to empty vessel). Pressure-profile predictions are sometimes unrealistic, which indicates that there may be a problem with test-case boundary conditions or with the coupling of continuity and momentum equations in the solution algorithm. The code does predict the flow regime correctly for all cases with the stratification-force model off. Turning the stratification model on can cause the low-flow case void profiles to over-react to the force and the flow regime to transition out of stratified flow. The code would benefit from an increased amount of Validation & Verification testing. The development of CLAP was significant, as it is a cleanly written, logical representation of the reactor coolant-line geometry. It is stable and capable of modeling basic flow physics in the reactor coolant-line. Code development and debugging required the temporary removal of the energy equation and mass-transfer terms in governing equations. The reintroduction of these terms will allow future coupling to RELAP and re-coupling with COBRA-TF. Adding in more applicable entrainment and de-entrainment models would allow the capture of more advanced physics in the coolant-line that can be expected during Loss-of-Coolant Accident. One of the package's benefits is its ability to be used as a platform for future coolant-line model development and implementation, including capturing of the important de-entrainment behavior in reactor hot-legs (steam-binding effect) and flow convection in the upper-plenum region of the vessel.

  6. Characterization of deposits formed on diesel injectors in field test and from thermal oxidative degradation of n-hexadecane in a laboratory reactor

    PubMed Central

    Venkataraman, Ramya; Eser, Semih

    2008-01-01

    Solid deposits from commercially available high-pressure diesel injectors (HPDI) were analyzed to study the solid deposition from diesel fuel during engine operation. The structural and chemical properties of injector deposits were compared to those formed from the thermal oxidative stressing of a diesel fuel range model compound, n-hexadecane at 160°C and 450 psi for 2.5 h in a flow reactor. Both deposits consist of polyaromatic compounds (PAH) with oxygen moieties. The similarities in structure and composition of the injector deposits and n-hexadecane deposits suggest that laboratory experiments can simulate thermal oxidative degradation of diesel in commercial injectors. The formation of PAH from n-hexadecane showed that aromatization of straight chain alkanes and polycondensation of aromatic rings was possible at temperatures as low as 160°C in the presence of oxygen. A mechanism for an oxygen-assisted aromatization of cylcoalkanes is proposed. PMID:19091086

  7. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Dionne, B.; Sikik, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showingmore » agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm 2 and temporary heat flux limit of 600 W/cm 2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.« less

  8. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    NASA Astrophysics Data System (ADS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.

  9. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less

  10. Gliding arc in tornado using a reverse vortex flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Chiranjeev S.; Cho, Young I.; Gutsol, Alexander

    The present article reports a new gliding arc (GA) system using a reverse vortex flow ('tornado') in a cylindrical reactor (gliding arc in tornado, or GAT), as used to preserve the main advantages of traditional GA systems and overcome their main drawbacks. The primary advantages of traditional GA systems retained in the present GAT are the possibility to generate transitional plasma and to avoid considerable electrode erosion. In contrast to a traditional GA, the new GAT system ensures much more uniform gas treatment and has a significantly larger gas residence time in the reactor. The present article also describes themore » design of the new reactor and its stable operation regime when the variation of GAT current is very small. These features are understood to be very important for most viable applications. Additionally the GAT provides near-perfect thermal insulation from the reactor wall, indicating that the present GAT does not require the reactor wall to be constructed of high-temperature materials. The new GAT system, with its unique properties such as a high level of nonequilibrium and a large residence time, looks very promising for many industrial applications including fuel conversion, carbon dioxide conversion to carbon monoxide and oxygen, surface treatment, waste treatment, flame stabilization, hydrogen sulfide treatment, etc.« less

  11. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  12. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangwal, Santosh; Muto, Andrew

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precisionmore » Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO 2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO 2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat exchanger with a shell and tube reactor. A bench scale reactor system was then designed and constructed to test sorbent performance under more commercially relevant conditions. This system utilizes a tube-in tube reactor design containing approximately 250 grams sorbent and is able to operate under a wide range of temperature, pressure and flow conditions as needed to explore system performance under a variety of operating conditions. A variety of sorbent loading methods may be tested using the reactor design. Initial bench test results over 25 cycles showed very high sorbent stability (>99%) and sufficient capacity (>0.28 g CO 2/g sorbent) for an economical commercial-scale system. Initial technoeconomic evaluation of the proposed storage system show that the sorbent cost should not have a significant impact on overall system cost, and that the largest cost impacts come from the heat exchanger reactor and balance of plant equipment, including compressors and gas storage, due to the high temperatures for sCO 2 cycles. Current estimated system costs are $47/kWhth based on current material and equipment cost estimates.« less

  13. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight ratio.

  14. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  15. System for thermochemical hydrogen production

    DOEpatents

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  16. Surface Catalysis and Characterization of Proposed Candidate TPS for Access-to-Space Vehicles

    NASA Technical Reports Server (NTRS)

    Stewart, David A.

    1997-01-01

    Surface properties have been obtained on several classes of thermal protection systems (TPS) using data from both side-arm-reactor and arc-jet facilities. Thermochemical stability, optical properties, and coefficients for atom recombination were determined for candidate TPS proposed for single-stage-to-orbit vehicles. The systems included rigid fibrous insulations, blankets, reinforced carbon carbon, and metals. Test techniques, theories used to define arc-jet and side-arm-reactor flow, and material surface properties are described. Total hemispherical emittance and atom recombination coefficients for each candidate TPS are summarized in the form of polynomial and Arrhenius expressions.

  17. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  18. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  19. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less

  20. Flow instability in particle-bed nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kerrebrock, Jack L.

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

  1. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1993-01-01

    The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

  2. Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the Laboratory

    PubMed Central

    2017-01-01

    We report the construction and use of a vortex reactor which uses a rapidly rotating cylinder to generate Taylor vortices for continuous flow thermal and photochemical reactions. The reactor is designed to operate under conditions required for vortex generation. The flow pattern of the vortices has been represented using computational fluid dynamics, and the presence of the vortices can be easily visualized by observing streams of bubbles within the reactor. This approach presents certain advantages for reactions with added gases. For reactions with oxygen, the reactor offers an alternative to traditional setups as it efficiently draws in air from the lab without the need specifically to pressurize with oxygen. The rapid mixing generated by the vortices enables rapid mass transfer between the gas and the liquid phases allowing for a high efficiency dissolution of gases. The reactor has been applied to several photochemical reactions involving singlet oxygen (1O2) including the photo-oxidations of α-terpinene and furfuryl alcohol and the photodeborylation of phenyl boronic acid. The rotation speed of the cylinder proved to be key for reaction efficiency, and in the operation we found that the uptake of air was highest at 4000 rpm. The reactor has also been successfully applied to the synthesis of artemisinin, a potent antimalarial compound; and this three-step synthesis involving a Schenk-ene reaction with 1O2, Hock cleavage with H+, and an oxidative cyclization cascade with triplet oxygen (3O2), from dihydroartemisinic acid was carried out as a single process in the vortex reactor. PMID:28781513

  3. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.

  4. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J.; Bergeron, A.; Dionne, B.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration. The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimentalmore » device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration, based on current reactor use, has been defined for the fuel conversion analyses. The code RELAP5/Mod 3.3 was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.« less

  5. Modeling of Flow Blockage in a Liquid Metal-Cooled Reactor Subassembly with a Subchannel Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Hae-Yong; Ha, Kwi-Seok; Chang, Won-Pyo

    The local blockage in a subassembly of a liquid metal-cooled reactor (LMR) is of importance to the plant safety because of the compact design and the high power density of the core. To analyze the thermal-hydraulic parameters in a subassembly of a liquid metal-cooled reactor with a flow blockage, the Korea Atomic Energy Research Institute has developed the MATRA-LMR-FB code. This code uses the distributed resistance model to describe the sweeping flow formed by the wire wrap around the fuel rods and to model the recirculation flow after a blockage. The hybrid difference scheme is also adopted for the descriptionmore » of the convective terms in the recirculating wake region of low velocity. Some state-of-the-art turbulent mixing models were implemented in the code, and the models suggested by Rehme and by Zhukov are analyzed and found to be appropriate for the description of the flow blockage in an LMR subassembly. The MATRA-LMR-FB code predicts accurately the experimental data of the Oak Ridge National Laboratory 19-pin bundle with a blockage for both the high-flow and low-flow conditions. The influences of the distributed resistance model, the hybrid difference method, and the turbulent mixing models are evaluated step by step with the experimental data. The appropriateness of the models also has been evaluated through a comparison with the results from the COMMIX code calculation. The flow blockage for the KALIMER design has been analyzed with the MATRA-LMR-FB code and is compared with the SABRE code to guarantee the design safety for the flow blockage.« less

  6. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .

  7. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  8. Assessment of the TRACE Reactor Analysis Code Against Selected PANDA Transient Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavisca, M.; Ghaderi, M.; Khatib-Rahbar, M.

    2006-07-01

    The TRACE (TRAC/RELAP Advanced Computational Engine) code is an advanced, best-estimate thermal-hydraulic program intended to simulate the transient behavior of light-water reactor systems, using a two-fluid (steam and water, with non-condensable gas), seven-equation representation of the conservation equations and flow-regime dependent constitutive relations in a component-based model with one-, two-, or three-dimensional elements, as well as solid heat structures and logical elements for the control system. The U.S. Nuclear Regulatory Commission is currently supporting the development of the TRACE code and its assessment against a variety of experimental data pertinent to existing and evolutionary reactor designs. This paper presents themore » results of TRACE post-test prediction of P-series of experiments (i.e., tests comprising the ISP-42 blind and open phases) conducted at the PANDA large-scale test facility in 1990's. These results show reasonable agreement with the reported test results, indicating good performance of the code and relevant underlying thermal-hydraulic and heat transfer models. (authors)« less

  9. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less

  10. Condensation model for the ESBWR passive condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revankar, S. T.; Zhou, W.; Wolf, B.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less

  11. Thermal convection of liquid metal in the titanium reduction reactor

    NASA Astrophysics Data System (ADS)

    Teimurazov, A.; Frick, P.; Stefani, F.

