Sample records for flow-mediated dilation relation

  1. Nitroglycerin mediated dilation evaluated by ultrasound is associated with sTWEAK in hemodialysis patients.

    PubMed

    Rusu, Crina Claudia; Ghervan, Liviu; Racasan, Simona; Kacsa, Ina; Moldovan, Diana; Potra, Alina; Bondor, Cosmina; Anton, Florin; Patiu, Ioan Mihai; Caprioara, Mirela Gherman

    2016-03-01

    The main cause of death in hemodialysis (HD) patients is cardiovascular disease. Ultrasound assessment of the brachial artery dysfunction is easily achievable and can non-invasively detect atherosclerosis in various stages. In HD patients the cardiovascular risk profile is different and the determinants of brachial arterial function can be distinct comparing with general population. The aim of the study is to assess the determinants of arterial brachial function (flow-mediated and nitroglycerin-mediated dilation) evaluated by ultrasound in HD patients and their relation with tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) described as atherosclerotic marker in chronic kidney disease patients. We conducted a cross-sectional observational study on 54 hemodialysis patients. We recorded clinical and biological data and we measured sTWEAK serum levels by ELISA. We evaluated the arterial brachial function by measurement of flow-mediated and nitroglycerin-mediated dilation, using B mode ultrasound. The determinants of flow-mediated dilation were: Kt/V (r=0.47, p<0.001), LDL-cholesterol (r=0.29, p=0.04), and total cholesterol (r=0.31, p=0.02). Flow-mediated dilation correlated with nitroglycerin-mediated dilation (r=0.70, p<0.001). In multivariate analysis kt/V was the only significant predictor for flow-mediated dilation (p=0.04). Nitroglycerin-mediated dilation correlates with sTWEAK (r=-0.30, p=0.03), systolic blood pressure (r=-0.28, p=0.04) and pulse pressure (r=-0.31, p=0.02). In multivariate analysis sTWEAK was the only significant predictor for nitroglycerin-mediated dilation (p=0.04). The main determinant of nitroglycerin-mediated dilation was sTWEAK. In addition, decreased nitroglycerin-mediated dilation was associated with higher systolic blood pressure and pulse pressure. The main determinant of FMD was Kt/V. Increased flow-mediated dilation was associated with better dialysis efficiency and high total cholesterol and LDL-cholesterol.

  2. Endothelial dysfunction in normoglycaemic first-degree relatives of type 2 diabetes mellitus complicated with hyperuricaemia.

    PubMed

    Zhang, Junxia; Xiang, Lin; Zhang, Bilin; Cheng, Yangyang

    2017-03-01

    To reveal the effect of hyperuricaemia on endothelial function in normoglycaemic first-degree relatives of type 2 diabetes mellitus. In all, 40 first-degree relatives of type 2 diabetes mellitus with hyperuricaemia, 40 first-degree relatives of type 2 diabetes mellitus with normouricaemia and 35 healthy subjects without diabetic family history were recruited in this study. Anthropometric parameters as well as blood pressure, blood lipids, fasting blood glucose, fasting insulin, C-reactive protein, tumour necrosis factor-α and interleukin-6 were measured. Insulin resistance was assessed with homoeostasis model assessment index-insulin resistance index. To assess endothelial function, high-resolution ultrasonography was used for measuring flow- and nitroglycerine-mediated brachial artery vasodilation. When compared with control, flow-mediated dilation was lower in first-degree relatives with or without hyperuricaemia (both p < 0.001). When compared with first-degree relative subjects with normouricaemia, there were lower flow-mediated dilation ( p < 0.001) and higher levels of uric acid ( p < 0.001), fasting blood glucose ( p < 0.001), C-reactive protein ( p = 0.001), tumour necrosis factor-α ( p < 0.001) and interleukin-6 ( p < 0.001) in first-degree relative subjects with hyperuricaemia. Flow-mediated dilation was found to be negatively related to uric acid ( r = -0.597, p < 0.001). Stepwise multiple regressions demonstrated that uric acid was a significant determinant of flow-mediated dilation independent of other variables in first-degree relatives of type 2 diabetes mellitus (β = -0.677, p < 0.001; confidence interval: -0.010 to -0.006). Further endothelial dysfunction is found in normoglycaemic first-degree relatives of type 2 diabetes mellitus complicated with hyperuricaemia.

  3. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery.

    PubMed

    Huang, Alex L; Silver, Annemarie E; Shvenke, Elena; Schopfer, David W; Jahangir, Eiman; Titas, Megan A; Shpilman, Alex; Menzoian, James O; Watkins, Michael T; Raffetto, Joseph D; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M; Dhadly, Mandeep; Eberhardt, Robert T; Keaney, John F; Gokce, Noyan; Vita, Joseph A

    2007-10-01

    Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66+/-11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75+/-39 versus 95+/-50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5+/-3.0 versus 6.9+/-4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity.

  4. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome.

    PubMed

    Lavrencic, A; Salobir, B G; Keber, I

    2000-02-01

    Endothelial dysfunction that can be detected as impaired flow-mediated dilation by ultrasonography is an early event in atherogenesis and has been demonstrated in healthy subjects with risk factors for atherosclerosis many years before the appearance of atheromatous plaques. We examined the influence of physical training on flow-mediated dilation in patients with the polymetabolic syndrome. Twenty-nine asymptomatic men aged 40 to 60 years with the polymetabolic syndrome were randomly divided between the control group and the training group, which trained 3 times a week for 12 weeks. On high-resolution ultrasound images, the diameter of the brachial artery was measured at rest, after reactive hyperemia (causing flow-mediated, endothelium-dependent dilation), and after sublingual glyceryltrinitrate (causing endothelium-independent vasodilation) in all subjects before and after the training period. The training program induced an increase of 18% in physical fitness. Flow-mediated dilation increased from 5.3+/-2.8% to 7.3+/-2.7% (P<0. 05). There was no change in body mass index, blood pressure, insulin resistance, lipids, and big endothelin-1 in either group. Flow-mediated dilation measured before training was negatively correlated with resting heart rate, waist-to-hip ratio, and insulin resistance. Resting heart rate emerged as the only independent determinant, which explained 22% of the variation in flow-mediated dilation. In conclusion, our findings suggest that a 3-month physical training program, which improved maximal exercise capacity, enhances flow-mediated dilation in patients with the polymetabolic syndrome.

  5. Relation of Long-term Exposure to Air Pollution to Brachial Artery Flow-Mediated Dilation and Reactive Hyperemia

    PubMed Central

    Wilker, Elissa H.; Ljungman, Petter L.; Rice, Mary B.; Kloog, Itai; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Hamburg, Naomi M.; Mittleman, Murray A.

    2014-01-01

    Long-term exposure to ambient air pollution has been associated with cardiovascular morbidity and mortality. Impaired vascular responses may in part explain these findings, but the association of such long-term exposure with measures of both conduit artery and microvascular function have not been widely reported. We evaluated the association between residential proximity to a major roadway (primary or secondary highway) and spatially resolved average fine particulate matter (PM2.5) and baseline brachial artery diameter and mean flow velocity, flow mediated dilation % and hyperemic flow velocity, in the Framingham Offspring and Third Generation Cohorts. We examined 5,112 participants (2,731 (53%) women, mean age 49±14 years). Spatially resolved average PM2.5 was associated with lower flow mediated dilation% and hyperemic flow velocity. An interquartile range difference in PM2.5 (1.99 μg/m3) was associated with −0.16% (95%CI: −0.27%, −0.05%) lower FMD% and −0.72 (95%CI: −1.38, −0.06) cm/s lower hyperemic flow velocity %. Residential proximity to a major roadway was negatively associated with flow mediated dilation %. Compared to living ≥400 m away, living <50 m from a major roadway was associated with 0.32% lower flow mediated dilation (95% confidence interval (CI): −0.58%, −0.06%), but results for hyperemic flow velocity had wide confidence intervals −0.68 cm/s (95%CI: −2.29, 0.93). In conclusion, residential proximity to a major roadway and higher levels of spatially resolved estimates of PM2.5 at participant residences are associated with impaired conduit artery and microvascular function in this large community-based cohort of middle-aged and elderly adults. PMID:24793676

  6. Predictive Value of Reactive Hyperemia for Cardiovascular Events in Patients With Peripheral Arterial Disease Undergoing Vascular Surgery

    PubMed Central

    Huang, Alex L.; Silver, Annemarie E.; Shvenke, Elena; Schopfer, David W.; Jahangir, Eiman; Titas, Megan A.; Shpilman, Alex; Menzoian, James O.; Watkins, Michael T.; Raffetto, Joseph D.; Gibbons, Gary; Woodson, Jonathan; Shaw, Palma M.; Dhadly, Mandeep; Eberhardt, Robert T.; Keaney, John F.; Gokce, Noyan; Vita, Joseph A.

    2008-01-01

    Objective Reactive hyperemia is the compensatory increase in blood flow that occurs after a period of tissue ischemia, and this response is blunted in patients with cardiovascular risk factors. The predictive value of reactive hyperemia for cardiovascular events in patients with atherosclerosis and the relative importance of reactive hyperemia compared with other measures of vascular function have not been previously studied. Methods and Results We prospectively measured reactive hyperemia and brachial artery flow-mediated dilation by ultrasound in 267 patients with peripheral arterial disease referred for vascular surgery (age 66±11 years, 26% female). Median follow-up was 309 days (range 1 to 730 days). Fifty patients (19%) had an event, including cardiac death (15), myocardial infarction (18), unstable angina (8), congestive heart failure (6), and nonhemorrhagic stroke (3). Patients with an event were older and had lower hyperemic flow velocity (75±39 versus 95±50 cm/s, P=0.009). Patients with an event also had lower flow-mediated dilation (4.5±3.0 versus 6.9±4.6%, P<0.001), and when these 2 measures of vascular function were included in the same Cox proportional hazards model, lower hyperemic flow (OR 2.7, 95% CI 1.2 to 5.9, P=0.018) and lower flow-mediated dilation (OR 4.2, 95% CI: 1.8 to 9.8, P=0.001) both predicted cardiovascular events while adjusting for other risk factors. Conclusions Thus, lower reactive hyperemia is associated with increased cardiovascular risk in patients with peripheral arterial disease. Furthermore, flow-mediated dilation and reactive hyperemia incrementally relate to cardiovascular risk, although impaired flow-mediated dilation was the stronger predictor in this population. These findings further support the clinical relevance of vascular function measured in the microvasculature and conduit arteries in the upper extremity. PMID:17717291

  7. Parallel decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia.

    PubMed

    Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio

    2009-10-01

    Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.

  8. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  9. Visit-to-visit and 24-h blood pressure variability: association with endothelial and smooth muscle function in African Americans.

    PubMed

    Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D

    2013-11-01

    The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.

  10. Treatment of denture-related stomatitis improves endothelial function assessed by flow-mediated vascular dilation.

    PubMed

    Osmenda, Grzegorz; Maciąg, Joanna; Wilk, Grzegorz; Maciąg, Anna; Nowakowski, Daniel; Loster, Jolanta; Dembowska, Elżbieta; Robertson, Douglas; Guzik, Tomasz; Cześnikiewicz-Guzik, Marta

    2017-02-01

    The presence of oral inflammation has recently been linked with the pathogenesis of cardiovascular diseases. While numerous studies have described links between periodontitis and endothelial dysfunction, little is known about the influence of denture-related stomatitis (DRS) on cardiovascular risk. Therefore, the aim of this study was to determine whether the treatment of DRS can lead to improvement of the clinical measures of vascular dysfunction. The DRS patients were treated with a local oral antifungal agent for 3 weeks. Blood pressure, flow-mediated dilatation (FMD) and nitroglycerine-mediated vascular dilatation (NMD) were measured during three study visits: before treatment, one day and two months after conclusion of antifungal therapy. Flow-mediated dilatation measurements showed significant improvement of endothelial function 2 months after treatment (FMD median 5%, 95 CI: 3-8.3 vs. 11%, 95% CI: 8.8-14.4; p < 0.01), while there was no difference in control, endothelium-independent vasorelaxations (NMD; median = 15.3%, 95% CI: 10.8-19.3 vs. 12.7%, 95% CI: 10.6-15; p = 0.3). Other cardiovascular parameters such as systolic (median = 125 mm Hg; 95% CI: 116-129 vs. 120 mm Hg, 95% CI: 116-126; p = 0.1) as well as diastolic blood pressure and heart rate (median = 65.5 bpm, 95% CI: 56.7-77.7 vs. 71 bpm, 95% CI: 66.7-75; p = 0.5) did not change during or after the treatment. Treatment of DRS is associated with improvement of endothelial function. Since endothelial dysfunction is known to precede the development of severe cardiovascular disorders such as atherosclerosis and hypertension, patients should be more carefully screened for DRS in general dental practice, and immediate DRS treatment should be advised.

  11. The ACE-DD genotype is associated with endothelial dysfunction in postmenopausal women.

    PubMed

    Méthot, Julie; Hamelin, Bettina A; Arsenault, Marie; Bogaty, Peter; Plante, Sylvain; Poirier, Paul

    2006-01-01

    To evaluate the effects of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D), the angiotensinogen M235T and the angiotensin II type 1 receptor A1166C polymorphisms, and hormone therapy used on endothelial function in postmenopausal women without manifestation of coronary artery disease. Sixty-four postmenopausal women (42 hormone therapy users and 22 hormone therapy nonusers) without clinical manifestation of coronary artery disease were evaluated using external vascular ultrasonography to measure endothelium-dependent (hyperemic response, flow-mediated dilatation) and -independent (nitroglycerin) dilatation. Genotypes were determined by polymerase chain reaction amplification. Women with the ACE-DD genotype displayed a lower flow-mediated dilatation compared to those with the ACE-II genotype (8.4% +/- 3.9% vs 12.6% +/- 5.4%, P = 0.04). Endothelial function was not associated with the angiotensinogen M235T and anglotensin II type 1 receptor A1166C polymorphisms. ACE polymorphism seems to modulate endothelial function among postmenopausal women without hormone therapy (8.2% +/- 5.1% vs 18.4% +/- 5.9% for the DD and the II genotype, respectively, P = 0.02). However, in hormone therapy users, flow-mediated dilatation was similar according to the ACE genotypes. Our findings suggest that ACE-I/D polymorphism is related to endothelial dysfunction in postmenopausal women. Furthermore, a potential interaction between estrogen users and ACE polymorphism on endothelial function may be present.

  12. Insulin resistance adds to endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, B; Poredos, P

    2001-02-01

    To evaluate whether endothelium-dependent (nitric oxide-mediated) dilation of the brachial artery (BA) is impaired in patients being treated for essential hypertension (EH), and whether this abnormality can be detected in normotensive offspring of subjects with EH (familial trait, FT); and to investigate the interrelationship between flow-mediated vasodilation (FMD) and hyperinsulinaemia/insulin resistance. Cross-sectional study. Angiology department at a teaching hospital. The study encompassed 172 subjects, of whom 46 were treated hypertonics aged 40-55 (49) years, and 44 age-matched, normotensive volunteers as controls. We also investigated 41 normotonics with FT aged 20-30 (25) years and 41 age-and sex-matched controls without FT. Using high-resolution ultrasound, BA diameters at rest, during reactive hyperaemia (endothelium-dependent dilation) and after sublingual glyceryl trinitrate (GTN) application (endothelium-independent dilation) were measured. In hypertonics FMD was significantly lower than in controls [2.4 (2.9) vs. 7.4 (2.5)%; P < 0.00005], as was GTN-induced dilation [12.1 (4.3) vs. 16.1 (4.6)%; P=0.0007]. In subjects with FT, FMD was also decreased compared with the control group [5.8 (4.1) vs. 10.0 (3.0)%; P < 0.00005]. The response to GTN was comparable in both groups of young subjects. FMD was negatively related to insulin concentration in all subjects studied (P < 0.00005). In treated patients with EH, flow-mediated dilation of the BA as well as endothelium-independent dilation are decreased. In individuals with FT the endothelial function of the peripheral arteries is also altered in the absence of elevated blood pressure. Endothelial dysfunction is related to hyperinsulinaemia/insulin resistance, which could be one of the pathogenetic determinants of EH and its complications.

  13. Is the association between flow-mediated dilation and cardiovascular risk limited to low-risk populations?

    PubMed

    Witte, Daniel R; Westerink, Jan; de Koning, Eelco J; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L

    2005-06-21

    The aim of this research was to study whether the relation between endothelial function measured by flow-mediated dilation (FMD) of the brachial artery and cardiovascular risk factors is affected by the baseline cardiovascular risk. Flow-mediated dilation of the brachial artery is widely used as a measure of endothelial function. Relations between FMD and most cardiovascular risk factors have been described. We performed a meta-regression analysis of 211 selected articles (399 populations) reporting on FMD and cardiovascular risk factors. Mean values of FMD; age; proportion of men; proportion of smokers; blood pressure; lipids; glucose; and the presence of diabetes mellitus, of hyperlipidemia, and of hypertension were retrieved from the articles. The 10-year risk of coronary heart disease (CHD) for each population was estimated based on the Framingham risk score. The relation between FMD and cardiovascular risk factors was assessed within each risk category by linear regression analysis, adjusting for age and gender, and weighted for the study size. A relation between FMD and cardiovascular risk factors was most clear in the category with lowest baseline risk (below 2.8% per decade). In populations with low baseline risk, for each % increase in Framingham risk, FMD decreased by 1.42% (95% confidence interval: 0.65 to 2.19). In medium- and high-risk populations, FMD was not related to risk (-0.02% [-0.27 to 0.22] and 0.06% [-0.02 to 0.13], respectively). These findings were independent of differences in brachial lumen diameter and technical aspects of the FMD measurement. Only in populations at low risk, endothelial function measured by FMD is related to the principal cardiovascular risk factors, and to the estimated 10-year risk of CHD.

  14. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter?

    PubMed

    Green, Daniel J; Jones, Helen; Thijssen, Dick; Cable, N T; Atkinson, Greg

    2011-03-01

    Endothelial dysfunction is an early atherosclerotic event that precedes clinical symptoms and may also render established plaque vulnerable to rupture. Noninvasive assessment of endothelial function is commonly undertaken using the flow-mediated dilation (FMD) technique. Some studies indicate that FMD possesses independent prognostic value to predict future cardiovascular events that may exceed that associated with traditional risk factor assessment. It has been assumed that this association is related to the proposal that FMD provides an index of endothelium-derived nitric oxide (NO) function. Interestingly, placement of the occlusion cuff during the FMD procedure alters the shear stress stimulus and NO dependency of the resulting dilation: cuff placement distal to the imaged artery leads to a largely NO-mediated response, whereas proximal cuff placement leads to dilation which is less NO dependent. We used this physiological observation and the knowledge that prognostic studies have used both approaches to examine whether the prognostic capacity of FMD is related to its role as a putative index of NO function. In a meta-analysis of 14 studies (>8300 subjects), we found that FMD derived using a proximal cuff was at least as predictive as that derived using distal cuff placement, despite the latter being more NO dependent. This suggests that, whilst FMD is strongly predictive of future cardiovascular events, this may not solely be related to its assumed NO dependency. Although this finding should be confirmed with more and larger studies, we suggest that any direct measure of vascular (endothelial) function may provide independent prognostic information in humans.

  15. Relations of Arterial Stiffness and Brachial Flow-Mediated Dilation With New-Onset Atrial Fibrillation: The Framingham Heart Study.

    PubMed

    Shaikh, Amir Y; Wang, Na; Yin, Xiaoyan; Larson, Martin G; Vasan, Ramachandran S; Hamburg, Naomi M; Magnani, Jared W; Ellinor, Patrick T; Lubitz, Steven A; Mitchell, Gary F; Benjamin, Emelia J; McManus, David D

    2016-09-01

    The relations of measures of arterial stiffness, pulsatile hemodynamic load, and endothelial dysfunction to atrial fibrillation (AF) remain poorly understood. To better understand the pathophysiology of AF, we examined associations between noninvasive measures of vascular function and new-onset AF. The study sample included participants aged ≥45 years from the Framingham Heart Study offspring and third-generation cohorts. Using Cox proportional hazards regression models, we examined relations between incident AF and tonometry measures of arterial stiffness (carotid-femoral pulse wave velocity), wave reflection (augmentation index), pressure pulsatility (central pulse pressure), endothelial function (flow-mediated dilation), resting brachial arterial diameter, and hyperemic flow. AF developed in 407/5797 participants in the tonometry sample and 270/3921 participants in the endothelial function sample during follow-up (median 7.1 years, maximum 10 years). Higher augmentation index (hazard ratio, 1.16; 95% confidence interval, 1.02-1.32; P=0.02), baseline brachial artery diameter (hazard ratio, 1.20; 95% confidence interval, 1.01-1.43; P=0.04), and lower flow-mediated dilation (hazard ratio, 0.79; 95% confidence interval, 0.63-0.99; P=0.04) were associated with increased risk of incident AF. Central pulse pressure, when adjusted for age, sex, and hypertension (hazard ratio, 1.14; 95% confidence interval, 1.02-1.28; P=0.02) was associated with incident AF. Higher pulsatile load assessed by central pulse pressure and greater apparent wave reflection measured by augmentation index were associated with increased risk of incident AF. Vascular endothelial dysfunction may precede development of AF. These measures may be additional risk factors or markers of subclinical cardiovascular disease associated with increased risk of incident AF. © 2016 American Heart Association, Inc.

  16. Vascular endothelial function and oxidative stress mechanisms in patients with Behçet's syndrome.

    PubMed

    Chambers, J C; Haskard, D O; Kooner, J S

    2001-02-01

    We sought to test the hypothesis that vascular endothelial function is impaired in Behçet's syndrome and reflects increased levels of oxidative stress. Behçet's syndrome is a multisystem inflammatory disorder commonly complicated by vascular thrombosis and arterial aneurysm formation. The precise mechanisms underlying vascular disease in Behçet's syndrome are not known. We studied 19 patients with Behçet's syndrome (18 to 50 years old, 9 men) and 21 healthy volunteers (18 to 50 years old, 10 men). Brachial artery flow-mediated dilation (endothelium-dependent), and nitroglycerin (NTG)-induced dilation (endothelium-independent) were measured. To investigate oxidative stress mechanisms, vascular studies were repeated 1 h after administration of vitamin C (1 g, intravenous) in 12 patients and 12 control subjects. Flow-mediated dilation was reduced in patients with Behcet's syndrome as compared with control subjects (0.7 +/- 0.9% vs. 5.7 +/- 0.9%, p = 0.001). In contrast, there were no significant differences in the brachial artery diameter (4.2 +/- 0.2 vs. 4.0 +/- 0.2 mm, p = 0.47) or NTG-induced dilation (19.7 +/- 1.9% vs. 19.7 +/- 1.2%, p = 0.98). In regression analysis, Behçet's syndrome was associated with impaired flow-mediated dilation independent of age, gender, brachial artery diameter, blood pressure, cholesterol and glucose. Vitamin C increased flow-mediated dilation in Behçet's syndrome (0.2 +/- 0.7% to 3.5 +/- 1.0%, p = 0.002), but not in control subjects (4.3 +/- 0.6% to 4.7 +/- 0.4%, p = 0.51). In both groups, NTG-induced dilation and brachial artery diameter were unchanged after vitamin C treatment. Vascular endothelial function is impaired in Behcet's syndrome and can be rapidly improved by vitamin C treatment. Our results support a role for oxidative stress in the pathophysiology of Behçet's syndrome and provide a rationale for therapeutic studies aimed at reducing vascular complications in this disorder.

  17. Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults.

    PubMed

    Rossman, Matthew J; Santos-Parker, Jessica R; Steward, Chelsea A C; Bispham, Nina Z; Cuevas, Lauren M; Rosenberg, Hannah L; Woodward, Kayla A; Chonchol, Michel; Gioscia-Ryan, Rachel A; Murphy, Michael P; Seals, Douglas R

    2018-06-01

    Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period ( P <0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo ( P <0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P <0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo ( P <0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo ( P <0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P >0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023. © 2018 American Heart Association, Inc.

  18. Digital ulcers in systemic sclerosis: role of flow-mediated dilatation and capillaroscopy as risk assessment tools.

    PubMed

    Silva, Ivone; Loureiro, Tiago; Teixeira, Andreia; Almeida, Isabel; Mansilha, Armando; Vasconcelos, Carlos; Almeida, Rui

    2015-01-01

    The aim of this study was to evaluate macrovascular endothelial dysfunction and microvascular damage as clinical markers of peripheral microangiopathy in patients with Raynaud's phenomenon (RP). Seventy-seven secondary RP with systemic sclerosis, 32 primary RP and 34 healthy controls were included in our study. Secondary RP patients were divided into two subgroups: 39 with digital ulcers (DU) and 38 without digital ulcers (non-DU). Patients with DU had significantly lower flow-mediated dilatation values (5.34 ± 7.49%) compared to non-DU patients (16.21 ± 11.31%), primary RP (17.96 ± 12.78%) and controls (20.17 ± 8.86%), p<0.001, favouring macrovascular endothelium dysfunction. Regarding microvascular damage, the DU group had a predominately capillaroscopic late pattern (71.1%) whereas non-DU patients had an active pattern (56.4%). The microangiopathy evolution score was significantly higher in the DU group compared to the non-DU group (4.79 ± 1.82 vs. 1.79 ± 1.56, p<0.001). Flow-mediated dilation was significantly lower in late pattern (6.13 ± 7.09%) compared to active (12.58 ± 10.66%) and early patterns (17.72 ± 14.90%), p = 0.016 and p = 0.044 respectively. Low flow-mediated dilatation and microvascular damage in capillaroscopy are early clinical markers of DU risk in RP patients.

  19. Effect of repeated sprints on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

    PubMed

    Sedgwick, Matthew J; Morris, John G; Nevill, Mary E; Barrett, Laura A

    2015-01-01

    This study investigated whether repeated, very short duration sprints influenced endothelial function (indicated by flow-mediated dilation) and triacylglycerol concentrations following the ingestion of high-fat meals in adolescent boys. Nine adolescent boys completed two, 2-day main trials (control and exercise), in a counter-balanced, cross-over design. Participants were inactive on day 1 of the control trial but completed 40 × 6 s maximal cycle sprints on day 1 of the exercise trial. On day 2, capillary blood samples were collected and flow-mediated dilation measured prior to, and following, ingestion of a high-fat breakfast and lunch. Fasting flow-mediated dilation and plasma triacylglycerol concentration were similar in the control and exercise trial (P > 0.05). In the control trial, flow-mediated dilation was reduced by 20% and 27% following the high-fat breakfast and lunch; following exercise these reductions were negated (main effect trial, P < 0.05; interaction effect trial × time, P < 0.05). The total area under the plasma triacylglycerol concentration versus time curve was 13% lower on day 2 in the exercise trial compared to the control trial (8.65 (0.97) vs. 9.92 (1.16) mmol · l(-1) · 6.5 h, P < 0.05). These results demonstrate that repeated 6 s maximal cycle sprints can have beneficial effects on postprandial endothelial function and triacylglycerol concentrations in adolescent boys.

  20. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study.

    PubMed

    Anderson, Todd J; Charbonneau, Francois; Title, Lawrence M; Buithieu, Jean; Rose, M Sarah; Conradson, Heather; Hildebrand, Kathy; Fung, Marinda; Verma, Subodh; Lonn, Eva M

    2011-01-18

    Biomarkers of atherosclerosis may refine clinical decision making in individuals at risk of cardiovascular disease. The purpose of the study was to determine the prognostic significance of endothelial function and other vascular markers in apparently healthy men. The cohort consisted of 1574 men (age, 49.4 years) free of vascular disease. Measurements included flow-mediated dilation and its microvascular stimulus, hyperemic velocity, carotid intima-media thickness, and C-reactive protein. Cox proportional hazard models evaluated the relationship between vascular markers, Framingham risk score, and time to a first composite cardiovascular end point of vascular death, revascularization, myocardial infarction, angina, and stroke. Subjects had low median Framingham risk score (7.9%). Cardiovascular events occurred in 71 subjects (111 events) over a mean follow-up of 7.2±1.7 years. Flow-mediated dilation was not associated with subsequent cardiovascular events (hazard ratio, 0.92; P=0.54). Both hyperemic velocity (hazard ratio, 0.70; 95% confidence interval, 0.54 to 0.90; P=0.006) and carotid intima-media thickness (hazard ratio, 1.45; confidence interval, 1.15 to 1.83; P=0.002) but not C-reactive protein (P=0.35) were related to events in a multivariable analysis that included Framingham risk score (per unit SD). Furthermore, the addition of hyperemic velocity to Framingham risk score resulted in a net clinical reclassification improvement of 28.7% (P<0.001) after 5 years of follow-up in the intermediate-risk group. Overall net reclassification improvement for hyperemic velocity was 6.9% (P=0.24). In men, hyperemic velocity, the stimulus for flow-mediated dilation, but not flow-mediated dilation itself was a significant risk marker for adverse cardiovascular outcomes. The prognostic value was additive to traditional risk factors and carotid intima-media thickness. Hyperemic velocity, a newly described marker of microvascular function, is a novel tool that may improve risk stratification of lower-risk healthy men.

  1. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio

    2012-09-01

    Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (P<0.05). After white chocolate ingestion, flow-mediated dilation was reduced after OGTT from 7.88±0.68 to 6.07±0.76 (P=0.027), 6.74±0.51 (P=0.046) at 1 and 2 h after the glucose load, respectively. Similarly, after white chocolate but not after dark chocolate, wave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.

  2. Aortic assessment of bicuspid aortic valve patients and their first-degree relatives.

    PubMed

    Straneo, Pablo; Parma, Gabriel; Lluberas, Natalia; Marichal, Alvaro; Soca, Gerardo; Cura, Leandro; Paganini, Juan J; Brusich, Daniel; Florio, Lucia; Dayan, Victor

    2017-03-01

    Background Bicuspid aortic valve patients have an increased risk of aortic dilatation. A deficit of nitric oxide synthase has been proposed as the causative factor. No correlation between flow-mediated dilation and aortic diameter has been performed in patients with bicuspid aortic valves and normal aortic diameters. Being a hereditary disease, we compared echocardiographic features and endothelial function in these patients and their first-degree relatives. Methods Comprehensive physical examinations, routine laboratory tests, transthoracic echocardiography, and measurements of endothelium-dependent and non-dependent flow-mediated vasodilatation were performed in 18 bicuspid aortic valve patients (14 type 1 and 4 type 2) and 19 of their first-degree relatives. Results The first-degree relatives were younger (36.7 ± 18.8 vs. 50.5 ± 13.9 years, p = 0.019) with higher ejection fractions (64.6% ± 1.7% vs. 58.4% ± 9.5%, p = 0.015). Aortic diameters indexed to body surface area were similar in both groups, the except the tubular aorta which was larger in bicuspid aortic valve patients (19.3 ± 2.7 vs. 17.4 ± 2.2 mm·m -2 , p = 0.033). Flow-dependent vasodilation was similar in both groups. A significant inverse correlation was found between non-flow-dependent vasodilation and aortic root diameter in patients with bicuspid aortic valve ( R = -0.57, p = 0.05). Conclusions Bicuspid aortic valve patients without aortopathy have larger ascending aortic diameters than their first-degree relatives. Endothelial function is similar in both groups, and there is no correlation with ascending aorta diameter. Nonetheless, an inverse correlation exists between non-endothelial-dependent dilation and aortic root diameter in bicuspid aortic valve patients.

  3. Effect of fructose and sucralose on flow-mediated vasodilatation in healthy, white European males.

    PubMed

    Memon, Muhammad Qasim; Simpson, Elizabeth Jane; Macdonald, Ian Andrew

    2014-07-01

    To assess how acute consumption of fructose affects flow-mediated dilatation in brachial artery. The randomised cross-over study was conducted at the University of Nottingham's Medical School, Nottingham, United Kingdom in July 2009. Ten healthy, white European males visited the laboratory twice, on separate mornings. On each visit, the volunteers consumed water (3 ml/kg bodyweight) and rested semi-supine on the bed. After 30 minutes, baseline diastolic brachial artery diameter and blood velocity was measured. At 60 minutes, blood velocity and five scans of brachial artery diameter were recorded before a blood pressure cuff was inflated on the forearm for 5 minutes and at 50-60-70-80 and 90 sec after cuff deflation. Fifteen minutes later, the volunteers consumed 500 ml of test-drink containing either fructose (0.75 g/kg bodyweight) or sucralose (sweetness-matched with fructose drink); 45 minutes later, baseline and flow-mediated dilatation was re-measured. Pre-drink and post-drink baseline values were similar on two occasions (p > 0.05). Brachial artery diameter increased (p < 0.05) by 7 +/- 3% pre-fructose and by 6.9 +/- 3% above baseline values post-fructose with no significant difference in these responses (p < 0.15). It increased (p < 0.05) by 5.9 +/- 3% above baseline before and by 6.7 +/- 2% (p < 0.01) after sucralose; a significant difference was noted in these flow-mediated dilatation responses (p < 0.02). Responses before and after sucralose were not different from those before and after fructose (p < 0.294). Acute ingestion of fructose or sucralose had no effect on flow-mediated dilatation measured at brachial artery.

  4. A new clinical method for the assessment of penile endothelial function using the flow mediated dilation with plethysmography technique.

    PubMed

    Dayan, Lior; Greunwald, Illan; Vardi, Yoram; Jacob, Giris

    2005-04-01

    Penile endothelial function (EnF) is 1 of the major factors involved in the pathophysiology of erectile dysfunction. EnF assessment could offer crucial information on the etiology and degree of severity of cavernosal vascular pathology. In the present study we propose a new technique for the evaluation of penile EnF and test its applicability using strain gauge plethysmography. A total of 23 healthy subjects (13 younger and 10 older than 40 years) with no history of erectile dysfunction were studied. The flow mediated dilation technique was applied to the arm and penis in both age groups for the assessment of EnF. Baseline blood flow and the sequential flow recordings after rapid cessation of 5 minutes of ischemia were obtained in both organs. Baseline flow in the penis was significantly higher (approximately 3-fold) than that in the forearm and was not affected by age in either organ. Both measures of penile EnF, ie area under the flow-time curve (AUC) and maximal flow obtained after ischemia were significantly lower in the older group compared to the younger group (p <0.01 and p <0.02, respectively). Individual penile AUC and maximal flow were significantly correlated with age (r = 0.55, p <0.01 and r = 0.50, p <0.02, respectively). Finally a positive, significant correlation existed between penile and forearm AUC (p <0.05, r = 0.48). The implementation of the flow mediated dilation technique using mercury strain gauge plethysmography is simple and applicable for the assessment of penile EnF. Endothelial function parameters in the penis were found to correlate with those in the forearm, thus support for the validity of the technique is given. Further strength for the validity of this procedure in the penis comes from the comparison between the forearm and penis, and the relation to subject age.

  5. Endothelial and kidney function in women with a history of preeclampsia and healthy parous controls: A case control study.

    PubMed

    Lopes van Balen, Veronica A; Spaan, Julia J; Cornelis, Tom; Heidema, Wieteke M; Scholten, Ralph R; Spaanderman, Marc E A

    2018-03-01

    Preeclampsia (PE) is a pregnancy related endothelial disease characterized by hypertension and albuminuria. Postpartum endothelial dysfunction often persists in these women. We postulate that in women with a history of PE reduced endothelial dependent vasodilation coincides with attenuated kidney function, as both reflect endothelial dysfunction. We assessed endothelial and kidney function in women with a history of PE (n=79) and uncomplicated pregnancies (n=49) at least 4years postpartum. Women with hypertension, diabetes or kidney disease prior to pregnancy were excluded. Brachial artery flow mediated dilatation (FMD) was measured and analysed by a custom designed edge-detection and wall-tracking software. We measured albumin and creatinine levels in a 24-h urine sample and calculated glomerular filtration rate (GFR) by CKD-EPI. Women with a history of PE had lower FMD but comparable GFR and albumin creatinine ratio (ACR) compared with controls. Independent of obstetric history, in both controls and women with a history of PE respectively, GFR (r=0.19, p=0.17 and r=0.12, p=0.29) and albumin creatinine ratio (r=0.07, p=0.62 and r=0.06 p=0.57) did not correlate with FMD. At least 4years after pregnancy, women with a history of PE demonstrated decreased flow mediated dilatation when compared to healthy parous controls. In this study, decreased flow mediated dilation however did not coincide with decreased kidney function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  7. Short-term increases in pressure and shear stress attenuate age-related declines in endothelial function in skeletal muscle feed arteries.

    PubMed

    Seawright, John W; Luttrell, Meredith; Trache, Andreea; Woodman, Christopher R

    2016-07-01

    We tested the hypothesis that exposure to a short-term (1 h) increase in intraluminal pressure and shear stress (SS), to mimic two mechanical signals associated with a bout of exercise, improves nitric oxide (NO)-mediated endothelium-dependent dilation in aged soleus muscle feed arteries (SFA). In addition, we hypothesized that pressure and SS would interact to produce greater improvements in endothelial function than pressure alone. SFA from young (4 months) and old (24 months) Fischer 344 rats were cannulated and pressurized at 90 (P90) or 130 (P130) cmH2O and exposed to no SS (0 dyn/cm(2)) or high SS (~65 dyn/cm(2)) for 1 h. At the end of the 1 h treatment period, pressure in all P130 SFA was set to 90 cmH2O and no SS (0 dyn/cm(2)) for examination of endothelium-dependent [flow and acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] dilation. To evaluate the contribution of NO, vasodilator responses were assessed in the presence of N(ω)-nitro- l -arginine (L-NNA). Flow- and ACh-induced dilations were impaired in Old P90 SFA. Treatment with increased pressure + SS for 1 h improved flow- and ACh-induced dilations in old SFA. The beneficial effect of pressure + SS was abolished in the presence of L-NNA and was not greater than treatment with increased pressure alone. These results indicate that short-duration increases in pressure + SS improve NO-mediated endothelium-dependent dilation in aged SFA; however, pressure and SS do not interact to produce greater improvements in endothelial function than pressure alone.

  8. Characterizing Methods of Measuring Flow-Mediated Dilation in the Brachial Artery

    NASA Technical Reports Server (NTRS)

    Callender, Ariane R.

    2010-01-01

    Regulation of vascular tone is one of the many important functions of the vascular endothelium. Endothelial dysfunction is a critical early event in the pathogenesis of atherosclerosis and occurs in the absence of angiographic disease. Flow-Mediated Dilation (FMD) is a noninvasive technique commonly used to evaluate endothelium-dependent vasodilation in humans and gauge the health of the cardiovascular system. Reductions in brachial artery FMD have been strongly correlated with disease progression and are predictive of future cardiac events. The flow stimulus for brachial artery FMD occurs as a result of the increased shear stress following deflation of an occlusion cuff around the upper arm. Using 2-dimensional ultrasound, changes in arterial diameter up to 5-minutes following cuff deflation are calculated from baseline image measurements. Along with pulsed Doppler measures of flow velocity through the artery, flow-mediated, endothelium-dependent vasodilation can be assessed. There is debate among investigators, however, about the proper positioning of the occlusion cuff during FMD testing. It is thought that placement of the cuff around the upper arm may not accurately reflect the impact of nitric oxide, a critically important molecule released as a result of the increased shear stress created by the FMD technique. Data suggest that the production of other endogenous metabolites may also contribute to FMD-related changes when positioning the cuff around the upper arm. To overcome the potential influence of such molecules, researchers now suggest that the occlusion cuff be placed below the elbow allowing a more precise estimate of nitric oxide mediated dilation. The purpose of this study is to compare the differences in FMD between the two methodologies of occlusion cuff placement. In addition, this study will determine the method that is easier for ultrasound technicians to perform and will produce a low coefficient of variance between technicians. Ultimately, the results of this study will help in tracking any adverse cardiovascular effects of spaceflight.

  9. Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study.

    PubMed

    Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M

    2016-12-01

    Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.

  10. Flow mediated dilation of the brachial artery: an investigation of methods requiring further standardization

    PubMed Central

    Peretz, Alon; Leotta, Daniel F; Sullivan, Jeffrey H; Trenga, Carol A; Sands, Fiona N; Aulet, Mary R; Paun, Marla; Gill, Edward A; Kaufman, Joel D

    2007-01-01

    Background In order to establish a consistent method for brachial artery reactivity assessment, we analyzed commonly used approaches to the test and their effects on the magnitude and time-course of flow mediated dilation (FMD), and on test variability and repeatability. As a popular and noninvasive assessment of endothelial function, several different approaches have been employed to measure brachial artery reactivity with B-mode ultrasound. Despite some efforts, there remains a lack of defined normal values and large variability in measurement technique. Methods Twenty-six healthy volunteers underwent repeated brachial artery diameter measurements by B-mode ultrasound. Following baseline diameter recordings we assessed endothelium-dependent flow mediated dilation by inflating a blood pressure cuff either on the upper arm (proximal) or on the forearm (distal). Results Thirty-seven measures were performed using proximal occlusion and 25 with distal occlusion. Following proximal occlusion relative to distal occlusion, FMD was larger (16.2 ± 1.2% vs. 7.3 ± 0.9%, p < 0.0001) and elongated (107.2 s vs. 67.8 s, p = 0.0001). Measurement of the test repeatability showed that differences between the repeated measures were greater on average when the measurements were done using the proximal method as compared to the distal method (2.4%; 95% CI 0.5–4.3; p = 0.013). Conclusion These findings suggest that forearm compression holds statistical advantages over upper arm compression. Added to documented physiological and practical reasons, we propose that future studies should use forearm compression in the assessment of endothelial function. PMID:17376239

  11. Physiologically assessed hot flashes and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A

    2017-08-01

    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P < 0.05) indicated that among the younger tertile of women in the sample (age 40-53 years), the presence of hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  12. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults.

    PubMed

    Landers-Ramos, Rian Q; Corrigan, Kelsey J; Guth, Lisa M; Altom, Christine N; Spangenburg, Espen E; Prior, Steven J; Hagberg, James M

    2016-08-01

    Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.

  13. Impaired Endothelial Repair Capacity of Early Endothelial Progenitor Cells in Hypertensive Patients With Primary Hyperaldosteronemia: Role of 5,6,7,8-Tetrahydrobiopterin Oxidation and Endothelial Nitric Oxide Synthase Uncoupling.

    PubMed

    Chen, Long; Ding, Mei-Lin; Wu, Fang; He, Wen; Li, Jin; Zhang, Xiao-Yu; Xie, Wen-Li; Duan, Sheng-Zhong; Xia, Wen-Hao; Tao, Jun

    2016-02-01

    Although hyperaldosteronemia exerts detrimental impacts on vascular endothelium in addition to elevating blood pressure, the effects and molecular mechanisms of hyperaldosteronemia on early endothelial progenitor cell (EPC)-mediated endothelial repair after arterial damage are yet to be determined. The aim of this study was to investigate the endothelial repair capacity of early EPCs from hypertensive patients with primary hyperaldosteronemia (PHA). In vivo endothelial repair capacity of early EPCs from PHAs (n=20), age- and blood pressure-matched essential hypertension patients (n=20), and age-matched healthy subjects (n=20) was evaluated by transplantation into a nude mouse carotid endothelial denudation model. Endothelial function was evaluated by flow-mediated dilation of brachial artery in human subjects. In vivo endothelial repair capacity of early EPCs and flow-mediated dilation were impaired both in PHAs and in essential hypertension patients when compared with age-matched healthy subjects; however, the early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs were impaired more severely than essential hypertension patients. Oral spironolactone improved early EPC in vivo endothelial repair capacity and flow-mediated dilation of PHAs. Increased oxidative stress, oxidative 5,6,7,8-tetrahydrobiopterin degradation, endothelial nitric oxide synthase uncoupling and decreased nitric oxide production were found in early EPCs from PHAs. Nicotinamide adenine dinucleotide phosphate oxidase subunit p47(phox) knockdown or 5,6,7,8-tetrahydrobiopterin supplementation attenuated endothelial nitric oxide synthase uncoupling and enhanced in vivo endothelial repair capacity of early EPCs from PHAs. In conclusion, PHAs exhibited more impaired endothelial repair capacity of early EPCs than did essential hypertension patients independent of blood pressure, which was associated with mineralocorticoid receptor-dependent oxidative stress and subsequently 5,6,7,8-tetrahydrobiopterin degradation and endothelial nitric oxide synthase uncoupling. © 2015 American Heart Association, Inc.

  14. Acute increases in intraluminal pressure improve vasodilator responses in aged soleus muscle feed arteries.

    PubMed

    Seawright, John W; Luttrell, Meredith J; Woodman, Christopher R

    2014-10-01

    We tested the hypothesis that exposure to an acute increase in intraluminal pressure, to mimic pressure associated with a bout of exercise, improves nitric oxide (NO)-mediated endothelium-dependent dilation in aged soleus muscle feed arteries (SFA) and that improved endothelial function would persist after a 2 h recovery period. SFA from young (4-month) and old (24-month) Fischer 344 rats were cannulated and pressurized at 90 (P90) or 130 (P130) cmH2O for 60 min. At the end of the treatment period, pressure in the P130 SFA was lowered to 90 cmH2O for examination of endothelium-dependent [flow or acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation. To determine the role of NO, vasodilator responses were assessed in the presence of N (ω)-nitro-L-arginine (L-NNA). To determine whether the effects of pressure persisted following a recovery period at normal pressure, SFA were pressurized to 130 cmH2O for 60 min and subsequently lowered to 90 cmH2O for 2 h before assessing function. ACh- and flow-induced dilations were impaired in old SFA. Treatment with increased pressure for 60 min improved ACh- and flow-induced dilations in old SFA. SNP-induced dilation was improved in old and young SFA. The beneficial effect of pressure treatment on ACh- and flow-induced dilation in old SFA was blocked by L-NNA and was not present following a 2 h recovery period. These results indicate that an acute increase in intraluminal pressure improves NO-mediated endothelium-dependent dilation in aged SFA; however, the beneficial effect does not persist after 2 h.

  15. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.

    PubMed

    Oh, Pyung Chun; Koh, Kwang Kon; Sakuma, Ichiro; Lim, Soo; Lee, Yonghee; Lee, Seungik; Lee, Kyounghoon; Han, Seung Hwan; Shin, Eak Kyun

    2014-10-20

    Experimental studies demonstrate that higher intake of omega-3 fatty acids (n-3 FA) improves insulin sensitivity, however, we reported that n-3 FA 2g therapy, most commonly used dosage did not significantly improve insulin sensitivity despite reducing triglycerides by 21% in patients. Therefore, we investigated the effects of different dosages of n-3 FA in patients with hypertriglyceridemia. This was a randomized, single-blind, placebo-controlled, parallel study. Age, sex, and body mass index were matched among groups. All patients were recommended to maintain a low fat diet. Forty-four patients (about 18 had metabolic syndrome/type 2 diabetes mellitus) in each group were given placebo, n-3 FA 1 (O1), 2 (O2), or 4 g (O4), respectively daily for 2 months. n-3 FA therapy dose-dependently and significantly decreased triglycerides and triglycerides/HDL cholesterol and improved flow-mediated dilation, compared with placebo (by ANOVA). However, each n-3 FA therapy did not significantly decrease high-sensitivity C-reactive protein and fibrinogen, compared with placebo. O1 significantly increased insulin levels and decreased insulin sensitivity (determined by QUICKI) and O2 significantly decreased plasma adiponectin levels relative to baseline measurements. Of note, when compared with placebo, each n-3 FA therapy did not significantly change insulin, glucose, adiponectin, glycated hemoglobin levels and insulin sensitivity (by ANOVA). We observed similar results in a subgroup of patients with the metabolic syndrome. n-3 FA therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation. Nonetheless, n-3 FA therapy did not significantly improve acute-phase reactants and insulin sensitivity in patients with hypertriglyceridemia, regardless of dosages. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease.

    PubMed

    Lekakis, John; Rallidis, Loukianos S; Andreadou, Ioanna; Vamvakou, Georgia; Kazantzoglou, Georgios; Magiatis, Prokopios; Skaltsounis, Alexios-Leandros; Kremastinos, Dimitrios T

    2005-12-01

    It has been shown that acute intake of red wine improves endothelial-dependent vasodilatation. It is not clear, however, which constituents of red wine are responsible for this effect. We examined whether acute intake of a red grape polyphenol extract has a positive effect on brachial artery flow-mediated dilatation. We recruited 30 male patients with coronary heart disease. They were randomly assigned either to a red grape polyphenol extract (600 mg) dissolved in 20 ml of water (n = 15) or 20 ml of water (placebo) (n = 15). The extract of grapes contained 4.32 mg epicatechin, 2.72 mg catechin, 2.07 mg gallic acid, 0.9 mg trans-resveratrol, 0.47 mg rutin, 0.42 mg epsilon-viniferin, 0.28 mg, p-coumaric acid, 0.14 mg ferulic acid and 0.04 mg quercetin per gram. Flow-mediated dilatation of the brachial artery was evaluated after reactive hyperemia induced by cuff obstruction of the forearm, using high-resolution ultasonography. Particularly, flow-mediated dilatation was measured after fasting and 30, 60 and 120 min after the intake of the grape extract or placebo. Intake of the red grape polyphenol extract caused an increase in flow-mediated dilatation, peaking at 60 min, which was significantly higher than the baseline values (4.52+/-1.34 versus 2.6+/-1.5%; P < 0.001) and the corresponding values at 60 min after the intake of placebo (4.52+/-1.34 versus 2.64+/-1.8%, P < 0.001). There was no change in FMD values after the intake of placebo throughout the whole duration of the study. Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. These results could probably, at least partly, explain the favorable effects of red wine on the cardiovascular system.