    2017-06-01

    The structure of the convective flow of molten magnesium in a metallothermic titanium reduction reactor has been studied numerically in a three-dimensional non-stationary formulation with conjugated heat transfer between liquid magnesium and solids (steel walls of the cavity and titanium block). A nonuniform computational mesh with a total of 3.7 million grid points was used. The Large Eddy Simulation technique was applied to take into account the turbulence in the liquid phase. The instantaneous and average characteristics of the process and the velocity and temperature pulsation fields are analyzed. The simulations have been performed for three specific heating regimes: with furnace heaters operating at full power, with furnace heaters switched on at the bottom of the vessel only, and with switched-off furnace heaters. It is shown that the localization of the cooling zone can completely reorganize the structure of the large-scale flow. Therefore, by changing heating regimes, it is possible to influence the flow structure for the purpose of creating the most favorable conditions for the reaction. It is also shown that the presence of the titanium block strongly affects the flow structure.

  12. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  13. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark [East Amherst, NY; Shah, Minish Mahendra [East Amherst, NY; Jibb, Richard John [Amherst, NY

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  14. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  15. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  16. Posttest data analysis of FIST experimental TRAC-BD1/MOD1 power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting in only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena: (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haydary, J., E-mail: juma.haydary@stuba.sk; Susa, D.; Dudáš, J.

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizingmore » of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.« less

  18. ORNL rod-bundle heat-transfer test data. Volume 2. Thermal-Hydraulic Test Facility experimental data report for test 3. 03. 6AR - transient film boiling in upflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, C. B.; Felde, D. K.; Sutton, A. G.

    1982-04-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less

  19. BWR Anticipated Transients Without Scram Leading to Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng L. Y.; Baek J.; Cuadra, A.

    2013-11-10

    Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor powermore » decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).« less

  20. A 100-kWt NaK-Cooled Space Reactor Concept for an Early-Flight Mission

    NASA Astrophysics Data System (ADS)

    Poston, David I.

    2003-01-01

    A stainless-steel (SS) sodium-potassium (NaK) cooled reactor could potentially be the first step in utilizing fission technology in space. The sum of all system-level experience for liquid-metal-cooled space reactors has been with NaK, including the SNAP-10a, the only reactor ever launched by the US. This paper describes a 100-kWt NaK reactor, the NaK-100, which is designed to be developed with minimal technical risk. In additional to NaK technology heritage, the NaK-100 uses a proven fuel-form (SS/UO2) and is designed for simplified system integration and testing. The pins are placed within a solid SS prism, and the NaK flows in an annulus between the pins and the prism. The nuclear and thermal-hydraulic performance of the NaK-100 is presented, as well as the major differences between the NaK-100 and SNAP-10a.

  1. Development of NSSS Thermal-Hydraulic Model for KNPEC-2 Simulator Using the Best-Estimate Code RETRAN-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook

    The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less

  2. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.

  3. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    PubMed

    Theodosiou, Alex; Jones, Abbie N; Marsden, Barry J

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  4. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    PubMed Central

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  5. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  6. Comparison of the PLTEMP code flow instability predictions with measurements made with electrically heated channels for the advanced test reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, E.

    When the University of Missouri Research Reactor (MURR) was designed in the 1960s the potential for fuel element burnout by a phenomenon referred to at that time as 'autocatalytic vapor binding' was of serious concern. This type of burnout was observed to occur at power levels considerably lower than those that were known to cause critical heat flux. The conversion of the MURR from HEU fuel to LEU fuel will probably require significant design changes, such as changes in coolant channel thicknesses, that could affect the thermal-hydraulic behavior of the reactor core. Therefore, the redesign of the MURR to accommodatemore » an LEU core must address the same issues of fuel element burnout that were of concern in the 1960s. The Advanced Test Reactor (ATR) was designed at about the same time as the MURR and had similar concerns with regard to fuel element burnout. These concerns were addressed in the ATR by two groups of thermal-hydraulic tests that employed electrically heated simulated fuel channels. The Croft (1964), Reference 1, tests were performed at ANL. The Waters (1966), Reference 2, tests were performed at Hanford Laboratories in Richland Washington. Since fuel element surface temperatures rise rapidly as burnout conditions are approached, channel surface temperatures were carefully monitored in these experiments. For self-protection, the experimental facilities were designed to cut off the electric power when rapidly increasing surface temperatures were detected. In both the ATR reactor and in the tests with electrically heated channels, the heated length of the fuel plate was 48 inches, which is about twice that of the MURR. Whittle and Forgan (1967) independently conducted tests with electrically heated rectangular channels that were similar to the tests by Croft and by Walters. In the Whittle and Forgan tests the heated length of the channel varied among the tests and was between 16 and 24 inches. Both Waters and Whittle and Forgan show that the cause of the fuel element burnout is due to a form of flow instability. Whittle and Forgan provide a formula that predicts when this flow instability will occur. This formula is included in the PLTEMP/ANL code.Error! Reference source not found. Olson has shown that the PLTEMP/ANL code accurately predicts the powers at which flow instability occurs in the Whittle and Forgan experiments. He also considered the electrically heated tests performed in the ANS Thermal-Hydraulic Test Loop at ORNL and report by M. Siman-Tov et al. The purpose of this memorandum is to demonstrate that the PLTEMP/ANL code accurately predicts the Croft and the Waters tests. This demonstration should provide sufficient confidence that the PLTEMP/ANL code can adequately predict the onset of flow instability for the converted MURR. The MURR core uses light water as a coolant, has a 24-inch active fuel length, downward flow in the core, and an average core velocity of about 7 m/s. The inlet temperature is about 50 C and the peak outlet is about 20 C higher than the inlet for reactor operation at 10 MW. The core pressures range from about 4 to about 5 bar. The peak heat flux is about 110 W/cm{sup 2}. Section 2 describes the mechanism that causes flow instability. Section 3 describes the Whittle and Forgan formula for flow instability. Section 4 briefly describes both the Croft and the Waters experiments. Section 5 describes the PLTEMP/ANL models. Section 6 compares the PLTEMP/ANL predictions based on the Whittle and Forgan formula with the Croft measurements. Section 7 does the same for the Waters measurements. Section 8 provides the range of parameters for the Whittle and Forgan tests. Section 9 discusses the results and provides conclusions. In conclusion, although there is no single test that by itself closely matches the limiting conditions in the MURR, the preponderance of measured data and the ability of the Whittle and Forgan correlation, as implemented in PLTEMP/ANL, to predict the onset of flow instability for these tests leads one to the conclusion that the same method should be able to predict the onset of flow instability in the MURR reasonably well.« less

  7. Catalytic cartridge SO/sub 3/ decomposer

    DOEpatents

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  8. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less

  9. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  10. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  11. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  12. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  13. Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paniagua, J.; Rohatgi, U.S.; Prasad, V.

    1996-10-01

    RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).

  14. Heterogonous Nanofluids for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Alammar, Khalid

    2014-09-01

    Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.

  15. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less

  16. Hardware Modifications to the US Army Research Laboratory’s Metalorganic Chemical Vapor Deposition (MOCVD) System for Optimization of Complex Oxide Thin Film Fabrication

    DTIC Science & Technology

    2015-04-01

    studies on flow and thermal fields in MOCVD reactor. Chinese Science Bulletin. 2010;55:560–566. 36. Hampdensmith MJ, Kodas TT. Chemical vapor...Chemistry. 1995;19727–750. 47. Xu CY, Hampdensmith MJ, Kodas TT. Aerosol-assisted chemical-vapor- deposition (AACVD) of binary alloy (AGXPD1-X, CUXPD1-X

  17. Influence of riparian alteration on canopy coverage and macrophyte abundance in Southeastern USA blackwater streams

    Treesearch

    Dean E. Fletcher; S. David Wilkins; J.V. McArthur; Gary K. Meffe

    2000-01-01

    Two tributary streams (Fourmile branch and Pen branch) located on the US Department of Energy's Savannah river site in west-central South Carolina, USA received thermal discharges from nuclear production reactors for over 30 years. Effluent releases produced stream water temperatures of over 50°C and stream flows of ten times above their base level. Consequently,...

  18. Nuclear reactor vessel fuel thermal insulating barrier

    DOEpatents

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  19. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  20. Experimental investigation into fast pyrolysis of biomass using an entrained-flow reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, M.; Benham, C.

    1981-02-01

    Pyrolysis experiments were performed using 30 and 90cm entrained-flow reactors, with steam as a carrier gas and two different feedstocks - wheat straw and powdered material drived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 700/sup 0/ to 1400/sup 0/C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II aremore » due to the presence of plastics in the feedstock. Batch experiments were run on wheat straw using a Pyroprobe/sup TM/. The samples were heated at a high rate (20,000/sup 0/ C/sec) to 1000/sup 0/ and held at 1000/sup 0/C for a variable period of time from 0.05 to 4.95s. For times up to 0.15s volume fractions of ethylene, propylene, and methane increase while that of carbon dioxide decreases. Subsequently, only carbon monoxide and hydrogen are produced. The change may be related to poor thermal contact and suggests caution in using the Pyroprobe.« less

  1. PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.L.

    1961-02-01

    BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less

  2. Thermal swing reactor including a multi-flight auger

    DOEpatents

    Ermanoski, Ivan

    2017-03-07

    A thermal swing reactor including a multi-flight auger and methods for solar thermochemical reactions are disclosed. The reactor includes a multi-flight auger having different helix portions having different pitch. Embodiments of reactors include at least two distinct reactor portions between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between portions during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat.

  3. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip E. MacDonald

    2005-01-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission ofmore » the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.« less

  4. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    NASA Astrophysics Data System (ADS)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  5. Initial Operation and Shakedown of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.

  6. Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System

    NASA Astrophysics Data System (ADS)

    Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro

    A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.

  7. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    NASA Astrophysics Data System (ADS)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.

  8. Numerical studies on the performance of a flow distributor in tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soo Jai, E-mail: shinsoojai@kaeri.re.kr; Kim, Young In; Ryu, Seungyeob

    2015-03-10

    Flow distributors are generally observed in several nuclear power plants. During core make-up tank (CMT) injection into the reactor, the condensation and thermal stratification are observed in the CMT, and rapid condensation disturbs the injection operation. To reduce the condensation phenomena in the tank, CMT was equipped with a flow distributor. The optimal design of the flow distributor is very important to ensure the structural integrity the CMT and its safe operation during certain transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as themore » total number of holes, pitch-to-hole diameter ratios, diameter of the hole, and the area ratios. These data will contribute to a design of the flow distributor.« less

  9. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    DOEpatents

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  11. Tractable Chemical Models for CVD of Silicon and Carbon

    NASA Technical Reports Server (NTRS)

    Blanquet, E.; Gokoglu, S. A.

    1993-01-01

    Tractable chemical models are validated for the CVD of silicon and carbon. Dilute silane (SiH4) and methane (CH4) in hydrogen are chosen as gaseous precursors. The chemical mechanism for each systems Si and C is deliberately reduced to three reactions in the models: one in the gas phase and two at the surface. The axial-flow CVD reactor utilized in this study has well-characterized flow and thermal fields and provides variable deposition rates in the axial direction. Comparisons between the experimental and calculated deposition rates are made at different pressures and temperatures.

  12. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  13. Posttest data analysis and assessment of TRAC-BD1/MOD1 with data from a Full Integral Simulation Test (FIST) power transient experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheatley, P.D.; Wagner, K.C.

    The FIST power transient test 6PMC2 was analyzed to further the understanding of the FIST facility and provide an assessment of TRAC-BD1/MOD1. FIST power transient 6PMC2 investigated the thermal-hydraulic response following inadvertent closure of the main steam isolation valve and the subsequent failure of the reactor to scram. Failure of the high pressure core spray system was also assumed, resulting on only the reactor core isolation cooling flow for inventory makeup during the transient. The experiment was a sensitivity study with relatively high core power and low makeup rates. This study provides one of the first opportunities to assess TRAC-BD1/MOD1more » under power transient and natural circulation conditions with data from a facility with prototypical BWR geometry. The power transient test was analyzed with emphasis on the following phenomena; (a) the system pressure response, (b) the natural circulation flows and rates, and (c) the heater rod cladding temperature response. Based on the results of this study, TRAC-BD1/MOD1 can be expected to calculate the thermal-hydraulic behavior of a BWR during a power transient.« less

  14. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  15. Nanoparticulate-catalyzed oxygen transfer processes

    DOEpatents

    Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  16. Benchmark studies of thermal jet mixing in SFRs using a two-jet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omotowa, O. A.; Skifton, R.; Tokuhiro, A.

    To guide the modeling, simulations and design of Sodium Fast Reactors (SFRs), we explore and compare the predictive capabilities of two numerical solvers COMSOL and OpenFOAM in the thermal jet mixing of two buoyant jets typical of the outlet flow from a SFR tube bundle. This process will help optimize on-going experimental efforts at obtaining high resolution data for V and V of CFD codes as anticipated in next generation nuclear systems. Using the k-{epsilon} turbulence models of both codes as reference, their ability to simulate the turbulence behavior in similar environments was first validated for single jet experimental datamore » reported in literature. This study investigates the thermal mixing of two parallel jets having a temperature difference (hot-to-cold) {Delta}T{sub hc}= 5 deg. C, 10 deg. C and velocity ratios U{sub c}/U{sub h} = 0.5, 1. Results of the computed turbulent quantities due to convective mixing and the variations in flow field along the axial position are presented. In addition, this study also evaluates the effect of spacing ratio between jets in predicting the flow field and jet behavior in near and far fields. (authors)« less

  17. Exploratory evaluation of ceramics for automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1972-01-01

    An exploratory evaluation of ceramics for automobile thermal reactors was conducted. Potential ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance lasting over 800 hours in engine dynamometer tests and over 15,000 miles (24,200 km) of vehicle road tests. Reactors containing glass-ceramic components did not perform as well as silicon carbide. But the glass-ceramics still offer good potential for reactor use. The results of this study are considered to be a reasonable demonstration of the potential use of ceramics in thermal reactors.

  18. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and radiation heat fluxes for the gas core reactors. The maximum value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with higher wall temperature. This behavior is due to the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that at temperature close to 3500 K the radiative heat flux is comparable with the convective heat flux in a uranium fluoride failed gas core reactor.

  19. A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis

    2012-10-01

    The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.

  20. Feasibility study of full-reactor gas core demonstration test

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  1. The Effect of Flow Swirling on the Safety and Reliability of Nuclear Power Installations of New Generation

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Ivlev, O. A.; Urtenov, D. S.

    2018-03-01

    Hydrodynamics and heat exchange in the elements of thermal hydraulic tracts of ship nuclear reactors of the new generation were numerically simulated in this work. Parts of the coolant circuit in the collector and piping systems with geometries that may lead to generation of stable large-scale vortexes, causing a wide range of acoustic oscillations of the coolant, were selected as modeling objects. The purpose of the research is to develop principles of physical and mathematical modeling for scientific substantiation of optimal layout solutions that ensure enhanced operational life of icebreaker’s nuclear power installations of new generation with reactors of integral type.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.

    Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05,more » Sept. 2012.« less

  3. Thermal-hydraulic interfacing code modules for CANDU reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  4. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1982-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  5. Fluidized bed silicon deposition from silane

    NASA Technical Reports Server (NTRS)

    Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)

    1984-01-01

    A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.

  6. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    NASA Astrophysics Data System (ADS)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.

  7. Basic requirements for a 1000-MW(electric) class tokamak fusion-fission hybrid reactor and its blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori

    1994-08-01

    Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less

  8. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    NASA Astrophysics Data System (ADS)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  10. Pressurized-water reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pinsmore » and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.« less

  11. ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code

    NASA Astrophysics Data System (ADS)

    Sabotinov, Luben; Chevrier, Patrick

    The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagg, Alan K; Yoon, Su-Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less

  14. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less

  15. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradin, Michael; Anderson, M.; Muci, M.

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less

  16. NATCRCTR: One-dimensional thermal-hydraulics analysis code for natural-circulation TRIGA reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Rubinaccio, G.

    1996-12-31

    The Pennsylvania State University nuclear engineering department is evaluating the upgrade of the Reed College (Portland, Oregon) TRIGA reactor from 250 kW to 1 MW in two areas: thermal-hydraulics and steady-state neutronics analysis. This analysis was initiated as a cooperative effort between Penn State and Reed College as a training project for two International Atomic Energy Agency (IAEA) fellows from Ghana. The two Ghanaian IAEA fellows were assisted by G. Rubinaccio, an undergraduate, who undertook the task of writing the new computer programs for the thermal-hydraulic and physics evaluation as a three-credit special design project course. The Reed College TRIGA,more » which has a fixed graphite radial reflector, is cooled by natural circulation, without external cross-flow; whereas, the Penn State Breazeale Reactor has significant crossflow into its sides. To model the Reed TRIGA, the NATCRCTR program has been developed from first principles using the following assumptions: 1. The core is surrounded by the fixed reflector structure, which acts as a one-dimensional channel. 2. The core inlet temperature distribution is constant at the core bottom. 3. The axial heat flux distribution is a chopped cosine shape. 4. The heat transfer in the fuel is primarily in the radial directions. 5. A small gap between the fuel and cladding exists. The NATCRCTR code is used to find the peak centerline fuel, gap, and cladding surface temperatures, based on assumed flux and engineering peaking factors.« less

  17. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF correlations were developed based on the data obtained from various quenching and steady-state boiling experiments. Additionally, CHF enhancement factors were determined and examined to show the separate and integral effects of the two ERVC enhancement methods. When both vessel coating and insulation structure were used simultaneously, the integral effect on CHF enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods.

  18. FHR Process Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt ismore » a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.« less

  19. Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor

    NASA Astrophysics Data System (ADS)

    Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo

    2017-11-01

    In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.

  20. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  1. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    DTIC Science & Technology

    2010-04-30

    microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...effective method for creating micropores in liquid [17]. Therefore, the DGCLW with additional US pumping is also very interesting for research and...electrodes. Another PLS reactor was prepared with the DGCLW working with the air flow in the liquid under the induced microporous

  2. Utilization of Stop-flow Micro-tubing Reactors for the Development of Organic Transformations.

    PubMed

    Toh, Ren Wei; Li, Jie Sheng; Wu, Jie

    2018-01-04

    A new reaction screening technology for organic synthesis was recently demonstrated by combining elements from both continuous micro-flow and conventional batch reactors, coined stop-flow micro-tubing (SFMT) reactors. In SFMT, chemical reactions that require high pressure can be screened in parallel through a safer and convenient way. Cross-contamination, which is a common problem in reaction screening for continuous flow reactors, is avoided in SFMT. Moreover, the commercially available light-permeable micro-tubing can be incorporated into SFMT, serving as an excellent choice for light-mediated reactions due to a more effective uniform light exposure, compared to batch reactors. Overall, the SFMT reactor system is similar to continuous flow reactors and more superior than batch reactors for reactions that incorporate gas reagents and/or require light-illumination, which enables a simple but highly efficient reaction screening system. Furthermore, any successfully developed reaction in the SFMT reactor system can be conveniently translated to continuous-flow synthesis for large scale production.

  3. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application

    NASA Astrophysics Data System (ADS)

    Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques

    TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.

  5. Studies of the synthesis and deposition of Cu3BiS 3 for use in photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Epstein, Joshua A.

    As the world's climate continues to change, alternative energy is being adopted more and more. Solar energy is one extremely promising candidate to supplement our ever increasing energy needs. In order for it to be a viable solution, more efficient and less expensive solar panels must be made. While silicon solar panels are the current market leader their high manufacturing energy input and cost warrant looking into alternatives. Many thin film solar materials are being investigated such as CdTe, CIGS and CZTS, but all come with their own drawbacks. With a near ideal band gap, low toxicity and earth abundant elemental make up copper bismuth sulfide, Cu3BiS3, is a promising candidate for use in future photovoltaic devices. The research presented here details multiple methods to synthesize and deposit this material with an effort to keep the methods low cost, energy efficient and environmentally friendly. Multiple low temperature solvothermal routes to synthesizing copper bismuth sulfide, CBS, have been developed. The resulting powders have been verified as pure Cu3BiS3 via XRD peak matching. The precursor reactants tested for use were copper and bismuth nitrates, acetates, chlorides and hydroxides. L-cystine, L-cysteine, thiourea and CS2 have all been tested for use as sulfur sources. Seven of these combinations produced pure CBS powders. Two custom built benchtop reactors have been designed and fabricated with the aim of studying the possibility of a continuous flow reactor as a way to utilize these precipitation chemistries for making thin films of CBS. Heat and liquid flow simulations were performed in COMSOL multiphysics to assist in the reactor design process. The second reactor was designed to promote uniform liquid flow across the fluorine doped, tin oxide coated, FTO, glass. This reactor was also built with a temperature gradient transverse to the liquid flow so that the optimal temperature for the deposition of CBS could be evaluated. This reactor was also used to evaluate the deposition of CdS, an n-type semiconductor often used in thin film solar panels, onto FTO glass. CBS thin films were also prepared via electrodeposition and thermal treatment. The solution used was a mixture of copper nitrate, sodium sulfite and sodium citrate tribasic dihydrate dissolved in DI H2O and bismuth nitrate dissolved in ethylene glycol. To get the best coating it was found that the electrodeposition should be done at 1.2 V and last 5 minutes. Thermal treatment carried out in a 450°C tube furnace for 90 min in forming gas (95% N2 with 5% H2) along with sulfur vapor was proved best. No further treatment was required to obtain phase pure CBS coatings. This was verified with XRD peak analysis. Optical absorption, microstructural, and photoconductivity data are reported for CBS materials made using the above techniques.