  17. Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Schimke, Jane E.; Gutterman, David D.

    2013-01-01

    Objective To determine the prevalence of the 3 components of the female athlete triad [disordered eating, menstrual dysfunction, low bone mineral density (BMD)] and their relationships with brachial artery flow-mediated dilation in professional dancers. Design Prospective study. Setting Academic institution in the Midwest. Participants Twenty-two professional ballet dancers volunteered for this study. Interventions The prevalence of the female athlete triad and its relationship to endothelial dysfunction. Main Outcome Measures Subjects completed questionnaires to assess disordered eating and menstrual status/history. They also completed a 3-day food record and wore an accelerometer for 3 days to determine energy availability. Serum baseline thyrotropin, prolactin, and hormonal concentrations were obtained. Bone mineral density and body composition were measured with a GE Lunar Prodigy dual-energy X-ray absorptiometry. Endothelial function was determined as flow-mediated vasodilation measured by high-frequency ultrasound in the brachial artery. An increase in brachial diameter <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Results Seventeen dancers (77%) had evidence of low/negative energy availability. Thirty-two percent had disordered eating (EDE-Q score). Thirty-six percent had menstrual dysfunction and 14% were currently using hormone contraception. Twenty-three percent had evidence of low bone density (Z-score < −1.0). Sixty-four percent had abnormal brachial artery flow-mediated dilation (<5%). Flow-mediated dilation values were significantly correlated with serum estrogen and whole-body and lumbar BMD. All the 3 components of the triad plus endothelial dysfunction were present in 14% of the subjects. Conclusions Endothelial dysfunction was correlated with reduced BMD, menstrual dysfunction, and low serum estrogen. These findings may have profound implications for cardiovascular and bone health in professional women dancers. PMID:21358502

  18. Flow-mediated Dilation: Can New Approaches Provide Greater Mechanistic Insight into Vascular Dysfunction in Preeclampsia and Other Diseases?

    PubMed Central

    Weissgerber, Tracey L.

    2015-01-01

    Endothelial dysfunction is a key feature of preeclampsia, and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction and the shear stimulus. This review encourages researchers to think beyond “low FMD” by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia, while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for three years post-partum. However, FMD returns to normal by ten years post-partum. Studies using new protocols are needed to gain more mechanistic insight. PMID:25182159

  19. Flow-mediated dilation: can new approaches provide greater mechanistic insight into vascular dysfunction in preeclampsia and other diseases?

    PubMed

    Weissgerber, Tracey L

    2014-11-01

    Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.

  20. Influence of pregnancy and smoking on brachial artery flow-mediated dilation values and time until maximum response.

    PubMed

    Nicolau, Luis G C; Martins, Wellington P; Gallarreta, Francisco M P; Lima, Jailson C; Filho, Francisco Mauad

    2011-08-01

    To evaluate the effect of pregnancy and smoking on endothelial function using brachial artery flow-mediated dilation (FMD) and to determine the time necessary until the occurrence of maximum brachial artery dilation after stimulus. This study was an observational study evaluating 133 women, who were grouped as follows: non-smoking pregnant women (N = 47), smoking pregnant women (N = 33), non-smoking women (N = 34), and smoking pregnant women (N = 19). The diameter of the brachial artery was measured at baseline and at 30, 60, 90 and 120 s after stimulus. The relative change of brachial artery was determined for each of these four moments. FMD measured at 60 s after stimulus was compared between the groups. The maximum FMD was observed at 60 s after cuff release in all groups. FMD was greater among non-smoking pregnant women compared to smoking pregnant women (11.50 ± 5.77 vs. 8.74 ± 4.83; p = 0.03) and also between non-smoking non-pregnant women compared to smoking non-pregnant women (10.52 ± 4.76 vs. 7.21 ± 5.57; p = 0.03). Maximum FMD was observed approximately 60 s after stimulus in all groups regardless of smoking and pregnancy status. The smoking habit seems to lead to endothelial dysfunction both in pregnant and non-pregnant women, as demonstrated by the lower FMD in smokers.

  1. A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images.

    PubMed

    Gemignani, Vincenzo; Faita, Francesco; Ghiadoni, Lorenzo; Poggianti, Elisa; Demi, Marcello

    2007-03-01

    The measurement of the brachial artery diameter is frequently used in clinical studies for evaluating the flow-mediated dilation and, in conjunction with the blood pressure value, for assessing arterial stiffness. This paper presents a system for computing the brachial artery diameter in real-time by analyzing B-mode ultrasound images. The method is based on a robust edge detection algorithm which is used to automatically locate the two walls of the vessel. The measure of the diameter is obtained with subpixel precision and with a temporal resolution of 25 samples/s, so that the small dilations induced by the cardiac cycle can also be retrieved. The algorithm is implemented on a standalone video processing board which acquires the analog video signal from the ultrasound equipment. Results are shown in real-time on a graphical user interface. The system was tested both on synthetic ultrasound images and in clinical studies of flow-mediated dilation. Accuracy, robustness, and intra/inter observer variability of the method were evaluated.

  2. Tea-induced improvement of endothelial function in humans: No role for epigallocatechin gallate (EGCG).

    PubMed

    Lorenz, Mario; Rauhut, Franziska; Hofer, Christine; Gwosc, Stefanie; Müller, Eda; Praeger, Damaris; Zimmermann, Benno F; Wernecke, Klaus-Dieter; Baumann, Gert; Stangl, Karl; Stangl, Verena

    2017-05-23

    Consumption of tea is inversely associated with cardiovascular diseases. However, the active compound(s) responsible for the protective effects of tea are unknown. Although many favorable cardiovascular effects in vitro are mediated by epigallocatechin gallate (EGCG), its contribution to the beneficial effects of tea in vivo remains unresolved. In a randomised crossover study, a single dose of 200 mg EGCG was applied in three different formulas (as green tea beverage, green tea extract (GTE), and isolated EGCG) to 50 healthy men. Flow-mediated dilation (FMD) and endothelial-independent nitro-mediated dilation (NMD) was measured before and two hours after ingestion. Plasma levels of tea compounds were determined after each intervention and correlated with FMD. FMD significantly improved after consumption of green tea containing 200 mg EGCG (p < 0.01). However, GTE and EGCG had no significant effect on FMD. NMD did not significantly differ between interventions. EGCG plasma levels were highest after administration of EGCG and lowest after consumption of green tea. Plasma levels of caffeine increased after green tea consumption. The results show that EGCG is most likely not involved in improvement of flow-mediated dilation by green tea. Instead, other tea compounds, metabolites or combinations thereof may play a role.

  3. Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; van Lotringen, Jaap H; Hopman, Maria T E; Thijssen, Dick H J

    2014-09-01

    Positive vascular effects of exercise training are mediated by acute increases in blood flow. Type 2 diabetes patients show attenuated exercise-induced increases in blood flow, possibly mediated by the endothelin pathway, preventing an optimal stimulus for vascular adaptation. We examined the impact of endothelin receptor blockade (bosentan) on exercise-induced blood flow in the brachial artery and on pre- and postexercise endothelial function in type 2 diabetes patients (n = 9, 60 ± 7 years old) and control subjects (n = 10, 60 ± 5 years old). Subjects reported twice to the laboratory to perform hand-grip exercise in the presence of endothelin receptor blockade or placebo. We examined brachial artery endothelial function (via flow-mediated dilatation) before and after exercise, as well as blood flow during exercise. Endothelin receptor blockade resulted in a larger increase in blood flow during exercise in type 2 diabetes patients (P = 0.046), but not in control subjects (P = 0.309). Exercise increased shear rate across the exercise protocol, unaffected by endothelin receptor blockade. Exercise did not alter brachial artery diameter in either group, but endothelin receptor blockade resulted in a larger brachial artery diameter in type 2 diabetes patients (P = 0.033). Exercise significantly increased brachial artery flow-mediated dilatation in both groups, unaffected by endothelin receptor blockade. Endothelin receptor blockade increased exercise-induced brachial artery blood flow in type 2 diabetes patients, but not in control subjects. Despite this effect of endothelin receptor blockade on blood flow, we found no impact on baseline or post-exercise endothelial function in type 2 diabetes patients or control subjects, possibly related to normalization of the shear stimulus during exercise. The successful increase in blood flow during exercise in type 2 diabetes patients through endothelin receptor blockade may have beneficial effects in repeated exercise training. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  4. Effect of Intermittent Energy Restriction on Flow Mediated Dilatation, a Measure of Endothelial Function: A Short Report.

    PubMed

    Headland, Michelle L; Clifton, Peter M; Keogh, Jennifer B

    2018-06-04

    Intermittent energy restriction is a popular alternative to daily energy restriction for weight loss; however, it is unknown if endothelial function, a risk factor for cardiovascular disease, is altered by periods of severe energy restriction. The objective of the study was to determine the impact of two consecutive very low energy intake days, which is the core component of the 5:2 intermittent energy restriction diet strategy, on endothelial function compared to consecutive ad libitum eating days. The secondary objective was to explore the effects of these dietary conditions on fasting glucose concentrations. This was a 4-week randomized, single-blinded, crossover study of 35 participants. Participants consumed a very low energy diet (500 calories for women, 600 calories for men) on two consecutive days per week and 5 days of habitual eating. In weeks 3 and 4 of the trial, participants had measurements of flow mediated dilatation (FMD) and blood samples taken following either 2 habitual eating days or 2 energy restricted days in a randomized order. FMD values were not different after the two eating states (8.6% vs. 8.3%, p = 0.7). All other outcome variables were unchanged. Endothelial function, as measured by flow mediated dilatation, was not altered by two consecutive very low energy intake days. Further investigations assessing the impact in specific population groups as well as different testing conditions would be beneficial.

  5. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus.

    PubMed

    Moreno, Beatriz; de Faria, Ana Paula; Ritter, Alessandra Mileni Versuti; Yugar, Lara Buonalumi Tacito; Ferreira-Melo, Silvia Elaine; Amorim, Rivadavio; Modolo, Rodrigo; Fattori, André; Yugar-Toledo, Juan Carlos; Coca, Antonio; Moreno, Heitor

    2018-05-01

    This study aimed to evaluate the effects of glycated hemoglobin (HbA 1c ) on flow-mediated dilation, intima-media thickness, pulse wave velocity, and left ventricular mass index in patients with resistant hypertension (RHTN) comparing RHTN-controlled diabetes mellitus and RHTN-uncontrolled type 2 diabetes mellitus. Two groups were formed: HbA 1c <7.0% (RHTN-controlled diabetes mellitus: n = 98) and HbA 1c ≥7.0% (RHTN-uncontrolled diabetes mellitus: n = 122). Intima-media thickness and flow-mediated dilation were measured by high-resolution ultrasound, left ventricular mass index by echocardiography, and arterial stiffness by carotid-femoral pulse wave velocity. No differences in blood pressure levels were found between the groups but body mass index was higher in patients with RHTN-uncontrolled diabetes mellitus. Endothelial dysfunction and arterial stiffness were worse in patients with RHTN-uncontrolled diabetes mellitus. Intima-media thickness and left ventricular mass index measurements were similar between the groups. After adjustments, multiple linear regression analyses showed that HbA 1c was an independent predictor of flow-mediated dilation and pulse wave velocity in all patients with RHTN. In conclusion, HbA 1c may predict the grade of arterial stiffness and endothelial dysfunction in patients with RHTN, and superimposed uncontrolled diabetes mellitus implicates further impairment of vascular function. ©2018 Wiley Periodicals, Inc.

  6. Flow-mediated dilation and exercise blood pressure in healthy adolescents

    USDA-ARS?s Scientific Manuscript database

    Objectives: Atherosclerosis is a process that begins in youth. The endothelium plays an essential role in regulating blood flow and protecting against progression of the initial stages of the atherosclerotic process. Few studies have investigated the relationship between aerobic fitness and exerc...

  7. Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function.

    PubMed

    Naka, Katerina K; Tweddel, Ann C; Doshi, Sagar N; Goodfellow, Jonathan; Henderson, Andrew H

    2006-02-01

    To test whether measuring hyperaemic changes in pulse wave velocity (PWV) could be used as a new method of assessing endothelial function for use in clinical practice. Flow-mediated changes in vascular tone may be used to assess endothelial function and may be induced by distal hyperaemia, while endothelium-mediated changes in vascular tone can influence PWV. These three known principles were combined to provide and test a novel method of measuring endothelial function by the acute effects of distal hyperaemia on upper and lower limb PWV (measured by a recently developed method). Flow-mediated changes in upper and lower limb PWV were compared in 17 healthy subjects and seven patients with stable chronic heart failure (CHF), as a condition where endothelial function is impaired but endothelium-independent dilator responses are retained. Corroborative measurements of PWV and brachial artery diameter responses to endothelium-dependent and -independent pharmacological stimuli were performed in a further eight healthy subjects. Flow-mediated reduction of PWV (by 14% with no change in blood pressure) was found in normal subjects but was almost abolished in patients with CHF. PWV responses appear to be inversely related to and relatively greater than brachial artery diameter responses. The method may offer potential advantages of practical use and sensitivity over conduit artery diameter responses to measure endothelial dysfunction.

  8. Relations among Adiposity and Insulin Resistance with Flow-Mediated Dilation, Carotid Intima-Media Thickness, and Arterial Stiffness in Children.

    PubMed

    Ryder, Justin R; Dengel, Donald R; Jacobs, David R; Sinaiko, Alan R; Kelly, Aaron S; Steinberger, Julia

    2016-01-01

    To determine the associations of adiposity and insulin resistance with measures of vascular structure and function in children. A cross-sectional study included 252 children (age 15.1 ± 2.4 years; body mass index percentile 68.2 ± 26.5%; Tanner 2-5). Measurements of body fat percentage were obtained with dual-energy X-ray absorptiometry and visceral adipose tissue (VAT) with computed tomography. Insulin resistance was measured with hyperinsulinemic euglycemic clamp. Vascular measurements for endothelial function (brachial artery flow-mediated dilation [FMD]), vascular structure (carotid intima-media thickness [cIMT]), vascular stiffness (carotid incremental elastic modulus), and pulse wave velocity were analyzed by tertiles of adiposity and insulin resistance. Additional analyses with ANCOVA and linear regression were adjusted for Tanner, sex, race, and family relationship; FMD was also adjusted for baseline artery diameter. FMD was positively associated with high adiposity (body mass index, body fat percentage, and VAT) (P < .01 all). Insulin resistance was not associated with FMD. cIMT was significantly, positively related to obesity, VAT, and insulin resistance (P < .05 all). No differences in carotid incremental elastic modulus and pulse wave velocity were observed in relation to adiposity or insulin resistance. The findings suggest that adiposity is associated with higher FMD, and insulin resistance and VAT are associated with higher cIMT in children. Further research is needed to clarify the progression of these relations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The pressure-dilatation correlation in compressible flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1992-01-01

    Simulations of simple compressible flows have been performed to enable the direct estimation of the pressure-dilatation correlation. The generally accepted belief that this correlation may be important in high-speed flows has been verified by the simulations. The pressure-dilatation correlation is theoretically investigated by considering the equation for fluctuating pressure in an arbitrary compressible flow. This leads to the isolation of a component of the pressure-dilatation that exhibits temporal oscillations on a fast time scale. Direct numerical simulations of homogeneous shear turbulence and isotropic turbulence show that this fast component has a negligible contribution to the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous turbulence is performed to obtain a formal solution for the nonoscillatory pressure-dilatation. Simplifications lead to a model that algebraically relates the pressure-dilatation to quantities traditionally obtained in incompressible turbulence closures. The model is validated by direct comparison with the simulations.

  10. Effect of cocoa/chocolate ingestion on brachial artery flow-mediated dilation and its relevance to cardiovascular health and disease in humans.

    PubMed

    Monahan, Kevin D

    2012-11-15

    Prospective studies indicate that high intake of dietary flavanols, such as those contained in cocoa/chocolate, are associated with reduced rates of cardiovascular-related morbidity and mortality in humans. Numerous mechanisms may underlie these associations such as favorable effects of flavanols on blood pressure, platelet aggregation, thrombosis, inflammation, and the vascular endothelium. The brachial artery flow-mediated dilation (FMD) technique has emerged as a robust method to quantify endothelial function in humans. Collectively, the preponderance of evidence indicates that FMD is a powerful surrogate measure for firm cardiovascular endpoints, such as cardiovascular-related mortality, in humans. Thus, literally thousands of studies have utilized this technique to document group differences in FMD, as well as to assess the effects of various interventions on FMD. In regards to the latter, numerous studies indicate that both acute and chronic ingestion of cocoa/chocolate increases FMD in humans. Increases in FMD after cocoa/chocolate ingestion appear to be dose-dependent such that greater increases in FMD are observed after ingestion of larger quantities. The mechanisms underlying these responses are likely diverse, however most data suggest an effect of increased nitric oxide bioavailability. Thus, positive vascular effects of cocoa/chocolate on the endothelium may underlie (i.e., be linked mechanistically to) reductions in cardiovascular risk in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Endothelial microparticles and vascular parameters in subjects with and without arterial hypertension and coronary artery disease.

    PubMed

    Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian

    2018-08-01

    Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31 + /41 - , CD62e + , and CD144 + surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.

  12. Effects of dietary carbohydrate restriction versus low-fat diet on flow-mediated dilation.

    PubMed

    Volek, Jeff S; Ballard, Kevin D; Silvestre, Ricardo; Judelson, Daniel A; Quann, Erin E; Forsythe, Cassandra E; Fernandez, Maria Luz; Kraemer, William J

    2009-12-01

    We previously reported that a carbohydrate-restricted diet (CRD) ameliorated many of the traditional markers associated with metabolic syndrome and cardiovascular risk compared with a low-fat diet (LFD). There remains concern how CRD affects vascular function because acute meals high in fat have been shown to impair endothelial function. Here, we extend our work and address these concerns by measuring fasting and postprandial vascular function in 40 overweight men and women with moderate hypertriacylglycerolemia who were randomly assigned to consume hypocaloric diets (approximately 1500 kcal) restricted in carbohydrate (percentage of carbohydrate-fat-protein = 12:59:28) or LFD (56:24:20). Flow-mediated dilation of the brachial artery was assessed before and after ingestion of a high-fat meal (908 kcal, 84% fat) at baseline and after 12 weeks. Compared with the LFD, the CRD resulted in a greater decrease in postprandial triacylglycerol (-47% vs -15%, P = .007), insulin (-51% vs -6%, P = .009), and lymphocyte (-12% vs -1%, P = .050) responses. Postprandial fatty acids were significantly increased by the CRD compared with the LFD (P = .033). Serum interleukin-6 increased significantly over the postprandial period; and the response was augmented in the CRD (46%) compared with the LFD (-13%) group (P = .038). After 12 weeks, peak flow-mediated dilation at 3 hours increased from 5.1% to 6.5% in the CRD group and decreased from 7.9% to 5.2% in the LFD group (P = .004). These findings show that a 12-week low-carbohydrate diet improves postprandial vascular function more than a LFD in individuals with atherogenic dyslipidemia.

  13. A depth-averaged debris-flow model that includes the effects of evolving dilatancy: II. Numerical predictions and experimental tests.

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2014-01-01

    We evaluate a new depth-averaged mathematical model that is designed to simulate all stages of debris-flow motion, from initiation to deposition. A companion paper shows how the model’s five governing equations describe simultaneous evolution of flow thickness, solid volume fraction, basal pore-fluid pressure, and two components of flow momentum. Each equation contains a source term that represents the influence of state-dependent granular dilatancy. Here we recapitulate the equations and analyze their eigenstructure to show that they form a hyperbolic system with desirable stability properties. To solve the equations we use a shock-capturing numerical scheme with adaptive mesh refinement, implemented in an open-source software package we call D-Claw. As tests of D-Claw, we compare model output with results from two sets of large-scale debris-flow experiments. One set focuses on flow initiation from landslides triggered by rising pore-water pressures, and the other focuses on downstream flow dynamics, runout, and deposition. D-Claw performs well in predicting evolution of flow speeds, thicknesses, and basal pore-fluid pressures measured in each type of experiment. Computational results illustrate the critical role of dilatancy in linking coevolution of the solid volume fraction and pore-fluid pressure, which mediates basal Coulomb friction and thereby regulates debris-flow dynamics.

  14. Reduction of myocardial blood flow reserve in idiopathic dilated cardiomyopathy without overt heart failure and its relation with functional indices: an echo-Doppler and positron emission tomography study.

    PubMed

    Morales, Maria-Aurora; Neglia, Danilo; L'Abbate, Antonio

    2008-08-01

    Myocardial blood flow during pharmacological vasodilatation is depressed in patients with idiopathic dilated cardiomyopathy even the in absence of overt heart failure; the extent of myocardial blood flow abnormalities is not predictable by left ventricular ejection fraction (LVEF) and diastolic dimensions. To assess whether myocardial blood flow impairment in idiopathic dilated cardiomyopathy without overt heart failure can be related to Doppler-derived dP/dt and to echocardiographically determined left ventricular end systolic stress - which is linked to myocardial blood flow reserve in advanced disease. Twenty-six patients, New York Heart Association Class I-II, (LVEF 37.4 +/- 1.4%, left ventricular diastolic dimensions 62.6 +/- 0.9 mm) underwent resting/dipyridamole [13N]NH3 flow positron emission tomography and an ultrasonic study. Regional myocardial blood flow values (ml/min per g) were computed from positron emission tomography data in 13 left ventricular (LV) myocardial regions and averaged to provide mean myocardial blood flow and myocardial blood flow reserve, defined as dipyridamole/resting mean myocardial blood flow ratio. Resting myocardial blood flow was 0.686 +/- 0.045, dipyridamole myocardial blood flow 1.39 +/- 0.15 and myocardial blood flow reserve 2.12 +/- 0.2, lower than in controls (P < 0.01). The ratio dP/dt was directly related to dipyridamole myocardial blood flow and myocardial blood flow reserve (r = 0.552 and 0.703, P < 0.005 and P < 0.0001); no relation was found between myocardial blood flow and LVEF left ventricular diastolic dimensions, and left ventricular end systolic stress. In idiopathic dilated cardiomyopathy patients without overt heart failure, the extent of myocardial blood flow reserve impairment is related to dP/dt but not to more classical indices of left ventricular function.

  15. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  16. Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion.

    PubMed

    Ziegler, Matthew A; Distasi, Matthew R; Bills, Randall G; Miller, Steven J; Alloosh, Mouhamad; Murphy, Michael P; Akingba, A George; Sturek, Michael; Dalsing, Michael C; Unthank, Joseph L

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation.

  17. Marvels, Mysteries, and Misconceptions of Vascular Compensation to Peripheral Artery Occlusion

    PubMed Central

    ZIEGLER, MATTHEW A.; DISTASI, MATTHEW R.; BILLS, RANDALL G.; MILLER, STEVEN J.; ALLOOSH, MOUHAMAD; MURPHY, MICHAEL P.; AKINGBA, A. GEORGE; STUREK, MICHAEL; DALSING, MICHAEL C.; UNTHANK, JOSEPH L.

    2010-01-01

    Peripheral arterial disease is a major health problem and there is a significant need to develop therapies to prevent its progression to claudication and critical limb ischemia. Promising results in rodent models of arterial occlusion have generally failed to predict clinical success and led to questions of their relevance. While sub-optimal models may have contributed to the lack of progress, we suggest that advancement has also been hindered by misconceptions of the human capacity for compensation and the specific vessels which are of primary importance. We present and summarize new and existing data from humans, Ossabaw miniature pigs, and rodents which provide compelling evidence that natural compensation to occlusion of a major artery (i) may completely restore perfusion, (ii) occurs in specific pre-existing small arteries, rather than the distal vasculature, via mechanisms involving flow-mediated dilation and remodeling (iii) is impaired by cardiovascular risk factors which suppress the flow-mediated mechanisms and (iv) can be restored by reversal of endothelial dysfunction. We propose that restoration of the capacity for flow-mediated dilation and remodeling in small arteries represents a largely unexplored potential therapeutic opportunity to enhance compensation for major arterial occlusion and prevent the progression to critical limb ischemia in the peripheral circulation. PMID:20141596

  18. Preventing Ototoxic Synergy of Prior Noise Trauma During Aminoglycoside Therapy

    DTIC Science & Technology

    2015-12-01

    cochlear blood flow . Hearing Research 313, 38-46 (2014). 12. Koo, J.-W. et al. Endotoxemia-mediated inflammation potentiates cochlear uptake of...event in response to a need for higher cochlear blood flow . A 3.7% dilation was adequate for a 20% increase of blood flow 10. On the contrary...summation of the two insults. We have found that prior sound exposure enhances cochlear uptake of aminoglycosides, providing a mechanistic basis for the

  19. Effects of raloxifene on carotid blood flow resistance and endothelium-dependent vasodilation in postmenopausal women.

    PubMed

    Ceresini, Graziano; Marchini, Lorenzo; Rebecchi, Isabella; Morganti, Simonetta; Bertone, Luca; Montanari, Ilaria; Bacchi-Modena, Alberto; Sgarabotto, Maria; Baldini, Monica; Denti, Licia; Ablondi, Fabrizio; Ceda, Gian Paolo; Valenti, Giorgio

    2003-03-01

    Raloxifene is one of the most important selective estrogen receptor modulators currently employed for the treatment of postmenopausal osteoporosis. However, it has also been suggested that this compound affects the vascular system. We evaluated both carotid blood flow resistance and endothelium-dependent vasodilation in 50 healthy postmenopausal women randomly assigned to receive, in a double blind design, either raloxifene (60 mg per day; N=25 subjects) or placebo (N=25 subjects) for 4 months. Indices of carotid blood flow resistance, such as the pulsatility index (PI) and resistance index (RI), as well as the flow-mediated brachial artery dilation were measured both at baseline and at the end of treatment. Changes in PI were -1.86+/-2.24 and -2.15+/-2.22% after placebo and raloxifene treatment, respectively, with no significant differences between groups. Changes in RI were -0.77+/-1.72 and -1.81+/-1.54% after placebo and raloxifene treatment, respectively, with no significant differences between groups. At the end of the treatment period, the increments in artery diameter measured after the flow stimulus were 10.79+/-2.39 and 6.70+/-1.23% for placebo and raloxifene, respectively, with no significant differences between groups. These results demonstrate no significant effects of raloxifene on either carotid blood flow resistance or brachial artery flow-mediated dilation in postmenopausal women.

  20. Associations of work hours, job strain, and occupation with endothelial function: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Charles, Luenda E; Fekedulegn, Desta; Landsbergis, Paul; Burchfiel, Cecil M; Baron, Sherry; Kaufman, Joel D; Stukovsky, Karen Hinckley; Fujishiro, Kaori; Foy, Capri G; Andrew, Michael E; Diez Roux, Ana V

    2014-11-01

    To investigate associations of work hours, job control, job demands, job strain, and occupational category with brachial artery flow-mediated dilation (FMD) in 1499 Multi-Ethnic Study of Atherosclerosis participants. Flow-mediated dilation was obtained using high-resolution ultrasound. Mean values of FMD were examined across categories of occupation, work hours, and the other exposures using regression analyses. Occupational category was significantly associated with FMD overall, with blue-collar workers showing the lowest mean values-management/professional = 4.97 ± 0.22%; sales/office = 5.19 ± 0.28%; services = 4.73 ± 0.29%; and blue-collar workers = 4.01 ± 0.26% (adjusted P < 0.001). There was evidence of effect modification by sex (interaction P = 0.031)-significant associations were observed among women (adjusted P = 0.002) and nearly significant results among men (adjusted P = 0.087). Other exposures were not significantly associated with FMD. Differences in endothelial function may account for some of the variation in cardiovascular disease across occupational groups.

  1. Ultrasound measurement of the brachial artery flow-mediated dilation without ECG gating.

    PubMed

    Gemignani, Vincenzo; Bianchini, Elisabetta; Faita, Francesco; Giannarelli, Chiara; Plantinga, Yvonne; Ghiadoni, Lorenzo; Demi, Marcello

    2008-03-01

    The methods commonly used for noninvasive ultrasound assessment of endothelium-dependent flow-mediated dilation (FMD) require an electrocardiogram (ECG) signal to synchronize the measurements with the cardiac cycle. In this article, we present a method for assessing FMD that does not require ECG gating. The approach is based on temporal filtering of the diameter-time curve, which is obtained by means of a B-mode image processing system. The method was tested on 22 healthy volunteers without cardiovascular risk factors. The measurements obtained with the proposed approach were compared with those obtained with ECG gating and with both systolic and end-diastolic measurements. Results showed good agreement between the methods and a higher precision of the new method due to the fact that it is based on a larger number of measurements. Further advantages were also found both in terms of reliability of the measure and simplification of the instrumentation. (E-mail: gemi@ifc.cnr.it).

  2. Shaker-related voltage-gated K+ channel expression and vasomotor function in human coronary resistance arteries.

    PubMed

    Nishijima, Yoshinori; Korishettar, Ankush; Chabowski, Dawid S; Cao, Sheng; Zheng, Xiaodong; Gutterman, David D; Zhang, David X

    2018-01-01

    K V channels are important regulators of vascular tone, but the identity of specific K V channels involved and their regulation in disease remain less well understood. We determined the expression of K V 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. HCAs from patients with and without CAD were assessed for mRNA and protein expression of K V 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of K V 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general K V blocker 4-AP and the selective K V 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive K V channels. K V 1.5, as a major 4-AP-sensitive K V 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive K V channel function. © 2017 John Wiley & Sons Ltd.

  3. FLOW MEDIATED DILATION AND CAROTID INTIMA MEDIA THICKNESS IN PATIENTS WITH CHRONIC GASTRITIS ASSOCIATED WITH HELICOBACTER PYLORI INFECTION.

    PubMed

    Judaki, Arezo; Norozi, Siros; Ahmadi, Mohammad Reza Hafezi; Ghavam, Samira Mis; Asadollahi, Khairollah; Rahmani, Asghar

    2017-12-01

    Endothelial dysfunction is one of the early stages of vascular diseases. The aim of this study was to investigate the endothelial dysfunction markers in patients with chronic gastritis associated with Helicobacter pylori (H. pylori) infection. By a cross sectional study, basic and clinical information of 120 participants (40 patients with positive H. pylori infection, 40 patients with negative H. pylori infection and 40 healthy people) were analyzed. Carotid intima media thickness and flow-mediated dilation levels were measured in all patients and controls. Soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured with Elisa for all subjects. IgG level was assessed in chronic gastritis patients. The flow-mediated dilation level in patients with positive H. pylori infection (0.17%±0.09) was significantly lower than those with negative H. pylori infection (0.21% ±0.10, P<0.05) and compared to the control group (0.27% ±0.11, P<0.05). Carotid intima media thickness level in patients with positive H. pylori infection (0.58±0.13 mm) was significantly higher than those with negative H. pylori infection (0.48±0.32 mm, P<0.05) and compared to the control group (0.36±0.44mm, P<0.05). The mean level of sICAM-1 in positive H. pylori infection group (352.16±7.54 pg/mL) was higher than negative H. pylori infection group (332.64±8.75 pg/mL =0.75) and compared to the control group (236.32±12.43 pg/mL, P<0.05). A direct relationship was revealed between flow-mediated dilation and carotid intima media thickness changes and between sICAM-1 and sVCAM-1 associated with the level of H. pylori IgG in chronic gastritis. The levels of flow-mediated dilation, carotid intima media thickness and sICAM-1 were higher among patients with positive H. pylori infection. Patients with chronic gastritis associated with H. pylori infection are at risk of endothelial dysfunction due to flow-mediated dilation and carotid intima media thickness abnormalities and increased level of sICAM-1 and sVCAM-1.

  4. Change in Elasticity Caused by Flow-Mediated Dilation Measured Only for Intima-Media Region of Brachial Artery

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masataka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-08-01

    Endothelial dysfunction is considered to be an initial step of arteriosclerosis [R. Ross: N. Engl. J. Med. 340 (2004) 115]. For the assessment of the endothelium function, brachial artery flow-mediated dilation (FMD) caused by increased blood flow has been evaluated with ultrasonic diagnostic equipment. In the case of conventional methods, the change in artery diameter caused by FMD is measured [M. Hashimoto et al.: Circulation 92 (1995) 3431]. Although the arterial wall has a layered structure (intima, media, and adventitia), such a structure is not taken into account in conventional methods because the change in diameter depends on the characteristic of the entire wall. However, smooth muscle present only in the media contributes to FMD, whereas the collagen-rich hard adventitia does not contribute. In this study, we measure the change in elasticity of only the intima-media region including smooth muscle using the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791]. From the change in elasticity, FMD measured only for the intima-media region by our proposed method was found to be more sensitive than that measured for the entire wall by the conventional method.

  5. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    PubMed

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease. © 2013 European Sleep Research Society.

  6. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  7. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  8. Improved brachial artery shear patterns and increased flow-mediated dilation after low-volume high-intensity interval training in type 2 diabetes.

    PubMed

    Ghardashi Afousi, Alireza; Izadi, Mohammad Reza; Rakhshan, Kamran; Mafi, Farnoosh; Biglari, Soheil; Gandomkar Bagheri, Habibalah

    2018-06-22

    What is the central question of this study? Endothelial function is impaired because of increased oscillatory and retrograde shear in patients with type 2 diabetes. It is unclear whether low-volume high-intensity interval training and continuous moderate intensity exercise can modulate oscillatory and retrograde shear, blood flow and flow-mediated arterial dilation in these patients. What is the main finding and its importance? We found that low-volume high-intensity interval training, by increasing anterograde shear and decreasing retrograde shear and oscillatory index, can increase nitric oxide production and consequently result in increased flow-mediated dilation and outward arterial remodelling in patients with type 2 diabetes. Atherosclerosis in patients with type 2 diabetes is characterized by endothelial dysfunction associated with impaired flow-mediated dilation (FMD) and increases retrograde and oscillatory shear. The present study investigated endothelium-dependent vasodilation and shear rate in patients with type 2 diabetes at baseline and follow-up after 12 weeks of low-volume high-intensity interval training (LV-HIIT) or continuous moderate intensity training (CMIT). Seventy five sedentary patients with type 2 diabetes and untreated pre- or stage I hypertension were randomly divided into LV-HIIT, CMIT and control groups. The LV-HIIT group intervention was 12 intervals of 1.5 min at 85%-90% HR max and 2 min at 55%-60% HR max . The CMIT group intervention was 42 min of exercise at 70% HR max for 3 sessions per week during 12 weeks. High-resolution Doppler ultrasound was used to measure FMD, arterial diameter, anterograde and retrograde blood flow and shear rate patterns. Brachial artery FMD increased significantly in the LV-HIIT group (3.83 ± 1.13 baseline, 7.39 ± 3.6% follow-up), whereas there were no significant increase in the CMIT group (3.45 ± 0.97 baseline, 4.81 ± 2.36% follow-up) compared to the control group (3.16 ± 0.78 baseline, 4.04 ± 1.28% follow-up) (P < 0.05). Retrograde shear in the LV-HIIT group decreased significantly (P < 0.05), and no significant decrease in retrograde shear was seen in the CMIT group. Anterograde shear after LV-HIIT increased significantly (P < 0.05) but was unchanged in the CMIT group. However, oscillatory shear index in both exercise groups decreased significantly (P = 0.029). Nitrite/nitrate (NOx) level increased in both exercise groups, but the increase was greater in the LV-HIIT group (P < 0.001). Our results indicate that by increasing NOx, HIIT decreases the oscillatory shear-induced improvement in FMD and outward artery remodelling in patients with T2D. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Subclinical Markers of Cardiovascular Disease Among Police Officers: A Longitudinal Assessment of the Cortisol Awakening Response and Flow Mediated Artery Dilation.

    PubMed

    Violanti, John M; Fekedulegn, Desta; Andrew, Michael E; Charles, Luenda E; Gu, Ja K; Miller, Diane B

    2018-05-07

    To examine the association of the cortisol awakening response (CAR) with change in brachial artery flow-mediated dilation (FMD%) in police officers over a seven-year period. Baseline CAR was obtained from four saliva samples taken fifteen minutes apart immediately after awakening. Analysis of covariance was used to compare the change in FMD% (FMD%Follow-up-FMD%Baseline) across tertiles of area under the cortisol curve with respect to increase (AUCI). Regression analysis was use to assess trend. Officers (n = 172; 81% men) had a mean ± SD age of 41 ± 7.6 years. Men in the lowest AUCI tertile (i.e., atypical waking cortisol pattern) had a significantly larger seven-year mean decline in FMD% (mean ± SE: -2.56 ± 0.64) compared to men in the highest tertile (-0.89 ± 0.69) (p = 0.0087). An awakening cortisol AUCI predicted worsening of FMD% approximately seven years later among male officers.

  10. New fully automated software for assessment of brachial artery flow- mediated dilation with advantages of continuous measurement.

    PubMed

    Ercan, Ertuğrul; Kırılmaz, Bahadır; Kahraman, İsmail; Bayram, Vildan; Doğan, Hüseyin

    2012-11-01

    Flow-mediated dilation (FMD) is used to evaluate endothelial functions. Computer-assisted analysis utilizing edge detection permits continuous measurements along the vessel wall. We have developed a new fully automated software program to allow accurate and reproducible measurement. FMD has been measured and analyzed in 18 coronary artery disease (CAD) patients and 17 controls both by manually and by the software developed (computer supported) methods. The agreement between methods was assessed by Bland-Altman analysis. The mean age, body mass index and cardiovascular risk factors were higher in CAD group. Automated FMD% measurement for the control subjects was 18.3±8.5 and 6.8±6.5 for the CAD group (p=0.0001). The intraobserver and interobserver correlation for automated measurement was high (r=0.974, r=0.981, r=0.937, r=0.918, respectively). Manual FMD% at 60th second was correlated with automated FMD % (r=0.471, p=0.004). The new fully automated software© can be used to precise measurement of FMD with low intra- and interobserver variability than manual assessment.

  11. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.

    PubMed

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D

    2016-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effects of different dietary protein intakes on body composition and vascular reactivity.

    PubMed

    Ferrara, L A; Innelli, P; Palmieri, V; Limauro, S; De Luca, G; Ferrara, F; Liccardo, E; Celentano, A

    2006-05-01

    To assess the effects of a diet rich in protein of animal origin in comparison to one with a protein intake of about 15% of the total daily calories on body composition and arterial function. Randomized prospective study with parallel groups. Body weight (BW), blood pressure (BP), main parameters of carbohydrate and lipid metabolism, body mass composition by bioelectrical impedance analysis, forearm blood flow at rest and in the postischaemic phase by strain gauge plethysmography and flow-mediated dilation of the brachial artery by echography were measured at baseline and after 6 months of the dietary intervention. In total, 15 clinically healthy male volunteers, regularly performing a mixed training three times weekly for 90 min. The participants were randomly prescribed a diet with high (1.9 g/kg BW) or normal (1.3 g/kg BW) protein content. Differences between means were evaluated by the t-tests for paired or unpaired data and by one way analysis of variance. The strength of correlation between variables was investigated by bivariate Pearson correlation. Serum cholesterol significantly decreased with both diets in comparison to baseline values, whereas BW was slightly but significantly reduced only by the high-protein (HP) diet. No change was detected in BP and the other metabolic parameters. Body mass composition was not significantly modified by either diet. On the other hand, postischaemic flow-mediated dilation of the brachial artery was enhanced by the sole normal protein (NP) diet, whereas no change in the forearm blood flow, both at rest and in the postischaemic phase, was detected. These preliminary results indicate that HP diet was found to be not useful in increasing the muscle mass in comparison to a NP intake. In contrast to this, the latter diet seems to enhance the endothelial function of the arterial vessels with a more pronounced dilatation of the lumen in response to the increase in blood flow.

  13. Cholecalciferol, Calcitriol, and Vascular Function in CKD: A Randomized, Double-Blind Trial.

    PubMed

    Kendrick, Jessica; Andrews, Emily; You, Zhiying; Moreau, Kerrie; Nowak, Kristen L; Farmer-Bailey, Heather; Seals, Douglas R; Chonchol, Michel

    2017-09-07

    High circulating vitamin D levels are associated with lower cardiovascular mortality in CKD, possibly by modifying endothelial function. We examined the effect of calcitriol versus cholecalciferol supplementation on vascular endothelial function in patients with CKD. We performed a prospective, double-blind, randomized trial of 128 adult patients with eGFR=15-44 ml/min per 1.73 m 2 and serum 25-hydroxyvitamin D level <30 ng/ml at the University of Colorado. Participants were randomly assigned to oral cholecalciferol (2000 IU daily) or calcitriol (0.5 μ g) daily for 6 months. The primary end point was change in brachial artery flow-mediated dilation. Secondary end points included changes in circulating markers of mineral metabolism and circulating and cellular markers of inflammation. One hundred and fifteen patients completed the study. The mean (SD) age and eGFR of participants were 58±12 years old and 33.0±10.2 ml/min per 1.73 m 2 , respectively. There were no significant differences between groups at baseline. After 6 months, neither calcitriol nor cholecalciferol treatment resulted in a significant improvement in flow-mediated dilation (mean±SD percentage flow-mediated dilation; calcitriol: baseline 4.8±3.1%, end of study 5.1±3.6%; cholecalciferol: baseline 5.2±5.2%, end of study 4.7±3.6%); 25-hydroxyvitamin D levels increased significantly in the cholecalciferol group compared with the calcitriol group (cholecalciferol: 11.0±9.5 ng/ml; calcitriol: -0.8±4.8 ng/ml; P <0.001). Parathyroid hormone levels decreased significantly in the calcitriol group compared with the cholecalciferol group (median [interquartile range]; calcitriol: -22.1 [-48.7-3.5] pg/ml; cholecalciferol: -0.3 [-22.6-16.9] pg/ml; P =0.004). Six months of therapy with calcitriol or cholecalciferol did not improve vascular endothelial function or improve inflammation in patients with CKD. Copyright © 2017 by the American Society of Nephrology.

  14. Epoetin beta pegol ameliorates flow-mediated dilation with improving endothelial nitric oxide synthase coupling state in nonobese diabetic rats.

    PubMed

    Serizawa, Kenichi; Yogo, Kenji; Tashiro, Yoshihito; Kawasaki, Ryohei; Endo, Koichi; Shimonaka, Yasushi; Hirata, Michinori

    2017-04-01

    Patients with diabetic nephropathy have a high cardiovascular mortality. Epoetin beta pegol (continuous erythropoietin receptor activator, C.E.R.A.) is a drug for the treatment of renal anemia. In this study, we investigated the effect of C.E.R.A. on vascular endothelial function as evaluated by flow-mediated dilation (FMD) and the relationship between hematopoiesis and FMD in diabetic nephropathy rats. Male Spontaneously Diabetic Torii rats (SDT, 22 weeks old) were used. C.E.R.A. (0.6, 1.2 μg/kg) was administered subcutaneously once every 2 weeks for 8 weeks. At 1 week after last administration (31 weeks old), we assessed FMD in the femoral arteries of anesthetized rats using a high-resolution ultrasound system. FMD was also measured 1 week after single C.E.R.A. treatment (5.0 μg/kg) to examine the influence of hematopoiesis. Flow-mediated dilation was significantly decreased in SDT rats before the start of C.E.R.A. treatment (22 weeks old). Repeated administration of C.E.R.A. dose-dependently improved FMD in SDT rats (31 weeks old) without changing blood glucose, nitroglycerin-induced vasodilation, or kidney function. Long-term administration of C.E.R.A. improved the state of endothelial nitric oxide synthase uncoupling in the femoral arteries of SDT rats, which showed a positive correlation with FMD. On the other hand, there was no correlation between FMD and Hb or Hct in SDT rats. Furthermore, at 1 week after single administration of C.E.R.A., FMD was not significantly improved although hemoglobin levels were comparable with levels following long-term C.E.R.A. Long-term treatment with C.E.R.A. improved FMD in SDT rats even after onset of endothelial dysfunction. © 2017 The Authors. Cardiovascular Therapeutics Published by John Wiley & Sons Ltd.

  15. Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice

    PubMed Central

    Drouin, Annick; Bolduc, Virginie; Thorin-Trescases, Nathalie; Bélanger, Élisabeth; Fernandes, Priscilla; Baraghis, Edward; Lesage, Frédéric; Gillis, Marc-Antoine; Villeneuve, Louis; Hamel, Edith; Ferland, Guylaine; Thorin, Eric

    2013-01-01

    Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR−/− hApoB+/+; 3 mo old) mice with catechin (30 mg·kg−1·day−1) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities. PMID:21186270

  16. The effect of α1 -adrenergic blockade on post-exercise brachial artery flow-mediated dilatation at sea level and high altitude.

    PubMed

    Tymko, Michael M; Tremblay, Joshua C; Hansen, Alex B; Howe, Connor A; Willie, Chris K; Stembridge, Mike; Green, Daniel J; Hoiland, Ryan L; Subedi, Prajan; Anholm, James D; Ainslie, Philip N

    2017-03-01

    Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α 1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α 1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α 1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α 1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α 1 -adrenergic blockade (prazosin; 0.05 mg kg  -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow-mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate-intensity exercise at sea level was abolished via α 1 -adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate-intensity exercise, and administration of α 1 -adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α 1 -adrenergic pathway and endothelial function. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Flavanol-rich chocolate acutely improves arterial function and working memory performance counteracting the effects of sleep deprivation in healthy individuals.

    PubMed

    Grassi, Davide; Socci, Valentina; Tempesta, Daniela; Ferri, Claudio; De Gennaro, Luigi; Desideri, Giovambattista; Ferrara, Michele

    2016-07-01

    Sleep deprivation is a risk factor for cardiovascular disease. Cocoa flavonoids exert cardiovascular benefits and neuroprotection. Whether chocolate consumption may mitigate detrimental effects of sleep loss on cognitive performance and cardiovascular parameters has never been studied. We investigated the effects of flavanol-rich chocolate consumption on cognitive skills and cardiovascular parameters after sleep deprivation. Thirty-two healthy participants underwent two baseline sessions after one night of undisturbed sleep and two experimental sessions after one night of total sleep deprivation. Two hours before each testing session, participants were randomly assigned to consume high or poor flavanol chocolate bars. During the tests were evaluated, the Psychomotor Vigilance Task and a working memory task, office SBP and DBP, flow-mediated dilation and pulse-wave velocity. Sleep deprivation increased SBP/DBP. SBP/DBP and pulse pressure were lower after flavanol-rich treatment respect to flavanol-poor treatment (SBP: 116.9 ± 1.6 vs. 120.8 ± 1.9 mmHg, respectively, P = 0.00005; DBP: 70.5 ± 1.2 vs. 72.3 ± 1.2 mmHg, respectively, P = 0.01; pulse pressure: 46.4 ± 1.3 vs. 48.4 ± 1.5 mmHg, P = 0.004). Sleep deprivation impaired flow-mediated dilation (5.5 ± 0.5 vs. 6.5 ± 0.6%, P = 0.02), flavanol-rich, but not flavanol-poor chocolate counteracted this alteration (flavanol-rich/flavanol-poor chocolate: 7.0 ± 0.6 vs. 5.0 ± 0.4%, P = 0.000001). Flavanol-rich chocolate mitigated the pulse-wave velocity increase (P = 0.001). Flavanol-rich chocolate preserved working memory accuracy in women after sleep deprivation. Flow-mediated dilation correlated with working memory performance accuracy in the sleep condition (P = 0.04). Flavanol-rich chocolate counteracted vascular impairment after sleep deprivation and restored working memory performance. Improvement in cognitive performance could be because of the effects of cocoa flavonoids on blood pressure and peripheral and central blood flow.