  6. GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Buoyancy Driven Coolant Mixing Studies of Natural Circulation Flows at the ROCOM Test Facility Using ANSYS CFX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohne, Thomas; Kliem, Soren; Rohde, Ulrich

    2006-07-01

    Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less

  8. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.

  9. The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, T. H.; Brunett, A. J.; Sumner, T.

    The SAS4A/SASSYS-1 computer code is developed by Argonne National Laboratory for thermal, hydraulic, and neutronic analysis of power and flow transients in liquidmetal- cooled nuclear reactors (LMRs). SAS4A was developed to analyze severe core disruption accidents with coolant boiling and fuel melting and relocation, initiated by a very low probability coincidence of an accident precursor and failure of one or more safety systems. SASSYS-1, originally developed to address loss-of-decay-heat-removal accidents, has evolved into a tool for margin assessment in design basis accident (DBA) analysis and for consequence assessment in beyond-design-basis accident (BDBA) analysis. SAS4A contains detailed, mechanistic models of transientmore » thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, its coolant, fuel elements, and structural members to accident conditions. The core channel models in SAS4A provide the capability to analyze the initial phase of core disruptive accidents, through coolant heat-up and boiling, fuel element failure, and fuel melting and relocation. Originally developed to analyze oxide fuel clad with stainless steel, the models in SAS4A have been extended and specialized to metallic fuel with advanced alloy cladding. SASSYS-1 provides the capability to perform a detailed thermal/hydraulic simulation of the primary and secondary sodium coolant circuits and the balance-ofplant steam/water circuit. These sodium and steam circuit models include component models for heat exchangers, pumps, valves, turbines, and condensers, and thermal/hydraulic models of pipes and plena. SASSYS-1 also contains a plant protection and control system modeling capability, which provides digital representations of reactor, pump, and valve controllers and their response to input signal changes.« less

  10. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    PubMed

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  12. DIANA: A multi-phase, multi-component hydrodynamic model for the analysis of severe accidents in heavy water reactors with multiple-tube assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tentner, A.M.

    1994-03-01

    A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4Amore » [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.« less

  13. GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, J. L.; Day, D. A.; Hu, W.

    The primary goal of the Green Ocean Amazon (GoAmazon2014/5) field campaign was to measure and mechanistically understand the formation of particle number and mass in a region affected by large tropical rainforest biogenic emissions and sometimes anthropogenic influence from a large urban center. As part of the two intensive operational periods (IOPs) and in collaboration with Pacific Northwest National Laboratory (PNNL) and Harvard, the Jimenez Group proposed to deploy a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Thermal Denuder (TD), Scanning Mobility Particle Size (SMPS), two oxidation flow reactors (OFR; including supporting O 3, CO/CO 2/CH 4, RH analyzers), and amore » high volume filter sampler (MCV) for the measurement of gas and aerosol chemical, physicochemical, and volatility properties. The two IOPs were conducted during the wet season (February to March, 2014) and dry season (August to October, 2014). This proposal was part of a collaborative proposal involving other university and government laboratories.« less

  14. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  15. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Hideki; Akie, Hiroshi; Kikuchi, Yasuyuki

    1994-12-31

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k{sub eff} and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k{sub eff} reactivity worths of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments.

  16. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  17. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics NURETH-7. Volume 3, Sessions 12-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, R.C.; Feiner, F.

    This document, Volume 3, includes papers presented at the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-7) September 10--15, 1995 at Saratoga Springs, N.Y. The following subjects are discussed: Progress in analytical and experimental work on the fundamentals of nuclear thermal-hydraulics, the development of advanced mathematical and numerical methods, ad the application of advancements in the field in the development of novel reactor concepts. Also combined issues of thermal-hydraulics and reactor/power-plant safety, core neutronics and/or radiation. Selected abstracts have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  19. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor.

    PubMed

    Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei

    2016-04-01

    A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less

  1. TEMPEST. Transient 3-D Thermal-Hydraulic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyler, L.L.

    TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence ismore » treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  3. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.

    PubMed

    Haydary, J; Susa, D; Dudáš, J

    2013-05-01

    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump

    NASA Astrophysics Data System (ADS)

    Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.

    2016-03-01

    In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.

  5. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less

  6. Computer study of emergency shutdowns of a 60-kilowatt reactor Brayton space power system

    NASA Technical Reports Server (NTRS)

    Tew, R. C.; Jefferies, K. S.

    1974-01-01

    A digital computer study of emergency shutdowns of a 60-kWe reactor Brayton power system was conducted. Malfunctions considered were (1) loss of reactor coolant flow, (2) loss of Brayton system gas flow, (3)turbine overspeed, and (4) a reactivity insertion error. Loss of reactor coolant flow was the most serious malfunction for the reactor. Methods for moderating the reactor transients due to this malfunction are considered.

  7. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  8. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous‐Flow Nanocatalysis

    PubMed Central

    Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-01-01

    Abstract Continuous‐flow nanocatalysis based on metal nanoparticle catalyst‐anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle‐anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The “paper reactor” offers hierarchically interconnected micro‐ and nanoscale pores, which can act as convective‐flow and rapid‐diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous‐flow, aqueous, room‐temperature catalytic reduction of 4‐nitrophenol to 4‐aminophenol, a gold nanoparticle (AuNP)‐anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state‐of‐the‐art AuNP‐anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP‐anchored paper reactors were also demonstrated while high reaction efficiency was maintained. PMID:28394501

  9. Flow Instability Tests for a Particle Bed Reactor Nuclear Thermal Rocket Fuel Element

    DTIC Science & Technology

    1993-05-01

    2.0 with GWBASIC or higher (DOS 5.0 was installed on the machine). Since the source code was written in BASIC, it was easy to make modifications...8217 AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for Public Release IAW 190-1 Distribution Unlimited MICHAEL M. BRICKER, SMSgt, USAF Chief...Administration 13. ABSTRACT (Maximum 200 words) i.14. SUBJECT TERMS 15. NUMBER OF PAGES 339 16. PRICE CODE 󈧕. SECURITY CLASSIFICATION 18. SECURITY

  10. The use of plasma technology for the treatment of noxious waste

    NASA Astrophysics Data System (ADS)

    Wilman, Jonathan James

    This thesis begins by describing the common types of air pollution and the main effects of these pollutants. Natural and man-made sources are discussed as well as the current types of technology used for reduction of common pollutants. The use of atmospheric pressure non-thermal plasma reactors for the control of pollutants is introduced at this stage. The second chapter describes the different types of atmospheric pressure non-thermal reactor designs and their modes of operation. The fundamental processes behind the production of plasmas are discussed and the chemistry of some simple discharges is also presented. The third chapter begins the experimental and modelling work done at Manchester on the destruction of volatile organic compounds (VOCs) using packed bed reactors and pulsed corona reactors. This chapter is concerned with the destruction of toluene and its behaviour as the oxygen content of the carrier gas, flowing through the reactor, is changed. Work using a pulsed corona reactor is also presented showing the destruction of toluene as a function of the applied specific energy. A model is constructed using mainly atmospheric reactions and the predictions are compared with experimental values. The fourth chapter discusses the destruction of dichloromethane (DCM) as a function of the oxygen content of the carrier gas. A model is constructed, again from mainly atmospheric reactions, and the predictions compared with the experimental data obtained. Methane is chosen as a molecule to study in the fifth chapter. A model is constructed and compared with experimental findings, showing that the chemistry of non-thermal plasmas can be effectively represented using neutral gas phase chemistry. Finally chapter six is concerned with the use of a large scale pulsed corona system for the reduction of NO[x] in industrial flue gas. This system has been tested on a modem incinerator, showing encouraging results. The workings of a modem incinerator are described together with those of the corona facility and any instruments used in these tests. Some experimental results are discussed. The aim of this chapter is to show that plasma reactors can be scaled up for industrial use. This section also discusses the difficulty of analysing and working with industrial gases and large scale apparatus as opposed to laboratory scale experiments.

  11. Measurements Methods for the analysis of Nuclear Reactors Thermal Hydraulic in Water Scaled Facilities

    NASA Astrophysics Data System (ADS)

    Spaccapaniccia, C.; Planquart, P.; Buchlin, J. M. AB(; ), AC(; )

    2018-01-01

    The Belgian nuclear research institute (SCK•CEN) is developing MYRRHA. MYRRHA is a flexible fast spectrum research reactor, conceived as an accelerator driven system (ADS). The configuration of the primary loop is pool-type: the primary coolant and all the primary system components (core and heat exchangers) are contained within the reactor vessel, while the secondary fluid is circulating in the heat exchangers. The primary coolant is Lead Bismuth Eutectic (LBE). The recent nuclear accident of Fukushima in 2011 changed the requirements for the design of new reactors, which should include the possibility to remove the residual decay heat through passive primary and secondary systems, i.e. natural convection (NC). After the reactor shut down, in the unlucky event of propeller failures, the primary and secondary loops should be able to remove the decay heat in passive way (Natural Convection). The present study analyses the flow and the temperature distribution in the upper plenum by applying laser imaging techniques in a laboratory scaled water model. A parametric study is proposed to study stratification mitigation strategies by varying the geometry of the buffer tank simulating the upper plenum.

  12. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    NASA Astrophysics Data System (ADS)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  13. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    NASA Astrophysics Data System (ADS)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  14. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  15. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less

  16. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  17. Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Bittker, D. A.

    1972-01-01

    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts.

  18. Experimental study on the instability of Pressure Balance Injection System (PBIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Koji; Teshima, Hideyuki; Madarame, Haruki

    1996-06-01

    The Passive Safety Reactor has been developed to reduce the construction cost and to improve the safety. Japan Atomic Energy Research institute (JAERI) proposed the System-Integrated Pressurized Water Reactor (SPWR) as a Passive Safety Reactor. In the SPWR design, the Pressure Balanced Injection System (PBIS) was introduced for the passive safety concept. The water with boron in a containment vessel were passively injected into the core by the pressure difference between the containment vessel and reactor vessel at a severe accidental condition. However there are few studies on the thermo-hydraulic characteristics of the PBIS. In this study, the thermal hydraulicsmore » of the PBIS are experimentally investigated using the small scale model. The instability of the injected flow was observed in the adiabatic experiment. The instability was caused by the pressure balance between the two vessels. The mechanism of the instability are discussed, resulting in the good agreement with the experimental results. In the steam experiment, another instability was observed, which was caused by the heat balance in the main tank.« less

  19. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  20. Two-Phase flow instrumentation for nuclear accidents simulation

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-11-01

    The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.

  1. Thermally Simulated Testing of a Direct-Drive Gas-Cooled Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Bragg-Sitton, Shannon; VanDyke, Melissa

    2003-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet-sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrical thermal simulation of reactor components and concepts.

  2. Thermal characteristics analysis of microwaves reactor for pyrolysis of used cooking oil

    NASA Astrophysics Data System (ADS)

    Anis, Samsudin; Shahadati, Laily; Sumbodo, Wirawan; Wahyudi

    2017-03-01

    The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to provide temperature of 480°C, heating rate of 18.2°C/min and thermal efficiency of 53% that is suitable to pyrolyze used cooking oil.

  3. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  4. Thermal-hydraulic posttest analysis for the ANL/MCTF 360/sup 0/ model heat-exchanger water test under mixed convection. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.I.; Sha, W.T.; Kasza, K.E.

    As a result of the uncertainties in the understanding of the influence of thermal-buoyancy effects on the flow and heat transfer in Liquid Metal Fast Breeder Reactor heat exchangers and steam generators under off-normal operating conditions, an extensive experimental program is being conducted at Argonne National Laboratory to eliminate these uncertainties. Concurrently, a parallel analytical effort is also being pursued to develop a three-dimensional transient computer code (COMMIX-IHX) to study and predict heat exchanger performance under mixed, forced, and free convection conditions. This paper presents computational results from a heat exchanger simulation and compares them with the results from amore » test case exhibiting strong thermal buoyancy effects. Favorable agreement between experiment and code prediction is obtained.« less

  5. Pressurized water reactor flow skirt apparatus

    DOEpatents

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  6. Education: DNA replication using microscale natural convection.

    PubMed

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  7. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  8. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  9. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  10. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE PAGES

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  11. Gas hydrate dissociation via in situ combustion of methane - lab studies and field tests

    NASA Astrophysics Data System (ADS)

    Luzi-Helbing, Manja; Schicks, Judith M.; Spangenberg, Erik; Giese, Ronny

    2013-04-01

    In general, three different methods for gas hydrate production are known: thermal stimulation, pressure reduction, and chemical stimulation. In the framework of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) a countercurrent heat exchange reactor was developed at GFZ which has been designed to decompose gas hydrates in sediments via thermal stimulation. The heat is produced by the catalytic oxidation of methane. The advantage of this method is that the heat is generated in place i.e. within the borehole on the same level like the hydrate-bearing sediments. The system is closed which means that there is no contact between the products or catalyst and the environment. The power output and the temperature of the reactor are regulated via the volume flow of the feed gases air and methane. Therefore, the catalytic reaction runs temperature-controlled, autothermic and safe. So far, a lab-scale prototype of the reactor (outer diameter 40 mm, length 457 mm) was successfully tested in a large reservoir simulator (LARS) which was set up at GFZ. Pt, Pd and Ir on ZrO2 as carrier material turned out to be a robust and reliable catalyst. This work presents results of the latest reactor test for which LARS was filled with sand, and ca. 80 % of the pore space was saturated with methane hydrate. To form hydrates the pore pressure and the confining pressure were kept at 8 MPa and 12 MPa, respectively, and the temperature was set to 278 K. During the start sequence the reactor was ignited at room temperature with hydrogen. By the time the reactor temperature reached ca. 523 K (ca. 15 min after hydrogen ignition) the fuel flow was changed to methane. After 9 hours all temperature sensors which are spatially distributed in LARS showed a temperature above the equilibrium temperature of 282 K at 8 MPa. All in all, the reactor was run for 12 h at 723 K. The data analysis showed that 15 % of the methane gas released from hydrates would have to be used for the catalytic combustion of methane. However, only a part of the hydrate-bound methane gas could be produced during the experiment. The residual gas remained in the pore space. Currently the pilot-scale reactor is developed to a borehole tool with an outer diameter of 90 mm and ca. 5 m length. The first field test is planned for summer 2013 at the continental deep drilling KTB in Windischeschenbach, Germany. In future, we aim for a field test in hydrate-bearing sediments.

  12. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  13. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  14. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soli Khericha; Edwin Harvego; John Svoboda

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less

  15. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  16. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  17. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  18. 78 FR 8202 - Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Joint ACRS Subcommittees on Thermal Hydraulic Phenomena and Materials, Metallurgy and Reactor Fuels; Notice... Reactor Fuels will hold a meeting on February 20, 2013, Room T-2B1, 11545 Rockville Pike, Rockville...

  19. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  20. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anh Bui; Nam Dinh; Brian Williams

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less

  1. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  2. Particulate fuel bed tests

    NASA Astrophysics Data System (ADS)

    Horn, F. L.; Powell, J. R.; Savino, J. M.

    Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.

  3. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  4. Horizontal baffle for nuclear reactors

    DOEpatents

    Rylatt, John A.

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  5. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  6. 77 FR 9707 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics Phenomena; Revision to February 22, 2012, ACRS Meeting Federal Register Notice The Federal Register Notice for the ACRS Subcommittee meeting on Thermal-Hydraulics Phenomena...

  7. 77 FR 5063 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Subcommittee on Thermal-Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal-Hydraulics... Regulatory Guide (1.79), ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water... Water Reactors.'' The Subcommittee will hear presentations by and hold discussions with the NRC staff...

  8. Elevator mode convection in flows with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  9. Elevator mode convection in flows with strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that anmore » analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.« less

  10. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    NASA Astrophysics Data System (ADS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS went into trial operation in the end of year 2000.

  11. Moving bed reactor for solar thermochemical fuel production

    DOEpatents

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  12. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  13. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE PAGES

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel--coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  14. A review of inherent safety characteristics of metal alloy sodium-cooled fast reactor fuel against postulated accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofu, Tanju

    2015-04-01

    The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, double-fault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperaturemore » profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain cool-able. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.« less

  15. Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics and structural analyses

    NASA Astrophysics Data System (ADS)

    Katsuyama, Jinya; Uno, Shumpei; Watanabe, Tadashi; Li, Yinsheng

    2018-03-01

    The thermal hydraulic (TH) behavior of coolant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

  16. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  17. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Floyd E.; Hu, Lin-wen; Wilson, Erik

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings onmore » avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.« less

  18. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  19. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    NASA Astrophysics Data System (ADS)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  20. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data upmore » through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.« less

  1. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  2. Exploratory development of a glass ceramic automobile thermal reactor. [anti-pollution devices

    NASA Technical Reports Server (NTRS)

    Gould, R. E.; Petticrew, R. W.

    1973-01-01

    This report summarizes the design, fabrication and test results obtained for glass-ceramic (CER-VIT) automotive thermal reactors. Several reactor designs were evaluated using both engine-dynamometer and vehicle road tests. A maximum reactor life of about 330 hours was achieved in engine-dynamometer tests with peak gas temperatures of about 1065 C (1950 F). Reactor failures were mechanically induced. No evidence of chemical degradation was observed. It was concluded that to be useful for longer times, the CER-VIT parts would require a mounting system that was an improvement over those tested in this program. A reactor employing such a system was designed and fabricated.

  3. Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Santiago; Remacha, Pilar; Ballester, Javier

    2008-03-15

    In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized ({proportional_to}500 {mu}m) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recentlymore » proposed for the combustion of pulverized coal [J. Ballester, S. Jimenez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown. (author)« less

  4. Flow and Temperature Distribution Evaluation on Sodium Heated Large-sized Straight Double-wall-tube Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki

    2006-07-01

    The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less

  5. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Morris, D.G.

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are usedmore » to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.« less

  6. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena The ACRS Subcommittee on Thermal Hydraulics Phenomena will hold a meeting on September 7, 2010, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting...

  7. 75 FR 57536 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulic Phenomena The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold a meeting on October 18, 2010, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting...

  8. 76 FR 53979 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulics... Revision 4 to Regulatory Guide 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss...

  9. Thermal energy storage material thermophysical property measurement and heat transfer impact

    NASA Technical Reports Server (NTRS)

    Tye, R. P.; Bourne, J. G.; Destarlais, A. O.

    1976-01-01

    The thermophysical properties of salts having potential for thermal energy storage to provide peaking energy in conventional electric utility power plants were investigated. The power plants studied were the pressurized water reactor, boiling water reactor, supercritical steam reactor, and high temperature gas reactor. The salts considered were LiNO3, 63LiOH/37 LiCl eutectic, LiOH, and Na2B4O7. The thermal conductivity, specific heat (including latent heat of fusion), and density of each salt were measured for a temperature range of at least + or - 100 K of the measured melting point. Measurements were made with both reagent and commercial grades of each salt.

  10. Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my

    Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterizationmore » of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.« less

  11. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  12. Experimental Investigations in a Reactor Cavity Cooling System with Advanced Instrumentation for the Study of Instabilities, Oscillations, and Transients

    NASA Astrophysics Data System (ADS)

    Tompkins, Casey A.

    A research team at University of Wisconsin - Madison designed and constructed a 1/4 height scaled experimental facility to study two-phase natural circulation cooling in a water-based reactor cavity cooling system (WRCCS) for decay heat removal in an advanced high temperature reactor. The facility is capable of natural circulation operation scaled for simulated decay heat removal (up to 28.5 kW m-2 (45 kW) input power, which is equivalent to 14.25 kW m-2 (6.8 MW) at full scale) and pressurized up to 2 bar. The UW-WRCCS facility has been used to study instabilities and oscillations observed during natural circulation flow due to evaporation of the water inventory. During two-phase operation, the system exhibits flow oscillations and excursions, which cause thermal oscillations in the structure. This can cause degradation in the mechanical structure at welds and limit heat transfer to the coolant. The facility is equipped with wire mesh sensors (WMS) that enable high-resolution measurements of the void fraction and steam velocities in order to study the instability's and oscillation's growth and decay during transient operation. Multiple perturbations to the system's operating point in pressure and inlet throttling have shown that the oscillatory behavior present under normal two-phase operating conditions can be damped and removed. Furthermore, with steady-state modeling it was discovered that a flow regime transition instability is the primary cause of oscillations in the UW-WRCCS facility under unperturbed conditions and that proper orifice selection can move the system into a stable operating regime.