  18. Effect of black tea consumption on brachial artery flow-mediated dilation and ischaemia-reperfusion in humans.

    PubMed

    Schreuder, Tim H A; Eijsvogels, Thijs M H; Greyling, Arno; Draijer, Richard; Hopman, Maria T E; Thijssen, Dick H J

    2014-02-01

    Tea consumption is associated with reduced cardiovascular risk. Previous studies found that tea flavonoids work through direct effects on the vasculature, leading to dose-dependent improvements in endothelial function. Cardioprotective effects of regular tea consumption may relate to the prevention of endothelial ischaemia-reperfusion (IR) injury. Therefore, we examined the effect of black tea consumption on endothelial function and the ability of tea to prevent IR injury. In a randomized, crossover study, 20 healthy subjects underwent 7 days of tea consumption (3 cups per day) or abstinence from tea. We examined brachial artery (BA) endothelial function via flow-mediated dilation (FMD), using high resolution echo-Doppler, before and 90 min after tea or hot water consumption. Subsequently, we followed a 20-min ischaemia and 20-min reperfusion protocol of the BA after which we measured FMD to examine the potential of tea consumption to protect against IR injury. Tea consumption resulted in an immediate increase in FMD% (pre-consumption: 5.8 ± 2.5; post-consumption: 7.2 ± 3.2; p < 0.01), whilst no such change occurred after ingestion of hot water. The IR protocol resulted in a significant decrease in FMD (p < 0.005), which was also present after tea consumption (p < 0.001). This decline was accompanied by an increase in the post-IR baseline diameter. In conclusion, these data indicate that tea ingestion improves BA FMD. However, the impact of the IR protocol on FMD was not influenced by tea consumption. Therefore, the cardioprotective association of tea ingestion relates to a direct effect of tea on the endothelium in humans in vivo.

  19. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Widlansky, Michael E; Hamburg, Naomi M; Anter, Elad; Holbrook, Monika; Kahn, David F; Elliott, James G; Keaney, John F; Vita, Joseph A

    2007-04-01

    Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. A total of 42 subjects completed the study, and brachial artery flow-mediated dilation improved from 7.1 +/- 4.1 to 8.6 +/- 4.7% two hours after the first dose of 300 mg of EGCG (P = 0.01), but was similar to baseline (7.8 +/- 4.2%, P = 0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6 +/- 10.9 to 92.8 +/- 78.7 ng/ml after acute EGCG (P < 0.001), but were unchanged from baseline after two weeks of treatment (3.4 +/- 13.1 ng/ml). EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function.

  20. Vascular and metabolic effects of ezetimibe combined with simvastatin in patients with hypercholesterolemia.

    PubMed

    Koh, Kwang Kon; Oh, Pyung Chun; Sakuma, Ichiro; Kim, Eun Young; Lee, Yonghee; Hayashi, Toshio; Han, Seung Hwan; Park, Yae Min; Shin, Eak Kyun

    2015-11-15

    Ezetimibe demonstrates decreasing visceral fat and improving insulin sensitivity (IS) in animals and humans. We first reported that simvastatin dose-dependently worsens insulin sensitivity. Whether ezetimibe may compensate untoward effects of simvastatin, depending on dosages of simvastatin has not been investigated in patients with hypercholesterolemia, compared with simvastatin alone. This was a randomized, single-blind, placebo-controlled, parallel study. Fifty-one in each group were given placebo, ezetimibe 10mg combined with simvastatin 10mg (Vyto10), ezetimibe 10mg combined with simvastatin 20mg (Vyto20), or simvastatin 20mg alone (Simva20) daily for 2months. Placebo, Vyto10, Vyto20, and Simva20 improved flow-mediated dilation relative to baseline measurements. Placebo therapy did not significantly change insulin and IS and adiponectin levels and visceral fat area (VFA) and VFA/subcutaneous fat area (SFA) relative to baseline measurements. Vyto10 therapy significantly decreased CRP and insulin levels and increased adiponectin levels and IS, and reduced VFA, VFA/SFA, and blood pressure. Vyto20 therapy did not significantly change insulin levels and IS and adiponectin levels but significantly reduced CRP levels and VFA, VFA/SFA, and blood pressure. Simva20 therapy significantly decreased adiponectin levels and IS but did not significantly change VFA, VFA/SFA, and blood pressure. Of note, these different effects of each therapy were significant by ANOVA. Vyto10, Vyto20, and Simva20 showed significant reduction of LDL cholesterol levels and improvement of flow-mediated dilation in patients with hypercholesterolemia. However, Vyto10, Vyto20, and Simva20 showed significantly differential metabolic effects, depending on dosages of simvastatin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Morphotype-Dependent Flow Characteristics in Bicuspid Aortic Valve Ascending Aortas: A Benchtop Particle Image Velocimetry Study

    PubMed Central

    McNally, Andrew; Madan, Ashish; Sucosky, Philippe

    2017-01-01

    The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative to the TAV) that were sustained from peak systole throughout the deceleration phase. This in vitro study reveals substantial flow abnormalities (increased jet skewness, asymmetry, jet velocity, turbulence, and shear stress overloads) in non-dilated BAV aortas, which differ from those observed in dilated aortas but still coincide with aortic wall regions prone to dilation. PMID:28203207

  2. Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter

    EPA Science Inventory

    Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...

  3. Impact of sympathetic nervous system activity on post-exercise flow-mediated dilatation in humans.

    PubMed

    Atkinson, Ceri L; Lewis, Nia C S; Carter, Howard H; Thijssen, Dick H J; Ainslie, Philip N; Green, Daniel J

    2015-12-01

    Transient reduction in vascular function following systemic large muscle group exercise has previously been reported in humans. The mechanisms responsible are currently unknown. We hypothesised that sympathetic nervous system activation, induced by cycle ergometer exercise, would contribute to post-exercise reductions in flow-mediated dilatation (FMD). Ten healthy male subjects (28 ± 5 years) undertook two 30 min sessions of cycle exercise at 75% HR(max). Prior to exercise, individuals ingested either a placebo or an α1-adrenoreceptor blocker (prazosin; 0.05 mg kg(-1)). Central haemodynamics, brachial artery shear rate (SR) and blood flow profiles were assessed throughout each exercise bout and in response to brachial artery FMD, measured prior to, immediately after and 60 min after exercise. Cycle exercise increased both mean and antegrade SR (P < 0.001) with retrograde SR also elevated under both conditions (P < 0.001). Pre-exercise FMD was similar on both occasions, and was significantly reduced (27%) immediately following exercise in the placebo condition (t-test, P = 0.03). In contrast, FMD increased (37%) immediately following exercise in the prazosin condition (t-test, P = 0.004, interaction effect P = 0.01). Post-exercise FMD remained different between conditions after correction for baseline diameters preceding cuff deflation and also post-deflation SR. No differences in FMD or other variables were evident 60 min following recovery. Our results indicate that sympathetic vasoconstriction competes with endothelium-dependent dilator activity to determine post-exercise arterial function. These findings have implications for understanding the chronic impacts of interventions, such as exercise training, which affect both sympathetic activity and arterial shear stress. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Duffy, S J; Keaney , J F; Holbrook, M; Gokce, N; Swerdloff, P L; Frei, B; Vita, J A

    2001-07-10

    Epidemiological studies suggest that tea consumption decreases cardiovascular risk, but the mechanisms of benefit remain undefined. Endothelial dysfunction has been associated with coronary artery disease and increased oxidative stress. Some antioxidants have been shown to reverse endothelial dysfunction, and tea contains antioxidant flavonoids. Methods and Results-- To test the hypothesis that tea consumption will reverse endothelial dysfunction, we randomized 66 patients with proven coronary artery disease to consume black tea and water in a crossover design. Short-term effects were examined 2 hours after consumption of 450 mL tea or water. Long-term effects were examined after consumption of 900 mL tea or water daily for 4 weeks. Vasomotor function of the brachial artery was examined at baseline and after each intervention with vascular ultrasound. Fifty patients completed the protocol and had technically suitable ultrasound measurements. Both short- and long-term tea consumption improved endothelium- dependent flow-mediated dilation of the brachial artery, whereas consumption of water had no effect (P<0.001 by repeated-measures ANOVA). Tea consumption had no effect on endothelium-independent nitroglycerin-induced dilation. An equivalent oral dose of caffeine (200 mg) had no short-term effect on flow-mediated dilation. Plasma flavonoids increased after short- and long-term tea consumption. Short- and long-term black tea consumption reverses endothelial vasomotor dysfunction in patients with coronary artery disease. This finding may partly explain the association between tea intake and decreased cardiovascular disease events.

  5. Crucial importance of the endothelial K+ channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction.

    PubMed

    Milkau, Malte; Köhler, Ralf; de Wit, Cor

    2010-09-01

    Skeletal muscle activity requires substantial increases in blood flow, and the underlying vasodilation involves endothelial activity, but the contribution of the endothelium-dependent hyperpolarizing factor (EDHF) is only poorly defined. In EDHF signaling, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels SK3 and IK1 is a key step and also initiates gap junction-dependent conducted dilations. We assessed the role of SK3, IK1, and connexin40 (Cx40) in muscular contraction-induced dilations in the microcirculation in vivo. Hitherto, arterioles were observed in the electrically stimulated cremaster skeletal muscle of anesthetized mice lacking SK3, IK1, or Cx40 using intravital microscopy. Genetic deficiency of SK3, but not of IK1, strongly attenuated dilations to muscular contraction. Similarly, pharmacologic blockade of SK3 by the specific blocker UCL1684 impaired such dilations in wild-type and IK1-deficient mice. In contrast, IK1 was required for acetylcholine-induced dilations. Genetic deficiency of Cx40 also attenuated dilations induced by muscular contraction but not by acetylcholine. These data support the concept that endothelial hyperpolarization through activation of SK3 contributes to exercise hyperemia and the hyperpolarization ascends the vascular tree through gap junctions formed by Cx40 to orchestrate dilation. The differential impact of SK3- and IK1-deficiency on dilations to distinct stimuli suggests stimulus-dependent activation of these endothelial channels.

  6. Modeling of Inhomogeneous Compressible Turbulence Using a Two-Scale Statistical Theory

    NASA Technical Reports Server (NTRS)

    Hamba, Fujihiro

    1996-01-01

    Turbulence modeling plays an important role in the study of high-speed flows in engineering and aerodynamic problems; they include flows in supersonic combustion engines and over hypersonic transport aircraft. The enhancement of the kinetic energy dissipation by the dilatational terms is one of the typical compressibility effects. Zeman (1990) and Sarkar et al. (1991) proposed that the dilatation dissipation is proportional to the solenoidal dissipation and is a function of the turbulent Mach number. Sarkar (1992) also modeled the pressure-dilatation correlation using the turbulent Mach number. Zeman (1991) related the correlation to the rate of change of the pressure variance.

  7. Endothelium dependent and independent responses in coronary artery disease measured at angioplasty.

    PubMed Central

    Holdright, D R; Clarke, D; Poole-Wilson, P A; Fox, K; Collins, P

    1993-01-01

    OBJECTIVE--To investigate the effects of substance P and papaverine, two drugs that increase coronary blood flow by different mechanisms, on vasomotion in stenotic coronary arteries at percutaneous transluminal coronary angioplasty (PTCA). DESIGN--Coronary blood flow responses to substance P and papaverine were measured in stenotic coronary arteries at the time of PTCA with quantitative angiography and a Doppler flow probe. SETTING--A cardiothoracic referral centre. PATIENTS--15 patients undergoing elective PTCA of a discrete epicardial coronary artery stenosis. INTERVENTIONS--Pharmacological coronary flow reserve was determined with papaverine 5-10 minutes before and after successful PTCA. Endothelium dependent responses to 2 minute infusions of substance P (10-15 pmol.min-1) were assessed immediately before PTCA. MAIN OUTCOME MEASURES--Coronary blood flow responses and changes in epicardial coronary artery area at stenotic, proximal, and distal sites with papaverine and substance P. RESULTS--Stenotic sites dilated with papaverine before PTCA (17.7%(6.9%) (mean (SEM)) area increase, p < 0.05 v baseline). Substance P dilated stenotic sites (16.8%(5.7%) area increase, p < 0.05) and proximal (14.3%(5.4%), p < 0.05) and distal sites (41.7%(9.3%), p < 0.005). Coronary flow reserve increased but did not reach normal values after PTCA (2.3(0.4) before PTCA v 3.0(0.4) after PTCA, p < 0.05) and was associated with an increase in peak flow with papaverine. Angioplasty did not alter baseline flow. After PTCA papaverine caused significant vasoconstriction at the stenotic site (-13.6%(4.3%) area decrease, p < 0.05). There was a negative correlation (r = -0.68, p < 0.05) between the dilator response with papaverine before PTCA and the constrictor response after PTCA. CONCLUSIONS--Substance P causes endothelium dependent dilatation in atheromatous coronary arteries, even at sites of overt atheroma. The cause of the paradoxical constrictor response to papaverine after PTCA is uncertain, but unopposed flow mediated vasoconstriction (the myogenic response) after balloon induced endothelial denudation may be one of several contributory factors. PMID:7518687

  8. Peroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients

    PubMed Central

    Cassuto, James; Dou, Huijuan; Czikora, Istvan; Szabo, Andras; Patel, Vijay S.; Kamath, Vinayak; Belin de Chantemele, Eric; Feher, Attila; Romero, Maritza J.; Bagi, Zsolt

    2014-01-01

    Peroxynitrite (ONOO−) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO− interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO− scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO− reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO−-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose–exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO− reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO− selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients. PMID:24353182

  9. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  10. [Role of endothelium-derived nitric oxide in sustained flow-dependent dilatation of human peripheral conduit arteries].

    PubMed

    Bellien, J; Joannidès, R; Iacob, M; Eltchaninoff, H; Thuillez, Ch

    2003-01-01

    Endothelial dysfunction is involved in the pathogenesis of cardiovascular diseases and is generally associated to the decrease in arterial nitric oxide (NO) availability. In humans, endothelial function can be evaluated by the post-ischaemic flow-dependent dilatation (FDD) of peripheral conduit arteries which is mainly mediated by the NO release when short duration of reactive hyperaemia are used (3 to 5 min ischaemia). However, recent studies suggest that the role of NO in this response decreases as the duration of the hyperaemic stimulation increases. The aim of the present study was thus, to evaluate, in healthy subjects, the role of NO in the FDD of conduct arteries in response to a sustained stimulation. Radial artery diameter (echotracking) and flow (Doppler) were measured, 7 cm under the elbow line, at baseline and during post-ischaemic hyperaemia (10 min wrist cuff inflation) in 10 healthy subjects (age: 24 +/- 1 years) in control period and after acute blockade of the endothelial NO-synthase by local infusion of NG-monomethyl L-arginine (L-NMMA, brachial artery, 8 mumol/min, 7 min). Endothelium-independent dilatation was studied by mean of sodium nitroprusside infusion (SNP: 5, 10 and 20 nmol/min, 3 min each dose before and after L-NMMA). L-NMMA administration decreased radial artery blood flow at base (Control: 14 +/- 2 vs L-NMMA: 10 +/- 1 ml/min, P < 0.05) and increased radial artery vasodilatation in response to SNP (P < 0.05) thus, demonstrating NO-synthase inhibition. Therefore, after L-NMMA there was a small decrease in radial FDD (Control: base: 2.52 +/- 0.05 mm, FDD: 11.3 +/- 0.6% vs L-NMMA: base: 2.51 +/- 0.04 mm: FDD: 9.0 +/- 0.9%; p < 0.05) without change in hyperaemia. In conclusion, our results demonstrate, in contrast to those obtained after short duration of hyperaemia, that the relative implication of NO in the flow-dependent vasodilatation of peripheral conduit arteries in humans decreases in response to sustained stimulation and suggest, in these experimental conditions, an associated flow-dependent vasodilating mechanism that is unaffected by the NO-synthase inhibition.

  11. Conduit Artery Diameter During Exercise Is Enhanced After Local, but Not Remote, Ischemic Preconditioning

    PubMed Central

    Cocking, Scott; Cable, N. T.; Wilson, Mathew G.; Green, Daniel J.; Thijssen, Dick H. J.; Jones, Helen

    2018-01-01

    Introduction: The ability of ischemic preconditioning (IPC) to enhance exercise capacity may be mediated through altering exercise-induced blood flow and/or vascular function. This study investigated the hypothesis that (local) IPC enhances exercise-induced blood flow responses and prevents decreases in vascular function following exercise. Methods: Eighteen healthy, recreationally trained, male participants (mean ±SD: age 32 ± 8 years; BMI 24.2 ± 2.3; blood pressure 122 ± 10/72 ± 8 mmHg; resting HR 58 ± 9 beats min-1) received IPC (220 mmHg; 4 × 5-min bilateral arms), REMOTE IPC (220 mmHg; 4 × 5-min bilateral legs), or SHAM (20 mmHg; 4 × 5-min bilateral arms) in a counterbalanced order prior to 30-min of submaximal (25% maximal voluntary contraction) unilateral rhythmic handgrip exercise. Brachial artery diameter and blood flow were assessed every 5-min throughout the 30-min submaximal exercise using high resolution ultrasonography. Pre- and post-exercise vascular function was measured using flow-mediated dilation (FMD). Results: IPC resulted in enlarged brachial artery diameter during exercise [0.016 cm (0.003–0.03 cm), P = 0.015] compared to REMOTE IPC, but blood flow during exercise was similar between conditions (P > 0.05). Blood flow (l/min) increased throughout exercise (time: P < 0.005), but there was no main effect of condition (P = 0.29) or condition ∗ time interaction (P = 0.83). Post-exercise FMD was similar between conditions (P > 0.05). Conclusion: Our data show that local (but not remote) IPC, performed as a strategy prior to exercise, enhanced exercise-induced conduit artery diameter dilation, but these changes do not translate into increased blood flow during exercise nor impact post-exercise vascular function. PMID:29740345

  12. Model-Based Analysis of Flow-Mediated Dilation and Intima-Media Thickness

    PubMed Central

    Bartoli, G.; Menegaz, G.; Lisi, M.; Di Stolfo, G.; Dragoni, S.; Gori, T.

    2008-01-01

    We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness (IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline model (deformable template) is fitted to the data to detect the artery boundaries and track them all along the video sequence. The a priori knowledge about the image features and its content is exploited. Preprocessing is performed to improve both the visual quality of video frames for visual inspection and the performance of the segmentation algorithm without affecting the accuracy of the measurements. The system allows real-time processing as well as a high level of interactivity with the user. This is obtained by a graphical user interface (GUI) enabling the cardiologist to supervise the whole process and to eventually reset the contour extraction at any point in time. The system was validated and the accuracy, reproducibility, and repeatability of the measurements were assessed with extensive in vivo experiments. Jointly with the user friendliness, low cost, and robustness, this makes the system suitable for both research and daily clinical use. PMID:19360110

  13. Self-reported racial discrimination and endothelial reactivity to acute stress in women.

    PubMed

    Wagner, Julie A; Tennen, Howard; Finan, Patrick H; Ghuman, Nimrta; Burg, Matthew M

    2013-08-01

    This study investigated the effect of self-reported racial discrimination on endothelial responses to acute laboratory mental stress among post-menopausal women. One-hundred thirteen women (n = 94 self-identified as White and n = 19 self-identified as racial/ethnic minority), 43% with type 2 diabetes, reported lifetime experiences of racial/ethnic discrimination. Repeated assessments of flow-mediated dilation were performed at baseline, immediately after 5 min of mental arithmetic and at 20-min recovery. Both White and racial/ethnic minority women reported lifetime discrimination, with rates significantly higher among minorities. Self-reported lifetime discrimination was associated with attenuated flow-mediated dilation at recovery. Confounding variables, including clinical characteristics, mood, personality traits, other life stressors and general distress, did not better account for the effect of racial discrimination. Neither race/ethnicity nor diabetes status moderated the effect. The perceived stressfulness of the mental arithmetic was not associated with the endothelial response. In conclusion, self-reported lifetime discrimination is associated with attenuated endothelial recovery from acute mental stress. Elucidating the effects of discrimination and the biological mechanisms through which it affects the vasculature may suggest interventions to improve health. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function.

    PubMed

    Mannaerts, Dominique; Faes, Ellen; Goovaerts, Inge; Stoop, Tibor; Cornette, Jerome; Gyselaers, Wilfried; Spaanderman, Marc; Van Craenenbroeck, Emeline M; Jacquemyn, Yves

    2017-11-01

    Endothelial function and arterial stiffness are known to be altered in preeclamptic pregnancies. Previous studies have shown conflicting results regarding the best technique for assessing vascular function in pregnancy. In this study, we made a comprehensive evaluation of in vivo vascular function [including flow-mediated dilatation (FMD), peripheral arterial tonometry (PAT), and arterial stiffness] in preeclamptic patients and compared them with normal pregnancies. In addition, we assessed the relation between vascular function and systemic inflammation. Fourteen patients with preeclampsia (PE) and 14 healthy pregnant controls were included. Endothelial function was determined by FMD and PAT and arterial stiffness by carotid-femoral pulse-wave velocity and augmentation index. Systemic inflammation was assessed using mean platelet volume (MPV) and neutrophil-lymphocyte ratio (NLR). The reactive hyperemia index, assessed using PAT, is decreased at the third trimester compared with the first trimester in a normal, uncomplicated pregnancy ( P = 0.001). Arterial stiffness is significantly higher in PE versus normal pregnancy ( P < 0.001). Endothelial function, obtained by FMD, is deteriorated in PE versus normal pregnancy ( P = 0.015), whereas endothelial function assessment by PAT is improved in PE versus normal pregnancy ( P = 0.001). Systemic inflammation (MPV and NLR) increases during normal pregnancy. FMD and PAT are disturbed in PE. Endothelial function, assessed by FMD and PAT, shows distinct results. This may indicate that measurements with FMD and PAT reflect different aspects of endothelial function and that PAT should not be used as a substitute for FMD as a measure of endothelial function in pregnancy. Copyright © 2017 the American Physiological Society.

  15. Flow-mediated dilation in athletes: influence of aging.

    PubMed

    Montero, David; Padilla, Jaume; Diaz-Cañestro, Candela; Muris, Dennis M J; Pyke, Kyra E; Obert, Philippe; Walther, Guillaume

    2014-11-01

    Controversy exists on whether endothelial function is enhanced in athletes. We sought to systematically review the literature and determine whether endothelial function, as assessed by flow-mediated dilation (FMD), is greater in athletes across all ages relative to that in their age-matched counterparts. We conducted a systematic search on MEDLINE, Cochrane, Scopus, and Web of Science since their inceptions until July 2013 for articles evaluating FMD in athletes. A meta-analysis was performed to compare the standardized mean difference (SMD) in FMD of the brachial artery between athletes and age-matched control subjects. Subgroup analyses and meta-regression were used to identify sources of heterogeneity. Twenty-one articles were included in this analysis, comprising 530 athletes (452 endurance trained, 49 strength trained, and 29 endurance and strength trained) and 376 control subjects. After data pooling, FMD was higher in athletes than that in control groups (SMD, 0.48; P = 0.008). In subgroup analyses, young athletes (<40 yr) presented increased baseline brachial artery diameter (mean difference, 0.40 mm; P < 0.00001) and similar FMD (SMD, 0.27; P = 0.22) compared with those in controls. In contrast, master athletes (>;50 yr) showed similar baseline brachial artery diameter (mean difference, 0.04 mm; P = 0.69) and increased FMD (SMD, 0.99; P = 0.0005) compared with those in controls. The current meta-analysis provides evidence that master athletes but not young athletes exhibit greater FMD compared with that in age-matched healthy controls, thus suggesting that the association between high levels of exercise training and increased FMD is age dependent.

  16. Normal endothelial function after meals rich in olive or safflower oil previously used for deep frying.

    PubMed

    Williams, M J; Sutherland, W H; McCormick, M P; Yeoman, D; de Jong, S A; Walker, R J

    2001-06-01

    Polyunsaturated fats are more susceptible to oxidation during heating than monounsaturated fats but their effects on endothelial function when heated are unknown. The aim of this study was to compare the effect of meals rich in heat-modified safflower and olive oils on postprandial flow-mediated endothelium-dependent dilation (EDD) in healthy men. Flow-mediated EDD and glyceryltrinitrate-induced endothelium-independent dilation of the brachial artery were investigated in 14 subjects before and 4 hours after meals rich in olive oil and safflower oil used hourly for deep-frying for 8 hours in a double-blind crossover study design. There were high levels of lipid oxidation products (peroxides and carbonyls) in both heated oils. Plasma triglycerides were markedly increased at 4 hours after heated olive oil (1.26 +/- 0.43 vs 2.06 +/- 0.97 mmol/L) and heated safflower oil (1.44 +/- 0.63 vs 1.99 +/- 0.88 mmol/L). There was no change in EDD between fasting and postprandial studies and the response during the postprandial period was not significantly (p = 0.51) different between the meals (heated olive oil: 4.9 +/- 2.2% vs 4.9 +/- 2.5%; heated safflower oil: 5.1 +/- 3.1% vs 5.6 +/- 3.4%). Meals rich in olive and safflower oils previously used for deep frying and containing high levels of lipid oxidation products increase postprandial serum triglycerides without affecting endothelial function. These findings suggest that relatively short-term use of these vegetable oils for frying may not adversely affect postprandial endothelial function when foods containing the heat-modified oils are consumed.

  17. How rivers remember: The impacts of prior stress history on grain scale topography and bedload transport

    NASA Astrophysics Data System (ADS)

    Masteller, C.; Finnegan, N. J.

    2016-12-01

    Memory is preserved in rivers through the sorting and arrangement of grains on their beds, which reflect previous flow conditions. Manifestations of this phenomenon include observed hysteresis in bedload rating curves (e.g., Moog and Whiting, 1998; Reid et al., 1985) and correlations between the stage at the start of a transport event and the stage at the end of transport during a previous event (Turowski et al., 2011). This observed history dependence represents a key difficulty in the accurate prediction of bedload transport rates. To begin to systematically explore these memory effects on fluvial bedload transport, we experimentally examined how a gravel bed river responds to variations in prior stress history. Specifically, we compare the response of the grain-scale topography of a gravel riverbed to both below and above threshold flow conditions. We find that under low flow, when no sediment transport occurs, the bed compacts as the highest protruding grains pivot into low elevation pockets. This reorganization appears to occur logarithmically with low flow duration, making it analogous to compaction observed in dry granular flows subjected to agitation. The amount of prior compaction affects bedload transport rates at the onset of above threshold flow, with more compact beds yielding less bedload flux. In contrast, we find that under sediment-transporting flows, the bed dilates because grains are re-deposited in relatively precarious positions. During the same applied transport flow, we observe that the most pronounced dilation occurs when the initial bed is the most compact, suggesting that the potential for dilation is related to the degree of previous compaction. These observations highlight that a gravel bed experiences two different behaviors, compaction under low shear stresses, and dilation under high, sediment transporting, shear stresses. This observation is consistent with previous studies on the compaction and dilation of granular media, as well as flume experiments conducted using glass beads. Further, this study highlights the varying response of grain-scale topography and bedload transport rates to prior flow and bed conditions, demonstrating history dependence in fluvial systems.

  18. Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes.

    PubMed

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya

    2017-10-01

    The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dose-dependent increases in flow-mediated dilation following acute cocoa ingestion in healthy older adults

    PubMed Central

    Feehan, Robert P.; Kunselman, Allen R.; Preston, Amy G.; Miller, Debra L.; Lott, Mary E. J.

    2011-01-01

    An inverse relation exists between intake of flavonoid-rich foods, such as cocoa, and cardiovascular-related mortality. Favorable effects of flavonoids on the endothelium may underlie these associations. We performed a randomized, double-blind, placebo-controlled study to test the hypothesis that acute cocoa ingestion dose dependently increases endothelium-dependent vasodilation, as measured by an increase in brachial artery flow-mediated dilation (FMD), in healthy older adults. Measurements were obtained before (preingestion) and after (1- and 2-h postingestion) ingestion of 0 (placebo), 2, 5, 13, and 26 g of cocoa in 23 adults (63 ± 2 yr old, mean ± SE). Changes in brachial artery FMD 1- and 2-h postingestion compared with preingestion were used to determine the effects of cocoa. FMD was unchanged 1 (Δ−0.3 ± 0.2%)- and 2-h (Δ0.1 ± 0.1%) after placebo (0 g cocoa). In contrast, FMD increased both 1-h postingestion (2 g cocoa Δ0.0 ± 0.2%, 5 g cocoa Δ0.8 ± 0.3%, 13 g cocoa Δ1.0 ± 0.3%, and 26 g cocoa Δ1.6 ± 0.3%: P < 0.05 compared with placebo for 5, 13, and 26 g cocoa) and 2-h postingestion (2 g cocoa Δ0.5 ± 0.3%, 5 g cocoa Δ1.0 ± 0.3%, 13 g cocoa Δ1.4 ± 0.2%, and 26 g cocoa Δ2.5 ± 0.4%: P < 0.05 compared with placebo for 5, 13, and 26 g cocoa) on the other study days. A serum marker of cocoa ingestion (total epicatechin) correlated with increased FMD 1- and 2-h postingestion (r = 0.44–0.48; both P < 0.05). Collectively, these results indicate that acute cocoa ingestion dose dependently increases brachial artery FMD in healthy older humans. These responses may help to explain associations between flavonoid intake and cardiovascular-related mortality in humans. PMID:21903881

  20. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease resistance; and that the tracheal smooth muscle contracts on activation of H1-receptors but has no response to H2-agonists. PMID:2906559

  1. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj

    2017-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References [1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).

  2. Acute retinal ischemia inhibits endothelium-dependent nitric oxide-mediated dilation of retinal arterioles via enhanced superoxide production.

    PubMed

    Hein, Travis W; Ren, Yi; Potts, Luke B; Yuan, Zhaoxu; Kuo, Enoch; Rosa, Robert H; Kuo, Lih

    2012-01-03

    Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10-20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide.

  3. Modeling the pressure-dilatation correlation

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1991-01-01

    It is generally accepted that pressure dilatation, which is an additional compressibility term in turbulence transport equations, may be important for high speed flows. Recent direct simulations of homogeneous shear turbulence have given concrete evidence that the pressure dilatation is important insofar that it contributes to the reduced growth of turbulent kinetic energy due to compressibility effects. The problem of modeling pressure dilatation is addressed. A component of the pressure dilatation is isolated which exhibits temporal oscillations and, using direct numerical simulations of homogeneous shear turbulence and isotropic turbulence, show that it has a negligible contribution to the evolution of turbulent kinetic energy. Then, an analysis for the case of homogeneous turbulence is performed to obtain a model for the nonoscillatory pressure dilatation. This model algebraically relates the pressure dilatation to quantities traditionally obtained in incompressible turbulence closures. The model is validated by direct comparison with the pressure dilatation data obtained from the simulations.

  4. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    PubMed Central

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

  5. Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus.

    PubMed

    Padilla, Jaume; Johnson, Blair D; Newcomer, Sean C; Wilhite, Daniel P; Mickleborough, Timothy D; Fly, Alyce D; Mather, Kieren J; Wallace, Janet P

    2008-09-04

    Normalization of brachial artery flow-mediated dilation (FMD) to individual shear stress area under the curve (peak FMD:SSAUC ratio) has recently been proposed as an approach to control for the large inter-subject variability in reactive hyperemia-induced shear stress; however, the adoption of this approach among researchers has been slow. The present study was designed to further examine the efficacy of FMD normalization to shear stress in reducing measurement variability. Five different magnitudes of reactive hyperemia-induced shear stress were applied to 20 healthy, physically active young adults (25.3 +/- 0. 6 yrs; 10 men, 10 women) by manipulating forearm cuff occlusion duration: 1, 2, 3, 4, and 5 min, in a randomized order. A venous blood draw was performed for determination of baseline whole blood viscosity and hematocrit. The magnitude of occlusion-induced forearm ischemia was quantified by dual-wavelength near-infrared spectrometry (NIRS). Brachial artery diameters and velocities were obtained via high-resolution ultrasound. The SSAUC was individually calculated for the duration of time-to-peak dilation. One-way repeated measures ANOVA demonstrated distinct magnitudes of occlusion-induced ischemia (volume and peak), hyperemic shear stress, and peak FMD responses (all p < 0.0001) across forearm occlusion durations. Differences in peak FMD were abolished when normalizing FMD to SSAUC (p = 0.785). Our data confirm that normalization of FMD to SSAUC eliminates the influences of variable shear stress and solidifies the utility of FMD:SSAUC ratio as an index of endothelial function.

  6. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Westby, Christian M.; Stenger, Michael B.; Ploutz-Snyder, Robert J.; Smith, Scott M.; Platts, Steven H.

    2011-01-01

    Future human space travel will primarily consist of long-duration missions aboard the International Space Station (ISS) or exploration class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage primarily from radiation, but also from psychological stress, reduced physical activity, diminished nutritional status, and, in the case of extravehicular activity, hyperoxic exposure. There is evidence that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this proposal is to identify biomarkers of oxidative and inflammatory stress and to correlate them to indices of atherosclerosis risk before, during, and after long-duration spaceflight. METHODS To meet the objectives of the study, we will study astronauts before, during, and up to 5 years after long-duration missions aboard ISS. Biomarkers of oxidative and inflammatory stress, some of which we have previously shown to be elevated with spaceflight, will be measured before, during, and after spaceflight. Arterial structure will be monitored using ultrasound to measure carotid intima-medial thickness before, during, and after weightlessness. Carotid intima-medial thickness has been shown to be a better indicator than Framingham Risk scores for prediction of atherosclerosis. Arterial function will be monitored using brachial flow-mediated dilation before flight and after landing. Brachial flow-mediated dilation is a good index of endothelium-dependent vasodilation, which is a sensitive predictor of atherosclerotic risk. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight and structural functional measures for up to 5 years after landing. EXPECTED RESULTS We hypothesize that these biomarkers of oxidative and inflammatory stress will be increased with spaceflight and will correlate with increased carotid intima-medial thickness in- and postflight and with decreased flow-mediated dilation after the mission. Furthermore, we hypothesize that measures of oxidative stress will return to baseline after flight, but that biomarkers of inflammatory stress and vascular indices of atherosclerosis risk will remain elevated.

  7. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial.

    PubMed

    Dower, James I; Geleijnse, Johanna M; Gijsbers, Lieke; Zock, Peter L; Kromhout, Daan; Hollman, Peter C H

    2015-05-01

    Prospective cohort studies showed inverse associations between the intake of flavonoid-rich foods (cocoa and tea) and cardiovascular disease (CVD). Intervention studies showed protective effects on intermediate markers of CVD. This may be due to the protective effects of the flavonoids epicatechin (in cocoa and tea) and quercetin (in tea). We investigated the effects of supplementation of pure epicatechin and quercetin on vascular function and cardiometabolic health. Thirty-seven apparently healthy men and women aged 40-80 y with a systolic blood pressure (BP) between 125 and 160 mm Hg at screening were enrolled in a randomized, double-blind, placebo-controlled, crossover trial. CVD risk factors were measured before and after 4 wk of daily flavonoid supplementation. Participants received (-)-epicatechin (100 mg/d), quercetin-3-glucoside (160 mg/d), or placebo capsules for 4 wk in random order. The primary outcome was the change in flow-mediated dilation from pre- to postintervention. Secondary outcomes included other markers of CVD risk and vascular function. Epicatechin supplementation did not change flow-mediated dilation significantly (1.1% absolute; 95% CI: -0.1%, 2.3%; P = 0.07). Epicatechin supplementation improved fasting plasma insulin (Δ insulin: -1.46 mU/L; 95% CI: -2.74, -0.18 mU/L; P = 0.03) and insulin resistance (Δ homeostasis model assessment of insulin resistance: -0.38; 95% CI: -0.74, -0.01; P = 0.04) and had no effect on fasting plasma glucose. Epicatechin did not change BP (office BP and 24-h ambulatory BP), arterial stiffness, nitric oxide, endothelin 1, or blood lipid profile. Quercetin-3-glucoside supplementation had no effect on flow-mediated dilation, insulin resistance, or other CVD risk factors. Our results suggest that epicatechin may in part contribute to the cardioprotective effects of cocoa and tea by improving insulin resistance. It is unlikely that quercetin plays an important role in the cardioprotective effects of tea. This study was registered at clinicaltrials.gov as NCT01691404. © 2015 American Society for Nutrition.

  8. The cardiovascular pharmacology of ICI 170777 ((6RS)-6-methyl-5-(pyrid-4-yl)-3H,6H-1,3,4- thiadiazin-2-one) a novel compound with positive inotropic and vasodilator effects.

    PubMed Central

    Collis, M. G.; Keddie, J. R.; Rouse, W.

    1989-01-01

    1. This paper describes the cardiovascular effects of ICI 170777, a novel compound which enhances cardiac contractility and causes arterial and venous dilatation. 2. The positive inotropic effects of ICI 170777 on the heart were demonstrated by an increase in left ventricular dP/dtmax in the anaesthetized and conscious dog, and by an increase in tension development in isolated papillary muscles from the cat. 3. In the anaesthetized dog, the positive inotropic effects of ICI 170777 and of isoprenaline were attenuated by atenolol (5 mg kg-1, i.v.). Atenolol displaced the dose-response curve to ICI 170777 to the right by 4 fold but displaced the isoprenaline dose-response curve to the right by 247 fold. In vitro, however, atenolol (10 microM) had no significant effect on the positive inotropic response to ICI 170777. In the ganglion-blocked anaesthetized dog, infusion of a low dose of ICI 170777 which had no effect on the basal left ventricular dP/dtmax, selectively potentiated the positive inotropic effects of isoprenaline. These results indicate that ICI 170777 has both a non-adrenoceptor-mediated positive inotropic effect on the heart and also facilitates the beta-adrenoceptor-mediated control of contractility. 4. In the denervated and perfused hind-limb of the dog, ICI 170777 reduced arterial perfusion pressure and increased limb circumference at a constant arterial flow and venous pressure. This indicates that ICI 170777 has direct dilator actions on both arterial and venous vessels. In this preparation, diazoxide exerted an arterial selective vasodilator effect and sodium nitroprusside was a relatively selective venous dilator.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2758224

  9. Endothelial-dependent flow-mediated dilation in African Americans with masked-hypertension.

    PubMed

    Veerabhadrappa, Praveen; Diaz, Keith M; Feairheller, Deborah L; Sturgeon, Katie M; Williamson, Sheara T; Crabbe, Deborah L; Kashem, Abul M; Brown, Michael D

    2011-10-01

    Office-blood pressure (BP) measurements alone overlook a significant number of individuals with masked-hypertension (office-BP: 120/80-139/89 mm Hg and 24-h ambulatory BP monitoring (ABPM) daytime ≥135/85 mm Hg or night-time ≥120/70 mm Hg). Diminished endothelial function contributes to the pathogenesis of hypertension. To better understand the pathophysiology involved in the increased cardiovascular (CV) disease risk associated with masked-hypertension, we estimated the occurrence, assessed the endothelial function, compared plasma levels of inflammatory markers, white blood cell count (WBC count), tumor necrosis factor-α (TNF-α), and high sensitivity C-reactive protein (hsCRP) and examined the possible relationship between endothelial function and inflammatory markers in apparently healthy prehypertensive (office-BP: 120/80-139/89 mm Hg) African Americans. Fifty African Americans who were sedentary, nondiabetic, nonsmoking, devoid of CV disease were recruited. Office-BP was measured according to JNC-7 guidelines to identify prehypertensives in whom ABPM was then assessed. Fasting plasma samples were assayed for inflammatory markers. Brachial artery flow-mediated dilation (FMD) at rest and during reactive hyperemia was measured in a subset of prehypertensives. Subjects in the masked-hypertension sub-group had a higher hsCRP (P = 0.04) and diminished endothelial function (P = 0.03) compared to the true-prehypertensive sub-group (office-BP: 120/80-139/89 mm Hg and ABPM: daytime <135/85 mm Hg or night-time <120/70 mm Hg). Regression analysis showed that endothelial function was inversely related to hsCRP amongst the masked-hypertensive sub-group (R(2) = 0.160; P = 0.04). Masked-hypertension was identified in 58% of African Americans which suggests that a masking phenomenon may exist in a sub-group of prehypertensives who also seem to have a diminished endothelial function that could be mediated by an elevated subclinical inflammation leading to the increased CV disease.

  10. Effects of six-month supplementation with beta-hydroxy-beta-methylbutyrate, glutamine, and arginine on vascular endothelial function of older adults

    PubMed Central

    Ellis, Amy; Patterson, Morgan; Dudenbostel, Tanja; Calhoun, David; Gower, Barbara

    2015-01-01

    Background Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases (CVD). This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine, and arginine on endothelial-dependent vasodilation of older adults. Subjects/Methods Thirty-one community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3g HMB, 14g glutamine, 14g arginine) for six months while the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Results Paired samples t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (p=0.003) while no change was observed in the placebo group (p=0.651). Repeated-measures ANOVA verified a significant time by group interaction (p=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (p=0.059). Conclusions These results suggest that dietary supplementation of HMB, glutamine, and arginine may favorably impact vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation. PMID:26306566

  11. Effects of 6-month supplementation with β-hydroxy-β-methylbutyrate, glutamine and arginine on vascular endothelial function of older adults.

    PubMed

    Ellis, A C; Patterson, M; Dudenbostel, T; Calhoun, D; Gower, B

    2016-02-01

    Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases. This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine and arginine on endothelial-dependent vasodilation of older adults. A total of 31 community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3 g HMB, 14 g glutamine and 14 g arginine) for 6 months, whereas the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Paired sample t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (P=0.003), whereas no change was observed in the placebo group (P=0.651). Repeated-measures analysis of variance verified a significant time by group interaction (P=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (P=0.059). These results suggest that dietary supplementation of HMB, glutamine and arginine may favorably affect vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation.

  12. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance

    PubMed Central

    Schmoelzer, Isabella; Wascher, Thomas C

    2006-01-01

    Background Impaired glucose tolerance (IGT) is associated with increased cardiovascular risk. The pathophysiological mechanisms linking post-challenge hyperglycemia to accelerated atherosclerosis, however remain to be elucidated. Methods A prospective, open, randomised, cross-over study was performed to investigate the effect of 2 mg repaglinide on hyperglycemia and endothelial function during an oral glucose tolerance test (75 g glucose) in 12 subjects with diagnosed IGT. Blood samples for determination of plasma glucose were drawn fasting, 1 and 2 hours after glucose ingestion. Endothelial function was assessed by measuring flow-mediated dilatation (FMD) of the brachial artery with high-resolution ultrasound. Results Administration of repaglinide resulted in a significant reduction of plasma glucose at 2 hours (172.8+/-48.4 vs. 138.3+/-41.2 mg/dl; p < 0.001). The flow-mediated dilatation (FMD) 2 hours after the glucose-load was significantly reduced in comparison to fasting in the control group (6.21+/-2.69 vs. 7.98+/-2.24 %; p = 0.028), whereas after theadministration of repaglinide the FMD was not significantly different to fasting values (7.24+/-2.57 vs. 8.18+/-2.93 %; p = n.s.). Linear and logistic regression analysis revealed that only the change of glucose was significantly correlated to the change of FMD observed (p < 0.001). Regression analysis after grouping for treatment and time confirmed the strong negative association of the changes of plasma glucose and FMD and indicate that the effect of repaglinide observed is based on the reduction glycemia. Conclusion In subjects with IGT, the endothelial dysfunction observed after a glucose challenge is related to the extent of hyperglycemia. Reduction of hyperglycemia by repaglinide reduces endothelial dysfunction in a glucose dependent manner. PMID:16606452

  13. Effect of repaglinide on endothelial dysfunction during a glucose tolerance test in subjects with impaired glucose tolerance.

    PubMed

    Schmoelzer, Isabella; Wascher, Thomas C

    2006-04-10

    Impaired glucose tolerance (IGT) is associated with increased cardiovascular risk. The pathophysiological mechanisms linking post-challenge hyperglycemia to accelerated atherosclerosis, however remain to be elucidated. A prospective, open, randomised, cross-over study was performed to investigate the effect of 2 mg repaglinide on hyperglycemia and endothelial function during an oral glucose tolerance test (75 g glucose) in 12 subjects with diagnosed IGT. Blood samples for determination of plasma glucose were drawn fasting, 1 and 2 hours after glucose ingestion. Endothelial function was assessed by measuring flow-mediated dilatation (FMD) of the brachial artery with high-resolution ultrasound. Administration of repaglinide resulted in a significant reduction of plasma glucose at 2 hours (172.8+/-48.4 vs. 138.3+/-41.2 mg/dl; p < 0.001). The flow-mediated dilatation (FMD) 2 hours after the glucose-load was significantly reduced in comparison to fasting in the control group (6.21+/-2.69 vs. 7.98+/-2.24 %; p = 0.028), whereas after theadministration of repaglinide the FMD was not significantly different to fasting values (7.24+/-2.57 vs. 8.18+/-2.93 %; p = n.s.). Linear and logistic regression analysis revealed that only the change of glucose was significantly correlated to the change of FMD observed (p < 0.001). Regression analysis after grouping for treatment and time confirmed the strong negative association of the changes of plasma glucose and FMD and indicate that the effect of repaglinide observed is based on the reduction glycemia. In subjects with IGT, the endothelial dysfunction observed after a glucose challenge is related to the extent of hyperglycemia. Reduction of hyperglycemia by repaglinide reduces endothelial dysfunction in a glucose dependent manner.

  14. Prediction of early and late preeclampsia by flow-mediated dilation of the brachial artery*

    PubMed Central

    Brandão, Augusto Henriques Fulgêncio; Evangelista, Aline Aarão; Martins, Raphaela Menin Franco; Leite, Henrique Vítor; Cabral, Antônio Carlos Vieira

    2014-01-01

    Objective To assess the accuracy in the prediction of both early and late preeclampsia by flow-mediated dilation of the brachial artery (FMD), a biophysical marker for endothelial dysfunction. Materials and Methods A total of 91 patients, considered at high risk for development of preeclampsia were submitted to brachial artery FMD between 24 and 28 weeks of gestation. Results Nineteen out of the selected patients developed preeclampsia, 8 in its early form and 11 in the late form. With a cut-off value of 6.5%, the FMD sensitivity for early preeclampsia prediction was 75.0%, with specificity of 73.3%, positive predictive value (PPV) of 32.4% and negative predictive value (NPV) of 91.9%. For the prediction of late preeclampsia, sensitivity = 83.3%, specificity = 73.2%, PPV = 34.4% and NPV = 96.2% were observed. And for the prediction of all associated forms of preeclampsia, sensitivity = 84.2%, specificity = 73.6%, PPV = 45.7% and NPV = 94.6% were observed. Conclusion FMD of the brachial artery is a test with good accuracy in the prediction of both early and late preeclampsia, which may represent a positive impact on the follow-up of pregnant women at high risk for developing this syndrome. PMID:25741086

  15. Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis.

    PubMed

    Seinost, Gerald; Wimmer, Gernot; Skerget, Martina; Thaller, Erik; Brodmann, Marianne; Gasser, Robert; Bratschko, Rudolf O; Pilger, Ernst

    2005-06-01

    Because epidemiological studies provide evidence that periodontal infections are associated with an increased risk of progression of cardiovascular and cerebrovascular disease, we postulated that endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis, would be present in patients with periodontal disease. We tested endothelial function in 30 patients with severe periodontitis and 31 control subjects using flow-mediated dilation (FMD) of the brachial artery. The groups were matched for age, sex, and cardiovascular risk factors. Three months after periodontal treatment, including both mechanical and pharmacological therapy, endothelial function was reassessed by brachial artery FMD. Markers of systemic inflammation were measured at baseline and at follow up. Flow-mediated dilation was significantly lower in patients with periodontitis than in control subjects (6.1% +/- 4.4% vs 8.5% +/- 3.4%, P = .002). Successful periodontal treatment resulted in a significant improvement in FMD (9.8% +/- 5.7%; P = .003 compared to baseline) accompanied by a significant decrease in C-reactive protein concentrations (1.1 +/- 1.9 vs 0.8 +/- 0.8 at baseline, P = .026). Endothelium-independent nitro-induced vasodilation did not differ between the study groups at baseline or after periodontal therapy. These results indicate that treatment of severe periodontitis reverses endothelial dysfunction. Whether improved endothelial function will translate into a beneficial effect on atherogenesis and cardiovascular events needs further investigation.