  13. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  15. Scram signal generator

    DOEpatents

    Johanson, Edward W.; Simms, Richard

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  16. Scram signal generator

    DOEpatents

    Johanson, E.W.; Simms, R.

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  17. Enzyme reactor design under thermal inactivation.

    PubMed

    Illanes, Andrés; Wilson, Lorena

    2003-01-01

    Temperature is a very relevant variable for any bioprocess. Temperature optimization of bioreactor operation is a key aspect for process economics. This is especially true for enzyme-catalyzed processes, because enzymes are complex, unstable catalysts whose technological potential relies on their operational stability. Enzyme reactor design is presented with a special emphasis on the effect of thermal inactivation. Enzyme thermal inactivation is a very complex process from a mechanistic point of view. However, for the purpose of enzyme reactor design, it has been oversimplified frequently, considering one-stage first-order kinetics of inactivation and data gathered under nonreactive conditions that poorly represent the actual conditions within the reactor. More complex mechanisms are frequent, especially in the case of immobilized enzymes, and most important is the effect of catalytic modulators (substrates and products) on enzyme stability under operation conditions. This review focuses primarily on reactor design and operation under modulated thermal inactivation. It also presents a scheme for bioreactor temperature optimization, based on validated temperature-explicit functions for all the kinetic and inactivation parameters involved. More conventional enzyme reactor design is presented merely as a background for the purpose of highlighting the need for a deeper insight into enzyme inactivation for proper bioreactor design.

  18. Integral isolation valve systems for loss of coolant accident protection

    DOEpatents

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  19. Apparatus and method for production of methanethiol

    DOEpatents

    Agarwal, Pradeep K.; Linjewile, Temi M.; Hull, Ashley S.; Chen, Zumao

    2006-02-07

    A method for the production of methyl mercaptan is provided. The method comprises providing raw feed gases consisting of methane and hydrogen sulfide, introducing the raw feed gases into a non-thermal pulsed plasma corona reactor, and reacting the raw feed gases within the non-thermal pulsed plasma corona reactor with the reaction CH4+H2S.fwdarw.CH3SH+H2. An apparatus for the production of methyl mercaptan using a non-thermal pulsed plasma corona reactor is also provided.

  20. Nuclear reactor I

    DOEpatents

    Ference, Edward W.; Houtman, John L.; Waldby, Robert N.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.

  1. The basic features of a closed fuel cycle without fast reactors

    NASA Astrophysics Data System (ADS)

    Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.

    2017-01-01

    In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021

  2. Nuclear reactor cavity floor passive heat removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Tyler A.; Neeley, Gary W.; Inman, James B.

    A nuclear reactor includes a reactor core disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor and includes a concrete floor located underneath the nuclear reactor. An ex vessel corium retention system includes flow channels embedded in the concrete floor located underneath the nuclear reactor, an inlet in fluid communication with first ends of the flow channels, and an outlet in fluid communication with second ends of the flow channels. In some embodiments the inlet is in fluid communication with the interior of the radiological containment at a first elevation and the outlet is in fluidmore » communication with the interior of the radiological containment at a second elevation higher than the first elevation. The radiological containment may include a reactor cavity containing a lower portion of the pressure vessel, wherein the concrete floor located underneath the nuclear reactor is the reactor cavity floor.« less

  3. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2014-12-01

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91-0.92, r2=0.93-0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  4. An evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-

  5. Evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.

  6. Experimental and numerical investigation of HyperVapotron heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo

    2014-12-01

    The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.

  7. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    NASA Astrophysics Data System (ADS)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  8. Investigation of two-phase phenomena occurring within moisture separator reheater high-level reactor trips at the Maanshan nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferng, Y.M.; Liao, L.Y.

    1996-01-01

    During the operating history of the Maanshan nuclear power plant (MNPP), five reactor trips have occurred as a result of the moisture separator reheater (MSR) high-level signal. These MSR high-level reactor trips have been a very serious concern, especially during the startup period of MNPP. Consequently, studying the physical phenomena of this particular event is worthwhile, and analytical work is performed using the RELAP5/MOD3 code to investigate the thermal-hydraulic phenomena of two-phase behaviors occurring within the MSR high-level reactor trips. The analytical model is first assessed against the experimental data obtained from several test loops. The same model can thenmore » be applied with confidence to the study of this topic. According to the present calculated results, the phenomena of liquid droplet accumulation ad residual liquid blowing in the horizontal section of cross-under-lines can be modeled. In addition, the present model can also predict the different increasing rates of inlet steam flow rate affecting the liquid accumulation within the cross-under-lines. The calculated conclusion is confirmed by the revised startup procedure of MNPP.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.

    A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary ofmore » some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved.« less

  10. Coupling procedure for TRANSURANUS and KTF codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, J.; Alglave, S.; Avramova, M.

    2012-07-01

    The nuclear industry aims to ensure safe and economic operation of each single fuel rod introduced in the reactor core. This goal is even more challenging nowadays due to the current strategy of going for higher burn-up (fuel cycles of 18 or 24 months) and longer residence time. In order to achieve that goal, fuel modeling is the key to predict the fuel rod behavior and lifetime under thermal and pressure loads, corrosion and irradiation. In this context, fuel performance codes, such as TRANSURANUS, are used to improve the fuel rod design. The modeling capabilities of the above mentioned toolsmore » can be significantly improved if they are coupled with a thermal-hydraulic code in order to have a better description of the flow conditions within the rod bundle. For LWR applications, a good representation of the two phase flow within the fuel assembly is necessary in order to have a best estimate calculation of the heat transfer inside the bundle. In this paper we present the coupling methodology of TRANSURANUS with KTF (Karlsruhe Two phase Flow subchannel code) as well as selected results of the coupling proof of principle. (authors)« less

  11. 77 FR 24745 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal Hydraulic Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold a meeting on May 8-9, 2012, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The...

  12. Heat barrier for use in a nuclear reactor facility

    DOEpatents

    Keegan, Charles P.

    1988-01-01

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  13. Top shield temperatures, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agar, J.D.

    1964-12-28

    A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less

  14. Radial blanket assembly orificing arrangement

    DOEpatents

    Patterson, J.F.

    1975-07-01

    A nuclear reactor core for a liquid metal cooled fast breeder reactor is described in which means are provided for increasing the coolant flow through the reactor fuel assemblies as the reactor ages by varying the coolant flow rate with the changing coolant requirements during the core operating lifetime. (auth)

  15. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  16. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline

    2003-08-06

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste inmore » a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.« less

  17. IECEC '83; Proceedings of the Eighteenth Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21-26, 1983. Volume 1 - Thermal energy systems

    NASA Astrophysics Data System (ADS)

    Among the topics discussed are the nuclear fuel cycle, advanced nuclear reactor designs, developments in central status power reactors, space nuclear reactors, magnetohydrodynamic devices, thermionic devices, thermoelectric devices, geothermal systems, solar thermal energy conversion systems, ocean thermal energy conversion (OTEC) developments, and advanced energy conversion concepts. Among the specific questions covered under these topic headings are a design concept for an advanced light water breeder reactor, energy conversion in MW-sized space power systems, directionally solidified cermet electrodes for thermionic energy converters, boron-based high temperature thermoelectric materials, geothermal energy commercialization, solar Stirling cycle power conversion, and OTEC production of methanol. For individual items see A84-30027 to A84-30055

  18. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOEpatents

    Kee, Robert J.; Ting, Aili

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  19. 157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  20. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  1. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  2. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  3. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less

  4. Development and performance of an alternative biofilter system.

    PubMed

    Lee, D H; Lau, A K; Pinder, K L

    2001-01-01

    Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. "Non-ideal flow" indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor. The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.

  5. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  6. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less

  7. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less

  8. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; D. Andrs; A.A. Bingham

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less

  9. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  10. Experimental heat transfer distribution on the SNAP 10A reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopenfeld, J.; Toews, R.E.

    1965-01-29

    Heating distributions have been obtained for the SNAP 10A reactor by means of a thermal paint technique in the Rhodes and Bloxsom 60 in. hypersonic wind tunnel. Data and correlations are presented only for those reactor components where the ratio of the local heat transfer to that on the stagnation point of the calibration sphere was found to be independent of tunnel conditions. It is shown that these heating distributions can be applied directly to reentry conditions provided the thermally painted and the bare reactor surfaces are both catalytic to atom recombination.

  11. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  12. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  13. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1961-02-01

    Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)

  14. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  15. Solar-thermal fluid-wall reaction processing

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  16. Solar-Thermal Fluid-Wall Reaction Processing

    DOEpatents

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  17. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  18. A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses

    DOE PAGES

    Hu, Rui

    2016-11-19

    An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less

  19. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  20. Thermal sensitivity and cardiovascular reactivity to stress in healthy males.

    PubMed

    Conde-Guzón, Pablo Antonio; Bartolomé-Albistegui, María Teresa; Quirós, Pilar; Cabestrero, Raúl

    2011-11-01

    This paper examines the association of cardiovascular reactivity with thermal thresholds (detection and unpleasantness). Heart period (HP), systolic (SBP) and diastolic (DBP) blood pressure of 42 health young males were recorded during a cardiovascular reactivity task (a videogame based upon Sidman's avoidance paradigm). Thermal sensitivity, assessing detection and unpleasantness thresholds with radiant heat in the forearm was also estimated for participants. Participants with differential scores in the cardiovascular variables from base line to task > or = P65 were considered as reactors and those how have differential scores < or = P35 were considered as non-reactors. Significant differences were observed between groups in the unpleasantness thresholds in blood pressure (BP) but not in HP. Reactors exhibited significant higher unpleasantness thresholds than non-reactors. No significant differences were obtained in detection thresholds between groups.

  1. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE PAGES

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; ...

    2016-10-26

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  2. Thermal synthesis apparatus

    DOEpatents

    Fincke, James R [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  3. Comparative performance of fixed-film biological filters: Application of reactor theory

    USGS Publications Warehouse

    Watten, B.J.; Sibrell, P.L.

    2006-01-01

    Nitrification is classified as a two-step consecutive reaction where R1 represents the rate of formation of the intermediate product NO2-N and R2 represents the rate of formation of the final product NO3-N. The relative rates of R1 and R2 are influenced by reactor type characterized hydraulically as plug-flow, plug-flow with dispersion and mixed-flow. We develop substrate conversion models for fixed-film biofilters operating in the first-order kinetic regime based on application of chemical reactor theory. Reactor type, inlet conditions and the biofilm kinetic constants Ki (h-1) are used to predict changes in NH4-N, NO2-N, NO3-N and BOD5. The inhibiting effects of the latter on R1 and R2 were established based on the ?? relation, e.g.:{A formula is presented}where BOD5,max is the concentration that causes nitrification to cease and N is a variable relating Ki to increasing BOD5. Conversion models were incorporated in spreadsheet programs that provided steady-state concentrations of nitrogen and BOD5 at several points in a recirculating aquaculture system operating with input values for fish feed rate, reactor volume, microscreen performance, make-up and recirculating flow rates. When rate constants are standardized, spreadsheet use demonstrates plug-flow reactors provide higher rates of R1 and R2 than mixed-flow reactors thereby reducing volume requirements for target concentrations of NH4-N and NO2-N. The benefit provided by the plug-flow reactor varies with hydraulic residence time t as well as the effective vessel dispersion number, D/??L. Both reactor types are capable of providing net increases in NO2-N during treatment but the rate of decrease in the mixed-flow case falls well behind that predicted for plug-flow operation. We show the potential for a positive net change in NO2-N increases with decreases in the dimensionless ratios K2, (R2 )/K1,( R1 ) and [NO2-N]/[NH4-N] and when the product K1, (R1) t provides low to moderate NH4-N conversions. Maintaining high levels of the latter reduces the effective reactor utilization rate (%) defined here as (RNavg/RNmax)100 where RNavg is the mean reactive nitrogen concentration ([NH4-N] + [NO2-N]) within the reactor, and RNmax represents the feed concentration of the same. Low utilization rates provide a hedge against unexpected increases in substrate loading and reduce water pumping requirements but force use of elevated reactor volumes. Further ?? effects on R1 and R2 can be reduced through use of a tanks-in-series versus a single mixed-flow reactor configuration and by improving the solids removal efficiency of microscreen treatment.

  4. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  5. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) is a pressurized heavy water moderated and cooled research reactor that began operation at 40 MW. The reactor was subsequently upgraded to 60 MW and operated at that level for several years. The reactor undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Questions which were raised about the afterheat removal capability during the flow reversal transition led to a reactor shutdown and subsequent resumption of operation at a reduced power of 30 MW. An experimental and analytical program to address these questions is described in this report. Themore » experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safe operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW. Direct use of the experimental results and an understanding of the governing phenomenology supports this conclusion.« less

  6. Dumbo: A pachydermal rocket motor

    NASA Technical Reports Server (NTRS)

    Kirk, Bill

    1991-01-01

    A brief historical account is given of the Dumbo nuclear reactor, a type of folded flow reactor that could be used for rocket propulsion. Much of the information is given in viewgraph form. Viewgraphs show details of the reactor system, fuel geometry, and key characteristics of the system (folded flow, use of fuel washers, large flow area, small fuel volume, hybrid modulator, and cermet fuel).

  7. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.

    2015-03-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  8. Physics and potentials of fissioning plasmas for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  9. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  10. Low exchange element for nuclear reactor

    DOEpatents

    Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  11. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  12. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  13. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  14. Lower food chain community study: thermal effects and post-thermal recovery in the streams and swamps of the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratieff, P.; Kondratieff, B.C.

    1985-07-01

    The effects of thermal stress on lower food chain communities of streams and swamps of the Savannah River Plant. Both the autotroph assemblages and the macro invertebrate communities were studied in streams receiving heated reactor effluent. To document stream and swamp ecosystem recovery from thermal stress, the same communities of organisms were studied in a stream/swamp ecosystem which had received heated reactor effluent in the past. (ACR)

  15. The hybrid reactor project based on the straight field line mirror concept

    NASA Astrophysics Data System (ADS)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (keff = 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GWth.

  16. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Aksan, S. N.

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present,more » 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)« less

  17. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a smallmore » version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.« less

  18. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  19. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOEpatents

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  20. Evolution of the construction and performances in accordance to the applications of non-thermal plasma reactors

    NASA Astrophysics Data System (ADS)

    Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.

    2016-12-01

    This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.

  1. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant.

    PubMed

    Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin

    2015-03-18

    The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  2. Safety monitoring and reactor transient interpreter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hench, J. E.; Fukushima, T. Y.

    1983-12-20

    An apparatus which monitors a subset of control panel inputs in a nuclear reactor power plant, the subset being those indicators of plant status which are of a critical nature during an unusual event. A display (10) is provided for displaying primary information (14) as to whether the core is covered and likely to remain covered, including information as to the status of subsystems needed to cool the core and maintain core integrity. Secondary display information (18,20) is provided which can be viewed selectively for more detailed information when an abnormal condition occurs. The primary display information has messages (24)more » for prompting an operator as to which one of a number of pushbuttons (16) to press to bring up the appropriate secondary display (18,20). The apparatus utilizes a thermal-hydraulic analysis to more accurately determine key parameters (such as water level) from other measured parameters, such as power, pressure, and flow rate.« less

  3. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  4. Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  5. ENGINEERING APPLICATIONS OF ANALOG COMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, L.T.; Janicke, M.J.; Just, L.C.

    1963-10-31

    Six experiments from the fields of reactor engineering, heat transfer, and dynamics are presented to illustrate the engineering applications of analog computers. The steps required for producing the analog solution are shown, as well as complete information for duplicating the solution. Graphical results are provided. The experiments include: deceleration of a reactor control rod, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback, a vibrating system with two degrees of freedom, temperature distribution in a radiating fin, temperature distribution in an infinite slab considering variable thermal properties, and iodine -xenon buildup in a reactor. (M.C.G.)

  6. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  7. Hydrodynamic cavitation: characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice.

    PubMed

    Milly, P J; Toledo, R T; Kerr, W L; Armstead, D

    2008-08-01

    A Shockwave Power Reactor consisting of an annulus with a rotating pock-marked inner cylinder was used to induce hydrodynamic cavitation in calcium-fortified apple juice flowing in the annular space. Lethality on Saccharomyces cerevisiae was assessed at processing temperatures of 65 and 76.7 degrees C. Details of the novel equipment design were presented and energy consumption was compared to conventional and pulsed electric fields processing technologies. The mean log cycle reduction of S. cerevisiae was 6.27 CFU/mL and all treatments resulted in nonrecoverable viable cells. Induced lethality from hydrodynamic cavitation on S. cerevisiae exceeded the predicted values based on experimentally determined thermal resistance. Rotation of 3000 and 3600 rpm at flow rates greater than 1.0 L/min raised product temperature from 20 to 65.6 or 76.7 degrees C, respectively, and energy input was less than 220 kJ/kg. Conversion efficiency from electrical to thermal was 55% to 84%. Hydrodynamic cavitation enhanced lethality of spoilage microorganisms in minimally processed juices and reduced energy usage.

  8. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less

  9. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  10. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  11. Reversal of OFI and CHF in Research Reactors Operating at 1 to 50 Bar. Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalimullah, M.; Olson, A. P.; Dionne, B.

    2014-02-28

    The conditions at which the critical heat flux (CHF) and the heat flux at the onset of Ledinegg flow instability (OFI) are equal, are determined for a coolant channel with uniform heat flux as a function of five independent parameters: the channel exit pressure (P), heated length (Lh) , heated diameter (Dh), inlet temperature (Tin), and mass flux (G). A diagram is made by plotting the mass flux and heat flux at the OFI-CHF intersection (reversal from CHF > OFI to CHF < OFI as G increases) as a function of P (1 to 50 bar), for 36 combinations ofmore » the remaining three parameters (Lh , Dh , Tin): Lh = 0.28, 0.61, 1.18 m; Dh = 3, 4, 6, 8 mm; Tin = 30, 50, 70 °C. The use of the diagram to scope whether a research reactor is OFI-limited (below the curve) or CHF-limited based on the five parameters of its coolant channel is described. Justification for application of the diagram to research reactors with axially non-uniform heat flux is provided. Due to its limitations (uncertainties not included), the diagram cannot replace the detailed thermal-hydraulic analysis required for a reactor safety analysis. In order to make the OFI-CHF intersection diagram, two world-class CHF prediction methods (the Hall-Mudawar correlation and the extended Groeneveld 2006 table) are compared for 216 combinations of the five independent parameters. The two widely used OFI correlations (the Saha- Zuber and the Whittle-Forgan with η = 32.5) are also compared for the same combinations of the five parameters. The extended Groeneveld table and the Whittle-Forgan OFI correlation are selected for use in making the diagram. Using the above five design parameters, a research reactor can be represented by a point on the reversal diagram, and the diagram can be used to scope, without a thermal-hydraulic calculation, whether the OFI will occur before the CHF, or the CHF will occur before the OFI when the reactor power is increased keeping the five parameters fixed.« less

  12. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a Germanmore » BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)« less

  13. Miniaturized flow system based on enzyme modified PMMA microreactor for amperometric determination of glucose.

    PubMed

    Cerdeira Ferreira, Luís Marcos; da Costa, Eric Tavares; do Lago, Claudimir Lucio; Angnes, Lúcio

    2013-09-15

    This paper describes the development of a microfluidic system having as main component an enzymatic reactor constituted by a microchannel assembled in poly(methyl methacrylate) (PMMA) substrate connected to an amperometric detector. A CO2 laser engraving machine was used to make the channels, which in sequence were thermally sealed. The internal surfaces of the microchannels were chemically modified with polyethyleneimine (PEI), which showed good effectiveness for the immobilization of the glucose oxidase enzyme using glutaraldehyde as crosslinking agent, producing a very effective microreactor for the detection of glucose. The hydrogen peroxide generated by the enzymatic reaction was detected in an electrochemical flow cell localized outside of the reactor using a platinum disk as the working electrode. The proposed system was applied to the differential amperometric determination of glucose content in soft drinks showing good repeatability (DPR=1.72%, n=50), low detection limit (1.40×10(-6)molL(-1)), high sampling frequency (calculated as 345 samples h(-1)), and relatively good stability for long-term use. The results were in close agreement with those obtained by the classical spectrophotometric method utilized to quantify glucose in biological fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst.