  16. Febuxostat improves endothelial function in hemodialysis patients with hyperuricemia: A randomized controlled study.

    PubMed

    Tsuruta, Yuki; Kikuchi, Kan; Tsuruta, Yukio; Sasaki, Yuko; Moriyama, Takahito; Itabashi, Mitsuyo; Takei, Takashi; Uchida, Keiko; Akiba, Takashi; Tsuchiya, Ken; Nitta, Kosaku

    2015-10-01

    Endothelial dysfunction is often found in both hyperuricemia and hemodialysis patients. Recent studies have shown that treating hyperuricemia with allopurinol improves endothelial dysfunction. This study is performed to assess the effect of febuxostat on endothelial dysfunction in hemodialysis patients with hyperuricemia. We randomly assigned 53 hemodialysis patients with hyperuricemia to a febuxostat (10 mg daily) group and a control group and measured flow-mediated dilation, serum uric acid (UA) levels, systolic and diastolic blood pressure, malondialdehyde-modified low-density lipoprotein (MDA-LDL), and highly sensitive C-reactive protein (hsCRP) at baseline and at the end of a 4-week study period. Flow-mediated dilation increased from 5.3% ± 2.4% to 8.9% ± 3.6% in the febuxostat group but did not change significantly in the control group. Treatment with febuxostat resulted in a significant decrease in serum UA level and a significant decrease in MDA-LDL compared with baseline, but no significant difference was observed in hsCRP level or blood pressure. No significant differences were observed in the control group. Febuxostat improved endothelial dysfunction and reduced serum UA levels and oxidative stress in hemodialysis patients with hyperuricemia. © 2015 International Society for Hemodialysis.

  17. Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults.

    PubMed

    Ogoh, Shigehiko; Nagaoka, Ryohei; Mizuno, Takamasa; Kimura, Shohei; Shidahara, Yasuhiro; Ishii, Tomomi; Kudoh, Michinari; Iwamoto, Erika

    2016-12-01

    Endothelial dysfunction is associated with increased cardiovascular mortality and morbidity; however, this dysfunction may be ameliorated by several therapies. For example, it has been reported that heat-induced increases in blood flow and shear stress enhance endothelium-mediated vasodilator function. Under these backgrounds, we expect that carbon dioxide (CO 2 )-rich water-induced increase in skin blood flow improves endothelium-mediated vasodilation with less heat stress. To test our hypothesis, we measured flow-mediated dilation (FMD) before and after acute immersion of the lower legs and feet in mild warm (38°C) normal or CO 2 -rich tap water (1000 ppm) for 20 min in 12 subjects. Acute immersion of the lower legs and feet in mild warm CO 2 -rich water increased FMD (P < 0.01) despite the lack of change in this parameter upon mild warm normal water immersion. In addition, FMD was positively correlated with change in skin blood flow regardless of conditions (P < 0.01), indicating that an increase in skin blood flow improves endothelial-mediated vasodilator function. Importantly, the temperature of normal tap water must reach approximately 43°C to achieve the same skin blood flow level as that obtained during mild warm CO 2 -rich water immersion (38°C). These findings suggest that CO 2 -rich water-induced large increases in skin blood flow may improve endothelial-mediated vasodilator function while causing less heat stress. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Acute EGCG Supplementation Reverses Endothelial Dysfunction in Patients with Coronary Artery Disease

    PubMed Central

    Widlansky, Michael E.; Hamburg, Naomi M.; Anter, Elad; Holbrook, Monika; Kahn, David F.; Elliott, James G.; Keaney, John F.; Vita, Joseph A.

    2013-01-01

    Background Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. Objective We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. Design We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. Results A total of 42 subjects were enrolled, and brachial artery flow-mediated dilation improved from 7.1±4.1 to 8.6±4.7% two hours after the first dose of 300mg of EGCG (P=0.01), but was similar to baseline (7.8±4.2%, P=0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6±10.9 to 92.8±78.7 ng/ml after acute EGCG (P<0.001), but were unchanged from baseline after two weeks of treatment (3.4±13.1 ng/ml). Conclusion EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function. PMID:17536120

  19. Release of endothelial microparticles in patients with arterial hypertension, hypertensive emergencies and catheter-related injury.

    PubMed

    Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian

    2018-06-01

    Circulating endothelial microparticles (EMPs) are increased in arterial hypertension. The role of physicomechanical factors that may induce EMP release in vivo is still unknown. We studied the relationship of EMPs and physicomechanical factors in stable arterial hypertension and hypertensive emergencies, and investigated the pattern of EMP release after mechanical endothelial injury. In a pilot study, 41 subjects (50% hypertensives) were recruited. EMPs were discriminated by flow-cytometry (CD31 + /41 - , CD62e + , CD144 + ). Besides blood pressure measurements, pulse-wave-analysis was performed. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), and wall-shear-stress (WSS) were measured ultrasonographically in the brachial artery; microvascular perfusion by laser-Doppler (Clinicaltrials.gov: NCT02795377). We studied patients with hypertensive emergencies before and 4 h after BP lowering by urapidil (n = 12) and studied the release of EMPs due to mechanical endothelial injury after coronary angiography (n = 10). Hypertensives exhibited increased EMPs (CD31 + /41 - , CD144 + , CD62e + ) as compared to normotensives and EMPs univariately correlated with systolic BP (SBP), augmentation index, and pulse wave velocity and inversely with FMD. CD31 + /41 - -EMPs correlated with diameter and inversely with WSS and NMD. CD62e + and CD144 + -EMPs inversely correlated with microvascular function. During hypertensive emergency, only CD62e + and CD144 + -EMPs were further elevated and FMD was decreased compared to stable hypertensives. Blood pressure lowering decreased CD62e + and CD144 + -EMPs and increased FMD. CD31 + /41 - EMPs, diameter, and WSS remained unaffected. Similar to hypertensive emergency, catheter-related endothelial injury increased only CD144 + and CD62e + -EMPs. EMP release in hypertension is complex and may involve both physicomechanical endothelial injury and activation (CD144 + , CD62e + ) and decreased wall shear stress (CD31 + /41 - ). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Effects of resistance-guided high intensity interval functional electrical stimulation cycling on an individual with paraplegia: A case report.

    PubMed

    Dolbow, David R; Credeur, Daniel P

    2018-03-01

    Individuals with spinal cord injury (SCI) are more than twice as likely to develop and die from cardio-metabolic diseases as compared to able-bodied. This increased risk is thought to be in part due to accelerated muscle atrophy and reduced blood flow through sublesional arteries. Thus, strategies to recondition paralyzed skeletal muscles may help reduce cardio-metabolic disease risk. The purpose of this case report was to examine the impact of a novel, resistance-guided, high intensity interval training functional electrical stimulation (RG-HIIT-FES) cycling program on cardio-metabolic health in people with chronic SCI. One adult female with chronic T10 SCI. A novel RG-HIIT-FES cycling program three times per week for 10 weeks. Measures of body composition and cardio-metabolic health (vascular endothelial function of the brachial artery via flow-mediated dilation) and HbA1c blood values were performed at baseline and following completion of the RG-HIIT-FES program. Total body lean mass and legs lean mass increased 2.8% and 5.3% respectively while vastus lateralis thickness increased by 59.5%. Reactive hyperemia and flow mediated dilation change in brachial artery diameter increased by 11.1% and 147.7% following the program, respectively. HbA1c level changed minimally (5 to 4.9%). This case report suggests that RG-HIIT-FES cycling was an effective strategy to improve lean mass, and systemic vascular endothelial health in an individual with chronic SCI.

  1. Endothelial dysfunction in patients with obstructive sleep apnoea independent of metabolic syndrome.

    PubMed

    Amra, Babak; Karbasi, Elaheh; Hashemi, Mohammad; Hoffmann-Castendiek, Birgit; Golshan, Mohammad

    2009-05-01

    Obstructive sleep apnoea syndrome (OSAS), characterised by intermittent hypoxia/re-oxygenation, has been identified as an independent risk factor for cardiovascular diseases and endothelial dysfunction. Our aim was to investigate flow-mediated dilatation (FMD) in patients with obstructive sleep apnoea with and without metabolic syndrome. Fifty-two subjects with OSAS diagnosed by polysomnography were classified into 2 groups according to the presence and absence of the metabolic syndrome and also according to the severity: mild to moderate OSAS group and severe OSAS group. Endothelial function of the brachial artery was evaluated by using high-resolution vascular ultrasound. Endothelial-dependent dilatation (EDD) was assessed by establishing reactive hyperaemia and endothelial-independent dilatation (EID) was determined by using sublingual isosorbide dinitrate. Spearman correlation and regression analysis were performed. EDD was not significantly different in patients with OSAS and metabolic syndrome as compared with OSAS without metabolic syndrome (4.62 +/- 0.69 versus 4.49 +/- 0.93, P >0.05). Endothelial dysfunction in OSA may be independent of metabolic syndrome.

  2. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    PubMed

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; p<0.01) and CPT (1.43±0.30 vs. 2.23±0.48; p<0.01), compared to basal values. No differences in vascular end-points were shown at 3-month and 4-year follow-up after BS. Our data show that, in morbidly obese patients, BS exerts beneficial and long lasting effects on peripheral endothelial function and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. SALT LOADING HAS A MORE DELETERIOUS EFFECT ON FLOW-MEDIATED DILATION IN SALT-RESISTANT MEN THAN WOMEN

    PubMed Central

    Lennon-Edwards, S.; Ramick, M.G.; Matthews, E.L.; Brian, M.S.; Farquhar, W.B.; Edwards, D.G.

    2014-01-01

    Background and Aims Dietary sodium loading has been shown to adversely impact endothelial function independently of blood pressure (BP). However, it is unknown whether dietary sodium loading impacts endothelial function differently in men as compared to women. The aim of this study was to test the hypothesis that endothelial-dependent dilation (EDD) would be lower in men as compared to women in response to a high sodium diet. Methods and Results Thirty subjects (14F, 31±2y; 16M, 29±2y) underwent a randomized, crossover, controlled diet study consisting of 7 days of low sodium (LS; 20 mmol/day) and 7 days of high sodium (HS; 300–350 mmol/day). Salt-resistance was determined by a change in 24-hr mean arterial pressure (MAP)≤ 5 mmHg between HS and LS as assessed on day 7 of each diet. Blood and 24-hr urine were also collected and EDD was assessed by brachial artery flow-mediated dilation(FMD). By design, MAP was not different between LS and HS conditions and urinary sodium excretion increased on HS diet (p<0.01). FMD did not differ between men and women on the LS diet (10.2±0.65 vs. 10.7±0.83; p>0.05) and declined in both men and women on HS (p<0.001). However, FMD was lower in men as compared to women on HS (5.7±0.5 vs. 8.6±0.86; p<0.01). Conclusions HS reduced FMD in both men and women. In response to a HS diet, FMD was lower in men compared to women suggesting a greater sensitivity of the vasculature to high sodium in men. PMID:24989702

  4. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486

  5. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.

    PubMed

    Zeng, F; Jiang, M Q; Dai, L H

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  6. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  7. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using DPPC as the insoluble surfacant monolayer and measured for it a surface dilatational viscosity in the LE phase that is 20 surface poise.

  8. Forearm Vascular Reactivity and Arterial Stiffness in Asymptomatic Subjects from the Community

    PubMed Central

    Malik, A. Rauoof; Kondragunta, Venkateswarlu; Kullo, Iftikhar J.

    2010-01-01

    Vascular reactivity may affect the stiffness characteristics of the arterial wall. We investigated the association between forearm microcirculatory and conduit artery function and measures of arterial stiffness in 527 asymptomatic non-Hispanic white adults without known cardiovascular disease. High-resolution ultrasonography of the brachial artery (ba) was performed to assess forearm microcirculatory function (ba blood flow velocity, local shear stress, and forearm vascular resistance at rest and during reactive hyperemia) and conduit artery function (ba flow-mediated dilatation baFMD and ba nitroglycerin-mediated dilatation baNMD). Arterial stiffness was assessed by cuff-derived brachial pulse pressure and aortic pulse wave velocity (aPWV) measured by applanation tonometry. In regression analyses that adjusted for heart rate, mean arterial pressure, height, cardiovascular risk factors, and hypertension medication and statin use, higher baseline ba systolic velocity and systolic shear stress were associated with greater pulse pressure (P=0.0002 and P=0.006, respectively) and higher aPWV (each P<0.0001). During hyperemia, lower ba mean velocity and lower mean shear stress were associated with higher pulse pressure (P=0.045 and P=0.036, respectively) while both systolic and mean velocity (P<0.0001 and P=0.002, respectively) and systolic and mean shear stress (P<0.0001 and P=0.003, respectively) were inversely associated with aPWV. baFMD was not associated with pulse pressure but was inversely associated with aPWV (P=0.011). baNMD was inversely associated with pulse pressure (P=0.0002) and aPWV (P=0.008). Our findings demonstrate that impaired forearm microvascular function (in the form of elevated resting blood flow velocity and impaired flow reserve) and impaired brachial artery reactivity are associated with increased arterial stiffness. PMID:18426995

  9. Internal friction and absence of dilatancy of packings of frictionless polygons.

    PubMed

    Azéma, Émilien; Radjaï, Farhang; Roux, Jean-Noël

    2015-01-01

    By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear flow possess an internal friction coefficient (equal to 0.183±0.008 with our choice of moderately polydisperse grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle rotations, the solid fraction under quasistatic shear coincides with that of isotropic random close packings of pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic structure that is at the origin of the ability of the system to sustain shear stress.

  10. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study.

    PubMed

    Vafeiadou, Katerina; Weech, Michelle; Altowaijri, Hana; Todd, Susan; Yaqoob, Parveen; Jackson, Kim G; Lovegrove, Julie A

    2015-07-01

    Public health strategies to lower cardiovascular disease (CVD) risk involve reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). However, the optimal type of replacement fat is unclear. We investigated the substitution of 9.5-9.6%TE dietary SFAs with either monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on vascular function and other CVD risk factors. In a randomized, controlled, single-blind, parallel-group dietary intervention, 195 men and women aged 21-60 y from the United Kingdom with moderate CVD risk (≥50% above the population mean) followed one of three 16-wk isoenergetic diets (%TE target compositions, total fat:SFA:MUFA:n-6 PUFA) that were rich in SFAs (36:17:11:4, n = 65), MUFAs (36:9:19:4, n = 64), or n-6 PUFAs (36:9:13:10, n = 66). The primary outcome measure was flow-mediated dilatation; secondary outcome measures included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood pressure, and markers of insulin resistance, inflammation, and endothelial activation. Replacing SFAs with MUFAs or n-6 PUFAs did not affect the percentage of flow-mediated dilatation (primary endpoint) or other measures of vascular reactivity. Of the secondary outcome measures, substitution of SFAs with MUFAs attenuated the increase in night systolic blood pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). Replacement with MUFAs or n-6 PUFAs lowered fasting serum total cholesterol (-8.4% and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%), and total cholesterol to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction in CVD mortality. Substitution of 9.5-9.6%TE dietary SFAs with either MUFAs or n-6 PUFAs did not significantly affect the percentage of flow-mediated dilatation or other measures of vascular function. However, the beneficial effects on serum lipid biomarkers, blood pressure, and E-selectin offer a potential public health strategy for CVD risk reduction. This trial was registered at www.clinicaltrials.gov as NCT01478958. © 2015 American Society for Nutrition.

  11. Vascular Function Is Improved After an Environmental Enrichment Program: The Train the Brain-Mind the Vessel Study.

    PubMed

    Bruno, Rosa Maria; Stea, Francesco; Sicari, Rosa; Ghiadoni, Lorenzo; Taddei, Stefano; Ungar, Andrea; Bonuccelli, Ubaldo; Tognoni, Gloria; Cintoli, Simona; Del Turco, Serena; Sbrana, Silverio; Gargani, Luna; D'Angelo, Gennaro; Pratali, Lorenza; Berardi, Nicoletta; Maffei, Lamberto; Picano, Eugenio

    2018-06-01

    Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallel-group study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P =0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10 -3 ; P =0.009); only the latter remained significant after adjustment for confounders ( P =0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P =0.006; P =0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34 + cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa -1 ; P =0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function, mobilization of progenitor CD34 + cells, and preserved carotid distensibility. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01725178. © 2018 American Heart Association, Inc.

  12. Relation of Biochemical Parameters with Flow-mediated Dilatation in Patients with Metabolic Syndrome

    PubMed Central

    Sipahioglu, Nurver Turfaner; Ilerigelen, Barıs; Gungor, Zeynep B.; Ayaz, Gulsel; Ekmekci, Hakan; Gurel, Cigdem Bayram; Can, Gunay; Sonmez, Huseyin; Ulutin, Turgut; Sipahioglu, Fikret

    2017-01-01

    Background: Metabolic syndrome (MetS) is one of the high cardiovascular (CV) situations. Endothelial dysfunction, which is a common finding in patients with MetS, is related with increased CV risk. In patients with MetS, the effect of the major CV risk factors, not included in the MetS definition, on endothelial dysfunction is not well known. The aim of this study was to determine the effect of major CV risk factors such as gender, smoking, family history, and biochemical parameters on endothelial dysfunction in patients with MetS. Methods: The study was performed between December 2010 and August 2014. A total of 55 patients (15 females and 40 males) with MetS and 81 healthy controls (37 females and 44 males) with a body mass index <25 kg/m2 were enrolled in the study. Endothelial dysfunction was measured by flow-mediated dilatation (FMD), oxidative stress parameters; high-sensitivity C-reactive protein (hs-CRP), oxidized low-density lipoprotein (ox-LDL), endothelial nitric oxide synthase (e-NOS), nitric oxide, and cell adhesion markers; von Willebrand factor, and e-selectin. Platelet aggregation (endothelial adenosine diphosphate), total platelet count, and mean platelet volume were additionally analyzed and demographic parameters were explored. Student's t-test, Mann-Whitney U-test, and Chi-square test were used to analyze the results. Results: The fasting blood glucose (z = 3.52, P = 0.001), hs-CRP (z = 3.23, P = 0.004), ox-LDL (z = 2.62, P = 0.013), and e-NOS (z = 2.22, P = 0.026) levels and cardiac risk score (z = 5.23, P < 0.001) were significantly higher in patients with MetS compared with the control group. Smoking was correlated with decreased FMD (χ2 = 9.26, P = 0.002) in MetS patients but not in the control group. Conclusions: Increased ox-LDL, hs-CRP, and e-NOS are likely to be a result of oxidative stress, a condition in which an imbalance occurs between the production and inactivation of reactive nitrogen and oxygen species. In addition, in patients with MetS, smoking is independently related to endothelial dysfunction. PMID:28639572

  13. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    PubMed

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  14. Rilmenidine produces mydriasis in cats by stimulation of CNS alpha 2-adrenoceptors.

    PubMed

    Koss, M C

    2003-02-01

    1. Experiments were undertaken to determine if the imidazoline/alpha2-adrenoceptor agonist, rilmenidine, would produce mydriasis in cats and, if so, to delineate its site of action and determine if this effect is mediated by imidazoline receptors or alpha2-adrenoceptors. 2. Rilmenidine produced dose-related pupillary dilator responses in pentobarbital anaesthetized cats that were independent of sympathetic innervation to the iris but were dependent upon intact parasympathetic neuronal tone. The ED50 for rilmenidine-induced pupillary dilation was approximately 200 microg kg(-1), i.v., and was sustained for at least 1 h. 3. The highly selective alpha2-adrenoceptor antagonist, RS-79948, administered either before or after rilmenidine, antagonized rilmenidine-induced mydriasis. Neuronally induced reflex inhibition of parasympathetic nerve activity was also inhibited by administration of RS-79948. 4. These results suggest that rilmenidine acts like clonidine to produce pupillary dilation by inhibition of parasympathetic tone to the iris sphincter and that this central nervous system parasympatho-inhibition is mediated by alpha2-adrenoceptors, rather than imidazoline receptors.

  15. Impaired arterial smooth muscle cell vasodilatory function in methamphetamine users.

    PubMed

    Nabaei, Ghaemeh; Oveisgharan, Shahram; Ghorbani, Askar; Fatehi, Farzad

    2016-11-15

    Methamphetamine use is a strong risk factor for stroke. This study was designed to evaluate arterial function and structure in methamphetamine users ultrasonographically. In a cross-sectional study, 20 methamphetamine users and 21 controls, aged between 20 and 40years, were enrolled. Common carotid artery intima-media thickness (CCA-IMT) marker of early atherogenesis, flow-mediated dilatation (FMD) determinants of endothelium-dependent vasodilation, and nitroglycerine-mediated dilatation (NMD) independent marker of vasodilation were measured in two groups. There were no significant differences between the two groups regarding demographic and metabolic characteristics. The mean (±SD) CCA-IMT in methamphetamine users was 0.58±0.09mm, versus 0.59±0.07mm in the controls (p=0.84). Likewise, FMD% was not significantly different between the two groups [7.6±6.1% in methamphetamine users vs. 8.2±5.1% in the controls; p=0.72], nor were peak flow and shear rate after hyperemia. However, NMD% was considerably decreased in the methamphetamine users [8.5±7.8% in methamphetamine users vs. 13.4±6.2% in controls; p=0.03]. According to our results, NMD is reduced among otherwise healthy methamphetamine users, which represents smooth muscle dysfunction in this group. This may contribute to the high risk of stroke among methamphetamine users. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Randomized Trial of Vitamin D Supplementation on Vascular Function in CKD.

    PubMed

    Kumar, Vivek; Yadav, Ashok Kumar; Lal, Anupam; Kumar, Vinod; Singhal, Manphool; Billot, Laurent; Gupta, Krishan Lal; Banerjee, Debasish; Jha, Vivekanand

    2017-10-01

    Vitamin D deficiency associates with mortality in patients with CKD, and vitamin D supplementation might mitigate cardiovascular disease risk in CKD. In this randomized, double-blind, placebo-controlled trial, we investigated the effect of cholecalciferol supplementation on vascular function in 120 patients of either sex, aged 18-70 years, with nondiabetic CKD stage 3-4 and vitamin D deficiency (serum 25-hydroxyvitamin D ≤20 ng/ml). We randomized patients using a 1:1 ratio to receive either two directly observed oral doses of cholecalciferol (300,000 IU) or matching placebo at baseline and 8 weeks. The primary outcome was change in endothelium-dependent brachial artery flow-mediated dilation at 16 weeks. Secondary outcome measures included changes in pulse wave velocity and circulating biomarkers. Cholecalciferol supplementation significantly increased endothelium-dependent brachial artery flow-mediated dilation at 16 weeks, whereas placebo did not (between-group difference in mean change: 5.49%; 95% confidence interval, 4.34% to 6.64%; P <0.001). Intervention also led to significant favorable changes in pulse wave velocity and circulating IL-6 levels. Thus, in nondiabetic patients with stage 3-4 CKD and vitamin D deficiency, vitamin D supplementation may improve vascular function. This study is registered with the Clinical Trials Registry of India (no.: CTRI/2013/05/003648). Copyright © 2017 by the American Society of Nephrology.

  17. Treatment strategy according to findings on pressure-flow study for women with decreased urinary flow rate.

    PubMed

    Tanaka, Yoshinori; Masumori, Naoya; Tsukamoto, Taiji; Furuya, Seiji; Furuya, Ryoji; Ogura, Hiroshi

    2009-01-01

    In women who reported a weak urinary stream, the efficacy of treatment chosen according to the urodynamic findings on pressure-flow study was prospectively evaluated. Twelve female patients with maximum flow rates of 10 mL/sec or lower were analyzed in the present study. At baseline, all underwent pressure-flow study to determine the degree of bladder outlet obstruction (BOO) and status of detrusor contractility on Schäfer's diagram. Distigmine bromide, 10 mg/d, was given to the patients with detrusor underactivity (DUA) defined as weak/very weak contractility, whereas urethral dilatation was performed using a metal sound for those with BOO (linear passive urethral resistance relation 2-6). Treatment efficacy was evaluated using the International Prostate Symptom Score (IPSS), uroflowmetry, and measurement of postvoid residual urine volume. Some patients underwent pressure-flow study after treatment. Urethral dilatation was performed for six patients with BOO, while distigmine bromide was given to the remaining six showing DUA without BOO. IPSS, QOL index, and the urinary flow rate were significantly improved in both groups after treatment. All four of the patients with BOO and one of the three with DUA but no BOO who underwent pressure-flow study after treatment showed decreased degrees of BOO and increased detrusor contractility, respectively. Both BOO and DUA cause a decreased urinary flow rate in women. In the short-term, urethral dilatation and distigmine bromide are efficacious for female patients with BOO and those with DUA, respectively.

  18. NOX2-mediated arterial dysfunction in smokers: acute effect of dark chocolate.

    PubMed

    Loffredo, Lorenzo; Carnevale, Roberto; Perri, Ludovica; Catasca, Elisa; Augelletti, Teresa; Cangemi, Roberto; Albanese, Fabiana; Piccheri, Cristina; Nocella, Cristina; Pignatelli, Pasquale; Violi, Francesco

    2011-11-01

    Cocoa seems to exert artery dilatation via oxidative stress inhibition but the mechanism is still unclear. To investigate whether in smokers, dark chocolate elicits artery dilatation via down-regulation of NOX2, the catalytic core of NADPH oxidase. Flow-mediated dilatation (FMD), oxidative stress (as assessed by urinary isoprostanes excretion), nitric oxide generation (as assessed by serum levels of nitrite/nitrate (NOx)), NOX2 activity (as assessed by blood levels of soluble NOX2 derived peptide (sNOX2-dp)) and serum epicatechin were studied in 20 smokers and 20 healthy subjects (HS) in a crossover, single-blind study. Patients were randomly allocated to 40 g dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa). FMD, urinary isoprostanes, NOx and sNOX2-dp were assessed at baseline and 2 h after chocolate ingestion. Smokers had lower FMD and NOx and higher sNOX2-dp compared to HS. After dark chocolate intake, urinary isoprostanes and sNOX2-dp significantly decreased and FMD and NOx significantly increased in smokers but not in HS. No changes of the above variables were observed after milk chocolate intake. Multiple linear regression analysis showed that in smokers the only independent predictive variable associated with a change in FMD was a change in sNOX2-dp. Serum epicatechin increased in either group only after dark chocolate intake, reaching values higher than 0.1 μM. Platelets from smokers (n=5), but not from HS (n=5), showed lower p47(phox) translocation to platelet membrane and higher NOx when incubated with 0.1-10 μM epicatechin. Results suggest that in smokers, cocoa enhances artery dilatation by lowering of NOX2 activation.

  19. Aortic Valve Stenosis Alters Expression of Regional Aortic Wall Shear Stress: New Insights From a 4-Dimensional Flow Magnetic Resonance Imaging Study of 571 Subjects.

    PubMed

    van Ooij, Pim; Markl, Michael; Collins, Jeremy D; Carr, James C; Rigsby, Cynthia; Bonow, Robert O; Malaisrie, S Chris; McCarthy, Patrick M; Fedak, Paul W M; Barker, Alex J

    2017-09-13

    Wall shear stress (WSS) is a stimulus for vessel wall remodeling. Differences in ascending aorta (AAo) hemodynamics have been reported between bicuspid aortic valve (BAV) and tricuspid aortic valve patients with aortic dilatation, but the confounding impact of aortic valve stenosis (AS) is unknown. Five hundred seventy-one subjects underwent 4-dimensional flow magnetic resonance imaging in the thoracic aorta (210 right-left BAV cusp fusions, 60 right-noncoronary BAV cusp fusions, 245 tricuspid aortic valve patients with aortic dilatation, and 56 healthy controls). There were 166 of 515 (32%) patients with AS. WSS atlases were created to quantify group-specific WSS patterns in the AAo as a function of AS severity. In BAV patients without AS, the different cusp fusion phenotypes resulted in distinct differences in eccentric WSS elevation: right-left BAV patients exhibited increased WSS by 9% to 34% ( P <0.001) at the aortic root and along the entire outer curvature of the AAo whereas right-noncoronary BAV patients showed 30% WSS increase ( P <0.001) at the distal portion of the AAo. WSS in tricuspid aortic valve patients with aortic dilatation patients with no AS was significantly reduced by 21% to 33% ( P <0.01) in 4 of 6 AAo regions. In all patient groups, mild, moderate, and severe AS resulted in a marked increase in regional WSS ( P <0.001). Moderate-to-severe AS further increased WSS magnitude and variability in the AAo. Differences between valve phenotypes were no longer apparent. AS significantly alters aortic hemodynamics and WSS independent of aortic valve phenotype and over-rides previously described flow patterns associated with BAV and tricuspid aortic valve with aortic dilatation. Severity of AS must be considered when investigating valve-mediated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial.

    PubMed

    Mulder, H J; Schalij, M J; Kauer, B; Visser, R F; van Dijkman, P R; Jukema, J W; Zwinderman, A H; Bruschke, A V

    2001-11-01

    To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. A double blind, randomised, placebo controlled, multicentre study. Four hospitals in the Netherlands. 63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.

  1. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    NASA Astrophysics Data System (ADS)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  2. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease.

    PubMed

    Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco

    2014-07-02

    NOX-2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow-mediated dilation (FMD). Dark chocolate exerts artery dilatation via down-regulating NOX2-mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress-mediated mechanism. FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2-dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross-over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (-23%; P=0.01) and sNOX2-dp (-37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E-selectin (P<0.001) and VCAM1 (P<0.001). In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress-mediated mechanism involving NOX2 regulation. http://www.clinicaltrials.gov. Unique identifier: NCT01947712. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers.

    PubMed

    Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L

    2012-03-01

    Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Laws of physics help explain capillary non-perfusion in diabetic retinopathy.

    PubMed

    Stefánsson, E; Chan, Y K; Bek, T; Hardarson, S H; Wong, D; Wilson, D I

    2018-02-01

    The purpose is to use laws of physics to elucidate the mechanisms behind capillary non-perfusion in diabetic retinopathy. In diabetic retinopathy, loss of pericytes weakens capillary walls and the vessel dilates. A dilated capillary has reduced resistance to flow, therefore increased flow in that vessel and decreased in adjoining capillaries. A preferential shunt vessel is thus formed from the dilated capillary and the adjacent capillaries become non-perfused. We apply the laws of Laplace and Hagen-Poiseuille to better understand the phenomena that lead to capillary non-perfusion. These laws of physics can give a foundation for physical or mathematical models to further elucidate this field of study. The law of Laplace predicts that a weaker vessel wall will dilate, assuming constant transmural pressure. The Hagen-Poiseuille equation for flow and the Ostwald-de Waele relationship for viscosity predict that a dilated vessel will receive a higher portion of the fluid flow than the adjoining capillaries. Viscosity will decrease in the dilated vessel, furthering the imbalance and resulting in a patch of non-perfused capillaries next to the dilated 'preferential' shunt vessel. Physical principles support or inspire novel hypotheses to explain poorly understood phenomena in ophthalmology. This thesis of pericyte death and capillary remodelling, which was first proposed by Cogan and Kuwabara, already agrees with histological and angiographical observations in diabetic retinopathy. We have shown that it is also supported by classical laws of physics.

  5. Effect of carvedilol and nebivolol on oxidative stress-related parameters and endothelial function in patients with essential hypertension.

    PubMed

    Zepeda, Ramiro J; Castillo, Rodrigo; Rodrigo, Ramón; Prieto, Juan C; Aramburu, Ivonne; Brugere, Solange; Galdames, Katia; Noriega, Viviana; Miranda, Hugo F

    2012-11-01

    Oxidative stress and endothelial dysfunction have been associated with essential hypertension (EH) mechanisms. The purpose of this study was to evaluate the effect of carvedilol and nebivolol on the oxidative stress-related parameters and endothelial function in patients with EH. The studied population included 57 patients, either sex, between 30 and 75 years of age, with mild-to-moderate EH complications. Participants were randomized to receive either carvedilol (12.5 mg) (n = 23) or nebivolol (5 mg) (n = 21) for 12 weeks. Measurements included; 24-hr ambulatory blood pressure (BP), flow-mediated dilatation, levels of nitric oxide estimated as nitrite - a nitric oxide metabolite ( NO₂) - in plasma, and oxidative stress-related parameters in plasma and erythrocyte. EH patients who were treated with nebivolol or carvedilol showed systolic BP reductions of 17.4 and 19.9 mmHg, respectively, compared with baseline values (p < 0.01). Diastolic BP was reduced by 13.7 and 12.8 mmHg after the treatment with ebivolol and carvedilol, respectively (p < 0.01) (fig. 2B). Nebivolol and carvedilol showed 7.3% and 8.1% higher endothelium-dependent dilatation in relation to baseline values (p < 0.05). Ferric-reducing ability of plasma (FRAP) and reduced glutathione/oxidized glutathione (GSSH) ratio showed 31.5% and 29.6% higher levels in the carvedilol group compared with basal values; however, nebivolol-treated patients did not show significant differences after treatment. On the other hand, the NO₂ plasma concentration was not modified by the administration of carvedilol. However, nebivolol enhanced these levels in 62.1% after the treatment. In conclusion, this study demonstrated the antihypertensive effect of both beta-blockers. However, carvedilol could mediate these effects by an increase in antioxidant capacity and nebivolol through the raise in NO₂ concentration. Further studies are needed to determine the molecular mechanism of these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  6. UBC-Nepal Expedition: acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea level and high altitude.

    PubMed

    Tymko, Michael M; Tremblay, Joshua C; Steinback, Craig D; Moore, Jonathan P; Hansen, Alex B; Patrician, Alexander; Howe, Connor A; Hoiland, Ryan L; Green, Daniel J; Ainslie, Philip N

    2017-11-01

    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g., shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that 1 ) at rest, SNA would be elevated and FMD would be reduced at HA compared with sea-level (SL); and 2 ) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344 m) and HA (5,050 m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants ( n = 5). Our findings were 1 ) at rest, SNA was elevated ( P < 0.01), and absolute FMD was reduced ( P = 0.024), but relative FMD remained unaltered ( P = 0.061), at HA compared with SL; and 2 ) despite significantly altering SNA with LBNP (+60.3 ± 25.5%) and LBPP (-37.2 ± 12.7%) ( P < 0.01), FMD was unaltered at SL ( P = 0.448) and HA ( P = 0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA. NEW & NOTEWORTHY The role of the sympathetic nervous system on endothelial function remains unclear. We used lower-body negative and positive pressure to manipulate sympathetic nervous activity at sea level and high altitude and measured brachial endothelial function via flow-mediated dilation. We found that acutely altering sympathetic nervous activity had no effect on endothelial function. Copyright © 2017 the American Physiological Society.

  7. Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin.

    PubMed Central

    Henrion, D; Terzi, F; Matrougui, K; Duriez, M; Boulanger, C M; Colucci-Guyon, E; Babinet, C; Briand, P; Friedlander, G; Poitevin, P; Lévy, B I

    1997-01-01

    The intermediate filament vimentin might play a key role in vascular resistance to mechanical stress. We investigated the responses to pressure (tensile stress) and flow (shear stress) of mesenteric resistance arteries perfused in vitro from vimentin knockout mice. Arteries were isolated from homozygous (Vim-/-, n = 14) or heterozygous vimentin-null mice (Vim+/-, n = 5) and from wild-type littermates (Vim+/+, n = 9). Passive arterial diameter (175+/-15 micron in Vim+/+ at 100 mmHg) and myogenic tone were not affected by the absence of vimentin. Flow-induced (0-150 microl/min) dilation (e. g., 19+/-3 micron dilation at 150 mmHg in Vim+/+) was significantly attenuated in Vim-/- mice (13+/-2 micron dilation, P < 0.01). Acute blockade of nitric oxide synthesis (NG-nitro- L-arginine, 10 microM) significantly decreased flow-induced dilation in both groups, whereas acute blockade of prostaglandin synthesis (indomethacin, 10 microM) had no significant effect. Mean blood pressure, in vivo mesenteric blood flow and diameter, and mesenteric artery media thickness or media to lumen ratio were not affected by the absence of vimentin. Thus, the absence of vimentin decreased selectively the response of resistance arteries to flow, suggesting a role for vimentin in the mechanotransduction of shear stress. PMID:9389758

  8. Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age.

    PubMed

    Boerman, Erika M; Segal, Steven S

    2016-04-15

    The dilatory role for sensory innervation of mesenteric arteries (MAs) is impaired in Old (∼24 months) versus Young (∼4 months) mice. We investigated the nature of this impairment in isolated pressurized MAs. With perivascular sensory nerve stimulation, dilatation and inhibition of sympathetic vasoconstriction observed in Young MAs were lost in Old MAs along with impaired dilatation to calcitonin gene-related peptide (CGRP). Inhibiting NO and prostaglandin synthesis increased CGRP EC50 in Young and Old MAs. Endothelial denudation attenuated dilatation to CGRP in Old MAs yet enhanced dilatation to CGRP in Young MAs while abolishing all dilatations to ACh. In Old MAs, sensory nerve density was reduced and RAMP1 (CGRP receptor component) associated with nuclear regions of endothelial cells in a manner not seen in Young MAs or in smooth muscle cells of either age. With advanced age, loss of dilatory signalling mediated through perivascular sensory nerves may compromise perfusion of visceral organs. Vascular dysfunction and sympathetic nerve activity increase with advancing age. In the gut, blood flow is governed by perivascular sensory and sympathetic nerves but little is known of how their functional role is affected by advanced age. We tested the hypothesis that functional sensory innervation of mesenteric arteries (MAs) is impaired for Old (24 months) versus Young (4 months) C57BL/6 male mice. In cannulated pressurized MAs preconstricted 50% with noradrenaline and treated with guanethidine (to inhibit sympathetic neurotransmission), perivascular nerve stimulation (PNS) evoked dilatation in Young but not Old MAs while dilatations to ACh were not different between age groups. In Young MAs, capsaicin (to inhibit sensory neurotransmission) blocked dilatation and increased constriction during PNS. With no difference in efficacy, the EC50 of CGRP as a vasodilator was ∼6-fold greater in Old versus Young MAs. Inhibiting nitric oxide (l-NAME) and prostaglandin (indomethacin) synthesis increased CGRP EC50 in both age groups. Endothelial denudation reduced the efficacy of dilatation to CGRP by ∼30% in Old MAs yet increased this efficacy ∼15% in Young MAs while all dilatations to ACh were abolished. Immunolabelling revealed reduced density of sensory (CGRP) but not sympathetic (tyrosine hydroxylase) innervation for Old versus Young MAs. Whereas the distribution of CGRP receptor proteins was similar in SMCs, RAMP1 associated with nuclear regions of endothelial cells of Old but not Young MAs. With advanced age, the loss of sensory nerve function and diminished effectiveness of CGRP as a vasodilator is multifaceted and may adversely affect splanchnic perfusion. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  9. Impact of volunteer-related and methodology-related factors on the reproducibility of brachial artery flow-mediated vasodilation: analysis of 672 individual repeated measurements.

    PubMed

    van Mil, Anke C C M; Greyling, Arno; Zock, Peter L; Geleijnse, Johanna M; Hopman, Maria T; Mensink, Ronald P; Reesink, Koen D; Green, Daniel J; Ghiadoni, Lorenzo; Thijssen, Dick H

    2016-09-01

    Brachial artery flow-mediated dilation (FMD) is a popular technique to examine endothelial function in humans. Identifying volunteer and methodological factors related to variation in FMD is important to improve measurement accuracy and applicability. Volunteer-related and methodology-related parameters were collected in 672 volunteers from eight affiliated centres worldwide who underwent repeated measures of FMD. All centres adopted contemporary expert-consensus guidelines for FMD assessment. After calculating the coefficient of variation (%) of the FMD for each individual, we constructed quartiles (n = 168 per quartile). Based on two regression models (volunteer-related factors and methodology-related factors), statistically significant components of these two models were added to a final regression model (calculated as β-coefficient and R). This allowed us to identify factors that independently contributed to the variation in FMD%. Median coefficient of variation was 17.5%, with healthy volunteers demonstrating a coefficient of variation 9.3%. Regression models revealed age (β = 0.248, P < 0.001), hypertension (β = 0.104, P < 0.001), dyslipidemia (β = 0.331, P < 0.001), time between measurements (β = 0.318, P < 0.001), lab experience (β = -0.133, P < 0.001) and baseline FMD% (β = 0.082, P < 0.05) as contributors to the coefficient of variation. After including all significant factors in the final model, we found that time between measurements, hypertension, baseline FMD% and lab experience with FMD independently predicted brachial artery variability (total R = 0.202). Although FMD% showed good reproducibility, larger variation was observed in conditions with longer time between measurements, hypertension, less experience and lower baseline FMD%. Accounting for these factors may improve FMD% variability.

  10. Long-term effects of weight loss with a very-low carbohydrate, low saturated fat diet on flow mediated dilatation in patients with type 2 diabetes: A randomised controlled trial.

    PubMed

    Wycherley, Thomas P; Thompson, Campbell H; Buckley, Jonathan D; Luscombe-Marsh, Natalie D; Noakes, Manny; Wittert, Gary A; Brinkworth, Grant D

    2016-09-01

    Very-low carbohydrate diets can improve glycaemic control in patients with type 2 diabetes (T2DM). However, compared to traditional higher carbohydrate, low fat (HighCHO) diets, they have been associated with impaired endothelial function (measured by flow mediated dilatation [FMD]) that is possibly related to saturated fat. This study aimed to examine the effects of a 12-month hypocaloric very-low carbohydrate, low saturated fat (LowCHO) diet compared to an isocaloric HighCHO diet. One hundred and fifteen obese patients with T2DM (age:58.4 ± 0.7 [SEM] yr, BMI:34.6 ± 0.4 kg/m(2), HbA1c:7.33 [56.3 mmol/mol] ± 0.10%) were randomised to consume an energy restricted LowCHO diet (Carb:Pro:Fat:Sat-Fat 14:28:58: < 10% energy; n = 58) or isocaloric HighCHO diet (53:17:30: < 10%; n = 57) whilst undertaking exercise (60 min, 3/wk). Bodyweight, HbA1c and FMD were assessed. Seventy eight participants completed the intervention (LowCHO = 41, HighCHO = 37). Both groups experienced similar reductions in weight and HbA1c (-10.6 ± 0.7 kg, -1.05 ± 0.10%; p < 0.001 time, p ≥ 0.48 time × diet). FMD did not change (p = 0.11 time, p = 0.20 time × diet). In patients with obesity and T2DM, HighCHO diet and LowCHO diet have similar effects on endothelial function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea.

    PubMed

    Patt, Brian T; Jarjoura, David; Haddad, Diane N; Sen, Chandan K; Roy, Sashwati; Flavahan, Nicholas A; Khayat, Rami N

    2010-12-15

    Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease. We hypothesized that patients with OSA and no cardiovascular disease have oxidant-related microcirculatory endothelial dysfunction. To evaluate the microcirculation in OSA. This study included seven patients with OSA and seven age- and weight-matched control subjects (mean age, 38 yr; mean body mass index, 32.5 kg/m²). All participants were free of cardiovascular risk factors. Participants received measurement of brachial artery flow-mediated dilation and forearm subcutaneous biopsy. Patients underwent repeated tests 12 weeks after treatment. Microcirculatory endothelial cells were isolated, and immunohistochemistry staining for peroxynitrite in the microcirculation was performed. Flow-mediated dilation was lower in patients than in control subjects at baseline (mean ± SEM: 5.7 ± 0.5 vs. 9.5 ± 0.6; P = 0.02) and increased after treatment (5.7-7.3; change, 1.7 ± 0.6; P = 0.04). Microcirculatory peroxynitrite deposit was higher in patients compared with control subjects (44.0 ± 1.6 vs. 21.8 ± 1.9 stain density units; P < 0.001) and decreased after treatment from 44.0 to 30.5 stain density units (change, -13.5 ± 2.9; P = 0.009). In patients, transcription of endothelial nitric oxide synthase decreased from 5.2 to -1.3 after treatment (change, 6.5 ± 2.5; P = 0.05), and transcription of superoxide dismutase1 decreased from -4.0 to -12.3 after treatment (change, -8.3 ± 2.1; P = 0.01). These changes persisted after adjustment for weight and underlying severity of OSA. This is the first direct evaluation of the microcirculation in OSA. Patients with OSA with low cardiovascular risk status had increased oxidant production in the microcirculation and endothelial dysfunction, both of which improved with treatment. Endothelial nitric oxide synthase transcription decreased with treatment.

  12. Endothelial Dysfunction in the Microcirculation of Patients with Obstructive Sleep Apnea

    PubMed Central

    Patt, Brian T.; Jarjoura, David; Haddad, Diane N.; Sen, Chandan K.; Roy, Sashwati; Flavahan, Nicholas A.; Khayat, Rami N.

    2010-01-01

    Rationale: Obstructive sleep apnea (OSA) is a risk factor for cardiovascular disease. We hypothesized that patients with OSA and no cardiovascular disease have oxidant-related microcirculatory endothelial dysfunction. Objectives: To evaluate the microcirculation in OSA. Methods: This study included seven patients with OSA and seven age- and weight-matched control subjects (mean age, 38 yr; mean body mass index, 32.5 kg/m2). All participants were free of cardiovascular risk factors. Participants received measurement of brachial artery flow-mediated dilation and forearm subcutaneous biopsy. Patients underwent repeated tests 12 weeks after treatment. Microcirculatory endothelial cells were isolated, and immunohistochemistry staining for peroxynitrite in the microcirculation was performed. Measurements and Main Results: Flow-mediated dilation was lower in patients than in control subjects at baseline (mean ± SEM: 5.7 ± 0.5 vs. 9.5 ± 0.6; P = 0.02) and increased after treatment (5.7–7.3; change, 1.7 ± 0.6; P = 0.04). Microcirculatory peroxynitrite deposit was higher in patients compared with control subjects (44.0 ± 1.6 vs. 21.8 ± 1.9 stain density units; P < 0.001) and decreased after treatment from 44.0 to 30.5 stain density units (change, −13.5 ± 2.9; P = 0.009). In patients, transcription of endothelial nitric oxide synthase decreased from 5.2 to −1.3 after treatment (change, 6.5 ± 2.5; P = 0.05), and transcription of superoxide dismutase1 decreased from −4.0 to −12.3 after treatment (change, −8.3 ± 2.1; P = 0.01). These changes persisted after adjustment for weight and underlying severity of OSA. Conclusions: This is the first direct evaluation of the microcirculation in OSA. Patients with OSA with low cardiovascular risk status had increased oxidant production in the microcirculation and endothelial dysfunction, both of which improved with treatment. Endothelial nitric oxide synthase transcription decreased with treatment. PMID:20656942

  13. Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework.

    PubMed

    Keikhosravi, Adib; Aghajani, Haleh; Zahedi, Edmond

    2013-05-01

    Endothelial dysfunction assessment has received considerable attention due to its potential in early screening of cardiovascular diseases. Since the seminal work by Celermajer in flow-mediated dilation (FMD) based on B-mode ultrasound measurement of the brachial artery dilation following limb ischemia, many attempts have been made toward applying this method to clinical, non-invasive endothelial dysfunction assessment. One major obstacle toward achieving this objective has been the relative high cost of the required setup and skilled manpower. Such limitations have prompted the investigation of other non-invasively accessible signals such as the photoplethysmogram (PPG) in relation to FMD. It is in the above context that this paper proposes to use a modified version of an existing differential model of the human upper vasculature in order to discriminate between healthy and diabetic subjects. PPG from 46 subjects (23 healthy and 23 diabetic) were utilized to identify the model parameters. Once the model parameters were identified, singular value decomposition was applied to reduce the number of features and increase the separability. Finally, a naive Bayes classifier resulted in an overall accuracy of 93.5% (Spec. 87.0% and Sens. 100%). Taking into account subjects' gender further improved the overall accuracy. It is thought that the application of the proposed method to endothelial dysfunction assessment may positively impact the deployment of FMD in clinical settings.

  14. Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

    PubMed Central

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa MS; Christofalo, Dejaldo MJ; Ajzen, Sergio A; Higa, Elisa MS; Ronchi, Fernanda A; Sesso, Ricardo CC; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90–) of the 90 kDa ACE, the presence (FH+) or absence (FH–) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH–/ACE90–. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90– group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH–/ACE90– group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH–/ACE90– group, as follows: 10.0 ± 2.3 μM compared with 12.7 ± 1.5 μM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  15. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.

    2016-12-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time scales in the model and their role in granular/fluid flow dynamics. References[1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, J. Phys. D: Appl. Phys., in press (2016). [2] F. Bouchut, E. D. Fernández-Nieto, A. Mangeney, G. Narbona-Reina, J. Fluid Mech., 801, 166-221 (2016). [3] R. Jackson, Cambridges Monographs on Mechanics (2000).

  16. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study

    PubMed Central

    Grassi, Davide; Draijer, Richard; Schalkwijk, Casper; Desideri, Giovambattista; D’Angeli, Anatolia; Francavilla, Sandro; Mulder, Theo; Ferri, Claudio

    2016-01-01

    (1) Background: Endothelial dysfunction predicts cardiovascular events. Circulating angiogenic cells (CACs) maintain and repair the endothelium regulating its function. Tea flavonoids reduce cardiovascular risk. We investigated the effects of black tea on the number of CACs and on flow-mediated dilation (FMD) before and after an oral fat in hypertensives; (2) Methods: In a randomized, double-blind, controlled, cross-over study, 19 patients were assigned to black tea (150 mg polyphenols) or a placebo twice a day for eight days. Measurements were obtained in a fasted state and after consuming whipping cream, and FMD was measured at baseline and after consumption of the products; (3) Results: Compared with the placebo, black tea ingestion increased functionally active CACs (36 ± 22 vs. 56 ± 21 cells per high-power field; p = 0.006) and FMD (5.0% ± 0.3% vs. 6.6% ± 0.3%, p < 0.0001). Tea further increased FMD 1, 2, 3, and 4 h after consumption, with maximal response 2 h after intake (p < 0.0001). Fat challenge decreased FMD, while tea consumption counteracted FMD impairment (p < 0.0001); (4) Conclusions: We demonstrated the vascular protective properties of black tea by increasing the number of CACs and preventing endothelial dysfunction induced by acute oral fat load in hypertensive patients. Considering that tea is the most consumed beverage after water, our findings are of clinical relevance and interest. PMID:27854314

  17. The induction of nitric oxide-mediated relaxation of human isolated pulmonary arteries by PACAP

    PubMed Central

    Cardell, Lars Olaf; Hjert, Ola; Uddman, Rolf

    1997-01-01

    The effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) were analysed in human isolated circular segments of pulmonary arteries. Guinea-pig pulmonary arteries were used for comparison. The responses obtained were analysed in relation to the vascular endothelium and the nitric oxide (NO) synthase inhibitor NG-monomethyl L-arginine (L-NMMA).PACAP and VIP induced concentration-dependent relaxations of precontracted pulmonary arteries. The maximal dilator response (Imax,%) and the potency (pEC50 value) were the same for both peptides, and there were no differences in the effects obtained on human and guinea-pig segments. PACAP and VIP were both more potent that acetylcholine (ACh).Removal of the vascular endothelium abolished the PACAP induced dilator response in pulmonary arteries from both species. The VIP induced dilatation was unaffected, whereas the response to ACh was abolished. L-NMMA given before PACAP inhibited the dilatation. Furthermore, L-NMMA also reversed the dilatation already induced by PACAP and excess concentrations of L-arginine restored the dilator response of the L-NMMA treated arteries.PACAP is a potent dilator of human pulmonary arteries. Although the dilator effect seems to be similar in amplitude to the one induced by VIP, the present results suggest differences in the underlying mechanisms of action (endothelium-dependency) between the two peptides. PMID:9134222

  18. Free androgen index as a determinant of arterial stiffness in menopause: a mediation analysis.

    PubMed

    Lambrinoudaki, Irene; Georgiopoulos, Georgios A; Athanasouli, Fani; Armeni, Elena; Rizos, Demetrios; Augoulea, Areti; Chatzidou, Sofia; Koutli, Evangelia; Makris, Nikolaos; Kanakakis, Ioannis; Stamatelopoulos, Kimon

    2017-06-01

    Associations of endogenous androgens in menopause with blood pressure (BP) and indices of arterial stiffness are reported, but directional relationships are not clear. Structural equation modeling is a contemporary statistical method, which allows assessment of such relationships and improves pathway understanding. We recruited 411 consecutive apparently healthy postmenopausal women who underwent noninvasive vascular evaluation. This included pulse wave analysis (aortic pressures and arterial wave reflections [augmentation index]), measurement of aortic stiffness by pulse wave velocity (PWV), stiffness index (SI), and flow-mediated dilatation. A cumulative marker combining PWV and SI (combined local and aortic arterial stiffness [CAS]) was also assessed. Free androgen index (FAI) was calculated from circulating total testosterone and sex hormone-binding globulin. FAI was an independent determinant of systolic BP (SBP) (P = 0.032), SI (P = 0.042), and PWV (P = 0.027). Under structural equation modeling analysis, FAI was a direct predictor for PWV (beta = 0.149, P = 0.014), SI (beta = 0.154, P = 0.022), and CAS (beta = 0.193, P = 0.02), whereas SBP was a parallel mediator of androgen's vascular effects on PWV (beta = 0.280, P < 0.001) and CAS (beta = 0.248, P = 0.004), but not SI (beta = 0.024, P = 0.404). FAI-induced increase in arterial stiffness via flow-mediated dilatation was not established. FAI was not a determinant of augmentation index. In healthy postmenopausal women, FAI was directly associated with PWV, SI, and CAS. FAI also directly correlated with SBP, which in turn concurrently increased PWV and CAS. The directional correlations found herein, imply that endogenous androgens may be causally associated with indices of arterial stiffness both directly and indirectly. This hypothesis should be confirmed in further studies with causal design.

  19. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: a randomized, controlled cross-over trial.

    PubMed

    Asher, Gary N; Viera, Anthony J; Weaver, Mark A; Dominik, Rosalie; Caughey, Melissa; Hinderliter, Alan L

    2012-03-29

    Hawthorn extract has been used for cardiovascular diseases for centuries. Recent trials have demonstrated its efficacy for the treatment of heart failure, and the results of several small trials suggest it may lower blood pressure. However, there is little published evidence to guide its dosing. The blood pressure lowering effect of hawthorn has been linked to nitric oxide-mediated vasodilation. The aim of this study was to investigate the relationship between hawthorn extract dose and brachial artery flow mediated dilation (FMD), an indirect measure of nitric oxide release. We used a four-period cross-over design to evaluate brachial artery FMD in response to placebo or hawthorn extract (standardized to 50 mg oligomeric procyanidin per 250 mg extract). Randomly sequenced doses of hawthorn extract (1000 mg, 1500 mg, and 2500 mg) and placebo were assigned to each participant. Doses were taken twice daily for 3 1/2 days followed by FMD and a 4-day washout before proceeding to the next dosing period. Twenty-one prehypertensive or mildly hypertensive adults completed the study. There was no evidence of a dose-response effect for our main outcome (FMD percent) or any of our secondary outcomes (absolute change in brachial artery diameter and blood pressure). Most participants indicated that if given evidence that hawthorn could lower their blood pressure, they would be likely to use it either in conjunction with or instead of lifestyle modification or anti-hypertensive medications. We found no evidence of a dose-response effect of hawthorn extract on FMD. If hawthorn has a blood pressure lowering effect, it is likely to be mediated via an NO-independent mechanism. This trial has been registered with ClinicalTrials.gov, a service of the U.S. National Institutes of Health: NCT01331486.

  20. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: a randomized, controlled cross-over trial

    PubMed Central

    2012-01-01

    Background Hawthorn extract has been used for cardiovascular diseases for centuries. Recent trials have demonstrated its efficacy for the treatment of heart failure, and the results of several small trials suggest it may lower blood pressure. However, there is little published evidence to guide its dosing. The blood pressure lowering effect of hawthorn has been linked to nitric oxide-mediated vasodilation. The aim of this study was to investigate the relationship between hawthorn extract dose and brachial artery flow mediated dilation (FMD), an indirect measure of nitric oxide release. Methods We used a four-period cross-over design to evaluate brachial artery FMD in response to placebo or hawthorn extract (standardized to 50 mg oligomeric procyanidin per 250 mg extract). Randomly sequenced doses of hawthorn extract (1000 mg, 1500 mg, and 2500 mg) and placebo were assigned to each participant. Doses were taken twice daily for 3 1/2 days followed by FMD and a 4-day washout before proceeding to the next dosing period. Results Twenty-one prehypertensive or mildly hypertensive adults completed the study. There was no evidence of a dose-response effect for our main outcome (FMD percent) or any of our secondary outcomes (absolute change in brachial artery diameter and blood pressure). Most participants indicated that if given evidence that hawthorn could lower their blood pressure, they would be likely to use it either in conjunction with or instead of lifestyle modification or anti-hypertensive medications. Conclusion We found no evidence of a dose-response effect of hawthorn extract on FMD. If hawthorn has a blood pressure lowering effect, it is likely to be mediated via an NO-independent mechanism. Trial Registration This trial has been registered with ClinicalTrials.gov, a service of the U.S. National Institutes of Health: NCT01331486. PMID:22458601

  1. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  2. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  3. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels

    PubMed Central

    Yu, Jun; Bergaya, Sonia; Murata, Takahisa; Alp, Ilkay F.; Bauer, Michael P.; Lin, Michelle I.; Drab, Marek; Kurzchalia, Teymuras V.; Stan, Radu V.; Sessa, William C.

    2006-01-01

    Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels. PMID:16670769

  4. Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial

    PubMed Central

    Mulder, H; Schalij, M; Kauer, B; Visser, R; van Dijkman, P R M; Jukema, J; Zwinderman, A; Bruschke, A

    2001-01-01

    OBJECTIVE—To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial.
DESIGN—A double blind, randomised, placebo controlled, multicentre study.
SETTING—Four hospitals in the Netherlands.
PATIENTS—63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29).
INTERVENTIONS—The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively.
MAIN OUTCOME MEASURES—The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery.
RESULTS—Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05).
CONCLUSIONS—Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.


Keywords: angioplasty; endothelium; acetylcholine; pravastatin PMID:11602546

  5. Increased left ventricular mass and diastolic dysfunction are associated with endothelial dysfunction in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, Bogomir; Poredos, Pavel

    2007-01-01

    We aimed to investigate left ventricular (LV) morphology and function in normotensive offspring of subjects with essential hypertension (familial trait - FT), and to determine the association between LV mass and determinants of LV diastolic function and endothelium-dependent (NO-mediated) dilation of the brachial artery (BA). The study encompassed 76 volunteers of whom 44 were normotonics with FT aged 28-39 (mean 33) years and 32 age-matched controls without FT. LV mass and LV diastolic function was measured using conventional echocardiography and tissue Doppler imaging (TDI). LV diastolic filling properties were assessed and reported as the peak E/A wave ratio, and peak septal annular velocities (E(m) and E(m)/A(m) ratio) on TDI. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperaemia (flow-mediated dilation--FMD) were measured. In subjects with FT, the LV mass index was higher than in controls (92.14+/-24.02 vs 70.08+/-20.58); p<0.001). Offspring of hypertensive families had worse LV diastolic function than control subjects (lower E/A ratio, lower E(m) and E(m)/A(m) ratio; p<0.001). In subjects with FT, FMD was decreased compared with the controls (6.11+/-3.28% vs 10.20+/-2.07%; p<0.001). LV mass index and E(m)/A(m) ratio were associated with FMD (p<0.001). In normotensive individuals with FT, LV morphological and functional changes were found. We demonstrated that an increase in LV mass and alterations in LV diastolic function are related to endothelial dysfunction.

  6. Measurement of Flow-Mediated Dilation of Mouse Femoral Artery in vivo by Optical Coherence Tomography.

    PubMed

    Song, Weiye; Zhou, Libo; Kot, Kevin Liu; Fan, Huijie; Han, Jingyan; Yi, Ji

    2018-05-31

    Flow-mediated vasodilation (FMD) is used for assessment of vascular endothelial function in humans as a predictor of cardiovascular events. It has been challenging to carry it on preclinical murine models due to the diminutive size of the femoral artery. Here, we present a new approach to accurately measure the blood velocity and femoral artery diameters of mice by acquiring Doppler optical coherence tomography (DOCT) and optical coherence tomography angiography (OCTA) continuously within one single experimental scanning protocol. Using the high precision three-dimensional imaging and new velocity algorithm, the measurement precision of diameter, blood flow, velocity, and wall shear stress are improved to 0.91%, 11.0%, 10.7%, and 14.0%, respectively. FMD of healthy mouse femoral artery measured by this method was 11.96 ± 0.98%, which was blunted to 5.69±0.4% by intravenous administration of eNOS inhibitor (L-NAME), in agreement with that reported in the literature. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.

    PubMed

    Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2013-10-30

    To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.

  8. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease.

    PubMed

    Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian

    2018-03-01

    Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.

  9. Functional dilatation and medial remodeling of the renal artery in response to chronic increased blood flow.

    PubMed

    Roan, Jun-Neng; Yeh, Chin-Yi; Chiu, Wen-Cheng; Lee, Chou-Hwei; Chang, Shih-Wei; Jiangshieh, Ya-Fen; Tsai, Yu-Chuan; Lam, Chen-Fuh

    2011-01-01

    Renal blood flow (RBF) is tightly regulated by several intrinsic pathways in maintaining optimal kidney blood supply. Using a rat model of aortocaval (AC) fistula, we investigated remodeling of the renal artery following prolonged increased blood flow. An AC fistula was created in the infrarenal aorta of anesthetized rats, and changes of blood flow in the renal artery were assessed using an ultrasonic flow probe. Morphological changes and expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 in the remodeled renal artery were analyzed. Blood flow in the renal artery increased immediately after creation of AC fistula, but normal RBF was restored 8 weeks later. The renal artery dilated significantly 8 weeks after operation. Expression of endothelial nitric oxide synthase and matrix metalloproteinase-2 was upregulated shortly after blood flow increase, and returned to baseline levels after 3 weeks. Histological sections showed luminal dilatation with medial thickening and endothelial cell-to-smooth muscle cell attachments in the remodeled renal artery. Increased RBF was accommodated by functional dilatation and remodeling in the medial layer of the renal artery in order to restore normal blood flow. Our results provide important mechanistic insight into the intrinsic regulation of the renal artery in response to increased RBF. Copyright © 2011 S. Karger AG, Basel.

  10. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).

  11. Exercise training-enhanced, endothelium-dependent dilation mediated by altered regulation of BKCa channels in collateral-dependent porcine coronary arterioles

    PubMed Central

    Xie, Wei; Parker, Janet L.; Heaps, Cristine L.

    2012-01-01

    Objective Test the hypothesis that exercise training increases the contribution of large-conductance, Ca2+-dependent K+ (BKCa) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. Methods An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 wk) regimens. Results Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 μm diameter) compared with sedentary pigs. The BKCa-channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BKCa-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. Conclusions These data provide evidence that BKCa-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BKCa-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BKCa channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator. PMID:23002811

  12. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  13. Increase in endothelial cell Ca2+ in response to mouse cremaster muscle contraction

    PubMed Central

    Duza, Tasmia; Sarelius, Ingrid H

    2004-01-01

    We addressed the role of endothelial cells (ECs) in metabolic dilatation of skeletal muscle arterioles in anaesthetized mice in situ. Electrical field stimulation was used to contract the cremaster muscle for 15 s at 30 Hz. Diameter was observed using bright field microscopy. In controls, muscle contraction produced a 15.7 ± 1.5 μm dilatation from a baseline of 17.4 ± 1.6 μm. Endothelial denudation (−EC) via intraluminal perfusion of air abolished this response (1.6 ± 1.2 μm in −EC, P < 0.05), identifying endothelium as the primary vascular cell type initiating the dilatation. To investigate the role of EC Ca2+ in metabolic dilatation, arteriolar ECs were loaded with Fluo-4 AM or BAPTA AM by intraluminal perfusion, after which blood flow was re-established. Ca2+ activity of individual ECs was monitored as a function of change from baseline fluorescence using confocal microscopy. In ECs, whole cell Ca2+ increased (>10%, P < 0.05) during muscle contraction, and localized Ca2+ transients were increased (>20%, P < 0.05) during the first minute after contraction. Chelation of EC Ca2+ abolished the dilatations in response to muscle contraction (1.1 ± 0.7 μm, P < 0.05). Inhibition of P1 purinergic receptors (with xanthine amine congener) did not alter the rate of onset of the dilatation (P > 0.05) but decreased its magnitude immediately post stimulation (7.1 ± 0.9 μm, P < 0.05) and during recovery. These findings demonstrate obligatory roles for endothelium and EC Ca2+ during metabolic dilatation in intact arterioles. Furthermore, they suggest that at least two separate pathways mediate the local response, one of which involves stimulation of endothelial P1 purinergic receptors via endogenous adenosine produced during muscle activity. PMID:14694141

  14. A model of hydraulic interactions in liver parenchyma as forces behind the intrahepatic bile flow.

    PubMed

    Kurbel, S; Kurbel, B; Dmitrovic, B; Wagner, J

    2001-05-01

    The small diameters of bile canaliculi and interlobular bile ducts make it hard to attribute the bile flow solely to the process of secretion. In the model liver within its capsule is considered a limited space in which volume expansions of one part are possible only through the shrinking of other parts. The liver capsule allows only very slow volume changes. The rate of blood flow through the sinusoides is governed by the Poisseuill-Hagen law. The model is based on a concept of circulatory liver units. A unit would contain a group of acini sharing the same conditions of arterial flow. We can imagine them as an acinar group behind the last pressure reducer on one arterial branch. Acini from neighboring units compose liver lobules and drain through the same central venule. One lobule can contain acini from several neighboring circulatory units. The perfusion cycle in one unit begins with a transient tide in the arterial flow, governed by local mediators. Corresponding acini expand, grabbing the space by compressing their neighbors in the same lobules. Vascular resistance is reduced in dilated and increased in compressed acini. Portal blood flows through the dilated acini, bypassing the compressed neighbors. The cycle ends when the portal tide slowly diminishes and acinar volume is back on the interphase value until the new perfusion cycle is started in another circulatory unit. Each cycle probably takes minutes to complete. Increased pressures both in dilated and in compressed acini force the bile to move from acinar canalicules. Both up and down changes in acinar volume might force the acinar biliary flow. In cases of arterial vasoconstriction, increased activity of vasoactive substances would keep most of the circulatory units in the interphase and increased liver resistance can be expected. Liver fibrosis makes all acini to be of fixed volume and result in increased resistance. Because of that, low pressure portal flow would be more compromised, as reported. In livers without arterial blood flow, although some slow changes in the portal flows can be expected, acinar volume changes should be reduced. In acute liver injury, enlarged hepatocytes would diminish sinusoidal diameter and increase acinar resistance. In liver tumors, areas of neovascularization with reduced resistance would divert the arterial flow from the normal tissue, while in the compressed perifocal areas, increased vascular resistance should diminish mainly the portal flow. Copyright 2001 Harcourt Publishers Ltd.

  15. Discussion of “The relation between dilatancy, effective stress and dispersive pressure in granular avalanches” by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7)

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.

    2016-01-01

    A paper recently published by Bartelt and Buser (hereafter identified as “the authors”) aims to clarify relationships between granular dilatancy and dispersive pressure and to question the effective stress principle and its application to shallow granular avalanches (Bartelt and Buser in Act Geotech 11:549–557, 2). The paper also criticizes our own recent work, which utilizes the concepts of evolving dilatancy and effective stress to model the initiation and dynamics of water-saturated landslides and debris flows. Here we first explain why we largely agree with the authors’ views of dilatancy and dispersive pressure as they apply to depth-integrated granular avalanche models, and why we disagree with their views of effective stress and pore-fluid pressure. We conclude by explaining why the authors’ characterization of our recently developed D-Claw model is inaccurate.

  16. Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow

    PubMed Central

    Ha, Hojin; Ziegler, Magnus; Welander, Martin; Bjarnegård, Niclas; Carlhäll, Carl-Johan; Lindenberger, Marcus; Länne, Toste; Ebbers, Tino; Dyverfeldt, Petter

    2018-01-01

    Turbulent blood flow is implicated in the pathogenesis of several aortic diseases but the extent and degree of turbulent blood flow in the normal aorta is unknown. We aimed to quantify the extent and degree of turbulece in the normal aorta and to assess whether age impacts the degree of turbulence. 22 young normal males (23.7 ± 3.0 y.o.) and 20 old normal males (70.9 ± 3.5 y.o.) were examined using four dimensional flow magnetic resonance imaging (4D Flow MRI) to quantify the turbulent kinetic energy (TKE), a measure of the intensity of turbulence, in the aorta. All healthy subjects developed turbulent flow in the aorta, with total TKE of 3–19 mJ. The overall degree of turbulence in the entire aorta was similar between the groups, although the old subjects had about 73% more total TKE in the ascending aorta compared to the young subjects (young = 3.7 ± 1.8 mJ, old = 6.4 ± 2.4 mJ, p < 0.001). This increase in ascending aorta TKE in old subjects was associated with age-related dilation of the ascending aorta which increases the volume available for turbulence development. Conversely, age-related dilation of the descending and abdominal aorta decreased the average flow velocity and suppressed the development of turbulence. In conclusion, turbulent blood flow develops in the aorta of normal subjects and is impacted by age-related geometric changes. Non-invasive assessment enables the determination of normal levels of turbulent flow in the aorta which is a prerequisite for understanding the role of turbulence in the pathophysiology of cardiovascular disease. PMID:29422871

  17. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease.

    PubMed

    Rodríguez-Palomares, José Fernando; Dux-Santoy, Lydia; Guala, Andrea; Kale, Raquel; Maldonado, Giuliana; Teixidó-Turà, Gisela; Galian, Laura; Huguet, Marina; Valente, Filipa; Gutiérrez, Laura; González-Alujas, Teresa; Johnson, Kevin M; Wieben, Oliver; García-Dorado, David; Evangelista, Arturo

    2018-04-26

    In patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS). These differences may explain different aortic dilatation morphotypes. Using 4D-flow cardiovascular magnetic resonance (CMR), we aimed to analyze differences in flow patterns and regional axial and circumferential WSS maps between BAV phenotypes and their correlation with ascending aorta dilatation morphotype. One hundred and one BAV patients (aortic diameter ≤ 45 mm, no severe valvular disease) and 20 healthy subjects were studied by 4D-flow CMR. Peak velocity, flow jet angle, flow displacement, in-plane rotational flow (IRF) and systolic flow reversal ratio (SFRR) were assessed at different levels of the AAo. Peak-systolic axial and circumferential regional WSS maps were also estimated. Unadjusted and multivariable adjusted linear regression analyses were used to identify independent correlates of aortic root or ascending dilatation. Age, sex, valve morphotype, body surface area, flow derived variables and WSS components were included in the multivariable models. The AAo was non-dilated in 24 BAV patients and dilated in 77 (root morphotype in 11 and ascending in 66). BAV phenotype was right-left (RL-) in 78 patients and right-non-coronary (RN-) in 23. Both BAV phenotypes presented different outflow jet direction and velocity profiles that matched the location of maximum systolic axial WSS. RL-BAV velocity profiles and maximum axial WSS were homogeneously distributed right-anteriorly, however, RN-BAV showed higher variable profiles with a main proximal-posterior distribution shifting anteriorly at mid-distal AAo. Compared to controls, BAV patients presented similar WSS magnitude at proximal, mid and distal AAo (p = 0.764, 0.516 and 0.053, respectively) but lower axial and higher circumferential WSS components (p < 0.001 for both, at all aortic levels). Among BAV patients, RN-BAV presented higher IRF at all levels (p = 0.024 proximal, 0.046 mid and 0.002 distal AAo) and higher circumferential WSS at mid and distal AAo (p = 0.038 and 0.046, respectively) than RL-BAV. However, axial WSS was higher in RL-BAV compared to RN-BAV at proximal and mid AAo (p = 0.046, 0.019, respectively). Displacement and axial WSS were independently associated with the root-morphotype, and circumferential WSS and SFRR with the ascending-morphotype. Different BAV-phenotypes present different flow patterns with an anterior distribution in RL-BAV, whereas, RN-BAV patients present a predominant posterior outflow jet at the sinotubular junction that shifts to anterior or right anterior in mid and distal AAo. Thus, RL-BAV patients present a higher axial WSS at the aortic root while RN-BAV present a higher circumferential WSS in mid and distal AAo. These results may explain different AAo dilatation morphotypes in the BAV population.

  18. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice.

    PubMed

    Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K

    2016-01-01

    Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.

  19. A dual potential formulation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gegg, S. G.; Pletcher, R. H.; Steger, J. L.

    1989-01-01

    A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.

  20. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation.

    PubMed

    Jebelovszki, Eva; Kiraly, Csaba; Erdei, Nora; Feher, Attila; Pasztor, Eniko T; Rutkai, Ibolya; Forster, Tamas; Edes, Istvan; Koller, Akos; Bagi, Zsolt

    2008-06-01

    The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.

  1. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  2. Impaired Flow-Mediated Dilation Before, During and After Preeclampsia: A Systematic Review and Meta-analysis

    PubMed Central

    Weissgerber, Tracey L.; Milic, Natasa M.; Milin-Lazovic, Jelena S.; Garovic, Vesna D.

    2015-01-01

    Endothelial dysfunction is believed to play a critical role in preeclampsia, however it is unclear whether this dysfunction precedes the pregnancy or is caused by early pathophysiological events. It is also unclear for how long vascular dysfunction may persist post-partum, and whether it represents a mechanism linking preeclampsia with future cardiovascular disease. Our objective was to determine whether women with preeclampsia have worse vascular function compared to women who did not have preeclampsia by performing systematic review and meta-analysis of studies that examined endothelial dysfunction using flow-mediated dilation (FMD). We included studies published before May 29, 2015 that examined FMD before, during and after preeclampsia. Differences in FMD between study groups were evaluated by standardized mean differences. Out of 610 abstracts identified through PubMED, EMBASE and Web of Science, 37 studies were eligible for the meta-analysis. When compared to women who did not have preeclampsia, women who had preeclampsia had lower FMD prior to the development of preeclampsia (~20–29 weeks gestation), at the time of preeclampsia, and for three years post-partum, with the estimated magnitude of the effect ranging between 0.5 and 3 standard deviations. Similar effects were observed when the analysis was limited to studies that excluded women with chronic hypertension, smokers, or both. Vascular dysfunction predates preeclampsia and may contribute to its pathogenesis. Future studies should address whether vascular changes that persist after preeclamptic pregnancies may represent a mechanistic link with the increased risk for future cardiovascular disease. PMID:26711737

  3. Comparison of two automatic methods for the assessment of brachial artery flow-mediated dilation.

    PubMed

    Faita, Francesco; Masi, Stefano; Loukogeorgakis, Stavros; Gemignani, Vincenzo; Okorie, Mike; Bianchini, Elisabetta; Charakida, Marietta; Demi, Marcello; Ghiadoni, Lorenzo; Deanfield, John Eric

    2011-01-01

    Brachial artery flow-mediated dilation (FMD) is associated with risk factors providing information on cardiovascular prognosis. Despite the large effort to standardize the methodology, the FMD examination is still characterized by problems of reproducibility and reliability that can be partially overcome with the use of automatic systems. We developed real-time software for the assessment of brachial FMD (FMD Studio, Institute of Clinical Physiology, Pisa, Italy) from ultrasound images. The aim of this study is to compare our system with another automatic method (Brachial Analyzer, MIA LLC, IA, USA) which is currently considered as a reference method in FMD assessment. The agreement between systems was assessed as follows. Protocol 1: Mean baseline (Basal), maximal (Max) brachial artery diameter after forearm ischemia and FMD, calculated as maximal percentage diameter increase, have been evaluated in 60 recorded FMD sequences. Protocol 2: Values of diameter and FMD have been evaluated in 618 frames extracted from 12 sequences. All biases are negligible and standard deviations of the differences are satisfactory (protocol 1: -0.27 ± 0.59%; protocol 2: -0.26 ± 0.61%) for FMD measurements. Analysis times were reduced (-33%) when FMD Studio is used. Rejected examinations due to the poor quality were 2% with the FMD Studio and 5% with the Brachial Analyzer. In conclusion, the compared systems show a optimal grade of agreement and they can be used interchangeably. Thus, the use of a system characterized by real-time functionalities could represent a referral method for assessing endothelial function in clinical trials.

  4. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  5. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals.

    PubMed

    Choi, Eun-Yong; Lee, Hansongyi; Woo, Jong Shin; Jang, Hyun Hee; Hwang, Seung Joon; Kim, Hyun Soo; Kim, Woo-Sik; Kim, Young-Seol; Choue, Ryowon; Cha, Yong-Jun; Yim, Jung-Eun; Kim, Weon

    2015-09-01

    Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. Medium-term administration of OPE an improvement in FMD and circulating EPCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Assessment of vascular and endothelial dysfunction in nutritional studies.

    PubMed

    Ray, S; Miglio, C; Eden, T; Del Rio, D

    2014-09-01

    Vascular and endothelial dysfunction (VED) is emerging as a potential set of early markers of cardiovascular disease risk and tests for its measurement have been widely used in clinical research. The aim of this viewpoint is to describe and discuss the current usage of these measures in well-designed nutritional trials, using the potential relationship between fruit juice intake and VED as example. A search was conducted using the NHS evidence portal including studies published in English between January 1980 and October 2013. Only 10 suitable studies were selected, which investigated the effect of fruit juice intake on VED, among which 4 interventions used flow-mediated dilatation, 2 arterial stiffness, 2 a combination of arterial stiffness and flow-mediated dilatation, 2 carotid intimal media thickness and 1 iontophoresis with laser Doppler. Despite minimal effects reported on classical CVD markers, such as lipids, 8 out of the 10 identified studies reported an effect on endothelial function following juice consumption, indicating that VED tests can be effectively used in human dietary interventions to identify relationships between bioactive compounds from fruit and CVD risk. However, paucity of available data, scarcity of compound bioavailability and metabolism information, strong heterogeneity among experimental methodologies and a number of limitations to study designs, still limit the interpretation of the results obtained through these measures. Future, well-designed studies with greater attention to consider use of VED measures are needed to strengthen the utility of VED tests in nutrition research such as those investigating the impact of polyphenol-rich juices and CVD risk. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    USGS Publications Warehouse

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  8. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. physical basis

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.

    2014-01-01

    To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.

  9. Dilator and constrictor response of renal vasculature during acute renal hypotension in anesthetized goats. Role of nitric oxide.

    PubMed

    Diéguez, Godofredo; García-Villalón, Angel Luis

    2011-01-01

    The relative role of NO derived from endothelium NO synthase (eNOS) and neuronal NO synthase (nNOS) in renovascular reactivity during renal hypotension is unknown. To examine this issue, we recorded the effects of unspecific inhibitor of NO synthase N(w)-nitro-L-arginine methyl esther (L-NAME) and inhibitor of nNOS 7-nitroindazole monosodium salt (7-NINA) on renal vasodilator and vasoconstrictor responses in anesthetized goats during renal hypotension by constricting the abdominal aorta. Intrarenal administration of L-NAME and hypotension, either untreated or treated with L-NAME, decreased resting renal blood flow, and the increases in renal blood flow by acetylcholine but not those by sodium nitroprusside were tempered, and the decreases by norepinephrine and angiotensin II were augmented. Intraperitoneal administration of 7-NINA did not affect, and 7-NINA+hypotension decreased renal blood flow, and under these conditions the increases in renal blood flow by acetylcholine and sodium nitroprusside were not modified, and the decreases by norepinephrine and angiotensin II were slightly (during 7-NINA) or consistently augmented (7-NINA+hypotension). Therefore, NO derived from eNOS plays a significant role, while that derived from nNOS plays a little role, if any, to regulate renal blood flow and to mediate acetylcholine-induced vasodilation, as well to modulate renal vasoconstriction by norepinephrine and angiotensin II. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Normal Pregnancy Is Associated with Changes in Central Hemodynamics and Enhanced Recruitable, but Not Resting, Endothelial Function

    PubMed Central

    Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Scasso, Santiago; Bia, Daniel

    2015-01-01

    Introduction. Flow-mediated dilation (FMD), low flow-mediated constriction (L-FMC), and reactive hyperemia-related changes in carotid-to-radial pulse wave velocity (ΔPWVcr%) could offer complementary information about both “recruitability” and “resting” endothelial function (EF). Carotid-to-femoral pulse wave velocity (PWVcf) and pulse wave analysis-derived parameters (i.e., AIx@75) are the gold standard methods for noninvasive evaluation of aortic stiffness and central hemodynamics. If healthy pregnancy is associated with both changes in resting and recruitable EF, as well as in several arterial parameters, it remains unknown and/or controversial. Objectives. To simultaneously and noninvasively assess in healthy pregnant (HP) and nonpregnant (NP) women central parameters in conjunction with “basal and recruitable” EF, employing new complementary approaches. Methods. HP (n = 11, 34.2 ± 3.3 weeks of gestation) and age- and cardiovascular risk factors-matched NP (n = 22) were included. Aortic blood pressure (BP), AIx@75, PWVcf, common carotid stiffness, and intima-media thickness, as well as FMD, L-FMC, and ΔPWVcr %, were measured. Results. Aortic BP, stiffness, and AIx@75 were reduced in HP. ΔPWVcr% and FMD were enhanced in HP in comparison to NP. No differences were found in L-FMC between groups. Conclusion. HP is associated with reduced aortic stiffness, central BP, wave reflections, and enhanced recruitable, but not resting, EF. PMID:26421317

  11. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    PubMed

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10 -7 -102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME ( N G -nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10 -20 -10 -4 mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 log EC50 ; P <0.001) and NO-dependent dilation (16±3% versus 39±6%; P =0.006). Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P =0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had preeclampsia have persistent microvascular dysfunction postpartum, mediated, in part, by increased sensitivity to angiotensin II. © 2017 American Heart Association, Inc.

  12. The catecholamines strike back. What NO does not do.

    PubMed

    Joyner, Michael J; Casey, Darren P

    2009-10-01

    The discovery of endothelial-derived relaxing factor, and later nitric oxide (NO), as a biologically active substance led to intense focus on the vascular endothelium as a major site of physiological regulation and pathophysiological dysfunction. NO is clearly a potent vasodilator and plays a key role in establishing both whole body and regional "vascular tone". In this context, skeletal muscle and human skin have the remarkable capacity to increase their blood flow 50-100-fold and this increase is caused almost exclusively by local vasodilation. In general, the mechanisms responsible for these vasodilator phenomena have been poorly understood. In the early 1990s, investigators started to ask if NO might explain the "unexplained" vasodilator responses seen in skeletal muscle and skin. They also asked how "NO tone" interacted with "sympathetic tone" and whether NO can override the vasoconstrictor responses normally generated when sympathetic nerves release norepinephrine. Surprisingly, it was found that NO plays only a modest (non-obligatory) role in exercise hyperemia, reactive hyperemia and the neurally mediated rise in skin blood flow during whole body heat stress. By contrast, NO plays a major role in the skeletal muscle vasodilator responses to mental stress and the skin dilator responses to local heating. In animals, but not humans, NO can limit the ability of the sympathetic nerves to cause vasoconstriction in exercising muscles. Thus the role of NO in two of the most extreme dilator responses seen in nature is limited and in muscle the sympathetic nerves can restrain the dilation to defend arterial blood pressure.

  13. Heme oxygenase-1 regulates mitochondrial quality control in the heart

    PubMed Central

    Hull, Travis D.; Boddu, Ravindra; Guo, Lingling; Tisher, Cornelia C.; Traylor, Amie M.; Patel, Bindiya; Joseph, Reny; Prabhu, Sumanth D.; Suliman, Hagir B.; Piantadosi, Claude A.; George, James F.

    2016-01-01

    The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control. PMID:27110594

  14. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day.

    PubMed

    Brook, Robert D; Shin, Hwashin H; Bard, Robert L; Burnett, Richard T; Vette, Alan; Croghan, Carry; Thornburg, Jonathan; Rodes, Charles; Williams, Ron

    2011-05-01

    Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM(2.5))] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure-response relationships remain unclear. We aimed to explore the effects of personal PM(2.5) exposures within the preceding 24 hr on blood pressure (BP), heart rate (HR), brachial artery diameter (BAD), endothelial function [flow-mediated dilatation (FMD)], and nitroglycerin-mediated dilatation (NMD). Fifty-one nonsmoking subjects had up to 5 consecutive days of 24-hr personal PM(2.5) monitoring and daily cardiovascular (CV) measurements during summer and/or winter periods. The associations between integrated hour-long total personal PM(2.5) exposure (TPE) levels (continuous nephelometry among compliant subjects with low secondhand tobacco smoke exposures; n = 30) with the CV outcomes were assessed over a 24-hr period by linear mixed models. We observed the strongest associations (and smallest estimation errors) between HR and TPE recorded 1-10 hr before CV measurements. The associations were not pronounced for the other time lags (11-24 hr). The associations between TPE and FMD or BAD did not show as clear a temporal pattern. However, we found some suggestion of a negative association with FMD and a positive association with BAD related to TPE just before measurement (0-2 hr). Brief elevations in ambient TPE levels encountered during routine daily activity were associated with small increases in HR and trends toward conduit arterial vasodilatation and endothelial dysfunction within a few hours of exposure. These responses could reflect acute PM(2.5)-induced autonomic imbalance and may factor in the associated rapid increase in CV risk among susceptible individuals.

  15. Reduction of C-reactive protein with isoflavone supplement reverses endothelial dysfunction in patients with ischaemic stroke.

    PubMed

    Chan, Yap-Hang; Lau, Kui-Kai; Yiu, Kai-Hang; Li, Sheung-Wai; Chan, Hiu-Ting; Fong, Daniel Yee-Tak; Tam, Sidney; Lau, Chu-Pak; Tse, Hung-Fat

    2008-11-01

    To investigate the effect of oral isoflavone supplement on vascular endothelial function in patients with established cardiovascular disease. A randomized, double-blinded, placebo-controlled trial was performed to determine the effects of isoflavone supplement (80 mg/day, n = 50) vs. placebo (n = 52) for 12 weeks on brachial flow-mediated dilatation (FMD) in patients with prior ischaemic stroke. Compared with controls, FMD at 12 weeks was significantly greater in isoflavone-treated patients [treatment effect 1.0%, 95% confidence interval (95% CI) 0.1-2.0, P = 0.035]. Adjusted for baseline differences in FMD, isoflavone treatment was independently associated with significantly less impairment of FMD at 12 weeks (odds ratio 0.32, 95% CI 0.13-0.80, P = 0.014). The absolute treatment effect of isoflavone on brachial FMD was inversely related to baseline FMD (r = -0.51, P < 0.001), suggesting that vasoprotective effect of isoflavone was more pronounced in patients with more severe endothelial dysfunction. Moreover, isoflavone treatment for 12 weeks resulted in a significant decrease in serum high-sensitivity (hs)-C-reactive protein level (treatment effect -1.7 mg/L, 95% CI -3.3 to -0.1, P = 0.033). Nevertheless, isoflavone did not have any significant treatment effects on nitroglycerin-mediated dilatation, blood pressure, heart rate, serum levels of fasting glucose and insulin, haemoglobin A1c, and oxidative stress as determined by serum superoxide dismutase, 8-isoprostane, and malondialdehyde (all P > 0.05). This study demonstrated that 12 week isoflavone treatment reduced serum hs-C-reactive protein and improved brachial FMD in patients with clinically manifest atherosclerosis, thus reversing their endothelial dysfunction status. These findings may have important implication for the use of isoflavone for secondary prevention in patients with cardiovascular disease, on top of conventional interventions.

  16. Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor κB and Forkhead Box O Phosphorylation

    PubMed Central

    Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.

    2011-01-01

    We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813

  17. High Dietary Sodium Intake Impairs Endothelium-Dependent Dilation in Healthy Salt-Resistant Humans

    PubMed Central

    DuPont, Jennifer J.; Greaney, Jody L.; Wenner, Megan M.; Lennon-Edwards, Shannon L.; Sanders, Paul W.; Farquhar, William B.; Edwards, David G.

    2014-01-01

    Excess dietary sodium has been linked to the development of hypertension and other cardiovascular diseases. In humans, the effects of sodium consumption on endothelial function have not been separated from the effects on blood pressure. The present study was designed to determine if dietary sodium intake affected endothelium-dependent dilation (EDD) independently of changes in blood pressure. Fourteen healthy salt resistant adults were studied (9M, 5F; age 33 ± 2.4 years) in a controlled feeding study. After a baseline run-in diet, participants were randomized to a 7 day high sodium (HS) (300-350 mmol/day) and 7 day low sodium (LS) (20 mmol/day) diet. Salt resistance, defined as a ≤ 5 mm Hg change in a 24-hour mean arterial pressure, was individually assessed while on the low sodium and high sodium diets and confirmed in the subjects undergoing study (LS: 85±1 mm Hg; HS: 85±2 mmHg). EDD was determined in each subject via brachial artery flow-mediated dilation on the last day of each diet. Sodium excretion increased during the high sodium diet (p < 0.01). EDD was reduced on the high sodium diet (Low: 10.3±0.9%, High: 7.3±0.7%, p < 0.05). The HS diet significantly suppressed plasma renin activity (PRA), plasma angiotensin II, and aldosterone (p < 0.05). These data demonstrate that excess salt intake in humans impairs endothelium-dependent dilation independently of changes in blood pressure. PMID:23263240

  18. Effects of Moderate Aerobic Exercise Training on Vascular Health and Blood Pressure in African Americans

    PubMed Central

    Feairheller, Deborah L.; Diaz, Keith M.; Kashem, Mohammed A.; Thakkar, Sunny R.; Veerabhadrappa, Praveen; Sturgeon, Kathleen M.; Ling, Chenyi; Williamson, Sheara T.; Kretzschmar, Jan; Lee, Hojun; Grimm, Heather; Babbitt, Dianne M.; Vin, Charmie; Fan, Xiaoxuan; Crabbe, Deborah L.; Brown, Michael D.

    2014-01-01

    As healthcare progresses toward individualized medicine, understanding how different racial groups respond to lifestyle interventions is valuable. It is established that African Americans have disproportionate levels of cardiovascular disease and impaired vascular health, and clinical practice guidelines suggest lifestyle interventions as the first line of treatment. Recently, we reported six months of aerobic exercise improved inflammatory markers, flow-mediated dilation (FMD), and levels of circulating endothelial microparticles (EMPs) in African American adults. This study is a subgroup analysis of the aerobic exercise-induced changes in vascular health and blood pressure (BP) measures; carotid artery intima-media thickness (IMT), nitroglycerin-mediated dilation (NMD), ambulatory BP, and office BP. Sedentary African American adults (53.4±6.2yrs;21F,5M) showed improved vascular health, but no change in BP. Carotid artery IMT decreased 6.4%, plasma NO levels increased 76.6%, plasma EMP levels decreased, percent FMD increased 59.6%, and FMD/NMD ratio increased 36.2% (P <0.05 for all). Six months of aerobic exercise training is sufficient to elicit improvements in vascular structure and function in African Americans, even without improvements in BP measures or NMD (i.e., smooth muscle function). To our knowledge, this is the first study to report such findings in African Americans. PMID:24779748

  19. A Methodology to Detect Abnormal Relative Wall Shear Stress on the Full Surface of the Thoracic Aorta Using 4D Flow MRI

    PubMed Central

    van Ooij, Pim; Potters, Wouter V.; Nederveen, Aart J.; Allen, Bradley D.; Collins, Jeremy; Carr, James; Malaisrie, S. Chris; Markl, Michael; Barker, Alex J.

    2014-01-01

    Purpose To compute cohort-averaged wall shear stress (WSS) maps in the thoracic aorta of patients with aortic dilatation or valvular stenosis and to detect abnormal regional WSS. Methods Systolic WSS vectors, estimated from 4D flow MRI data, were calculated along the thoracic aorta lumen in 10 controls, 10 patients with dilated aortas and 10 patients with aortic valve stenosis. 3D segmentations of each aorta were co-registered by group and used to create a cohort-specific aortic geometry. The WSS vectors of each subject were interpolated onto the corresponding cohort-specific geometry to create cohort-averaged WSS maps. A Wilcoxon rank sum test was used to generate aortic P-value maps (P<0.05) representing regional relative WSS differences between groups. Results Cohort-averaged systolic WSS maps and P-value maps were successfully created for all cohorts and comparisons. The dilation cohort showed significantly lower WSS on 7% of the ascending aorta surface, whereas the stenosis cohort showed significantly higher WSS aorta on 34% the ascending aorta surface. Conclusions The findings of this study demonstrated the feasibility of generating cohort-averaged WSS maps for the visualization and identification of regionally altered WSS in the presence of disease, as compared to healthy controls. PMID:24753241

  20. Evidence of Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Lee, Joshua F.; Barrett-O’Keefe, Zachary; Garten, Ryan S.; Nelson, Ashley D.; Ryan, John J.; Nativi, Jose N.; Richardson, Russell S.; Wray, D. Walter

    2015-01-01

    Objective While vascular dysfunction is well-defined in HF patients with reduced ejection fraction (HFrEF), disease-related alterations in the peripheral vasculature of HF patients with preserved ejection fraction (HFpEF) are not well characterized. Thus, we sought test the hypothesis that HFpEF patients would demonstrate reduced vascular function, at both the conduit artery and microvascular levels, compared to controls. Methods We examined both conduit artery function via brachial artery flow-mediated dilation (FMD) and microvascular function via reactive hyperemia (RH) following 5 min of ischemia in 24 Class II–IV HFpEF patients and 24 healthy controls matched for age, sex, and brachial artery diameter. Results FMD was reduced in HFpEF patients compared to controls (HFpEF: 3.1 ± 0.7%; Controls: 5.1 ± 0.5%; P = 0.03). However, shear rate at time of peak brachial artery dilation was lower in HFpEF patients compared to controls (HFpEF: 42,070 ± 4,018 s−1; Controls: 69,018 ± 9,509 s−1; P = 0.01), and when brachial artery FMD was normalized for the shear stimulus, cumulative area-under-the-curve (AUC) at peak dilation, the between-group differences were eliminated (HFpEF: 0.11 ± 0.03 %/AUC; Controls: 0.09 ± 0.01 %/AUC; P = 0.58). RH, assessed as AUC, was lower in HFpEF patients (HFpEF: 454 ± 35 mL; Controls: 660 ± 63 mL; P < 0.01). Conclusions Collectively, these data suggest that maladaptations at the microvascular level contribute to the pathophysiology of HFpEF, while conduit artery vascular function is not diminished beyond that which occurs with healthy aging. PMID:26567228

  1. Effects of soil aggregates on debris-flow mobilization: Results from ring-shear experiments

    USGS Publications Warehouse

    Iverson, Neal R.; Mann, Janet E.; Iverson, Richard M.

    2010-01-01

    Rates and styles of landslide motion are sensitive to pore-water pressure changes caused by changes in soil porosity accompanying shear deformation. Soil may either contract or dilate upon shearing, depending upon whether its initial porosity is greater or less, respectively, than a critical-state porosity attained after sufficiently high strain. We observed complications in this behavior, however, during rate-controlled (0.02 m s−1) ring-shear experiments conducted on naturally aggregated dense loamy sand at low confining stresses (10.6 and 40 kPa). The aggregated soil first dilated and then contracted to porosities less than initial values, whereas the same soil with its aggregates destroyed monotonically dilated. We infer that aggregates persisted initially during shear and caused dilation before their eventual breakdown enabled net contraction. An implication of this contraction, demonstrated in experiments in which initial soil porosity was varied, is that the value of porosity distinguishing initially contractive from dilative behavior can be significantly larger than the critical-state porosity, which develops only after disaggregation ceases at high strains. In addition, post-dilative contraction may produce excess pore pressures, thereby reducing frictional strength and facilitating debris-flow mobilization. We infer that results of triaxial tests, which generally produce strains at least a factor of ∼ 4 smaller than those we observed at the inception of post-dilative contraction, do not allow soil contraction to be ruled out as a mechanism for debris-flow mobilization in dense soils containing aggregates.

  2. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: Possible role of nuclear factor-κB

    PubMed Central

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-01-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we inhibited NF-κB signaling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58±2 years), older non-exercising adults (ON, n=16, 61±1 years) and young non-exercising controls (YN, n=8, 23±1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05), but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0±0.7% vs. 6.8±0.7%, placebo vs. salsalate, P<0.001), but did not change with salsalate in OT or YN (OT: 7.2±0.7% vs. 7.7±0.6%; YN: 7.6±0.9% vs. 8.1±0.8%; placebo vs. salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001), but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05), but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signaling is associated with oxidative stress-related impairment of EDD in healthy non-exercising, but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging. PMID:24947434

  3. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

    PubMed

    Walker, Ashley E; Kaplon, Rachelle E; Pierce, Gary L; Nowlan, Molly J; Seals, Douglas R

    2014-12-01

    Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.

  4. The evolution of fracture surface roughness and its dependence on slip

    NASA Astrophysics Data System (ADS)

    Wells, Olivia L.

    Under effective compression, impingement of opposing rough surfaces of a fracture can force the walls of the fracture apart during slip. Therefore, a fracture's surface roughness exerts a primary control on the amount of dilation that can be sustained on a fracture since the opposing surfaces need to remain in contact. Previous work has attempted to characterize fracture surface roughness through topographic profiles and power spectral density analysis, but these metrics describing the geometry of a fracture's surface are often non-unique when used independently. However, when combined these metrics are affective at characterizing fracture surface roughness, as well as the mechanisms affecting changes in roughness with increasing slip, and therefore changes in dilation. These mechanisms include the influence of primary grains and pores on initial fracture roughness, the effect of linkage on locally increasing roughness, and asperity destruction that limits the heights of asperities and forms gouge. This analysis reveals four essential stages of dilation during the lifecycle of a natural fracture, whereas previous slip-dilation models do not adequately address the evolution of fracture surface roughness: (1) initial slip companied by small dilation is mediated by roughness controlled by the primary grain and pore dimensions; (2) rapid dilation during and immediately following fracture growth by linkage of formerly isolated fractures; (3) wear of the fracture surface and gouge formation that minimizes dilation; and (4) between slip events cementation that modifies the mineral constituents in the fracture. By identifying these fundamental mechanisms that influence fracture surface roughness, this new conceptual model relating dilation to slip has specific applications to Enhanced Geothermal Systems (EGS), which attempt to produce long-lived dilation in natural fractures by inducing slip.