    PubMed

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO 2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  15. A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Aguilar-Tapia, Antonio; Ould-Chikh, Samy; Lahera, Eric; Prat, Alain; Delnet, William; Proux, Olivier; Kieffer, Isabelle; Basset, Jean-Marie; Takanabe, Kazuhiro; Hazemann, Jean-Louis

    2018-03-01

    The construction of a high-temperature reaction cell for operando X-ray absorption spectroscopy characterization is reported. A dedicated cell was designed to operate as a plug-flow reactor using powder samples requiring gas flow and thermal treatment at high temperatures. The cell was successfully used in the reaction of dry reforming of methane (DRM). We present X-ray absorption results in the fluorescence detection mode on a 0.4 wt. % Ni/ZrO2 catalyst under realistic conditions at 750 °C, reproducing the conditions used for a conventional dynamic microreactor for the DRM reaction. The setup includes a gas distribution system that can be fully remotely operated. The reaction cell offers the possibility of transmission and fluorescence detection modes. The complete setup dedicated to the study of catalysts is permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental sciences (CRG-FAME) and French Absorption spectroscopy beamline in Material and Environmental sciences at Ultra-High Dilution (FAME-UHD) beamlines (BM30B and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.

  16. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  17. Development and Assessment of CTF for Pin-resolved BWR Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Wysocki, Aaron J; Collins, Benjamin S

    2017-01-01

    CTF is the modernized and improved version of the subchannel code, COBRA-TF. It has been adopted by the Consortium for Advanced Simulation for Light Water Reactors (CASL) for subchannel analysis applications and thermal hydraulic feedback calculations in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). CTF is now jointly developed by Oak Ridge National Laboratory and North Carolina State University. Until now, CTF has been used for pressurized water reactor modeling and simulation in CASL, but in the future it will be extended to boiling water reactor designs. This required development activities to integrate the code into the VERA-CSmore » workflow and to make it more ecient for full-core, pin resolved simulations. Additionally, there is a significant emphasis on producing high quality tools that follow a regimented software quality assurance plan in CASL. Part of this plan involves performing validation and verification assessments on the code that are easily repeatable and tied to specific code versions. This work has resulted in the CTF validation and verification matrix being expanded to include several two-phase flow experiments, including the General Electric 3 3 facility and the BWR Full-Size Fine Mesh Bundle Tests (BFBT). Comparisons with both experimental databases is reasonable, but the BFBT analysis reveals a tendency of CTF to overpredict void, especially in the slug flow regime. The execution of these tests is fully automated, analysis is documented in the CTF Validation and Verification manual, and the tests have become part of CASL continuous regression testing system. This paper will summarize these recent developments and some of the two-phase assessments that have been performed on CTF.« less

  18. Numerical Simulations of a 96-rod Polysilicon CVD Reactor

    NASA Astrophysics Data System (ADS)

    Guoqiang, Tang; Cong, Chen; Yifang, Cai; Bing, Zong; Yanguo, Cai; Tihu, Wang

    2018-05-01

    With the rapid development of the photovoltaic industry, pressurized Siemens belljar-type polysilicon CVD reactors have been enlarged from 24 rods to 96 rods in less than 10 years aimed at much greater single-reactor productivity. A CFD model of an industry-scale 96-rod CVD reactor was established to study the internal temperature distribution and the flow field of the reactor. Numerical simulations were carried out and compared with actual growth results from a real CVD reactor. Factors affecting polysilicon depositions such as inlet gas injections, flow field, and temperature distribution in the CVD reactor are studied.

  19. Generating Breathable Air Through Dissociation of N2O

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Frankie, Brian

    2006-01-01

    A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS includes one or more "destroyer" subsystems for removing any nitrogen oxides that remain downstream of the main N2O-dissociation reactor. A destroyer includes a carbon bed in series with a catalytic reactor, and is in thermal contact with the main N2O-dissociation reactor. The gas mixture that leaves the main reactor first goes through a carbon bed, which adsorbs all of the trace NO and most of the trace NO2. The gas mixture then goes through the destroyer catalytic reactor, wherein most or all of the remaining NO2 is dissociated. A NOBOSS can be designed to regulate its reactor temperature across a range of flow rates. One such system includes three destroyer loops; these loops act, in combination with a heat sink, to remove heat from the main N2O-dissociation reactor. In this system, the N2O and product gases play an additional role as coolants; thus, as needed, the coolant flow increases in proportion to the rate of generation of heat, helping to keep the main-reactor temperature below 540 C.

  20. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    PubMed

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO 2 -CPC system (0.60 mg cm -2 TiO 2 ), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO 2 -CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L -1 ) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO 2 -CPC system were improved with the addition of 150 mg L -1 of H 2 O 2 , which generated approximately 2000-2300 nmol L -1 of HO ● radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  2. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  3. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.

  4. Flow reversal power limit for the HFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Tichler, P.R.

    The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this report. The experiments were single channel flow reversal tests under a range of conditions. The analytical phase involved simulations of the tests to benchmark the physical models and development of a criterion for dryout. The criterion is then used in simulations of reactor accidents to determine a safemore » operating power level. It is concluded that the limit on the HFBR operating power with respect to the issue of flow reversal is in excess of 60 MW.« less

  5. The International Experimental Thermal Hydraulic Systems database – TIETHYS: A new NEA validation tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Upendra S.

    Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary ofmore » appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available. https://www.oecd-nea.org/tiethysweb/« less

  6. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, J. C.; Barbosa, A. F.; Lima, H. P. Jr.

    2010-03-30

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in amore » first step, to use the measured neutrino event rate to monitor the on--off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.« less

  7. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Barbosa, A. F.; Bezerra, T. J. C.; Chimenti, P.; Gonzalez, L. F. G.; Kemp, E.; de Oliveira, M. A. Leigui; Lima, H. P.; Lima, R. M.; Nunokawa, H.

    2010-03-01

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on—off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  8. Solving Problems With SINDA/FLUINT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    SINDA/FLUINT, the NASA standard software system for thermohydraulic analysis, provides computational simulation of interacting thermal and fluid effects in designs modeled as heat transfer and fluid flow networks. The product saves time and money by making the user's design process faster and easier, and allowing the user to gain a better understanding of complex systems. The code is completely extensible, allowing the user to choose the features, accuracy and approximation levels, and outputs. Users can also add their own customizations as needed to handle unique design tasks or to automate repetitive tasks. Applications for SINDA/FLUINT include the pharmaceutical, petrochemical, biomedical, electronics, and energy industries. The system has been used to simulate nuclear reactors, windshield wipers, and human windpipes. In the automotive industry, it simulates the transient liquid/vapor flows within air conditioning systems.

  9. Evaluation of RANS and LES models for Natural Convection in High-Aspect-Ratio Parallel Plate Channels

    NASA Astrophysics Data System (ADS)

    Fradeneck, Austen; Kimber, Mark

    2017-11-01

    The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.

  10. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  11. Reactor Simulator Testing

    NASA Technical Reports Server (NTRS)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Reactor Simulator Integration and Testing

    NASA Technical Reports Server (NTRS)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  13. Nuclear engine flow reactivity shim control

    DOEpatents

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  14. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluencemore » monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.« less

  15. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  16. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  17. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  18. Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.

    2008-01-01

    This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

  19. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    NASA Astrophysics Data System (ADS)

    Godfroy, T.; Dickens, R.; Houts, M.; Pearson, B.; Webster, K.; Gibson, M.; Qualls, L.; Poston, D.; Werner, J.; Radel, R.

    The Nuclear Systems Team at Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter when being tested at MSFC. When tested at GRC the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumenta- tion (temperature, pressure, flow) data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  20. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  1. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  2. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  3. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  4. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  5. Flow photochemistry: Old light through new windows

    PubMed Central

    Knowles, Jonathan P; Elliott, Luke D

    2012-01-01

    Summary Synthetic photochemistry carried out in classic batch reactors has, for over half a century, proved to be a powerful but under-utilised technique in general organic synthesis. Recent developments in flow photochemistry have the potential to allow this technique to be applied in a more mainstream setting. This review highlights the use of flow reactors in organic photochemistry, allowing a comparison of the various reactor types to be made. PMID:23209538

  6. CFD Investigation of the effects of bubble aerator layouts on hydrodynamics of an activated sludge channel reactor.

    PubMed

    Hreiz, Rainier; Potier, Olivier; Wicks, Jim; Commenge, Jean-Marc

    2018-03-08

    In this paper, computational fluid dynamics (CFD) simulations are employed to characterize the effects of bubble aerator layouts (i.e. spatial arrangement) on the hydrodynamics in activated sludge (AS) reactors. The first configuration considered is a channel reactor with aerators placed alongside one lateral wall, for which velocity measurements are available in literature. CFD results were in good agreement with experimental data, which proves that the model is sufficiently accurate and predictive. Accordingly, simulations and numerical residence time distribution tests were conducted for different aerator layouts to determine their effects on the reactor hydrodynamics. The results revealed that the flow characteristics are extremely sensitive to the aerators arrangement given the high gas flow rates used in AS processes. Among the layouts investigated, the one where diffusers are placed all over the reactor floor has led to the least dispersive flow, i.e. which characteristics best tend toward that of an ideal plug flow reactor. Indeed, this flow field presented the lowest average turbulent diffusion and the most uniform axial velocity and turbulence fields. Such a flow behaviour is expected to be highly beneficial for biological treatment since it reduces pollutant dilution by axial diffusion and limits raw wastewater channelling to the outlet.

  7. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  8. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  9. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  10. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.

    PubMed

    Gotoh, Yoshimi; Iwata, Goichi; Choh, Kyaw; Kubota, Mitsuhiro; Matsuda, Hitoki

    2011-10-01

    A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours. It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K. It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  12. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  13. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  14. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglart, Henryk

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  15. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    NASA Astrophysics Data System (ADS)

    Anglart, Henryk

    2012-06-01

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  16. Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Akin, S. T.; Liu, X.; Duncan, M. A.

    2015-11-01

    Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.

  17. Thermal-hydraulic modeling needs for passive reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.M.

    1997-07-01

    The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered,more » but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.« less

  18. Hybrid indirect/direct contactor for thermal management of counter-current processes

    DOEpatents

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  19. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  20. A new approach to synthesize ZnO tetrapod-like nanoparticles with DC thermal plasma technique

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Fen; Liao, Shih-Chieh; Hu, Chen-Ti

    2009-02-01

    The feasibility of fabricating the tetrapod-like zinc oxide (TZ) nanoparticles with a DC thermal plasma reactor was demonstrated in the present study. Advantages of this process include the low cost and high yield rate (0.8-1.0 kg/h) in producing high TZ content mixtures (with small portion of rod-like zinc oxide (RZ) and plate-like zinc oxide (PZ) nanoparticles) from commercial metal zinc powders. ZnO nanopowders with high TZ content could be employed as the starting material for photocatalytic filters. The ratio of TZ to RZ and PZ in the products was observed to be strongly influenced by the plasma power and the plasma gas flow rate. The optical spectrum, photostability and anti-microbial property of the as-grown and annealed TZ mixtures were examined and compared in this study.

Top