  5. Effect of combined metformin and oral contraceptive on metabolic factors and endothelial function in overweight and obese women with polycystic ovary syndrome

    PubMed Central

    Essah, Paulina A; Arrowood, James A; Cheang, Kai I; Adawadkar, Swati S; Stovall, Dale W.; Nestler, John E.

    2011-01-01

    In this randomized, double-blind, placebo controlled study, 19 overweight women with PCOS were randomized to a 3-month course of either metformin plus combined hormonal oral contraceptive (OC) (n=9) or OC and matched placebo (n=10). After 3 months, both treatments had similar effects on androgen levels, lipid profile, insulin sensitivity and serum inflammatory markers, but flow-mediated dilatation increased by 69.0% in the metformin-OC group (p=0.01) while it remained unchanged in the OC group. PMID:21733508

  6. Effects of Inadequate Sleep on Blood Pressure and Endothelial Inflammation in Women: Findings From the American Heart Association Go Red for Women Strategically Focused Research Network.

    PubMed

    Aggarwal, Brooke; Makarem, Nour; Shah, Riddhi; Emin, Memet; Wei, Ying; St-Onge, Marie-Pierre; Jelic, Sanja

    2018-06-09

    Insufficient sleep increases blood pressure. However, the effects of milder, highly prevalent but frequently neglected sleep disturbances, including poor sleep quality and insomnia, on vascular health in women are unclear. We investigated whether poor sleep patterns are associated with blood pressure and endothelial inflammation in a diverse sample of women. Women who participated in the ongoing American Heart Association Go Red for Women Strategically Focused Research Network were studied (n=323, 57% minority, mean age=39±17 years, range=20-79 years). Sleep duration, sleep quality, and time to sleep onset were assessed using the Pittsburgh Sleep Quality Index (score ≥5=poor sleep quality). Risk for obstructive sleep apnea was evaluated using the Berlin questionnaire, and insomnia was assessed using the Insomnia Severity Index. In a subset of women who participated in the basic study (n=26), sleep duration was assessed objectively using actigraphy, and endothelial inflammation was assessed directly in harvested endothelial cells by measuring nuclear translocation of nuclear factor kappa B. Vascular reactivity was measured by brachial artery flow-mediated dilation (n=26). Systolic and diastolic blood pressure were measured by trained personnel (n=323). Multivariable linear regressions were used to evaluate associations between sleep patterns and blood pressure, nuclear factor kappa B, and flow-mediated dilation. Mean sleep duration was 6.8±1.3 hours/night in the population study and 7.5±1.1 hour/night in the basic study. In the population study sample, 50% had poor sleep quality versus 23% in the basic study, and 37% had some level of insomnia versus 15% in the basic study. Systolic blood pressure was associated directly with poor sleep quality, and diastolic blood pressure was of borderline significance with obstructive sleep apnea risk after adjusting for confounders ( P =0.04 and P =0.08, respectively). Poor sleep quality was associated with endothelial nuclear factor kappa B activation (β=30.6; P =0.03). Insomnia and longer sleep onset latency were also associated with endothelial nuclear factor kappa B activation (β=27.6; P =0.002 and β=8.26; P =0.02, respectively). No evidence was found for an association between sleep and flow-mediated dilation. These findings provide direct evidence that common but frequently neglected sleep disturbances such as poor sleep quality and insomnia are associated with increased blood pressure and vascular inflammation even in the absence of inadequate sleep duration in women. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02835261. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men.

    PubMed

    Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D

    2017-05-01

    Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P < 0.01, which was correlated with V̇o 2peak , r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men. Copyright © 2017 the American Physiological Society.

  8. Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine, and endothelial function in healthy human subjects during experimental hyper- and hypohomocysteinemia.

    PubMed

    Doshi, Sagar; McDowell, Ian; Goodfellow, Jonathan; Stabler, Sally; Boger, Rainer; Allen, Robert; Newcombe, Robert; Lewis, Malcolm; Moat, Stuart

    2005-03-01

    Experimental hyperhomocysteinemia after an oral methionine or homocysteine load is associated with impaired nitric oxide-dependent vasodilatation in healthy human beings. However, it remains unproven that this effect is mediated by elevations in plasma homocysteine. There is evidence that an increase in plasma homocysteine may increase the formation of asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase. The methyl groups within ADMA are derived from the conversion of S -adenosylmethionine to S -adenosylhomocysteine intermediates in the methionine/homocysteine pathway. No previous study has assessed the role of methylation status, its impact on ADMA formation, and their association with endothelial function in healthy human beings. In a randomized, placebo-controlled, crossover study, 10 healthy subjects (mean age, 29.1 +/- 3.9 years) were administered an oral dose of methionine (0.1 g/kg), l -homocysteine (0.01 g/kg), N-acetylcysteine (NAC) (0.1 g/kg), or placebo. Endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery was impaired after both the methionine and homocysteine load compared with placebo at 4 hours (36 +/- 15, 67 +/- 23 vs 219 +/- 26 microm, respectively, P < .001). N-Acetylcysteine had no effect on flow-mediated dilatation. Plasma total homocysteine was significantly elevated at 4 hours after methionine (23.1 +/- 6.2) and homocysteine (41.5 +/- 8.9) loading, but significantly reduced after NAC 2.4 +/- 0.6 vs 7.1 +/- 2.1 micromol/L in the placebo (P < .001). Plasma S-adenosylmethionine/S-adenosylhomocysteine ratio was significantly (P < .001) increased at 4 hours after methionine (10.9 +/- 0.7) compared with homocysteine (5.4 +/- 0.4), NAC (5.0 +/- 0.3), and placebo (6.0 +/- 0.5). Plasma ADMA concentrations were not altered by any intervention. Our results suggest that endothelial dysfunction due to methionine or homocysteine loading is not associated with an increase in plasma ADMA or a disruption in methylation status.

  9. Pulmonary arterial pressure and right ventricular dilatation independently determine tricuspid valve insufficiency severity in pre-capillary pulmonary hypertension.

    PubMed

    De Meester, Pieter; Van De Bruaene, Alexander; Delcroix, Marion; Belmans, Ann; Herijgers, Paul; Voigt, Jens-Uwe; Budts, Werner

    2012-11-01

    Elevated pulmonary artery systolic pressure (PASP) causes functional tricuspid valve insufficiency (TI). However, the differential contribution of pressure load and right ventricular (RV) dilatation is not well established. The study aim was to evaluate both variables in relation to TI. A cross-sectional study was performed of consecutive transthoracic echocardiographic studies of patients with pre-capillary pulmonary hypertension (PH). Both, demographic data and echocardiographic RV parameters were reviewed. TI was graded semi-quantitatively with color Doppler flow imaging. Trend analyses for TI severity (TI grade 0/4, 1/4, 2/4, 3/4, or 4/4) were performed. A proportional odds logistic regression analysis was carried out to identify independent predictors of TI severity. Eighty-one patients (56 females, 25 males; mean age 60 +/- 15 years) with pre-capillary PH were evaluated. Patients with more severe TI had a significantly lower body mass index, a lower mean systemic blood pressure, a shorter pulmonary acceleration time, a higher tricuspid regurgitant gradient, and a more dilated right ventricle. From the echocardiographic parameters, RV dilatation (p = 0.0143) and the tricuspid regurgitant gradient (p = 0.0026) were independently related to the degree of TI. In patients with pre-capillary PH, PASP and RV dilatation were both related to the increasing severity of TI. When focusing on TI to improve the prognosis of patients with pre-capillary PH, both PASP and RV dimensions should be taken into consideration.

  10. The effects of combined versus selective adrenergic blockade on left ventricular and systemic hemodynamics, myocardial substrate preference, and regional perfusion in conscious dogs with dilated cardiomyopathy.

    PubMed

    Nikolaidis, Lazaros A; Poornima, Indu; Parikh, Pratik; Magovern, Megan; Shen, You-Tang; Shannon, Richard P

    2006-05-02

    Given that adverse effects of chronic sympathetic activation are mediated by all three adrenergic receptor subtypes (beta1, beta2, alpha1), we examined the effects of standard doses of carvedilol and metoprolol succinate (metoprolol controlled release/extended release [CR/XL]) on hemodynamics, myocardial metabolism, and regional organ perfusion. Both beta1 selective and combined adrenergic blockade reduce morbidity and mortality in heart failure. Whether there are advantages of one class over the other remains controversial, even in the wake of the Carvedilol Or Metoprolol European Trial (COMET). Similarly, the mechanistic basis for the relative differences is incompletely understood. Thirty-three conscious, chronically instrumented dogs with pacing-induced (240 min(-1) for 4 weeks) dilated cardiomyopathy (DCM) were randomized to carvedilol (25 mg twice daily, Coreg, Glaxo Smith Kline, Research Triangle, North Carolina) or metoprolol succinate (100 mg qd, Toprol XL, Astra Zeneca, Wilmington, Delaware). Left ventricular and systemic hemodynamics, myocardial substrate uptake, and norepinephrine spillover were measured before and after three days of treatment. Regional (renal, hepatic, skeletal muscle) blood flows were measured using neutron-activated microspheres. Both agents had comparable heart rate effects. However, carvedilol-treated dogs showed significantly greater increases in stroke volume and cardiac output and decreases in left ventricular end-diastolic pressure and systemic vascular resistance. Carvedilol increased renal, hepatic, and skeletal muscle blood flow. Carvedilol increased myocardial glucose uptake and suppressed norepinephrine and glucagon. Carvedilol antagonized the response to exogenous norepinephrine to a greater extent than metoprolol CR/XL. At doses inducing comparable heart rate reductions, short-term treatment with carvedilol had superior hemodynamic and metabolic effects compared with metoprolol CR/XL. These data suggest important advantages of blocking all three adrenergic receptor subtypes in DCM.

  11. Direct simulation of compressible turbulence in a shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1991-01-01

    The purpose of this study is to investigate compressibility effects on the turbulence in homogeneous shear flow. It is found that the growth of the turbulent kinetic energy decreases with increasing Mach number, a phenomenon similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance.

  12. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children.

    PubMed

    Farpour-Lambert, Nathalie J; Aggoun, Yacine; Marchand, Laetitia M; Martin, Xavier E; Herrmann, François R; Beghetti, Maurice

    2009-12-15

    The aim of this study was to determine the effects of physical activity on systemic blood pressure (BP) and early markers of atherosclerosis in pre-pubertal obese children. Hypertension and endothelial dysfunction are premature complications of obesity. We performed a 3-month randomized controlled trial with a modified crossover design: 44 pre-pubertal obese children (age 8.9 + or - 1.5 years) were randomly assigned (1:1) to an exercise (n = 22) or a control group (n = 22). We recruited 22 lean children (age 8.5 + or - 1.5 years) for baseline comparison. The exercise group trained 60 min 3 times/week during 3 months, whereas control subjects remained relatively inactive. Then, both groups trained twice/week during 3 months. We assessed changes at 3 and 6 months in office and 24-h BP, arterial intima-media thickness (IMT) and stiffness, endothelial function (flow-mediated dilation), body mass index (BMI), body fat, cardiorespiratory fitness (maximal oxygen consumption [VO(2)max]), physical activity, and biological markers. Obese children had higher BP, arterial stiffness, body weight, BMI, abdominal fat, insulin resistance indexes, and C-reactive protein levels, and lower flow-mediated dilation, VO(2)max, physical activity, and high-density lipoprotein cholesterol levels than lean subjects. At 3 months, we observed significant changes in 24-h systolic BP (exercise -6.9 + or - 13.5 mm Hg vs. control 3.8 + or - 7.9 mm Hg, -0.8 + or - 1.5 standard deviation score [SDS] vs. 0.4 + or - 0.8 SDS), diastolic BP (-0.5 + or - 1.0 SDS vs. 0 + or - 1.4 SDS), hypertension rate (-12% vs. -1%), office BP, BMI z-score, abdominal fat, and VO(2)max. At 6 months, change differences in arterial stiffness and IMT were significant. A regular physical activity program reduces BP, arterial stiffness, and abdominal fat; increases cardiorespiratory fitness; and delays arterial wall remodeling in pre-pubertal obese children. (Effects of Aerobic Exercise Training on Arterial Function and Insulin Resistance Syndrome in Obese Children: A Randomized Controlled Trial; NCT00801645).

  13. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    PubMed

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; P<0.01) and higher nitrite (control, 35 nmol/L, 27, 46; apple, 69 nmol/L, 53, 90; spinach, 99 nmol/L, 76, 129; apple+spinach, 80 nmol/L, 61, 104; P<0.01). Compared to control, all treatments resulted in higher flow-mediated dilatation (P<0.05) and lower pulse pressure (P<0.05), and apple and spinach resulted in lower systolic blood pressure (P<0.05). No significant effect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Landmark lecture: Perloff lecture: Tribute to Professor Joseph Kayle Perloff and lessons learned from him: aortopathy in adults with CHD.

    PubMed

    Niwa, Koichiro

    2017-12-01

    Marfan syndrome, bicuspid aortic valve, and/or coarctation of the aorta are associated with medial abnormalities of the ascending aortic or para-coarctation aorta. Medial abnormalities in the ascending aorta are prevalent in other type of patients with a variety of CHDs such as single ventricle, persistent truncus arteriosus, transposition of the great arteries, hypoplastic left heart syndrome, and tetralogy of Fallot, encompassing a wide age range and may predispose to dilatation, aneurysm, and rapture necessitating aortic valve and root surgery. These CHDs exhibit ongoing dilatation of the aortic root and reduced aortic elasticity and increased aortic stiffness that may relate to intrinsic properties of the aortic root. These aortic dilatation and increased stiffness can induce aortic aneurysm, rapture of the aorta, and aortic regurgitation, but also provoke left ventricular hypertrophy, reduced coronary artery flow, and left ventricular failure. Therefore, a new clinical entity can be used to call this association of aortic pathophysiological abnormality, aortic dilation, and aorto-left ventricular interaction - "aortopathy".

  15. Obesity, arterial function and arterial structure – a systematic review and meta‐analysis

    PubMed Central

    Ne, J. Y. A.; Cai, T. Y.; Celermajer, D. S.; Caterson, I. D.; Gill, T.; Lee, C. M. Y.

    2017-01-01

    Summary Objective Obesity is an established risk factor for cardiovascular disease. The mechanisms by which obesity affects cardiovascular risk have not been fully elucidated. This paper reports a comprehensive systematic review and meta‐analysis on obesity and two key aspects of vascular health using gold‐standard non‐invasive measures – arterial endothelial function (brachial flow‐mediated dilatation) and subclinical atherosclerosis (carotid intima‐media thickness). Methods Electronic searches for ‘Obesity and flow‐mediated dilatation’ and ‘Obesity and intima‐media thickness’ were performed using Ovid Medline and Embase databases. A meta‐analysis was undertaken for brachial flow‐mediated dilatation and carotid intima‐media thickness to obtain pooled estimates for adults with obesity and those with healthy weight. Results Of the 5,810 articles retrieved, 19 studies on flow‐mediated dilatation and 19 studies on intima‐media thickness were included. Meta‐analysis demonstrated that obesity was associated with lower flow‐mediated dilatation (−1.92 % [95% CI −2.92, −0.92], P = 0.0002) and greater carotid intima‐media thickness (0.07 mm [95% CI 0.05, 0.08], P < 0.0001). Conclusions Obesity is associated with poorer arterial endothelial function and increased subclinical atherosclerosis, consistent with these aspects of vascular health at least partially contributing to the increased risk of cardiovascular events in adults with obesity. These estimated effect sizes will enable vascular health benefits in response to weight loss treatment to be put in greater perspective, both in the research setting and potentially also clinical practice. PMID:28702212

  16. A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly.

    PubMed

    Krishnaraj, K P; Nott, Prabhu R

    2016-02-11

    Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.

  17. Elements of an improved model of debris‐flow motion

    USGS Publications Warehouse

    Iverson, Richard M.

    2009-01-01

    A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.

  18. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  19. Endothelial Function and Serum Concentration of Toxic Metals in Frequent Consumers of Fish

    PubMed Central

    Buscemi, Silvio; Vasto, Sonya; Di Gaudio, Francesca; Grosso, Giuseppe; Bergante, Sonia; Galvano, Fabio; Massenti, Fatima Maria; Amodio, Emanuele; Rosafio, Giuseppe; Verga, Salvatore

    2014-01-01

    Background Endothelial dysfunction is involved in the pathogenesis of atherosclerosis. Consumption of fish is associated with reduced cardiovascular risk, but there is paucity of data concerning its effect on endothelial function. Furthermore, investigation of the effects of fish consumption on health must take into account the ingestion of contaminants, including transition metals and some metalloids, which may have unfavorable effects on health, including those on the cardiovascular system. We investigated the association between fish consumption, endothelial function (flow mediated dilation of the brachial artery), and serum concentration of some toxic metals in apparently healthy people. Methods Twenty-nine high fish consumers (at least 3 portions a week) were compared with 25 low fish consumers (less than 1 portion a week). All participants were free of diabetes, cardiovascular or other systemic diseases. Serum metal (antimonium, arsenic, mercury, lead, cobalt, copper, zinc, selenium, strontium) concentrations were measured in subgroups of 24 high fish consumers and 19 low fish consumers. Results Both groups exhibited similar habitual dietary patterns, age and anthropometric characteristics. The high fish consumers had higher flow mediated dilation (9.7±1.8 vs. 7.3±1.9%; P<0.001), but also higher serum concentrations of mercury (5.87±2.69 vs. 1.65±1.10 mcg/L; P<0.001) and arsenic (6.04±3.25 vs. 2.30±1.58 mcg/L; P<0.001). The fasting plasma glucose concentrations were significantly correlated with both mercury (r = 0.39; P = 0.01) and arsenic concentrations (r = 0.55; P<0.001). Conclusions Habitual consumption of high amounts of fish is associated with better endothelial function despite higher serum concentrations of mercury and arsenic. PMID:25401695

  20. Combined Therapy with Renin-Angiotensin System and Calcium Channel Blockers in Type 2 Diabetic Hypertensive Patients with Proteinuria: Effects on Soluble TWEAK, PTX3, and Flow-Mediated Dilation

    PubMed Central

    Yilmaz, Mahmut Ilker; Carrero, Juan Jesús; Martín-Ventura, Jose Luis; Sonmez, Alper; Saglam, Mutlu; Celik, Turgay; Yaman, Halil; Yenicesu, Mujdat; Eyileten, Tayfun; Moreno, Juan Antonio; Egido, Jesús

    2010-01-01

    Background and objectives: Soluble TNF-like weak inducer of apoptosis (sTWEAK) and long pentraxin-3 (PTX3) concentrations have been associated with endothelial function in patients with chronic kidney disease (CKD). This study tested the hypothesis that the improvement in endothelial function after initiation of angiotensin II receptor blocker (valsartan), calcium channel blocker (amlodipine) therapy, or a combination of both is directly linked to the normalization of sTWEAK and PTX3. Design, setting, participants, & measurements: One-hundred-eight diabetic CKD stage I patients with hypertension (56% men, 46.7 ± 5.3 years) were allocated to a 12-week intervention with amlodipine (10 mg/d), valsartan (160 mg/d), or their combination. Plasma levels of sTWEAK, PTX3, and flow-mediated dilation (FMD) were studied during the interventions. Results: All treatment strategies effectively increased FMD and reduced proteinuria, confirming a more prone reduction with the combined therapy. These improvements were followed by significant PTX3 reductions. Valsartan alone and in combination with amlodipine achieved significant incremental raises in sTWEAK plasma levels. More importantly, the changes observed in sTWEAK (β = 0.25, P = 0.006) or PTX3 (β = −0.24, P = 0.007) plasma levels were independently associated with the improvement in ultrasonographically measured FMD. Conclusions: This study shows that treatment with antihypertensive drugs improves FMD and normalizes proteinuria, PTX3, and sTWEAK in diabetic CKD stage I patients with hypertension. The improvement in FMD was independently associated with PTX3 and sTWEAK normalization. Two surrogate biomarkers of endothelial function are therefore identified with potential as therapeutic targets. The study was registered in clinicaltrials.gov as NCT00921570. PMID:20430947

  1. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy.

    PubMed

    Teede, Helena J; Meyer, Caroline; Hutchison, Samantha K; Zoungas, Sophia; McGrath, Barry P; Moran, Lisa J

    2010-01-01

    To assess the interaction between insulin resistance and endothelial function and the optimal treatment strategy addressing cardiovascular risk in polycystic ovary syndrome. Randomized controlled trial. Controlled clinical study. Overweight age- and body mass index-matched women with polycystic ovary syndrome. Six months metformin (1 g two times per day, n = 36) or oral contraceptive pill (OCP) (35 microg ethinyl E(2)-2 mg cytoproterone acetate, n = 30). Fasting and oral glucose tolerance test glucose and insulin levels, endothelial function (flow-mediated dilation, asymmetric dimethylarginine, plasminogen activator inhibitor-1, von Willebrand factor), inflammatory markers (high-sensitivity C-reactive protein), lipids, and hyperandrogenism. The OCP increased levels of glucose and insulin on oral glucose tolerance test, high-sensitivity C-reactive protein, triglycerides, and sex-hormone binding globulin and decreased levels of low-density lipoprotein cholesterol and T. Metformin decreased levels of fasting insulin, oral glucose tolerance test insulin, high-density lipoprotein cholesterol, and high-sensitivity C-reactive protein. Flow-mediated dilation increased only with metformin (+2.2% +/- 4.8%), whereas asymmetric dimethylarginine decreased equivalently for OCP and metformin (-0.3 +/- 0.1 vs. -0.1 +/- 0.1 mmol/L). Greater decreases in plasminogen activator inhibitor-1 occurred for the OCP than for metformin (-1.8 +/- 1.6 vs. -0.7 +/- 1.7 U/mL). In polycystic ovary syndrome, metformin improves insulin resistance, inflammatory markers, and endothelial function. The OCP worsens insulin resistance and glucose homeostasis, inflammatory markers, and triglycerides and has neutral or positive endothelial effects. The effect of the OCP on cardiovascular risk in polycystic ovary syndrome is unclear. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Effects of aerobic exercise training on ACE and ADRB2 gene expression, plasma angiotensin II level, and flow-mediated dilation: a study on obese postmenopausal women with prehypertension.

    PubMed

    Azadpour, Noushin; Tartibian, Bakhtyar; Koşar, Şükran Nazan

    2017-03-01

    The purpose of this study is to determine the effect of 10 weeks of moderate-intensity aerobic exercise training (MIET) on blood pressure (BP), angiotensin-converting enzyme (ACE) and β2-adrenergic receptor (ADRB2) gene expression in leukocytes, plasma angiotensin II (Ang II), and flow-mediated dilation (FMD) in obese postmenopausal women (PMW) with prehypertension. Twenty-four obese prehypertensive PMW (aged 50-70 y; body mass index ≥30 kg/m) randomly assigned to control (n = 12) and exercise (n = 12) groups. Exercise group performed MIET (25-40 min/d, 3 d/wk at 50%-70% of heart rate reserve) for 10 weeks. Control group maintained their normal daily physical activity level. Body composition, VO2max, BP, ACE and ADRB2 gene expression, plasma Ang II, and FMD were measured before and after the training program. After MIET, systolic and diastolic BPs decreased by 4.6% and 2.4%, respectively (P < 0.001). Plasma Ang II level decreased by 45.7%, whereas FMD increased by 86% in the exercise group (P < 0.001). Exercise training resulted in a threefold increase in ADRB2 and a fourfold decrease in ACE gene expressions (P < 0.05). Training-induced changes in BP inversely associated with the changes in FMD and ADRB2 (r values range -0.55 to -0.78), and positively associated with Ang II and ACE (r values range 0.68-0.86) (P < 0.001). Ten weeks of MIET modulates ACE and ADRB2 gene expression, decreases Ang II plasma levels, and improves endothelial function in obese PMW, and these alterations are associated with reduction in BP.

  3. The effect of low and high-intensity cycling in diesel exhaust on flow-mediated dilation, circulating NOx, endothelin-1 and blood pressure

    PubMed Central

    Tebbutt, Scott J.; Carlsten, Christopher; Koehle, Michael S.

    2018-01-01

    Introduction Exposure to air pollution impairs aspects of endothelial function such as flow-mediated dilation (FMD). Outdoor exercisers are frequently exposed to air pollution, but how exercising in air pollution affects endothelial function and how these effects are modified by exercise intensity are poorly understood. Objectives Therefore, the purpose of this study was to determine the effects of low-intensity and high-intensity cycling with diesel exhaust (DE) exposure on FMD, blood pressure, plasma nitrite and nitrate (NOx) and endothelin-1. Methods Eighteen males performed 30-minute trials of low or high-intensity cycling (30% and 60% of power at VO2peak) or a resting control condition. For each subject, each trial was performed once while breathing filtered air (FA) and once while breathing DE (300ug/m3 of PM2.5, six trials in total). Preceding exposure, immediately post-exposure, 1 hour and 2 hours post-exposure, FMD, blood pressure and plasma endothelin-1 and NOx concentrations were measured. Data were analyzed using repeated-measures ANOVA and linear mixed model. Results Following exercise in DE, plasma NOx significantly increased and was significantly greater than FA (p<0.05). Two hours following DE exposure, endothelin-1 was significantly less than FA (p = 0.037) but exercise intensity did not modify this response. DE exposure did not affect FMD or blood pressure. Conclusion Our results suggest that exercising in DE did not adversely affect plasma NOX, endothelin-1, FMD and blood pressure. Therefore, recommendations for healthy individuals to moderate or avoid exercise during bouts of high pollution appear to have no acute protective effect. PMID:29466393

  4. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure

    PubMed Central

    Matthews, Evan L.; Brian, Michael S.; Ramick, Meghan G.; Lennon-Edwards, Shannon; Edwards, David G.

    2015-01-01

    Recent studies demonstrate that high dietary sodium (HS) impairs endothelial function in those with salt-resistant (SR) blood pressure (BP). The effect of HS on endothelial function in those with salt-sensitive (SS) BP is not currently known. We hypothesized that HS would impair brachial artery flow-mediated dilation (FMD) to a greater extent in SS compared with SR adults. Ten SR (age 42 ± 5 yr, 5 men, 5 women) and 10 SS (age 39 ± 5 yr, 5 men, 5 women) healthy, normotensive participants were enrolled in a controlled feeding study consisting of a run-in diet followed by a 7-day low dietary sodium (LS) (20 mmol/day) and a 7-day HS (300 mmol/day) diet in random order. Brachial artery FMD and 24-h BP were assessed on the last day of each diet. SS BP was individually assessed and defined as a change in 24-h mean arterial pressure (MAP) of >5 mmHg between the LS and HS diets (ΔMAP: SR −0.6 ± 1.2, SS 7.7 ± 0.4 mmHg). Brachial artery FMD was lower in both SS and SR individuals during the HS diet (P < 0.001), and did not differ between groups (P > 0.05) (FMD: SR LS 10.6 ± 1.3%, SR HS 7.2 ± 1.5%, SS LS 12.5 ± 1.7%, SS HS 7.8 ± 1.4%). These data indicate that an HS diet impairs brachial artery FMD to a similar extent in adults with SS BP and SR BP. PMID:26078434

  5. Remote ischemic preconditioning and endothelial function in patients with acute myocardial infarction and primary PCI.

    PubMed

    Manchurov, Vladimir; Ryazankina, Nadezda; Khmara, Tatyana; Skrypnik, Dmitry; Reztsov, Roman; Vasilieva, Elena; Shpektor, Alexander

    2014-07-01

    Remote ischemic preconditioning by transient limb ischemia reduces myocardial ischemia-reperfusion injury in patients undergoing percutaneous coronary intervention. The aim of the study we report here was to assess the effect of remote ischemic preconditioning on endothelial function in patients with acute myocardial infarction who underwent primary percutaneous coronary intervention. Forty-eight patients with acute myocardial infarction were enrolled. All participants were randomly divided into 2 groups. In Group I (n = 23), remote ischemic preconditioning was performed before primary percutaneous coronary intervention (intermittent arm ischemia-reperfusion through 4 cycles of 5-minute inflation and 5-minute deflation of a blood-pressure cuff to 200 mm Hg). In Group II (n = 25), standard percutaneous coronary intervention without preconditioning was performed. We assessed endothelial function using the flow-mediated dilation test on baseline, then within 1-3 hours after percutaneous coronary intervention, and again on days 2 and 7 after percutaneous coronary intervention. The brachial artery flow-mediated dilation results were significantly higher on the first day after primary percutaneous coronary intervention in the preconditioning group (Group I) than in the control group (Group II) (12.1% vs 0.0%, P = .03, and 11.1% vs 6.3%, P = .016, respectively), and this difference remained on the seventh day (12.3% vs 7.4%, P = .0005, respectively). We demonstrated for the first time that remote ischemic preconditioning before primary percutaneous coronary intervention significantly improves endothelial function in patients with acute myocardial infarction, and this effect remains constant for at least a week. We suppose that the improvement of endothelial function may be one of the possible explanations of the effect of remote ischemic preconditioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  7. Effect of whole soy and purified daidzein on ambulatory blood pressure and endothelial function--a 6-month double-blind, randomized controlled trial among Chinese postmenopausal women with prehypertension.

    PubMed

    Liu, Z-M; Ho, S C; Chen, Y-M; Tomlinson, B; Ho, S; To, K; Woo, J

    2015-10-01

    Although observational studies suggest that soy foods or isoflavones are cardio-protective, clinical trials on whole soy or isoflavone daidzein (one major isoflavone and the precursor of equol) on blood pressure (BP) and endothelial function (EF) are few and have not been specifically conducted among equol producers, a population most likely to benefit from soy treatment. We performed a 6-month double-blind, randomized, placebo-controlled trial to examine the effect of whole soy (soy flour) or purified daidzein on BP and EF in prehypertensive or untreated hypertensive postmenopausal women verified to be equol producers. A total of 270 eligible women were recruited and randomized to either one of the three treatment groups, 40 g soy flour (whole soy group), 40 g low-fat milk powder+63 mg daidzein (daidzein group) or 40 g low-fat milk powder (active control group) daily, each given as a solid beverage powder for 6 months. The primary outcome measures were 24 h ambulatory BP (ABP) and EF assessed by flow-mediated dilation using brachial artery ultrasound. A total of 253 subjects completed the study according to protocol. Urinary isoflavones indicated good compliance with the interventions. Intention to treat and per-protocol analysis indicated that there was no significant difference in the 6-month changes or % changes in parameters of ABP and brachial flow-mediated dilation among the three treatment groups. A further subgroup analysis among hypertensive women (n=138) did not alter the conclusions. Whole soy and purified daidzein had no significant effect on BP and vascular function among equol-producing postmenopausal women with prehypertension or untreated hypertension.

  8. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients.

    PubMed

    Coimbra, S R; Lage, S H; Brandizzi, L; Yoshida, V; da Luz, P L

    2005-09-01

    Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 +/- 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 +/- 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 +/- 7.1 vs 12.1 +/- 4.5%; P < 0.05) and increased with both GJ (10.1 +/- 7.1 before vs 16.9 +/- 6.7% after: P < 0.05) and RW (10.1 +/- 6.4 before vs 15.6 +/- 4.6% after; P < 0.05). RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 +/- 8.6 before vs 23.0 +/- 12.0% after; P < 0.01). GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.

  9. Aortic, carotid intima-media thickness and flow- mediated dilation as markers of early atherosclerosis in a cohort of pediatric patients with rheumatic diseases.

    PubMed

    Del Giudice, Emanuela; Dilillo, Anna; Tromba, Luciana; La Torre, Giuseppe; Blasi, Sara; Conti, Fabrizio; Viola, Franca; Cucchiara, Salvatore; Duse, Marzia

    2018-06-01

    The aims of this study were to identify the presence of endothelial dysfunction as a marker of early atherosclerosis by measuring aortic and carotid intimal-medial thickness (aIMT and cIMT) and flow-mediated dilation (FMD) and their correlation with traditional and no traditional risk factors for atherosclerosis in children with rheumatic diseases. Thirty-nine patients (mean age 15.3 ± 5.7 years), 23 juvenile idiopathic arthritis, 9 juvenile spondyloarthropathies, 7 connective tissue diseases (mean disease duration and onset respectively 5 ± 3.6 and 10 ± 5 years), and 52 healthy children matched for sex and age were enrolled. Demographic data (age, sex, familiarity for cardiovascular disease), traditional risk factors for atherosclerosis (BMI, active and passive smoking, dyslipidemia), activity disease indexes (reactive count protein, erythrocyte sedimentation rate) autoantibodies, and complement tests were collected. aIMT, cIMT, and FMD were assessed following a standardized protocol by high-resolution ultrasonography. Patients resulted significantly more exposed to passive smoking and had a lower BMI and higher homocysteine level than controls. cIMT and aIMT were significantly higher in patients than controls (p < 0.001) and correlated with age at diagnosis (p < 0.001 r 0.516 and 0.706, respectively) but not with mean disease duration. FMD % was significantly reduced in patients compared to controls (p < 0.001). Subclinical atherosclerosis occurs in pediatric rheumatic diseases, mainly in early onset forms, and aIMT is an earlier marker of preclinical atherosclerosis. Premature endothelial dysfunction could be included in the follow-up of children with rheumatic disorders to plan prevention strategies of cardiovascular disease already in pediatrics.

  10. Passive heat therapy improves endothelial function, arterial stiffness and blood pressure in sedentary humans.

    PubMed

    Brunt, Vienna E; Howard, Matthew J; Francisco, Michael A; Ely, Brett R; Minson, Christopher T

    2016-09-15

    A recent 30 year prospective study showed that lifelong sauna use reduces cardiovascular-related and all-cause mortality; however, the specific cardiovascular adaptations that cause this chronic protection are currently unknown. We investigated the effects of 8 weeks of repeated hot water immersion ('heat therapy') on various biomarkers of cardiovascular health in young, sedentary humans. We showed that, relative to a sham group which participated in thermoneutral water immersion, heat therapy increased flow-mediated dilatation, reduced arterial stiffness, reduced mean arterial and diastolic blood pressure, and reduced carotid intima media thickness, with changes all on par or greater than what is typically observed in sedentary subjects with exercise training. Our results show for the first time that heat therapy has widespread and robust effects on vascular function, and as such, could be a viable treatment option for improving cardiovascular health in a variety of patient populations, particularly those with limited exercise tolerance and/or capabilities. The majority of cardiovascular diseases are characterized by disorders of the arteries, predominantly caused by endothelial dysfunction and arterial stiffening. Intermittent hot water immersion ('heat therapy') results in elevations in core temperature and changes in cardiovascular haemodynamics, such as cardiac output and vascular shear stress, that are similar to exercise, and thus may provide an alternative means of improving health which could be utilized by patients with low exercise tolerance and/or capabilities. We sought to comprehensively assess the effects of 8 weeks of heat therapy on biomarkers of vascular function in young, sedentary subjects. Twenty young, sedentary subjects were assigned to participate in 8 weeks (4-5 times per week) of heat therapy (n = 10; immersion in a 40.5°C bath sufficient to maintain rectal temperature ≥ 38.5°C for 60 min per session) or thermoneutral water immersion (n = 10; sham). Eight weeks of heat therapy increased flow-mediated dilatation from 5.6 ± 0.3 to 10.9 ± 1.0% (P < 0.01) and superficial femoral dynamic arterial compliance from 0.06 ± 0.01 to 0.09 ±0.01 mm(2)  mmHg(-1) (P = 0.03), and reduced (i.e. improved) aortic pulse wave velocity from 7.1 ± 0.3 to 6.1 ± 0.3 m s(-1) (P = 0.03), carotid intima media thickness from 0.43 ± 0.01 to 0.37 ± 0.01 mm (P < 0.001), and mean arterial blood pressure from 83 ± 1 to 78 ± 2 mmHg (P = 0.02). No changes were observed in the sham group or for carotid arterial compliance, superficial femoral intima media thickness or endothelium-independent dilatation. Heat therapy improved endothelium-dependent dilatation, arterial stiffness, intima media thickness and blood pressure, indicating improved cardiovascular health. These data suggest heat therapy may provide a simple and effective tool for improving cardiovascular health in various populations. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. [Pupillary reactions and eye hemodynamics in patients with diabetes mellitus with different glycemic levels].

    PubMed

    Sdobnikova, S V; Dorokhina, N Iu; Gupalo, O D; Krivosheeva, N V

    2010-01-01

    Pupillary reactions and hemodynamic parameters in the ophthalmic and central retinal arteries were studied in patients with types 1 and 2 diabetes mellitus. The pupillary dilatation test in the dark and 2.5% irifrin and 1% mydriacyl tests revealed a reduction in the papillary dilatation amplitude in hyperglycemia in patients with diabetic retinopathy. The amplitude of pupillary dilatation did not change during all pupil reactions in patients without diabetic retinopathy with a glycemic gradient. Pupillary dysfunction was detected in patients with diabetic retinopathy, which is a poor predictor for microangiopathy. Color Doppler mapping is a technique for studying blood flow, which is widely used in most of research institutions now. The procedure for studying the ocular microcirculatory bed in relation to blood glucose levels is an innovation in examining eye hemodynamics in patients with diabetes mellitus.

  12. TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats.

    PubMed

    Murphy, Timothy V; Kanagarajah, Arjna; Toemoe, Sianne; Bertrand, Paul P; Grayson, T Hilton; Britton, Fiona C; Leader, Leo; Senadheera, Sevvandi; Sandow, Shaun L

    2016-08-01

    This study investigated the expression and function of transient receptor potential vanilloid type-3 ion channels (TRPV3) in uterine radial arteries isolated from non-pregnant and twenty-day pregnant rats. Immunohistochemistry (IHC) suggested TRPV3 is primarily localized to the smooth muscle in arteries from both non-pregnant and pregnant rats. IHC using C' targeted antibody, and qPCR of TRPV3 mRNA, suggested pregnancy increased arterial TRPV3 expression. The TRPV3 activator carvacrol caused endothelium-independent dilation of phenylephrine-constricted radial arteries, with no difference between vessels from non-pregnant and pregnant animals. Carvacrol-induced dilation was reduced by the TRPV3-blockers isopentenyl pyrophosphate and ruthenium red, but not by the TRPA1 or TRPV4 inhibitors HC-030031 or HC-067047, respectively. In radial arteries from non-pregnant rats only, inhibition of NOS and sGC, or PKG, enhanced carvacrol-mediated vasodilation. Carvacrol-induced dilation of arteries from both non-pregnant and pregnant rats was prevented by the IKCa blocker TRAM-34. TRPV3 caused an endothelium-independent, IKCa-mediated dilation of the uterine radial artery. NO-PKG-mediated modulation of TRPV3 activity is lost in pregnancy, but this did not alter the response to carvacrol. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tetrahydrobiopterin augments endothelium-dependent dilatation in sedentary but not in habitually exercising older adults

    PubMed Central

    Eskurza, Iratxe; Myerburgh, Laura A; Kahn, Zachary D; Seals, Douglas R

    2005-01-01

    Endothelium-dependent dilatation (EDD) is impaired with ageing in sedentary, but not in regularly exercising adults. We tested the hypotheses that differences in tetrahydrobiopterin (BH4) bioactivity are key mechanisms explaining the impairment in EDD with sedentary ageing, and the maintenance of EDD with ageing in regularly exercising adults. Brachial artery flow-mediated dilatation (FMD), normalized for local shear stress, was measured after acute oral placebo or BH4 in young sedentary (YS) (n = 10; 22 ± 1 years, mean ± s.e.m.), older sedentary (OS) (n = 9; 62 ± 2), and older habitually aerobically trained (OT) (n = 12; 66 ± 1) healthy men. At baseline, FMD was ∼50% lower in OS versus YS (1.12 ± 0.09 versus 0.57 ± 0.09 (Δmm (dyn cm−2)) × 10−2, P < 0.001; 1 dyn = 10−5 N), but was preserved in OT (0.93 ± 0.08 (Δmm (dyn cm−2)) × 10−2). BH4 administration improved FMD by ∼45% in OS (1.00 ± 0.10 (Δmm (dyn cm−2)) × 10−2, P < 0.01 versus baseline), but did not affect FMD in YS or OT. Endothelium-independent dilatation neither differed between groups at baseline nor changed with BH4 administration. These results suggest that BH4 bioactivity may be a key mechanism involved in the impairment of conduit artery EDD with sedentary ageing, and the EDD-preserving effect of habitual exercise. PMID:16141271

  14. User-guided automated segmentation of time-series ultrasound images for measuring vasoreactivity of the brachial artery induced by flow mediation

    NASA Astrophysics Data System (ADS)

    Sehgal, Chandra M.; Kao, Yen H.; Cary, Ted W.; Arger, Peter H.; Mohler, Emile R.

    2005-04-01

    Endothelial dysfunction in response to vasoactive stimuli is closely associated with diseases such as atherosclerosis, hypertension and congestive heart failure. The current method of using ultrasound to image the brachial artery along the longitudinal axis is insensitive for measuring the small vasodilatation that occurs in response to flow mediation. The goal of this study is to overcome this limitation by using cross-sectional imaging of the brachial artery in conjunction with the User-Guided Automated Boundary Detection (UGABD) algorithm for extracting arterial boundaries. High-resolution ultrasound imaging was performed on rigid plastic tubing, on elastic rubber tubing phantoms with steady and pulsatile flow, and on the brachial artery of a healthy volunteer undergoing reactive hyperemia. The area of cross section of time-series images was analyzed by UGABD by propagating the boundary from one frame to the next. The UGABD results were compared by linear correlation with those obtained by manual tracing. UGABD measured the cross-sectional area of the phantom tubing to within 5% of the true area. The algorithm correctly detected pulsatile vasomotion in phantoms and in the brachial artery. A comparison of area measurements made using UGABD with those made by manual tracings yielded a correlation of 0.9 and 0.8 for phantoms and arteries, respectively. The peak vasodilatation due to reactive hyperemia was two orders of magnitude greater in pixel count than that measured by longitudinal imaging. Cross-sectional imaging is more sensitive than longitudinal imaging for measuring flow-mediated dilatation of brachial artery, and thus may be more suitable for evaluating endothelial dysfunction.

  15. Fusiform dilatation of the internal carotid artery following childhood craniopharyngioma resection treated by endovascular flow diversion-A case report and literature review.

    PubMed

    Reynolds, Matthew R; Heiferman, Daniel M; Boucher, Andrew B; Serrone, Joseph C; Barrow, Daniel L; Dion, Jacques E

    2018-05-24

    Fusiform dilatation of the internal carotid artery (FDICA) is a well-described radiographic finding following resection of childhood craniopharyngioma (CP). A 39-year-old woman with right-sided FDICA was successfully treated for lesion enlargement with endovascular flow diversion, which has not been described in the literature. Published by Elsevier Ltd.

  16. Effects of moderate aerobic exercise training on vascular health and blood pressure in African Americans.

    PubMed

    Feairheller, Deborah L; Diaz, Keith M; Kashem, Mohammed A; Thakkar, Sunny R; Veerabhadrappa, Praveen; Sturgeon, Kathleen M; Ling, Chenyi; Williamson, Sheara T; Kretzschmar, Jan; Lee, Hojun; Grimm, Heather; Babbitt, Dianne M; Vin, Charmie; Fan, Xiaoxuan; Crabbe, Deborah L; Brown, Michael D

    2014-07-01

    As healthcare progresses toward individualized medicine, understanding how different racial groups respond to lifestyle interventions is valuable. It is established that African Americans have disproportionate levels of cardiovascular disease and impaired vascular health, and clinical practice guidelines suggest lifestyle interventions as the first line of treatment. Recently, the authors reported that 6 months of aerobic exercise improved inflammatory markers, flow-mediated dilation (FMD), and levels of circulating endothelial microparticles (EMPs) in African American adults. This study is a subgroup analysis of the aerobic exercise-induced changes in vascular health and blood pressure (BP) measures, including carotid artery intima-media thickness (IMT), nitroglycerin-mediated dilation (NMD), ambulatory BP, and office BP. Sedentary African American adults (53.4±6.2 years; 21 women and 5 men) showed improved vascular health but no change in BP. Carotid artery IMT decreased 6.4%, plasma nitric oxide levels increased 76.6%, plasma EMP levels decreased, percentage of FMD increased 59.6%, and FMD/NMD ratio increased 36.2% (P<.05 for all). Six months of aerobic exercise training is sufficient to elicit improvements in vascular structure and function in African Americans, even without improvements in BP measures or NMD (ie, smooth muscle function). To our knowledge, this is the first study to report such findings in African Americans. ©2014 Wiley Periodicals, Inc.

  17. Dilatancy and shear thickening of particle suspensions

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel

    2013-03-01

    Shear thickening is a fascinating subject, as 99.9% of complex fluids are thinning; thickening systems thus are the ``exception to the rule'' that needs to be understood. Moreover, such tunable systems show very promising applications, e.g. to block large underground pores in oil recovery to maintain a constant oil flow by plugging water filled pores (an approach used in oil recovery by e.g. Shell), or to manufacture bulletproof vests that are comfortable to wear, but stop bullets nonetheless. We study the rheology of non-Brownian particle suspensions (notably, cornstarch) that exhibit shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. We also perform macroscopic rheology experiments in different geometries. The results suggest that the shear thickening is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate.

  18. Direct simulation of compressible turbulence in a shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1991-01-01

    Compressibility effects on the turbulence in homogeneous shear flow are investigated. The growth of the turbulent kinetic energy was found to decrease with increasing Mach number: a phenomenon which is similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance. Previously, the following results were obtained for isotropic turbulence: (1) the normalized compressible dissipation is of O(M(sub t)(exp 2)); and (2) there is approximate equipartition between the kinetic and potential energies associated with the fluctuating compressible mode. Both of these results were substantiated in the case of homogeneous shear. The dilatation field is significantly more skewed and intermittent than the vorticity field. Strong compressions seem to be more likely than strong expansions.

  19. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.

  20. Association between flow skewness and aortic dilatation in patients with aortic stenosis.

    PubMed

    Ha, Hojin; Koo, Hyun Jung; Lee, June Goo; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kang, Joon Won; Lim, Tae Hwan; Kim, Dae Hee; Song, Jong Min; Kang, Duk Hyun; Song, Jae Kwan; Kim, Young Hak; Kim, Namkug; Yang, Dong Hyun

    2017-12-01

    We investigated association between hemodynamic characteristics and aortic dilatation in patients with severe aortic stenosis (AS). Eighty patients with severe AS (mean age, 67.2 ± 12.5 years) who underwent multi-detector computed tomography and phase-contrast magnetic resonance imaging at the ascending aorta were retrospectively analyzed. Patients with an ascending aorta diameter >4 cm had a significantly higher forward flow rate at systole (28.5 ± 6.0 vs. 36.2 ± 8.6 L min, P < 0.001), and retrograde flow rate at systole (11.3 ± 4.2 vs. 18.8 ± 5.8 L min, P < 0.001), fractional reverse ratio (a ratio of retrograde flow rate to forward flow rate; 34.1 ± 11.9% vs. 43.5 ± 18.0%, P = 0.014), flow skewness R skewness (a ratio of sum of forward and retrograde systole flow to net systole flow rate; 2.4 ± 0.7 vs. 3.2 ± 1.0, P < 0.001). The presence of bicuspid aortic valve (BAV; odds ratio [OR] 72.01, 95% confidence interval [CI] 10.57-490.46, P < 0.001), Left ventricular mass index (LVMI; OR 1.02 /g/m 2 ; CI 1.00-1.04, P = 0.043) and R skewness (OR 5.6 per 1, 95% CI 1.8-17.1, P = 0.001) were associated with aortic dilatation. BAV, LVMI, and increased R skewness in the ascending aorta are associated with aortic dilatation in patients with AS.

  1. Effects of Storage-Aged RBC Transfusions on Endothelial Function in Hospitalized Patients

    PubMed Central

    Neuman, Robert; Hayek, Salim; Rahman, Ayaz; Poole, Joseph C.; Menon, Vivek; Sher, Salman; Newman, James L.; Karatela, Sulaiman; Polhemus, David; Lefer, David J.; De Staercke, Christine; Hooper, Craig; Quyyumi, Arshed A.; Roback, John D.

    2014-01-01

    Background Clinical and animal studies indicate that transfusions of older stored RBCs impair clinical outcomes as compared to fresh RBC transfusions. It has been suggested that this effect is due to inhibition of NO-mediated vasodilation following transfusion of older RBC units. However, to date this effect has not been identified in human transfusion recipients. Study Design and Methods Forty-three hospitalized patients with transfusion orders were randomized to receive either fresh (< 14 days) or older stored (> 21 days) RBC units. Prior to transfusion, and at selected time points after the start of transfusion, endothelial function was assessed using non-invasive flow-mediated dilation assays. Results Following transfusion of older RBC units, there was a significant reduction in NO-mediated vasodilation at 24 hours after transfusion (p=0.045), while fresh RBC transfusions had no effect (p=0.231). Conclusions The present study suggests for the first time a significant inhibitory effect of transfused RBC units stored > 21 days on NO-mediated vasodilation in anemic hospitalized patients. This finding lends further support to the hypothesis that deranged NO signaling mediates adverse clinical effects of older RBC transfusions. Future investigations will be necessary to address possible confounding factors and confirm these results. PMID:25393772

  2. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  3. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis.

    PubMed

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E; Seidman, J G; Pu, William T; Wang, Da-Zhi

    2015-11-02

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.

  4. Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis

    PubMed Central

    Huang, Zhan-Peng; Kataoka, Masaharu; Chen, Jinghai; Wu, Gengze; Ding, Jian; Nie, Mao; Lin, Zhiqiang; Liu, Jianming; Hu, Xiaoyun; Ma, Lixin; Zhou, Bin; Wakimoto, Hiroko; Zeng, Chunyu; Kyselovic, Jan; Deng, Zhong-Liang; Seidman, Christine E.; Seidman, J.G.; Pu, William T.; Wang, Da-Zhi

    2015-01-01

    Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression. PMID:26436652

  5. Addison's Disease and Dilated Cardiomyopathy: A Case Report and Review of the Literature

    PubMed Central

    Mozolevska, Viktoriya; Schwartz, Anna; Cheung, David; Shaikh, Bilal; Bhagirath, Kapil M.

    2016-01-01

    Addison's disease is often accompanied by a number of cardiovascular manifestations. We report the case of a 30-year-old man who presented with a new onset dilated cardiomyopathy due to Addison's disease. The clinical presentation, treatment, and outcomes of this rare hormone mediated cardiac disorder are reviewed. PMID:28003914

  6. Addison's Disease and Dilated Cardiomyopathy: A Case Report and Review of the Literature.

    PubMed

    Mozolevska, Viktoriya; Schwartz, Anna; Cheung, David; Shaikh, Bilal; Bhagirath, Kapil M; Jassal, Davinder S

    2016-01-01

    Addison's disease is often accompanied by a number of cardiovascular manifestations. We report the case of a 30-year-old man who presented with a new onset dilated cardiomyopathy due to Addison's disease. The clinical presentation, treatment, and outcomes of this rare hormone mediated cardiac disorder are reviewed.

  7. Flicker Adaptation of Low-Level Cortical Visual Neurons Contributes to Temporal Dilation

    ERIC Educational Resources Information Center

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Several seconds of adaptation to a flickered stimulus causes a subsequent brief static stimulus to appear longer in duration. Nonsensory factors, such as increased arousal and attention, have been thought to mediate this flicker-based temporal-dilation aftereffect. In this study, we provide evidence that adaptation of low-level cortical visual…

  8. Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions.

    PubMed

    Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2015-09-01

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.

  9. Cardiac rehabilitation improves coronary endothelial function in patients with heart failure due to dilated cardiomyopathy: A positron emission tomography study.

    PubMed

    Legallois, Damien; Belin, Annette; Nesterov, Sergey V; Milliez, Paul; Parienti, J-J; Knuuti, Juhani; Abbas, Ahmed; Tirel, Olivier; Agostini, Denis; Manrique, Alain

    2016-01-01

    Endothelial dysfunction is common in patients with heart failure and is associated with poor clinical outcome. Cardiac rehabilitation is able to enhance peripheral endothelial function but its impact on coronary vasomotion remains unknown. We aimed to evaluate the effect of cardiac rehabilitation on coronary vasomotion in patients with heart failure. We prospectively enrolled 29 clinically stable heart failure patients from non-ischaemic dilated cardiomyopathy and without coronary risk factors. Myocardial blood flow was quantified using (15)-O water positron emission tomography at rest and during a cold pressor test, before and after 12 weeks of cardiac rehabilitation and optimization of medical therapy. Rest myocardial blood flow was significantly improved after the completion of rehabilitation compared to baseline (1.31 ± 0.38 mL/min/g vs. 1.16 ± 0.41 mL/min/g, p = 0.04). The endothelium-related change in myocardial blood flow from rest to cold pressor test and the percentage of myocardial blood flow increase during the cold pressor test were both significantly improved after cardiac rehabilitation (respectively from -0.03 ± 0.22 mL/min/g to 0.19 ± 0.22 mL/min/g, p < 0.001 and from 101.5 ± 16.5% to 118.3 ± 24.4%, p < 0.001). Left ventricular ejection fraction, plasma levels of brain natriuretic peptide, maximal oxygen consumption and the Minnesota Living with Heart Failure Questionnaire score were also significantly improved. The improvement was not related to uptitration of medical therapy. Coronary endothelial function is altered in patients with heart failure due to non-ischaemic dilated cardiomyopathy. In these patients, cardiac rehabilitation significantly improves coronary vasomotion. © The European Society of Cardiology 2014.

  10. The effects of hypertension on the cerebral circulation

    PubMed Central

    Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat

    2013-01-01

    Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139

  11. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats.

    PubMed

    Matic, Anita; Jukic, Ivana; Stupin, Ana; Baric, Lidija; Mihaljevic, Zrinka; Unfirer, Sanela; Tartaro Bujak, Ivana; Mihaljevic, Branka; Lombard, Julian H; Drenjancevic, Ines

    2018-06-15

    The goal of this study was to examine the effect of 1-week of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries (MCA) of male Sprague-Dawley rats (N=15-16/per group). Reduced FID in the HS group was restored by intake of the superoxide scavenger TEMPOL (HS+TEMPOL in vivo group). Nitric oxide synthases (NOS) inhibitor N ω -nitro-L-arginine methyl ester (L-NAME), COX inhibitor indomethacin (INDO) and selective inhibitor of microsomal CYP450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH) significantly reduced FID in the LS group, while FID in the HS group was mediated by NO only. COX-2 mRNA (but not protein) expression was decreased in the HS and HS+TEMPOL in vivo groups. HIF-1α and VEGF protein levels were increased in the HS group but decreased in the HS+TEMPOL in vivo group. Assessment by direct fluorescence of MCA under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO-dependent, in contrast to the LS group where FID is NO, prostanoid and epoxyeicosatrienoic acids (EET's) dependent. Those changes were accompanied by increased lipid peroxidation products in the plasma of HS-fed rats, increased vascular superoxide/reactive oxygen species levels and decreased NO levels; together with increased expression of HIF-1α and VEGF.

  12. Psoriasis and dilated cardiomyopathy: coincidence or associated diseases?

    PubMed

    Eliakim-Raz, Noa; Shuvy, Mony; Lotan, Chaim; Planer, David

    2008-01-01

    Psoriasis is a common immune-mediated disease which affects 1-3% of the population. The etiology of psoriasis is unknown. Idiopathic dilated cardiomyopathy is probably the end result of a variety of toxic, metabolic or infectious agents. During a computerized search for cardiomyopathy among all patients hospitalized with psoriasis in the Hadassah University Hospital since 1980 we found an increased prevalence of cardiomyopathy, and specifically dilated cardiomyopathy. We present 4 patients who suffer from both conditions. In accordance with previous data, an association between preexisting psoriasis and dilated cardiomyopathy is suggested. We suggest that the genetic risk factors of dilated cardiomyopathy are shared by psoriasis, and more specifically psoriatic arthritis. Alternatively, the immune reaction that is triggered in dilated cardiomyopathy leading to the progression of the disease might be enhanced in patients with psoriasis or psoriatic arthritis. Chronic inflammation and persistent secretion of proinflammatory cytokines may be considered a potential pathway, triggering the initiation and progression of dilated cardiomyopathy in psoriatic patients. Further investigation of the genetic and immune risk factors involved in dilated cardiomyopathy and in psoriasis may lead to a better understanding of the pathogenesis and treatment of dilated cardiomyopathy. Copyright 2008 S. Karger AG, Basel.

  13. Association of Anxiety with Resistance Vessel Dysfunction in Human Atherosclerosis

    PubMed Central

    Stillman, Ashley N.; Moser, David J.; Fiedorowicz, Jess; Robinson, Heather M.; Haynes, William G.

    2014-01-01

    Objective Anxiety predicts cardiovascular events, though the mechanism remains unclear. We hypothesized that anxious symptoms will correlate with impaired resistance and conduit vessel function in participants aged 55–90 years. Method Anxious symptoms were measured with the Symptom Checklist-90-Revised in 89 participants with clinically diagnosed atherosclerotic cardiovascular disease and 54 healthy control participants. Vascular function was measured in conduit arteries using brachial flow-mediated dilatation (FMD) and in forearm resistance vessels (FRV) using intra-arterial drug administration and plethysmography. Results Anxious symptoms were not associated with FMD in either group. Participants with atherosclerosis exhibited significant inverse associations of anxious symptoms with FRV dilatation (β for acetylcholine =−0.302, p=0.004). Adjustment for medication, risk factors and depressive symptoms did not alter the association between anxiety and FRV dysfunction, except for BMI (anxiety β=−0.175, p=0.060; BMI β=−0.494, p<0.001). While BMI was more strongly associated with FRV function than anxiety, combined BMI and anxiety accounted for more variance in FRV function than either separately. Control participants showed no association of anxiety with FRV function. Conclusion Anxiety is uniquely and substantially related to poorer resistance vessel function (both endothelial and vascular smooth muscle function) in individuals with atherosclerosis. These relationships were independent of medication, depression and cardiovascular risk factors, with the exception of BMI. These findings support the concept that anxiety potentially increases vascular events through worsening of vascular function in atherosclerotic disease. PMID:23788697

  14. A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.

    2013-10-01

    The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.

  15. On the permeation of large organic cations through the pore of ATP-gated P2X receptors

    PubMed Central

    Harkat, Mahboubi; Peverini, Laurie; Dunning, Kate; Beudez, Juline; Martz, Adeline; Calimet, Nicolas; Specht, Alexandre; Cecchini, Marco; Chataigneau, Thierry; Grutter, Thomas

    2017-01-01

    Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ “percolates” 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance. PMID:28442564

  16. Reactivity to low-flow as a potential determinant for brachial artery flow-mediated vasodilatation.

    PubMed

    Aizawa, Kunihiko; Elyas, Salim; Adingupu, Damilola D; Casanova, Francesco; Gooding, Kim M; Strain, W David; Shore, Angela C; Gates, Phillip E

    2016-06-01

    Previous studies have reported a vasoconstrictor response in the radial artery during a cuff-induced low-flow condition, but a similar low-flow condition in the brachial artery results in nonuniform reactivity. This variable reactivity to low-flow influences the subsequent flow-mediated dilatation (FMD) response following cuff-release. However, it is uncertain whether reactivity to low-flow is important in data interpretation in clinical populations and older adults. This study aimed to determine the influence of reactivity to low-flow on the magnitude of brachial artery FMD response in middle-aged and older individuals with diverse cardiovascular risk profiles. Data were analyzed from 165 individuals, divided into increased cardiovascular risk (CVR: n = 115, 85M, 67.0 ± 8.8 years) and healthy control (CTRL: n = 50, 30M, 63.2 ± 7.2 years) groups. Brachial artery diameter and blood velocity data obtained from Doppler ultrasound were used to calculate FMD, reactivity to low-flow and estimated shear rate (SR) using semiautomated edge-detection software. There was a significant association between reactivity to low-flow and FMD in overall (r = 0.261), CTRL (r = 0.410) and CVR (r = 0.189, all P < 0.05) groups. Multivariate regression analysis found that reactivity to low-flow, peak SR, and baseline diameter independently contributed to FMD along with sex, the presence of diabetes, and smoking (total R(2) = 0.450). There was a significant association between reactivity to low-flow and the subsequent FMD response in the overall dataset, and reactivity to low-flow independently contributed to FMD These findings suggest that reactivity to low-flow plays a key role in the subsequent brachial artery FMD response and is important in the interpretation of FMD data. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    PubMed

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  18. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be attributed to different core preparation techniques. Careful re-stressing of core barrels and sealing techniques also ensure that experiments are conducted on near in situ condition. The construction of tunnels within shale clearly aids our understanding of the interaction of engineered operations (borehole drilling or tunnelling) on the behaviour of the rock. References: Angeli, M., Soldal, M., Skurtveit, E. and Aker, E., (2009) Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351-3358 Cuss, R.J., Harrington, J.F., Giot, R., and Auvray, C. (2012) Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian Claystone. Poster Presentation 5th International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Montpellier, France October 22nd - 25th 2012.

  19. [Correlation analysis between biochemical and biophysical markers of endothelium damage in children with diabetes type 1].

    PubMed

    Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena

    2005-01-01

    Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In children and adolescents with diabetes type 1 we found elevated levels of adhesion molecules sICAM-1 and sE-selectin, what can confirm an endothelial dysfunction in these patients. 2. Significant negative correlation between sE-selectin level and FMD, and positive correlation between sE-selectin and IMT were found. 3. Biophysical proof of this damage is impaired brachial artery dilatation--FMD, and increased IMT values provide information about structural changes in the vessels.

  20. Effect of combined metformin and oral contraceptive therapy on metabolic factors and endothelial function in overweight and obese women with polycystic ovary syndrome.

    PubMed

    Essah, Paulina A; Arrowood, James A; Cheang, Kai I; Adawadkar, Swati S; Stovall, Dale W; Nestler, John E

    2011-08-01

    In this randomized, double-blind, placebo-controlled study, 19 overweight women with polycystic ovary syndrome were randomized to a 3-month course of either metformin plus combined hormonal oral contraceptive (OC) (n = 9) or OC plus matched placebo (n = 10). After 3 months, both treatments had similar effects on androgen levels, lipid profile, insulin sensitivity, and serum inflammatory markers, but flow-mediated dilatation increased by 69.0% in the metformin plus OC group while it remained unchanged in the OC group. CLINICAL TRIAL REGISTRATION NO: NCT00682890. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Soy, soy phytoestrogens and cardiovascular disease.

    PubMed

    Clarkson, Thomas B

    2002-03-01

    Dietary soy protein has been shown to have several beneficial effects on cardiovascular health. The best-documented effect is on plasma lipid and lipoprotein concentrations, with reductions of approximately 10% in LDL cholesterol concentrations (somewhat greater for individuals with high pretreatment LDL cholesterol concentrations) and small increases in HDL cholesterol concentrations. Dietary soy protein improves flow-mediated arterial dilation of postmenopausal women but worsens that of men. Soy isoflavone extracts improve systemic arterial compliance, an indicator of atherosclerosis extent. Complete soy protein but not alcohol-washed soy protein reduces atherosclerosis of postmenopausal monkeys. No definite experimental evidence exists currently to establish that the cardiovascular benefits of soy protein are accounted for by its isoflavones.

  2. Neurogenic vasodilatation and plasma leakage in the skin.

    PubMed

    Holzer, P

    1998-01-01

    1. Primary afferent nerve fibers control cutaneous blood flow and vascular permeability by releasing vasoactive peptides. These vascular reactions and the additional recruitment of leukocytes are commonly embodied in the term neurogenic inflammation. 2. Calcitonin gene-related peptide (CGRP) acting via CGRP1 receptors is the principal transmitter of neurogenic dilatation of arterioles whereas substance P (SP) and neurokinin A (NKA) acting via NK1 receptors mediate the increase in venular permeability. 3. Neurogenic vasodilatation and plasma protein leakage play a role in inflammation because many inflammatory and immune mediators including interleukin-1 beta, nitric oxide, prostanoids, protons, bradykinin, histamine, and 5-hydroxytryptamine can stimulate peptidergic afferent nerve fibers or enhance their excitability. 4. Neurogenic inflammatory reactions can be suppressed by alpha 2-adrenoceptor agonists, histamine acting via H1 receptors, 5-hydroxytryptamine acting via 5-HT1B receptors, opioid peptides, and somatostatin through prejunctional inhibition of peptide release from vasoactive afferent nerve fibers. CGRP, SP, and NKA receptor antagonists are powerful pharmacological tools to inhibit neurogenic inflammation at the postjunctional level. 5. Imbalance between the facilitatory and inhibitory influences on afferent nerve activity has a bearing on chronic inflammatory disease. Impaired nerve function represents a deficit in skin homeostasis while neuronal overactivity is a factor in allergic and hyperreactive disorders of the skin.

  3. Statistical modeling of compressible turbulence - Shock-wave/turbulence interactions and buoyancy effects

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira

    1991-12-01

    A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.

  4. Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries

    PubMed Central

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne

    2016-01-01

    CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617

  5. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.

    PubMed

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne

    2017-01-01

    CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.

  6. Positional differences in reactive hyperemia provide insight into initial phase of exercise hyperemia.

    PubMed

    Jasperse, Jeffrey L; Shoemaker, J Kevin; Gray, Eric J; Clifford, Philip S

    2015-09-01

    Studies have reported a greater blood flow response to muscle contractions when the limb is below the heart compared with above the heart, and these results have been interpreted as evidence for a skeletal muscle pump contribution to exercise hyperemia. If limb position affects the blood flow response to other vascular challenges such as reactive hyperemia, this interpretation may not be correct. We hypothesized that the magnitude of reactive hyperemia would be greater with the limb below the heart. Brachial artery blood flow (Doppler ultrasound) and blood pressure (finger-cuff plethysmography) were measured in 10 healthy volunteers. Subjects lay supine with one arm supported in two different positions: above or below the heart. Reactive hyperemia was produced by occlusion of arterial inflow for varying durations: 0.5 min, 1 min, 2 min, or 5 min in randomized order. Peak increases in blood flow were 77 ± 11, 178 ± 24, 291 ± 25, and 398 ± 33 ml/min above the heart and 96 ± 19, 279 ± 62, 550 ± 60, and 711 ± 69 ml/min below the heart (P < 0.05). Thus a standard stimulus (vascular occlusion) elicited different responses depending on limb position. To determine whether these differences were due to mechanisms intrinsic to the arterial wall, a second set of experiments was performed in which acute intraluminal pressure reduction for 0.5 min, 1 min, 2 min, or 5 min was performed in isolated rat soleus feed arteries (n = 12). The magnitude of dilation upon pressure restoration was greater when acute pressure reduction occurred from 85 mmHg (mimicking pressure in the arm below the heart; 28.3 ± 7.9, 37.5 ± 5.9, 55.1 ± 9.9, and 68.9 ± 8.6% dilation) than from 48 mmHg (mimicking pressure in the arm above the heart; 20.8 ± 4.8, 22.6 ± 4.4, 31.2 ± 5.8, and 49.2 ± 7.1% dilation). These data support the hypothesis that arm position differences in reactive hyperemia are at least partially mediated by mechanisms intrinsic to the arterial wall. Overall, these results suggest the need to reevaluate studies employing positional changes to examine muscle pump influences on exercise hyperemia. Copyright © 2015 the American Physiological Society.

  7. Consumption of energy beverage is associated with attenuation of arterial endothelial flow-mediated dilatation.

    PubMed

    Higgins, John P; Yang, Benjamin; Herrin, Nikki E; Yarlagadda, Santi; Le, George T; Ortiz, Brandon L; Ali, Asif; Infanger, Stephen C

    2017-02-26

    To investigate whether consumption of an energy drink will acutely impair endothelial function in young healthy adults. Energy drinks are being consumed more and more worldwide, and have been associated with some deaths in adolescents and young adults, especially when consumed while exercising. After fasting and not smoking for at least 8 h prior, eleven medical students (9 males) received an electrocardiogram, blood pressure and pulse check, and underwent baseline testing (BL) of endothelial function using the technique of endothelium-dependent flow mediated dilatation (FMD) with high-resolution ultrasound (according to recommended guidelines of the University of Wisconsin Atherosclerosis Imaging Research Program Core Laboratory). The subjects then drank an energy beverage (EB), a 24-oz can of Monster Energy, and the above was repeated at 90 min after consumption. The relative FMD (%) was calculated as the ratio between the average post-cuff release and the baseline diameter. Each image was checked for quality control, and each artery diameter was measured from the media to media points by two experts, 3 measurements at the QRS complex, repeated on 3 separate beats, and then all were averaged. Subjects characteristics averages (given with standard deviations) include: Age 24.5 ± 1.5 years, sex 9 male and 2 female, weight 71.0 ± 9.1 kg, height 176.4 ± 6.0 cm, BMI 22.8 ± 2.7 kg/m 2 . The hemodynamics were as follows, BL vs EB group respectively (mean ± SD): Heart rate 65.2 ± 11.3 vs 68.2 ± 11.8 beats per minute, systolic blood pressure 114.0 ± 10.4 mmHg vs 114.1 ± 10.4 mmHg, diastolic blood pressure 68.8 ± 9.3 mmHg vs 70.6 ± 7.1 mmHg; all were not significantly different. However after drinking the EB, a significantly attenuated peak FMD response was measured (mean ± SD): BL group 5.9% ± 4.6% vs EB group 1.9% ± 2.1%; P = 0.03). Given the increased consumption of energy beverages associated with exercise in young adults, more research is needed. Energy beverage consumption has a negative impact on arterial endothelial function in young healthy adults.

  8. Determining a membrane's shear modulus, independent of its area-dilatation modulus, via capsule flow in a converging micro-capillary.

    PubMed

    Dimitrakopoulos, P; Kuriakose, S

    2015-04-14

    Determination of the elastic properties of the membrane of artificial capsules is essential for the better design of the various devices that are utilized in their engineering and biomedical applications. However this task is complicated owing to the combined effects of the shear and area-dilatation moduli on the capsule deformation. Based on computational investigation, we propose a new methodology to determine a membrane's shear modulus, independent of its area-dilatation modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size under Stokes flow conditions, and comparing the experimental measurements of the capsule elongation overshooting with computational data. The capsule prestress, if any, can also be determined with the same methodology. The elongation overshooting is practically independent of the viscosity ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed. Our proposed experimental device can be readily produced via glass fabrication while owing to the continuous flow in the micro-capillary, the characterization of a large number of artificial capsules is possible.

  9. Vascular function and cholecalciferol supplementation in CKD: A self-controlled case series.

    PubMed

    Kumar, Vivek; Yadav, Ashok Kumar; Singhal, Manphool; Kumar, Vinod; Lal, Anupam; Banerjee, Debasish; Gupta, Krishan Lal; Jha, Vivekanand

    2018-06-01

    Vitamin D deficiency is common and associated with mortality in chronic kidney disease (CKD) patients. Cardiovascular disease (CVD) is the commonest cause of mortality in CKD patients. In a randomized, double blind, placebo controlled trial, we have recently reported favorable effects of vitamin D supplementation on vascular & endothelial function and inflammatory biomarkers in vitamin D deficient patients with non-diabetic stage 3-4 CKD (J Am Soc Nephrol 28: 3100-3108, 2017). Subjects in the placebo group who had still not received vitamin D after completion of the trial received two oral doses 300,000 IU of oral cholecalciferol at 8 weeks interval followed by flow mediated dilatation (FMD), pulse wave velocity (PWV), circulating endothelial and inflammatory markers (E-Selectin, vWF, hsCRP and IL-6), 125 (OH) 2 D, iPTH and iFGF-23 assessment at 16 weeks. 31 subjects completed this phase of the study. Last values recorded in the preceding clinical trial were taken as baseline values. Serum 25(OH)D and 1,25(OH) 2 D increased and FMD significantly improved after cholecalciferol supplementation [mean change in FMD%: 5.8% (95% CI: 4.0-7.5%, p < 0.001]. Endothelium independent nitroglycerine mediated dilatation, PWV, iPTH, iFGF-23 and IL-6 also showed favorable changes. The data further cement the findings of beneficial effects of correction of vitamin D deficiency on vascular function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Adult males with haemophilia have a different macrovascular and microvascular endothelial function profile compared with healthy controls.

    PubMed

    Sun, H; Yang, M; Fung, M; Chan, S; Jawi, M; Anderson, T; Poon, M-C; Jackson, S

    2017-09-01

    Endothelial function has been identified as an independent predictor of cardiovascular risk in the general population. It is unclear if the haemophilia population has a different endothelial function profile compared to the healthy population. This prospective study aims to assess if there is a difference in endothelial function between haemophilia patients and healthy controls, and the impact of endothelial function on vascular outcomes in the haemophilia population. Baseline cardiovascular risk factors and endothelial function were presented. Adult males with haemophilia A or B recruited from the British Columbia and Southern Alberta haemophilia treatment centres were matched to healthy male controls by age and cardiovascular risk factors. Macrovascular endothelial function was assessed by brachial artery flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD), and microvascular endothelial function was assessed by hyperaemic velocity time integral (VTI). Multivariable linear regression was used to assess the association between haemophilia and endothelial function. A total of 81 patients with haemophilia and 243 controls were included. Patients with haemophilia had a similar FMD and NMD compared to controls, although haemophilia was associated with higher FMD on multivariable analysis. Haemophilia was associated with significantly lower VTI on univariate and multivariable analyses, regardless of haemophilia type and severity. Adult males with haemophilia appear to have lower microvascular endothelial function compared to healthy controls. Future studies to assess the impact of endothelial dysfunction on cardiovascular events in the haemophilia population are needed. © 2017 John Wiley & Sons Ltd.

  11. Feed artery role in blood flow control to rat hindlimb skeletal muscles.

    PubMed Central

    Williams, D A; Segal, S S

    1993-01-01

    1. Vasomotor tone and reactivity were investigated in feed arteries of the extensor digitorum longus and soleus muscles. Feed arteries are located external to the muscle and give rise to the microcirculation within each muscle. Resting diameter was smaller in feed arteries of the soleus muscle. 2. Feed arteries of both muscles dilated to similar peak values with sodium nitroprusside. 3. Micropressure measurements demonstrated resistance to blood flow in the feed arteries supplying both muscles. Feed arteries supplying soleus muscle demonstrated greater resistance to blood flow compared to feed arteries of extensor digitorum longus muscle. 4. Greater resting tone and larger pressure drop for feed arteries of soleus muscle suggest greater range of flow control compared to feed arteries of extensor digitorum longus muscle. 5. In both muscles, feed artery diameter increased with muscle contraction (functional dilatation) and in response to transient ischaemia (reactive dilatation). The magnitude of these responses varied between muscles. 6. Feed arteries are active sites of blood flow control in extensor digitorum longus and soleus muscles of the rat. These muscles differ in fibre type and recruitment properties. Differences in feed artery reactivity may contribute to differences in blood flow between these muscles observed at rest and during exercise. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8246199

  12. Low dietary sodium intake is associated with enhanced vascular endothelial function in middle-aged and older adults with elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Gates, Phillip E.; Pierce, Gary L.; Seals, Douglas R.

    2012-01-01

    Background Age and increasing systolic blood pressure (BP) are associated with vascular endothelial dysfunction, but the factors involved are incompletely understood. We tested the hypothesis that vascular endothelial function is related to dietary sodium intake among middle-aged and older adults (MA and O) with elevated systolic BP. Methods Data were analyzed on 25 otherwise healthy adults aged 48–73 years with high normal systolic BP or stage I systolic hypertension (130–159 mmHg). Self-reported sodium intake was <100 mmol/d in 12 (7 M) subjects (low sodium, 73 ± 6 mmol/d) and between 100 and 200 mmol/d in 13 (9 M) subjects (normal sodium, 144 ± 6 mmol/d). Results Groups did not differ in other dietary factors, age, body weight and composition, BP, metabolic risk factors, physical activity and maximal aerobic capacity. Plasma concentrations of norepinephrine, endothelin-1, oxidized low-density lipoproteins (LDL), antioxidant status and inflammatory markers did not differ between groups. Brachial artery flow-mediated dilation (FMD) was 42% (mm Δ) to 52% (% Δ) higher in the low versus normal sodium group (p <0.05). In all subjects, brachial artery FMD was inversely related to dietary sodium intake (FMD mm Δr =−0.40, p <0.05; %Δr =−0.53, p <0.01). Brachial artery FMD was not related to any other variable. In contrast, endothelium-independent dilation did not differ between groups (p ≥ 0.24) and was not related to sodium intake in the overall group (p ≥ 0.29). Conclusions Low sodium intake is associated with enhanced brachial artery FMD in MA and O with elevated systolic BP. These results suggest that dietary sodium restriction may be an effective intervention for improving vascular endothelial function in this high-risk group. PMID:19723834

  13. Arterial Structure and Function in Women and Men Following Long Duration Bed Rest

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Stenger, Michael B.; Martin, David S.; Platts, Steven H.

    2008-01-01

    Orthostatic intolerance is a well-recognized consequence of space flight and bed rest (BR), with a greater incidence reported in women. We hypothesized that leg, but not arm, arterial structure and function would be altered following prolonged BR, as a model of space flight, and that women would be more susceptible to BR-induced deconditioning than men. METHODS: Ten volunteers (5 males, 5 females) completed 90 d of 6 head-down BR. Subjects participated in tests of brachial (BA) and anterior tibial (AT) artery endothelium-dependent (flow mediated dilation [FMD] following 5-7 min of arterial occlusion) and endothelium-independent (0.4 mg sublingual nitroglycerin [SN]) vasodilation before BR (PRE) and on days 7 (BR7), 21 (BR21), and 90 (BR90) of BR. Vessel diameter and intimal medial thickness (IMT) were measured by ultrasound. IMT, baseline diameter, and percent change in diameter from baseline during FMD and SN tests were compared across BR and between genders using repeated measures two-way ANOVA with Bonferroni post-hoc tests in which PRE and women were control conditions. RESULTS: Baseline vessel diameter was lower in women than in men in both the BA (p=0.005) and AT (p=0.01) across all days. Baseline AT diameter decreased during BR (p=0.01) and tended to be more profound in women (interaction, p=0.06). AT diameter was reduced in women at BR21 and BR90 (p<0.01) but not in men. In contrast, there was no BR effect on baseline BA diameter. IMT also decreased in the AT (p<0.001) but not in the BA during BR; AT IMT was reduced by BR21 (p<0.05). As a group, there was no effect of BR on AT FMD, BA FMD, and AT SN-dilation, although BA SN-dilation was significantly reduced on BR21 (p=0.01). Across all BR days, women exhibited higher AT FMD (p=0.03), BA FMD (p=0.02), and BA SN-dilation (p=0.01) and tended to demonstrate greater AT SN-dilation (p=0.11). CONCLUSIONS: These preliminary results suggest that arterial remodeling occurs during BR in the leg (decreased diameter and IMT), but not in the arm, and that women appear to be more responsive to BR than men. These changes in the leg, coupled with larger responses to direct and indirect stimulation of the arterial smooth muscle, may be related to the greater incidence of orthostatic intolerance in women after BR and space flight.

  14. The effect of α1‐adrenergic blockade on post‐exercise brachial artery flow‐mediated dilatation at sea level and high altitude

    PubMed Central

    Tremblay, Joshua C.; Hansen, Alex B.; Howe, Connor A.; Willie, Chris K.; Stembridge, Mike; Green, Daniel J.; Hoiland, Ryan L.; Subedi, Prajan; Anholm, James D.; Ainslie, Philip N.

    2016-01-01

    Key points Our objective was to quantify endothelial function (via brachial artery flow‐mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate‐intensity cycling exercise with and without administration of an α1‐adrenergic blockade.Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise.At sea level, endothelial function decreased following 30 min of moderate‐intensity exercise, and this decrease was abolished with α1‐adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate‐intensity exercise, and administration of α1‐adrenergic blockade resulted in an increase in flow‐mediated dilatation.Our data indicate that post‐exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high‐altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. Abstract We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate‐intensity exercise at both sea level and high altitude are mediated via an α1‐adrenergic pathway. In a double‐blinded, counterbalanced, randomized and placebo‐controlled design, nine healthy participants performed a maximal‐exercise test, and two 30 min sessions of semi‐recumbent cycling exercise at 50% peak output following either placebo or α1‐adrenergic blockade (prazosin; 0.05 mg kg −1). These experiments were completed at both sea‐level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography), heart rate (electrocardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (ultrasound) were recorded before, during and following exercise. Endothelial function assessed by brachial artery flow‐mediated dilatation (FMD) was measured before, immediately following and 60 min after exercise. Our findings were: (1) at rest, FMD remained unchanged between sea level and high altitude (placebo P = 0.287; prazosin: P = 0.110); (2) FMD remained unchanged after maximal exercise at sea level and high altitude (P = 0.244); and (3) the 2.9 ± 0.8% (P = 0.043) reduction in FMD immediately after moderate‐intensity exercise at sea level was abolished via α1‐adrenergic blockade. Conversely, at high altitude, FMD was unaltered following moderate‐intensity exercise, and administration of α1‐adrenergic blockade elevated FMD (P = 0.032). Our results suggest endothelial function is differentially affected by exercise when exposed to hypobaric hypoxia. These findings have implications for understanding the chronic impacts of hypoxaemia on exercise, and the interactions between the α1‐adrenergic pathway and endothelial function. PMID:28032333

  15. Cyanotic congenital heart disease the coronary arterial circulation.

    PubMed

    Perloff, Joseph K

    2012-02-01

    The coronary circulation in cyanotic congenital heart disease (CCHD) includes the extramural coronary arteries, basal coronary blood flow, flow reserve, the coronary microcirculation, and coronary atherogenesis. Coronary arteriograms were analyzed in 59 adults with CCHD. Dilated extramural coronaries were examined histologically in six patients. Basal coronary blood flow was determined with N-13 positron emission tomography in 14 patients and in 10 controls. Hyperemic flow was induced by intravenous dipyridamole pharmacologic stress. Immunostaining against SM alpha-actin permitted microcirculatory morphometric analysis. Non-fasting total cholesterols were retrieved in 279 patients divided into four groups: Group A---143 cyanotic unoperated, Group B---47 rendered acyanotic by reparative surgery, Group C---41 acyanotic unoperated, Group D---48 acyanotic before and after operation. Extramural coronary arteries were mildly or moderately dilated to ectatic in 49/59 angiograms. Histologic examination disclosed loss of medial smooth muscle, increased medial collagen, and duplication of internal elastic lamina. Basal coronary flow was appreciably increased. Hyperemic flow was comparable to controls. Remodeling of the microcirculation was based upon coronary arteriolar length, volume and surface densities. Coronary atherosclerosis was absent in both the arteriograms and the necropsy specimens. Extramural coronary arteries in CCHD dilate in response to endothelial vasodilator substances supplemented by mural attenuation caused by medial abnormalities. Basal coronary flow was appreciably increased, but hyperemic flow was normal. Remodeling of the microcirculation was responsible for preservation of flow reserve. The coronaries were atheroma-free because of the salutory effects of hypocholesterolemia, hypoxemia, upregulated nitric oxide, low platelet counts, and hyperbilirubinrmia.

  16. Exercise-induced heat stress disrupts the shear-dilatory relationship.

    PubMed

    Ives, Stephen J; Lefferts, Wesley K; Wharton, Margret; Fehling, Patricia C; Smith, Denise L

    2016-12-01

    What is the central question of this study? Although heat stress is known to increase cardiovascular strain, no study, to date, had explored the potential impact of exercise-induced heat stress on vascular function. What is the main finding and its importance? We found that acute exercise tended to reduce flow-mediated dilatation (FMD), owing in part to reduced reactive hyperaemia/shear stimulus; thus, when FMD is normalized to shear no postexercise deficit exists. Exercise-induced heat stress increased reactive hyperaemia, shear rate, coupled with a sustained FMD postexercise, suggests that exercise-induced heat stress increases the amount of shear stimulus to elicit a similar response, indicating reduced vascular responsiveness, or reserve, which might increase cardiovascular susceptibility. Heat stress increases cardiovascular strain and is of particular concern in occupations, such as firefighting, in which individuals are required to perform strenuous work while wearing personal protective equipment. Sudden cardiac events are associated with strenuous activity and are the leading cause of duty-related death among firefighters, accounting for ∼50% of duty-related fatalities per year. Understanding the acute effects of exercise-induced heat stress (EIHS) on vascular endothelial function may provide insight into the mechanisms precipitating acute coronary events in firefighters. The purpose of this study, therefore, was to determine the effects of EIHS on vascular endothelial function. Using a balanced crossover design, 12 healthy men performed 100 min of moderate-intensity, intermittent exercise with and without EIHS (personal protective equipment or cooling vest, respectively). Measurements of flow-mediated dilatation (FMD), reactive hyperaemia and shear rate area under the curve (SR AUC ) were performed pre- and postexercise. During EIHS, core temperature was significantly higher (38 ± 0.1 versus 37 ± 0.1°C). Postexercise FMD tended to be suppressed in both conditions, but was not different from pre-exercise. Reactive hyperaemia was reduced after no-EIHS but increased after EIHS. Thus, normalizing FMD to the shear stimulus (FMD/SR AUC ) revealed a significant reduction in FMD after EIHS only (pre-exercise 0.15 ± 0.04 and 0.13 ± 0.02 s -1 versus postexercise, 0.13 ± 0.02 and 0.06 ± 0.02 s -1 , no-EIHS and EIHS, respectively). We conclude that moderate heat stress superimposed on moderate-intensity exercise resulted in reduced vascular endothelial function. This heat stress-induced alteration in the shear-dilatory relationship may relate to the increased risk of acute coronary events associated with activities that combine physical exertion and heat stress (i.e. firefighting). © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  17. Markers of atherosclerosis in patients with Cushing's syndrome: a meta-analysis of literature studies.

    PubMed

    Lupoli, Roberta; Ambrosino, Pasquale; Tortora, Anna; Barba, Livia; Lupoli, Gelsy Arianna; Di Minno, Matteo Nicola Dario

    2017-05-01

    Several studies reported an increased cardiovascular (CV) risk in Cushing's syndrome (CS). We performed a meta-analysis on the impact of CS on major markers of atherosclerosis. Studies on intima-media thickness (IMT), carotid plaques prevalence, and flow-mediated dilation (FMD) in CS patients and controls were searched in the PubMed, Web of Science, Scopus, and EMBASE. Differences between cases and controls were expressed as mean difference (MD) with 95% confidence intervals (95%CI) for continuous variables, and as Odds Ratio (OR) with 95%CI for dichotomous variables. Fourteen studies (332 CS, 462 controls) were included. Compared with controls, CS patients showed higher IMT (MD: 0.20 mm; 95% CI: 0.12, 0.28; p < .001), increased prevalence of carotid plaques (OR: 8.85, 95%CI: 4.09, 19.14; p < .001), and lower FMD (MD: -2.65%; 95% CI: -3.65, -1.65; p < .001). Difference in IMT and in the prevalence of carotid plaques was confirmed also in patients with CS remission (MD: 0.24 mm; 95% CI: 0.07, 0.40; p = .005 and OR: 9.88, 95%CI: 2.69, 36.3; p < 0.001, respectively). Regression models showed that age, diabetes, obesity, ACTH-dependent CS, serum and urinary cortisol levels impacted on the observed difference in IMT. CS is significantly associated with markers of subclinical atherosclerosis and CV risk. These findings could help establish more specific CV prevention strategies in this clinical setting. Key messages A series of studies reported an increased cardiovascular risk in patients with Cushing's syndrome (CS). In the present meta-analysis we demonstrated that CS is associated with an increased intima-media thickness, higher prevalence of carotid plaques, and lower flow-mediated dilation as compared with controls. These data consistently suggest the need for a strict monitoring of early signs of subclinical atherosclerosis in CS patients.

  18. Substitution of Standard Soybean Oil with Olive Oil-Based Lipid Emulsion in Parenteral Nutrition: Comparison of Vascular, Metabolic, and Inflammatory Effects

    PubMed Central

    Siqueira, Joselita; Smiley, Dawn; Newton, Christopher; Le, Ngoc-Anh; Gosmanov, Aidar R.; Spiegelman, Ronnie; Peng, Limin; Osteen, Samantha J.; Jones, Dean P.; Quyyumi, Arshed A.; Ziegler, Thomas R.

    2011-01-01

    Context: Soybean oil-based lipid emulsions are the only Food and Drug Administration-approved lipid formulation for clinical use in parenteral nutrition (PN). Recently concerns with its use have been raised due to the proinflammatory effects that may lead to increased complications because they are rich in ω-6 polyunsaturated fatty acids. Methods: This was a prospective, randomized, controlled, crossover study comparing the vascular, metabolic, immune, and inflammatory effects of 24-h infusion of PN containing soybean oil-based lipid emulsion (Intralipid), olive oil-based (ClinOleic), lipid free, and normal saline in 12 healthy subjects. Results: Soybean oil-PN increased systolic blood pressure compared with olive oil-PN (P < 0.05). Soybean oil PN reduced brachial artery flow-mediated dilatation from baseline (−23% at 4 h and −25% at 24 h, both P < 0.01); in contrast, olive oil PN, lipid free PN, and saline did not change either systolic blood pressure or flow-mediated dilatation. Compared with saline, soybean oil PN, olive oil PN, and lipid free PN similarly increased glucose and insulin concentrations during infusion (P < 0.05). There were no significant changes in plasma free fatty acids, lipid profile, inflammatory and oxidative stress markers, immune function parameters, or sympathetic activity between soybean oil- and olive oil-based lipid emulsions. Conclusion: The 24-h infusion of PN containing soybean oil-based lipid emulsion increased blood pressure and impaired endothelial function compared with PN containing olive oil-based lipid emulsion and lipid-free PN in healthy subjects. These vascular changes may have significant implications in worsening outcome in subjects receiving nutrition support. Randomized controlled trials with relevant clinical outcome measures are needed in patients receiving PN with olive oil-based and soybean oil-based lipid emulsions. PMID:21832112

  19. Sodium nitroglycerin induces middle cerebral artery vasodilation in young, healthy adults.

    PubMed

    Schulz, Jenna M; Al-Khazraji, Baraa K; Shoemaker, J Kevin

    2018-05-15

    Recent evidence indicates that basal cerebral conduit vessels dilate with hypercapnia, with a nitric oxide (NO) mechanism explaining one way in which parenchymal cerebral arterioles dilate. However, whether NO affects basal cerebral artery dilation remains unknown. This study quantified the effect of an exogenous NO donor [sodium nitroglycerin (NTG); 0.4 mg sublingual spray] on the right middle cerebral artery (rMCA) cross-sectional area (CSA), blood velocity and overall blood flow. Measures of vessel CSA (7 Tesla magnetic resonance imaging) and MCA blood velocity (transcranial Doppler ultrasound) were made at baseline (BL), and following exogenous NTG or placebo (PLO) administration in young, healthy individuals (n = 10, 2 males, age range 20-23 years). CSA increased in the rMCA [BL: 5.2 ± 1.2 mm 2 ; PLO: 5.4 ± 1.5 mm 2 ; NTG: 6.6 ± 1.5 mm 2 , P < 0.05; mean ± SD]. Concurrently, rMCA blood velocity decreased from BL during NTG, compared to PLO (BL: 67 ± 10 cm s -1 ; PLO: 62 ± 10 cm s -1 ; NTG: 59 ± 9.3 cm s -1 , P < 0.05; mean ± SD]. However, total MCA blood flow did not change with NTG or PLO [BL: 221 ± 37.4 mL min -1 ; PLO: 218 ± 35.0 mL min -1 ; NTG: 213 ± 46.4 mL min -1 ). Therefore, exogenous NO mediates a dilatory response in the rMCA, but not in its downstream vascular bed. This article is protected by copyright. All rights reserved. © 2018 The Authors Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  20. Thrombospondin-1 expression may be implicated in liver atrophic mechanism due to obstructed portal venous flow.

    PubMed

    Hayashi, Hiromitsu; Kuroki, Hideyuki; Higashi, Takaaki; Takeyama, Hideaki; Yokoyama, Naomi; Okabe, Hirohisa; Nitta, Hidetoshi; Beppu, Toru; Takamori, Hiroshi; Baba, Hideo

    2017-07-01

    Liver is an amazing organ that can undergo regenerative and atrophic changes inversely, depending on blood flow conditions. Although the regenerative mechanism has been extensively studied, the atrophic mechanism remains to be elucidated. To assess the molecular mechanism of liver atrophy due to reduced portal blood flow, we analyzed the gene expressions between atrophic and hypertrophic livers induced by portal vein embolization in three human liver tissues using microarray analyses. Thrombospondin (TSP)-1 is an extracellular protein and a negative regulator of liver regeneration through its activation of the transforming growth factor-β/Smad signaling pathway. TSP-1 was extracted as the most upregulated gene in atrophic liver compared to hypertrophic liver due to portal flow obstruction in human. Liver atrophic and hypertrophic changes were confirmed by HE and proliferating cell nuclear antigen staining and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling. In an in vivo model with portal ligation, TSP-1 and phosphorylated Smad2 expression were continuously induced at 6 h and thereafter in the portal ligated liver, whereas the induction was transient at 6 h in the portal non-ligated liver. Indeed, while cell proliferation represented by proliferating cell nuclear antigen expression at 48 h was induced in the portal ligated liver, the sinusoidal dilatation and hepatocyte cell death with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling was detectable at 48 h in the portal ligated liver. Obstructed portal flow induces persistent TSP-1 expression and transforming growth factor-β/Smad signal activation in atrophic liver. Thrombospondin-1 may be implicated in the liver atrophic change due to obstructed portal flow as a pro-atrophic factor. © 2016 The Japan Society of Hepatology.

  1. Comprehensive assessment of impaired peripheral and coronary artery endothelial functions in smokers using brachial artery ultrasound and oxygen-15-labeled water PET.

    PubMed

    Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara

    2016-10-01

    Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.

  2. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS.

    PubMed

    Dai, Min; Yang, Yue; Shi, Xiaorui

    2011-10-01

    Transduction of sound in the inner ear demands tight control over delivery of oxygen and glucose. However, the mechanisms underlying the control of regional blood flow are not yet fully understood. In this study, we report a novel local control mechanism that regulates cochlear blood flow to the stria vascularis, a high energy-consuming region of the inner ear. We found that extracellular lactate had a vasodilatory effect on the capillaries of the spiral ligament under both in vitro and in vivo conditions. The lactate, acting through monocarboxylate transporter 1 (MCT1), initiated neuronal nitric oxide (NO) synthase (nNOS) and catalyzed production of NO for the vasodilation. Blocking MCT1 with the MCT blocker, α-cyano-4-hydroxycinnamate (CHC), or a suppressing NO production with either the nonspecific inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME), or either of two selective nNOS inhibitors, 3-bromo-7-nitroindazole or (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine (TFA), totally abolished the lactate-induced vasodilation. Pretreatment with the selective endothelial NO synthase inhibitor, L-N(5)-(1-iminoethyl)ornithine (L-NIO), eliminated the inhibition of lactate-induced vessel dilation. With immunohistochemical labeling, we found the expression of MCT1 and nNOS in capillary-coupled type V fibrocytes. The data suggest that type V fibrocytes are the source of the lactate-induced NO. Cochlear microvessel tone, regulated by lactate, is mediated by an NO-signaled coupling of fibrocytes and capillaries.

  3. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase

    PubMed Central

    Limberg, Jacqueline K.; Johansson, Rebecca E.; Peltonen, Garrett L.; Harrell, John W.; Kellawan, J. Mikhail; Eldridge, Marlowe W.; Sebranek, Joshua J.

    2016-01-01

    We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [NG-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). β-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease. PMID:26747505

  4. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways

    PubMed Central

    Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.

    2016-01-01

    The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860

  5. Diagnosis of hydronephrosis: comparison of radionuclide scanning and sonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malave, S.R.; Neiman, H.L.; Spies, S.M.

    1980-12-01

    Diagnostic sonographic and radioisotope scanning techniques have been shown to be useful in the diagnosis of obstructive uropathy. The accuracy of both methods was compared and sonography was found to provide the more accurate data (sensitivity, 90%, specificity, 98%; accuracy, 97%). Sonography provides excellent anatomic information and enables one to grade the degree of dilatation. Renal radionuclide studies were less sensitive in detecting obstruction, particularly in the presence of chronic renal disease, but offered additional information regarding relative renal blood flow, total effective renal plasma flow, and interval change in renal parenchymal function.

  6. Liquefaction, flow, and associated ground failure

    USGS Publications Warehouse

    Youd, T. Leslie

    1973-01-01

    Ambiguities in the use of the term liquefaction and in defining the relation between liquefaction and ground failure have led to encumbered communication between workers in various fields and between specialists in the same field, and the possibility that evaluations of liquefaction potential could be misinterpreted or misapplied. Explicit definitions of liquefaction and related concepts are proposed herein. These definitions, based on observed laboratory behavior, are then used to clarify the relation between liquefaction and ground failure. Soil liquefaction is defined as the transformation of a granular material from a solid into a liquefied state as a consequence of increased pore-water pressures. This definition avoids confusion between liquefaction and possible flow-failure conditions after liquefaction. Flow-failure conditions are divided into two types: (1) unlimited flow if pore-pressure reductions caused by dilatancy during flow deformation are not sufficient to solidify the material and thus arrest flow, and (2) limited flow if they are sufficient to solidify the material after a finite deformation. After liquefaction in the field, unlimited flow commonly leads to flow landslides, whereas limited flow leads at most to lateral-spreading landslides. Quick-condition failures such as loss of bearing capacity form a third type of ground failure associated with liquefaction.

  7. Cyanotic Congenital Heart Disease The Coronary Arterial Circulation

    PubMed Central

    Perloff, Joseph K

    2012-01-01

    Background: The coronary circulation in cyanotic congenital heart disease (CCHD) includes the extramural coronary arteries, basal coronary blood flow, flow reserve, the coronary microcirculation, and coronary atherogenesis. Methods: Coronary arteriograms were analyzed in 59 adults with CCHD. Dilated extramural coronaries were examined histologically in six patients. Basal coronary blood flow was determined with N-13 positron emission tomography in 14 patients and in 10 controls. Hyperemic flow was induced by intravenous dipyridamole pharmacologic stress. Immunostaining against SM alpha-actin permitted microcirculatory morphometric analysis. Non-fasting total cholesterols were retrieved in 279 patients divided into four groups: Group A---143 cyanotic unoperated, Group B---47 rendered acyanotic by reparative surgery, Group C---41 acyanotic unoperated, Group D---48 acyanotic before and after operation. Results: Extramural coronary arteries were mildly or moderately dilated to ectatic in 49/59 angiograms. Histologic examination disclosed loss of medial smooth muscle, increased medial collagen, and duplication of internal elastic lamina. Basal coronary flow was appreciably increased. Hyperemic flow was comparable to controls. Remodeling of the microcirculation was based upon coronary arteriolar length, volume and surface densities. Coronary atherosclerosis was absent in both the arteriograms and the necropsy specimens. Conclusions: Extramural coronary arteries in CCHD dilate in response to endothelial vasodilator substances supplemented by mural attenuation caused by medial abnormalities. Basal coronary flow was appreciably increased, but hyperemic flow was normal. Remodeling of the microcirculation was responsible for preservation of flow reserve. The coronaries were atheroma-free because of the salutory effects of hypocholesterolemia, hypoxemia, upregulated nitric oxide, low platelet counts, and hyperbilirubinrmia. PMID:22845810

  8. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  9. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  10. The impact of tetrahydrobiopterin administration on endothelial function before and after smoking cessation in chronic smokers.

    PubMed

    Taylor, Beth A; Zaleski, Amanda L; Dornelas, Ellen A; Thompson, Paul D

    2016-03-01

    Cardiovascular disease mortality is reduced following smoking cessation but the reversibility of specific atherogenic risk factors such as endothelial dysfunction is less established. We assessed brachial artery flow-mediated dilation (FMD) in 57 chronic smokers and 15 healthy controls, alone and after oral tetrahydrobiopterin (BH4) administration, to assess the extent to which reduced bioactivity of BH4, a cofactor for the endothelial nitric oxide synthase enzyme (eNOS), contributes to smoking-associated reductions in FMD. Thirty-four smokers then ceased cigarette and nicotine use for 1 week, after which FMD (±BH4 administration) was repeated. Brachial artery FMD was calculated as the peak dilatory response observed relative to baseline (%FMD). Endothelium-independent dilation was assessed by measuring the dilatory response to sublingual nitroglycerin (%NTG). Chronic smokers exhibited reduced %FMD relative to controls: (5.6±3.0% vs. 8.1±3.7%; P<0.01) and %NTG was not different between groups (P=0.22). BH4 administration improved FMD in both groups (P=0.03) independent of smoking status (P=0.78) such that FMD was still lower in smokers relative to controls (6.6±3.3% vs. 9.8±3.2%; P<0.01). With smoking cessation, FMD increased significantly (from 5.0±2.9 to 7.8±3.2%;P<0.01); %NTG was not different (P=0.57) and BH4 administration did not further improve FMD (P=0.33). These findings suggest that the blunted FMD observed in chronic smokers, likely due at least in part to reduced BH4 bioactivity and eNOS uncoupling, can be restored with smoking cessation. Post-cessation BH4 administration does not further improve endothelial function in chronic smokers, unlike the effect observed in nonsmokers, indicating a longer-term impact of chronic smoking on vascular function that is not acutely reversible.

  11. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  12. Near-wall modeling of compressible turbulent flow

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1991-01-01

    A near-wall two-equation model for compressible flows is proposed. The model is formulated by relaxing the assumption of dynamic field similarity between compressible and incompressible flows. A postulate is made to justify the extension of incompressible models to ammount for compressibility effects. This requires formulation the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilatational part, which is directly affected by these changes. A model with an explicit dependence on the turbulent Mach number is proposed for the dilatational dissipation rate.

  13. Mechanisms of vasodilation in the dorsal aorta of the elephant fish, Callorhinchus milii (Chimaeriformes: Holocephali).

    PubMed

    Jennings, Brett L; Bell, Justin D; Hyodo, Susumu; Toop, Tes; Donald, John A

    2007-07-01

    This study investigated vasodilator mechanisms in the dorsal aorta of the elephant fish, Callorhinchus milii, using anatomical and physiological approaches. Nitric oxide synthase could only be located in the perivascular nerve fibres and not the endothelium of the dorsal aorta, using NADPH histochemistry and immunohistochemistry. In vitro organ bath experiments demonstrated that a NO/soluble guanylyl cyclase (GC) system appeared to be absent in the vascular smooth muscle, since the NO donors SNP (10(-4) mol l(-1)) and SIN-1 (10(-5) mol l(-1)) were without effect. Nicotine (3 x 10(-4) mol l(-1)) mediated a vasodilation that was not affected by ODQ (10(-5) mol l(-1)), L-NNA (10(-4) mol l(-1)), indomethacin (10(-5) mol l(-1)), or removal of the endothelium. In contrast, the voltage-gated sodium channel inhibitor, tetrodotoxin (10(-5) mol l(-1)), significantly decreased the dilation induced by nicotine, suggesting that it contained a neural component. Pre-incubation of the dorsal aorta with the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37) (10(-6) mol l(-1)) also caused a significant decrease in the nicotine-induced dilation. We propose that nicotine is mediating a neurally-derived vasodilation in the dorsal aorta that is independent of NO, prostaglandins and the endothelium, and partly mediated by CGRP.

  14. Bilirubin Level is Associated with Left Ventricular Hypertrophy Independent of Blood Pressure in Previously Untreated Hypertensive Patients

    PubMed Central

    Ayaz, Teslime; Kocaman, Sinan Altan; Durakoğlugil, Tuğba; Erdoğan, Turan; Şahin, Osman Zikrullah; Şahin, Serap Baydur; Çiçek, Yüksel; Şatiroğlu, Ömer

    2014-01-01

    Background and Objectives Left ventricular hypertrophy (LVH), a sign of subclinical cardiovascular disease, is an important predictor of cardiovascular morbidity and mortality. The aim of our study was to determine the association of left ventricular mass (LVM) with possible causative anthropometric and biochemical parameters as well as carotid intima-media thickness (CIMT) and brachial flow-mediated dilation (FMD) as surrogates of atherosclerosis and endothelial dysfunction, respectively, in previously untreated hypertensive patients. Subjects and Methods Our study included 114 consecutive previously untreated hypertensive patients who underwent echocardiography and ultrasonography to evaluate their vascular status and function via brachial artery CIMT and FMD. Results Among all study parameters, age, systolic blood pressure (BP), diastolic BP, pulse pressure, plasma glucose, uric acid, total bilirubin, direct bilirubin, hemoglobin, and CIMT were positively correlated with the LVM index. Multiple logistic regression analysis revealed that office systolic BP, age, male gender, and total bilirubin were independent predictors of LVH. Conclusion Bilirubin seems to be related to LVM and LVH. The positive association of bilirubin with these parameters is novel and requires further research. PMID:25278987

  15. Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life?

    PubMed

    Gunning, M N; Fauser, B C J M

    2017-06-01

    To date, the world's leading cause of death amongst women is cardiovascular disease. Polycystic ovary syndrome (PCOS) is associated with an unfavorable cardiometabolic profile in early life. Apart from dyslipidemia, obesity and onset of type 2 diabetes mellitus, androgens are thought to influence cardiovascular health. The question rises whether women with PCOS are truly at risk for cardiovascular disease in later life. In this review paper, we aim to reflect on this assumed relation based on studies in different stages of life in women with PCOS. Cardiovascular risk factors (type 2 diabetes mellitus, obesity and metabolic syndrome), surrogate outcomes (flow-mediated dilation, carotid intima-media thickness and coronary artery calcium) and clinical long-term outcomes (cardiovascular disease and mortality) will be summarized. Data on cardiovascular disease and mortality in peri- and postmenopausal women with PCOS appear to be controversial. Whether androgens have a protective or unfavorable influence on the manifestation of cardiovascular disease remains uncertain. The need for large, prospective, well-phenotyped cohort studies of women with PCOS is high. Only then will we be able to answer this research question.

  16. The relationship between copper, homocysteine and early vascular disease in lean women with polycystic ovary syndrome.

    PubMed

    Celik, Cem; Bastu, Ercan; Abali, Remzi; Alpsoy, Seref; Guzel, Eda Celik; Aydemir, Birsen; Yeh, John

    2013-05-01

    This study investigates copper (Cu) levels and vascular dysfunction in lean women with polycystic ovary syndrome (PCOS). 44 subjects with PCOS, diagnosed according to Rotterdam criteria, and 42 healthy subjects matched for body mass index and age. Comparison of serum Cu, homocysteine, carotid intima-media thickness (CIMT), brachial artery flow mediated dilation (FMD) was carried out between PCOS patients and the control group. Clinical study was done in Namik Kemal University School of Medicine. The CIMT and concentration of Cu in PCOS patients was significantly higher than the healthy controls. FMD levels in PCOS patients were significantly lower than those in controls. In PCOS patients, CIMT was correlated with estrogen and Cu levels. However, FMD was correlated with age and Cu levels. Among these contributing factors, Cu levels were correlated with a change in CIMT and FMD. CIMT and FMD in PCOS patients were related to Cu levels as well as several cardiovascular risk factors. Thus, increased Cu levels may be responsible for the increased risk of early vascular disease in women with PCOS.

  17. Effect of androgen replacement therapy on atherosclerotic risk markers in young-to-middle-aged men with idiopathic hypogonadotropic hypogonadism.

    PubMed

    Doğan, Berçem Ayçiçek; Karakılıç, Ersen; Tuna, Mazhar Müslüm; Arduç, Ayşe; Berker, Dilek; Güler, Serdar

    2015-03-01

    Idiopathic hypogonadotropic hypogonadism is a rare disorder. This study evaluated the effect of androgen replacement therapy on atherosclerotic risk markers in young-to-middle-aged men with this disorder. Forty-three male patients aged 30 (range: 24-39 years) who were newly diagnosed with idiopathic hypogonadotropic hypogonadism and 20 age-, sex- and weight-matched controls (range: 26-39 years) were included in the study. Androgen replacement therapy was given according to the Algorithm of Testosterone Therapy in Adult Men with Androgen Deficiency Syndromes (2010; Journal of Clinical Endocrinology and Metabolism, 95, 2536). The patients were assessed at a pretreatment visit and 3 and 6 months after the treatment. Inflammatory markers and lipid parameters were evaluated. Endothelial function was assessed with brachial flow-mediated dilation of a brachial artery and high-resolution ultrasonography of the carotid intima-media thickness. The carotid intima-media thickness (P < 0·001) was higher and the brachial flow-mediated diameter (P = 0·002) was lower in patients with idiopathic hypogonadotropic hypogonadism compared to the control subjects at the pretreatment visit. There was a negative correlation between the total testosterone level and carotid intima-media thickness (r = -0·556, P = <0·001). The carotid intima-media thickness and per cent flow-mediated diameter were significantly improved in the patient group 6 months after the androgen replacement therapy (P = 0·002 and 0·026, respectively). This study indicated that low total testosterone levels can be considered a significant marker of atherosclerosis in patients with idiopathic hypogonadotropic hypogonadism and that androgen replacement therapy significantly reduces atherosclerotic risk markers in these patients after 6 months. © 2014 John Wiley & Sons Ltd.

  18. Impact of shear rate modulation on vascular function in humans

    PubMed Central

    Tinken, Toni M.; Thijssen, Dick H.J.; Hopkins, Nicola; Black, Mark A.; Dawson, Ellen A.; Minson, Christopher T.; Newcomer, Sean C.; Laughlin, M. Harold; Cable, N. Timothy; Green, Daniel J.

    2010-01-01

    Shear stress is an important stimulus to arterial adaptation in response to exercise and training in humans. We recently observed significant reverse arterial flow and shear during exercise and different antegrade/retrograde patterns of shear and flow in response to different types of exercise. The purpose of this study was to simultaneously examine flow mediated dilation (FMD), a largely nitric oxide mediated vasodilator response, in both brachial arteries of healthy young men before and after 30-minute interventions consisting of bilateral forearm heating, recumbent leg cycling and bilateral handgrip exercise. During each intervention, a cuff inflated to 60mmHg was placed on one arm to unilaterally manipulate the shear rate stimulus. In the non-cuffed arm, antegrade flow and shear increased similarly in response to each intervention (ANOVA; P<0.001, no interaction between interventions; P=0.71). Baseline FMD (4.6, 6.9 and 6.7%) increased similarly in response to heating, handgrip and cycling (8.1, 10.4 and 8.9%, ANOVA; P<0.001, no interaction; 0.89). In contrast, cuffed arm antegrade shear rate was lower than in the non-cuffed arm for all conditions (P<0.05) and the increase in FMD was abolished in this arm (4.7, 6.7 and 6.1%) (2-way ANOVA: all conditions interacted P<0.05). These results suggest that differences in the magnitude of antegrade shear rate transduce differences in endothelial vasodilator function in humans, a finding which may have relevance for the impact of different exercise interventions on vascular adaptation in humans. PMID:19546374

  19. The Amount of Time Dilation for Visual Flickers Corresponds to the Amount of Neural Entrainments Measured by EEG.

    PubMed

    Hashimoto, Yuki; Yotsumoto, Yuko

    2018-01-01

    The neural basis of time perception has long attracted the interests of researchers. Recently, a conceptual model consisting of neural oscillators was proposed and validated by behavioral experiments that measured the dilated duration in perception of a flickering stimulus (Hashimoto and Yotsumoto, 2015). The model proposed that flickering stimuli cause neural entrainment of oscillators, resulting in dilated time perception. In this study, we examined the oscillator-based model of time perception, by collecting electroencephalography (EEG) data during an interval-timing task. Initially, subjects observed a stimulus, either flickering at 10-Hz or constantly illuminated. The subjects then reproduced the duration of the stimulus by pressing a button. As reported in previous studies, the subjects reproduced 1.22 times longer durations for flickering stimuli than for continuously illuminated stimuli. The event-related potential (ERP) during the observation of a flicker oscillated at 10 Hz, reflecting the 10-Hz neural activity phase-locked to the flicker. Importantly, the longer reproduced duration was associated with a larger amplitude of the 10-Hz ERP component during the inter-stimulus interval, as well as during the presentation of the flicker. The correlation between the reproduced duration and the 10-Hz oscillation during the inter-stimulus interval suggested that the flicker-induced neural entrainment affected time dilation. While the 10-Hz flickering stimuli induced phase-locked entrainments at 10 Hz, we also observed event-related desynchronizations of spontaneous neural oscillations in the alpha-frequency range. These could be attributed to the activation of excitatory neurons while observing the flicker stimuli. In addition, neural activity at approximately the alpha frequency increased during the reproduction phase, indicating that flicker-induced neural entrainment persisted even after the offset of the flicker. In summary, our results suggest that the duration perception is mediated by neural oscillations, and that time dilation induced by flickering visual stimuli can be attributed to neural entrainment.

  20. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    NASA Astrophysics Data System (ADS)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  1. Quantifying wall turbulence via a symmetry approach: A Lie group theory

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi; Hussain, Fazle

    2017-11-01

    We present a symmetry-based approach which yields analytic expressions for the mean velocity and kinetic energy profiles from a Lie-group analysis. After verifying the dilation-group invariance of the Reynolds averaged Navier-Stokes equation in the presence of a wall, we select a stress and energy length function as similarity variables which are assumed to have a simple dilation-invariant form. Three kinds of (local) invariant forms of the length functions are postulated, a combination of which yields a multi-layer formula giving its distribution in the entire flow region normal to the wall. The mean velocity profile is then predicted using the mean momentum equation, which yields, in particular, analytic expressions for the (universal) wall function and separate wake functions for pipe and channel - which are validated by data from direct numerical simulations (DNS). Future applications to a variety of wall flows such as flows around flat plate or airfoil, in a Rayleigh-Benard cell or Taylor-Couette system, etc., are discussed, for which the dilation group invariance is valid in the wall-normal direction.

  2. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809

  3. Influence of aerobic fitness on vasoreactivity in young men.

    PubMed

    Bell, Preston L; Kelley, Edward T; McCoy, Stephanie M; Credeur, Daniel P

    2017-10-01

    Previous work has demonstrated a direct relationship between aerobic fitness and vasodilatory function (i.e., flow-mediated dilation; FMD); however, the relation between aerobic fitness and vasoconstrictor responsiveness (i.e., low flow-mediated constriction; L-FMC), and the overall vasoactive range (FMD + L-FMC) is unclear. To test the hypothesis that L-FMC and the overall vasoactive range (FMD + L-FMC) will be related to aerobic fitness in young, healthy men. Twenty men (age: 23 ± 5 years) were recruited, and divided evenly into a higher (HF) vs. lower (LF) aerobic fitness group, quantified via YMCA cycle ergometry (VO 2 peak extrapolation), and a 3-min step test (1-min heart rate recovery). Duplex Doppler-ultrasound was used to assess brachial artery FMD and L-FMC. Estimated VO 2 peak (HF = 55 ± 10 vs. LF = 38 ± 5 mL/kg/min) and heart rate recovery (HF = 36 ± 10 vs. LF = 25 ± 8 beats) were greater in the HF group (P < 0.05). FMD and the vasoactive range were similar between groups; however, L-FMC was significantly greater in HF (HF = -2.5 ± 1.6 vs. LF = -0.7 ± 1.8%, P < 0.05; d = 1.18). A correlational analysis revealed an inverse relationship between L-FMC and both HR recovery (r = -0.665, P < 0.01) and estimated VO 2 peak (r = -0.5, P < 0.05). This work supports an association between L-FMC and aerobic fitness in young, healthy men. Longitudinal or interventional studies are warranted to support causality, and to distinguish whether L-FMC is more sensitive to changes in aerobic fitness than FMD.

  4. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan; Lele, Sanjiva K.; Moin, Parviz

    1992-01-01

    For the numerical simulation of inhomogeneous turbulent flows, a method is developed for generating stochastic inflow boundary conditions with a prescribed power spectrum. Turbulence statistics from spatial simulations using this method with a low fluctuation Mach number are in excellent agreement with the experimental data, which validates the procedure. Turbulence statistics from spatial simulations are also compared to those from temporal simulations using Taylor's hypothesis. Statistics such as turbulence intensity, vorticity, and velocity derivative skewness compare favorably with the temporal simulation. However, the statistics of dilatation show a significant departure from those obtained in the temporal simulation. To directly check the applicability of Taylor's hypothesis, space-time correlations of fluctuations in velocity, vorticity, and dilatation are investigated. Convection velocities based on vorticity and velocity fluctuations are computed as functions of the spatial and temporal separations. The profile of the space-time correlation of dilatation fluctuations is explained via a wave propagation model.

  5. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  6. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study.

    PubMed

    Solini, Anna; Giannini, Livia; Seghieri, Marta; Vitolo, Edoardo; Taddei, Stefano; Ghiadoni, Lorenzo; Bruno, Rosa Maria

    2017-10-23

    Sodium-glucose cotransporter-2 inhibitors reduce blood pressure (BP) and renal and cardiovascular events in patients with type 2 diabetes through not fully elucidated mechanisms. Aim of this study was to investigate whether dapagliflozin is able to acutely modify systemic and renal vascular function, as well as putative mechanisms. Neuro-hormonal and vascular variables, together with 24 h diuresis, urinary sodium, glucose, isoprostanes and free-water clearance were assessed before and after a 2-day treatment with dapagliflozin 10 mg QD in sixteen type 2 diabetic patients; data were compared with those obtained in ten patients treated with hydrochlorothiazide 12.5 mg QD. Brachial artery endothelium-dependent and independent vasodilation (by flow-mediated dilation) and pulse wave velocity were assessed. Renal resistive index was obtained at rest and after glyceryl trinitrate administration. Differences were analysed by repeated measures ANOVA, considering treatment as between factor and time as within factor; Bonferroni post hoc comparison test was also used. Dapagliflozin decreased systolic BP and induced an increase in 24 h diuresis to a similar extent of hydrochlorothiazide; 24 h urinary glucose and serum magnesium were also increased. 24 h urinary sodium and fasting blood glucose were unchanged. Oxidative stress was reduced, as by a decline in urinary isoprostanes. Flow-mediated dilation was significantly increased (2.8 ± 2.2 to 4.0 ± 2.1%, p < 0.05), and pulse-wave-velocity was reduced (10.1 ± 1.6 to 8.9 ± 1.6 m/s, p < 0.05), even after correction for mean BP. Renal resistive index was reduced (0.62 ± 0.04 to 0.59 ± 0.05, p < 0.05). These vascular modifications were not observed in hydrochlorothiazide-treated individuals. An acute treatment with dapagliflozin significantly improves systemic endothelial function, arterial stiffness and renal resistive index; this effect is independent of changes in BP and occurs in the presence of stable natriuresis, suggesting a fast, direct beneficial effect on the vasculature, possibly mediated by oxidative stress reduction.

  7. [Combination of the ureteral dilation catheter and balloon catheter under the ureteroscope in the treatment of male urethral stricture].

    PubMed

    Zhou, Yi; Li, Gong-hui; Yan, Jia-jun; Shen, Cong; Tang, Gui-hang; Xu, Gang

    2016-01-01

    To investigate the clinical application of the ureteral dilation catheter combined with the balloon catheter under the ureteroscope in the treatment of urethral stricture in men. Under the ureteroscope, 45 male patients with urethral stricture received placement of a zebra guide wire through the strictured urethra into the bladder and then a ureteral dilation catheter along the guide wire, followed by dilation of the urethra from F8 initially to F14 and F16. Again, the ureteroscope was used to determine the length of the strictured urethra, its distance to the external urethral orifice, and whether it was normally located. An F24 balloon catheter and then a metal urethral calibrator was used for the dilation of the strictured urethra. After removal of the F18-F22 urethral catheter at 8 weeks, the urinary flow rate was measured immediately and again at 3 months. All the operations were successfully performed without serious complications. The maximum urinary flow rate was (13.3-29.9) ml/s (mean [17.7 ± 3.2] ml/s) at the removal of the catheter and (15.2-30.8) ml/s (mean [19.8 ± 3.9] ml/s) at 3 months after it. Smooth urination was found in all the patients during the 6-24 months follow-up. The application of the ureteral dilation catheter combined with, the balloon catheter under the ureteroscope is a good option for the treatment of male urethral stricture for its advantages of uncomplicatedness, safety, effectiveness, few complications, less pain, high success rate, and repeatable operation.

  8. Near-field acoustic radiation by high-speed turbulence: amplitude, structure, gas-stiffness, and dilatational dissipation

    NASA Astrophysics Data System (ADS)

    Buchta, David; Freund, Jonathan

    2017-11-01

    High-speed (supersonic) turbulent shear flows are well-known to radiate pressure-wave patterns that have higher positive peaks than negative valleys, which yields a notable skewness, usually with Sk > 0.4 . Direct numerical simulations (DNS) of planar turbulent mixing layers at different Mach numbers (M) are used to examine this. The baseline simulations, of an air-like gas at speeds up to M = 3.5 , reproduced the observed behavior of jets. Simulations initialized with corresponding instability modes show that Sk increases linearly with the velocity amplitude (Mt =√{ui' ui'} /co), reflecting the M dependence of the DNS, which can be related to simpler gas dynamic flows. Simulations with a stiffened-gas equation of state (often used to model liquids) show essentially the same Mach-number dependence, despite the nominally greater resistance to compressibility. Turbulence simulations with an artificial energy reallocation mechanism, imposed to alter its structure, show little change in Sk. Finally, we also consider significantly increased bulk viscosity to suppress dilatation. In this case, Sk diminishes along with the sound-field intensity, though the turbulence stresses themselves are nearly unchanged.

  9. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...

  10. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  11. Evaluating endothelial function of the common carotid artery: an in vivo human model.

    PubMed

    Mazzucco, S; Bifari, F; Trombetta, M; Guidi, G C; Mazzi, M; Anzola, G P; Rizzuto, N; Bonadonna, R

    2009-03-01

    Flow mediated dilation (FMD) of peripheral conduit arteries is a well-established tool to evaluate endothelial function. The aims of this study are to apply the FMD model to cerebral circulation by using acetazolamide (ACZ)-induced intracranial vasodilation as a stimulus to increase common carotid artery (CCA) diameter in response to a local increase of blood flow velocity (BFV). In 15 healthy subjects, CCA end-diastolic diameter and BFV, middle cerebral artery (MCA) BFV and mean arterial blood pressure (MBP) were measured at basal conditions, after an intravenous bolus of 1g ACZ, and after placebo (saline) sublingual administration at the 15th and 20th minute. In a separate session, the same parameters were evaluated after placebo (saline) infusion instead of ACZ and after 10 microg/m(2) bs and 300 microg of glyceryl trinitrate (GTN), administered sublingually, at the 15th and 20th minute, respectively. After ACZ bolus, there was a 35% maximal MCA mean BFV increment (14th minute), together with a 22% increase of mean CCA end-diastolic BFV and a CCA diameter increment of 3.9% at the 3rd minute (p=0.024). There were no MBP significant variations up to the 15th minute (p=0.35). After GTN administration, there was a significant increment in CCA diameter (p<0.00001). ACZ causes a detectable CCA dilation in healthy individuals concomitantly with an increase in BFV. Upon demonstration that this phenomenon is endothelium dependent, this experimental model might become a valuable tool to assess endothelial function in the carotid artery.

  12. Randomized controlled trial using bosentan to enhance the impact of exercise training in subjects with type 2 diabetes mellitus.

    PubMed

    Schreuder, Tim H A; Duncker, Dirk J; Hopman, Maria T E; Thijssen, Dick H J

    2014-11-01

    In type 2 diabetes patients, endothelin (ET) receptor blockade may enhance blood flow responses to exercise training. The combination of exercise training and ET receptor blockade may represent a more potent stimulus than training alone to improve vascular function, physical fitness and glucose homeostasis. We assessed the effect of an 8 week exercise training programme combined with either ET blockade or placebo on vasculature, fitness and glucose homeostasis in people with type 2 diabetes. In a double-blind randomized controlled trial, brachial endothelium-dependent and ‑independent dilatation (using flow-mediated dilatation and glyceryl trinitrate, respectively), glucose homeostasis (using Homeostasis Model Assessment for Insulin Resistance (HOMA-IR)) and physical fitness (maximal cycling test) were assessed in 18 men with type 2 diabetes (60 ± 6 years old). Subjects underwent an 8 week exercise training programme, with half of the subjects receiving ET receptor blockade (bosentan) and the other half a placebo, followed by reassessment of the tests above. Exercise training improved physical fitness to a similar extent in both groups, but we did not detect changes in vascular function in either group. This study suggests that there is no adaptation in brachial and femoral artery endothelial function after 8 weeks of training in type 2 diabetes patients. Endothelin receptor blockade combined with exercise training does not additionally alter conduit artery endothelial function or physical fitness in type 2 diabetes. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  13. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers.

    PubMed

    Bahra, M; Kapil, V; Pearl, V; Ghosh, S; Ahluwalia, A

    2012-05-15

    Ingestion of inorganic nitrate elevates blood and tissue levels of nitrite via bioconversion in the entero-salivary circulation. Nitrite is converted to NO in the circulation, and it is this phenomenon that is thought to underlie the beneficial effects of inorganic nitrate in humans. Our previous studies have demonstrated that oral ingestion of inorganic nitrate decreases blood pressure and inhibits the transient endothelial dysfunction caused by ischaemia-reperfusion injury in healthy volunteers. However, whether inorganic nitrate might improve endothelial function per se in the absence of a pathogenic stimulus and whether this might contribute to the blood pressure lowering effects is yet unknown. We conducted a randomised, double-blind, crossover study in 14 healthy volunteers to determine the effects of oral inorganic nitrate (8 mmol KNO(3)) vs. placebo (8 mmol KCl) on endothelial function, measured by flow-mediated dilatation (FMD) of the brachial artery, prior to and 3h following capsule ingestion. In addition, blood pressure (BP) was measured and aortic pulse wave velocity (aPWV) determined. Finally, blood, saliva and urine samples were collected for chemiluminescence analysis of [nitrite] and [nitrate] prior to and 3h following interventions. Inorganic nitrate supplementation had no effect on endothelial function in healthy volunteers (6.9±1.1% pre- to 7.1±1.1% post-KNO(3)). Despite this, there was a significant elevation of plasma [nitrite] (0.4±0.1 μM pre- to 0.7±0.2 μM post-KNO(3), p<0.001). In addition these changes in [nitrite] were associated with a decrease in systolic BP (116.9±3.8mm Hg pre- vs. 112.1±3.4 mm Hg post-KNO(3), p<0.05) and aPWV (6.5±0.1 m/s pre- to 6.2±0.1 post-KNO(3), p<0.01). In contrast KCl capsules had no effect on any of the parameters measured. These findings demonstrate that although inorganic nitrate ingestion does not alter endothelial function per se, it does appear to improve blood flow, in combination with a reduction in blood pressure. It is likely that these changes are due to the intra-vascular production of NO. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Mid-term Risk for Subclinical Atherosclerosis and Chronic Myocarditis in Children with Kawasaki Disease and Transient Coronary Abnormalities.

    PubMed

    Parihar, Mansingh; Singh, Surjit; Vignesh, Pandiarajan; Gupta, Anju; Rohit, Manojkumar

    2017-08-01

    There is evidence for premature atherosclerosis and systemic arterial stiffening during follow-up of children with Kawasaki disease (KD) and coronary artery abnormalities (CAA). Moreover, patients with KD may also have subclinical myocardial involvement and inhomogeneous ventricular repolarization. The inhomogeneous ventricular repolarization manifests as increased QT dispersion on electrocardiography. There is a paucity of studies in endothelial dysfunction and QT dispersion in children with KD and transient CAA. Twenty children with KD and transient CAA were studied at least 1 year after resolution of CAA. Mean follow-up period between KD onset and enrolment in the study was 53.7 months. Twenty age and sex-matched controls were enrolled. High-resolution B-mode ultrasonography was used to analyze brachial artery dilatation in response to reactive hyperemia (cases and controls) and sublingual nitroglycerine (cases only). Carotid artery intima-media thickness (cIMT) and stiffness index were calculated. The difference between maximum and minimum QTc intervals on 12 lead electrocardiogram was calculated as QTc dispersion (QTcd). No statistically significant difference was noted in percent flow-mediated dilatation of brachial arteries in response to reactive hyperemia between cases (13.31 ± 10.41%) and controls (12.86 ± 7.09%). Sublingual nitroglycerine-mediated dilatation in children with KD was 14.88 ± 12.03%. Mean cIMT was similar in cases (0.036 ± 0.015 cm) and controls (0.035 ± 0.076 cm; p = 0.791). No statistically significant difference between groups was observed in mean QTcd values (0.057 ± 0.018 s vs. 0.059 ± 0.015 s in controls, p = 0.785). No evidence of significant endothelial dysfunction or increased QT dispersion in patients with KD and transient coronary artery abnormalities was found in our cohort when studied at a mean follow-up of 53.7 months. This is reassuring, and indicates that risk of subclinical atherosclerosis and myocarditis in a subset of children with KD and transient coronary artery abnormalities is not significant.

  15. Compressibility effects on turbulent mixing

    NASA Astrophysics Data System (ADS)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  16. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation.

    PubMed

    Kappus, Rebecca M; Bunsawat, Kanokwan; Rosenberg, Alexander J; Fernhall, Bo

    2017-03-01

    This study investigated the effects of acute antioxidant supplementation on endothelial function, exercise blood flow and oxidative stress biomarkers in 9 young African American compared to 10 Caucasian males (25.7±1.2 years). We hypothesized that African American males would have lower exercise blood flow and endothelial responsiveness compared to Caucasian males, and these responses would be improved following antioxidant supplementation. Ultrasonography was used to measure blood flow during handgrip exercise. Endothelial function was assessed using flow-mediated dilation, and lipid peroxidation was assessed by measuring levels of malondialdehyde-thiobarbituric acid reactive substances. African American males exhibited lower endothelial function than Caucasians at baseline (8.3±1.7 vs. 12.2±1.7%) and the difference was ameliorated with antioxidant supplementation (10.7±1.9% vs. 10.8±1.8%), but the interaction was not significant (p=0.10). There were no significant changes in malondialdehyde-thiobarbituric acid reactive substances following antioxidant supplementation. There was a significant increase in brachial blood flow and forearm vascular conductance with exercise but no differences with antioxidant supplementation. There were no group differences in exercise responses and no differences with antioxidant supplementation, suggesting a lack of influence of oxidative stress during exercise in this cohort. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Evidence for circulatory benefits of resveratrol in humans.

    PubMed

    Wong, Rachel H X; Coates, Alison M; Buckley, Jonathan D; Howe, Peter R C

    2013-07-01

    Impairments of endothelial function, which can be assessed noninvasively by flow-mediated dilation (FMD) of the brachial artery, contribute to the development of cardiovascular disease. Associations between FMD and cognition suggest a vascular component in the loss of cognitive function. Certain vasoactive nutrients that have been shown to improve FMD may also have the potential to enhance cerebral perfusion and cognition. Preclinical studies show that trans-resveratrol can enhance nitric oxide bioavailability, thereby increasing endothelium-dependent vasodilation. We have now shown that acute administration of resveratrol elicits dose-dependent increases of FMD with greater potency than other vasoactive nutrients and that this benefit is sustained following regular consumption. We describe the potential implications of this vasodilator benefit of resveratrol and its role in enhancing cerebrovascular and cognitive functions. © 2013 New York Academy of Sciences.

  18. Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction.

    PubMed

    Westphal, Sabine; Luley, Claus

    2011-09-01

    Consumption of flavanols improves chronic endothelial dysfunction. We investigated whether it can also improve acute lipemia-induced endothelial dysfunction. In this randomized, placebo-controlled, double-blind, crossover trial, 18 healthy subjects received a fatty meal with cocoa either rich in flavanols (918 mg) or flavanol-poor. Flow-mediated dilation (FMD), triglycerides, and free fatty acids were then determined over 6 h. After the flavanol-poor fat loading, the FMD deteriorated over 4 h. The consumption of flavanol-rich cocoa, in contrast, improved this deterioration in hours 2, 3, and 4 without abolishing it completely. Flavanols did not have any influence on triglycerides or on free fatty acids. Flavanol-rich cocoa can alleviate the lipemia-induced endothelial dysfunction, probably through an improvement in endothelial NO synthase.

  19. Failures in sand in reduced gravity environments

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  20. Flavan-3-ols, theobromine, and the effects of cocoa and chocolate on cardiometabolic risk factors.

    PubMed

    Berends, Lindsey M; van der Velpen, Vera; Cassidy, Aedin

    2015-02-01

    Although there is growing interest surrounding the potential health benefits of cocoa and chocolate, the relative contribution of bioactive constituents for these effects remains unclear. This review summarizes the recent research on the cardiometabolic effects of cocoa and chocolate with a focus on two key constituents: flavan-3-ols and theobromine. Recent meta-analyses suggest beneficial cardiometabolic effects of chocolate following short-term intake, including improvements in flow-mediated dilatation, blood pressure, lipoprotein levels and biomarkers of insulin resistance. Flavan-3-ols may play a role, but it is currently unclear which specific compounds or metabolites are key. Theobromine has also been shown to improve lipoprotein levels in trials, although these findings need verification at habitual intake levels. Longer term dose-response randomized controlled trials are required to determine the sustainability of the short-term effects and the optimal dose. Quantifying levels of bioactives in intervention products and their metabolites in biological samples will facilitate the assessment of their relative impact and the underlying mechanisms of action. Promising data support the beneficial cardiometabolic effects of cocoa and chocolate intake, with significant interest in the flavan-3-ol and theobromine content. Validated biomarkers of intake together with more relevant mechanistic insights from experimental models using physiologically relevant concentrations and metabolites will continue to inform this research field.

  1. Exercise training reduces the frequency of menopausal hot flushes by improving thermoregulatory control.

    PubMed

    Bailey, Tom G; Cable, N Timothy; Aziz, Nabil; Dobson, Rebecca; Sprung, Victoria S; Low, David A; Jones, Helen

    2016-07-01

    Postmenopausal hot flushes occur due to a reduction in estrogen production causing thermoregulatory and vascular dysfunction. Exercise training enhances thermoregulatory control of sweating, skin and brain blood flow. We aimed to determine if improving thermoregulatory control and vascular function with exercise training alleviated hot flushes. Twenty-one symptomatic women completed a 7-day hot flush questionnaire and underwent brachial artery flow-mediated dilation and a cardiorespiratory fitness test. Sweat rate and skin blood flow temperature thresholds and sensitivities, and middle cerebral artery velocity (MCAv) were measured during passive heating. Women performed 16 weeks of supervised exercise training or control, and measurements were repeated. There was a greater improvement in cardiorespiratory fitness (4.45 mL/kg/min [95% CI: 1.87, 8.16]; P = 0.04) and reduced hot flush frequency (48 hot flushes/wk [39, 56]; P < 0.001) after exercise compared with control. Exercise reduced basal core temperature (0.14°C [0.01, 0.27]; P = 0.03) and increased basal MCAv (2.8 cm/s [1.0, 5.2]; P = 0.04) compared with control. Sweat rate and skin blood flow thresholds occurred approximately 0.19°C and 0.17°C earlier, alongside improved sweating sensitivity with exercise. MCAv decreased during heating (P < 0.005), but was maintained 4.5 cm/s (3.6, 5.5; P < 0.005) higher during heating after exercise compared with control (0.6 cm/s [-0.4, 1.4]). Exercise training that improves cardiorespiratory fitness reduces self-reported hot flushes. Improvements are likely mediated through greater thermoregulatory control in response to increases in core temperature and enhanced vascular function in the cutaneous and cerebral circulations.

  2. Arterial alterations in severely obese children with obstructive sleep apnoea.

    PubMed

    Dubern, Beatrice; Aggoun, Yacine; Boulé, Michèle; Fauroux, Brigitte; Bonnet, Damien; Tounian, Patrick

    2010-05-03

    Obstructive sleep apnoea (OSA) in obese adults is associated with cardiovascular disease independently of obesity. Vascular alterations exist in children with obesity and may constitute the first stage in the development of adulthood cardiovascular disease. To investigate the relationship between OSA and early arterial alterations in obese children. Cross-sectional study of a prospective cohort. A total of 51 children with severe obesity managed at a teaching hospital outpatient clinic. Polysomnography was performed. We measured the intima-media thickness and incremental elastic modulus (Einc) to assess the mechanical characteristics of the common carotid artery. Arterial endothelial function was evaluated by measuring flow-mediated dilation and glyceryl trinitrate-mediated dilation (GTNMD) of the brachial artery. A total of 24 (47%) children had a desaturation index (DI) >10/h and 7 (14%) had a respiratory event index >10/h. DI >10/h was associated with significantly higher values of Einc (4.0 + or - 0.5 vs. 2.4 + or - 0.4 mm Hg(-1) x 10(3), p=0.003) and GTNMD (18.0 + or - 1.1 vs. 14.1 + or - 1.0 %, p=0.02) after adjustment for age, sex, body mass index, fasting insulin, and leptin. In the univariate analysis, GTNMD correlated positively with DI (r=0.14, p=0.02) after adjustment for age, sex, fasting insulin and leptin. By multivariate analysis with BMI as an additional independent variable, both GTNMD and Einc correlated significantly with DI (beta=0.4, p=0.02 and beta=0.27, p=0.04, respectively). OSA in children is associated with arterial alterations independently from obesity. The increased vasodilation in response to glyceryl trinitrate reflects pre-existing vasoconstriction probably induced by intermittent hypoxia. OSA should be detected early in children with severe obesity.

  3. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    PubMed Central

    Muñoz, Manuel F.; Puebla, Mariela; Figueroa, Xavier F.

    2015-01-01

    Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30) and channels formed by pannexins (Panx-1). The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO) can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS) and neuronal NOS (nNOS) are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in this process. PMID:25805969

  4. A NOS3 polymorphism determines endothelial response to folate in children with type 1 diabetes or obesity.

    PubMed

    Wiltshire, Esko J; Peña, Alexia S; MacKenzie, Karen; Bose-Sundernathan, Tulika; Gent, Roger; Couper, Jennifer J

    2015-02-01

    To determine the effect of polymorphisms in NOS3 and folate pathway enzymes on vascular function and folate status and endothelial response to folate in children with diabetes or obesity. A total of 244 subjects (age 13.8 ± 2.8 years, 125 males) were studied for NOS3 and/or folate pathway polymorphisms using polymerase chain reaction/restriction fragment length polymorphism, including at baseline: 139 with type 1 diabetes; 58 with obesity; and 47 controls. The effect of NOS3 genotype on endothelial response to folate (5 mg) was assessed in 85 subjects with diabetes and 28 obese subjects who received active treatment during intervention trials. Vascular function (flow-mediated dilatation [FMD] and glyceryl trinitrate-mediated dilatation), clinical, and biochemical measurements were assessed at baseline and 8 weeks in folate intervention studies. Folate pathway enzyme and NOS3 polymorphisms did not significantly affect baseline vascular function. The polymorphism in intron 4 of endothelial nitric oxide synthase altered endothelial response to folate significantly: in subjects with diabetes FMD improved by 6.4 ± 5% (insertion carriers) vs 2.3 ± 6.6% (deletion carriers), P = .01; in obese subjects FMD improved by 1.8 ± 5.4% (insertion carriers) and deteriorated by -3.2 ± 7.2% (deletion carriers), P = .05. More subjects carrying the insertion normalized FMD after folate supplementation (insertion 64% vs deletion 28%, χ(2) = 10.14, P = .001). A NOS3 polymorphism predicts endothelial response to folate in children with diabetes or obesity, with implications for vascular risk and folate intervention studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evaluation of Early Atherosclerosis Markers in Patients with Inflammatory Bowel Disease.

    PubMed

    Üstün, Yusuf; Kilincalp, Serta; Çoban, Şahin; Coşkun, Yusuf; Yüksel, İlhami; Ongun, Aydan; Soykan, İrfan; Bektaş, Mehmet; Törüner, Murat; Çetinkaya, Hülya; Örmeci, Necati

    2016-10-24

    BACKGROUND The aim of this study was to investigate relationships between early atherosclerosis and inflammatory bowel disease (IBD) using laboratory, functional, and morphological markers of atherosclerosis. MATERIAL AND METHODS In the present prospective single-center study, 96 patients with IBD (58 patients with ulcerative colitis and 36 patients with Crohn's disease) and 65 healthy control subjects were included. The demographic data of each patient and control subject were recorded. The patients with IBD and healthy controls were compared in terms of the carotid intima-media thickness (CIMT), the values of flow-mediated dilatation (FMD) and nitroglycerine-mediated dilatation (NMD), and the levels of von Willebrand factor antigen (VWF-Ag), D-dimer, and lipoprotein (a). RESULTS There were no significant differences between the IBD patients and controls in terms of age, sex, BMI, systolic and diastolic BPs, serum levels of total cholesterol, low-density lipoprotein, or triglycerides. IBD patients had significantly higher levels of VWF-Ag (156.6±58.9 vs. 104.2±43.3, P<0.001) and D-dimer (337.2±710.8 vs. 175.9±110.9, P<0.001) as compared to the controls. No significant differences were determined between the 2 groups in terms of FMD and NMD values. Although statistically not significant, the CIMT values were higher in the IBD patients than in the controls (0.517±0.141 mm vs. 0.467±0.099 mm, P=0.073). In the correlation analysis, the CIMT was found to be correlated negatively with FMD and positively with high sensitive C-reactive protein, VWF-Ag, and D-dimer. CONCLUSIONS These findings suggest that VWF-Ag and D-dimer can be beneficial early atherosclerosis markers in IBD patients.

  6. Fixed-dose combination of losartan and hydrochlorothiazide significantly improves endothelial function in uncontrolled hypertension by low-dose amlodipine: a randomized study.

    PubMed

    Takase, Bonpei; Nagata, Masayoshi

    2014-12-01

    Flow-mediated dilation (FMD) and nitroglycerin-mediated dilation (NMD) in the brachial artery are well-known indices for evaluating endothelial function (ECF). The blood pressure-lowering effects of the combination of losartan (ARB) and low-dose hydrochlorothiazide (H: ARB-H; ARB, 50 mg and H, 12.5 mg) are useful. The aim of the present study was to examine whether the combination of losartan and low-dose hydrochlorothiazide could improve ECF. To investigate the effect of ARB-H on ECF in patients with uncontrolled hypertension despite the use of amlodipine (2.5 mg daily), we performed a randomized controlled open-labeled study by using the envelope method and assigned 42 patients to either a control (CTRL) group or an ARB-H combination group, both of which received amlodipine 2.5 mg daily during the treatment period. In addition, both the CTRL (n=21, 69±7 years old) and ARB-H groups (n=21, 69±7 years old) received additional behavioral modification. Before and after 8 weeks of therapy, FMD and NMD were measured in both groups using novel FMD equipment (UNEXEF18G). Although baseline FMD was not different between the two groups, post-therapy FMD increased in the ARB-H group (2.97±1.56 to 3.95±1.86%, p<0.05) but did not change significantly in the CTRL group (2.95±1.43 to 3.11±1.27%, NS). No significant change was seen in NMD when comparing baseline and post-therapy values in either group. No treatment complications were observed. A fixed-dose combination of losartan and hydrochlorothiazide enhances ECF, suggesting that this combination might have both anti-hypertensive and anti-atherosclerotic effects in patients with hypertension.

  7. Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: a randomized controlled trial.

    PubMed

    Dai, Yuk-Ling; Luk, Ting-Hin; Yiu, Kai-Hang; Wang, Mei; Yip, Pandora M C; Lee, Stephen W L; Li, Sheung-Wai; Tam, Sidney; Fong, Bonnie; Lau, Chu-Pak; Siu, Chung-Wah; Tse, Hung-Fat

    2011-06-01

    Coronary artery disease (CAD) is associated with endothelial dysfunction and mitochondrial dysfunction (MD). The aim of this study was to investigate whether co-enzyme Q10 (CoQ) supplementation, which is an obligatory coenzyme in the mitochondrial respiratory transport chain, can reverse MD and improve endothelial function in patients with ischaemic left ventricular systolic dysfunction (LVSD). We performed a randomized, double-blind, placebo-controlled trial to determine the effects of CoQ supplement (300 mg/day, n=28) vs. placebo (controls, n=28) for 8 weeks on brachial flow-mediated dilation (FMD) in patients with ischaemic LVSD(left ventricular ejection fraction <45%). Mitochondrial function was determined by plasma lactate/pyruvate ratio (LP ratio). After 8 weeks, CoQ-treated patients had significant increases in plasma CoQ concentration (treatment effect 2.20 μg/mL, P<0.001) and FMD (treatment effect 1.51%, P=0.03); and decrease in LP ratio (treatment effect -2.46, P=0.03) compared with controls. However, CoQ treatment did not alter nitroglycerin-mediated dilation, blood pressure, blood levels of fasting glucose, haemoglobin A1c, lipid profile, high-sensitivity C-reactive protein and oxidative stress as determined by serum superoxide dismutase and 8-isoprostane (all P>0.05). Furthermore, the reduction in LP ratio significantly correlated with improvement in FMD (r=-0.29, P=0.047). In patients with ischaemic LVSD, 8 weeks supplement of CoQ improved mitochondrial function and FMD; and the improvement of FMD correlated with the change in mitochondrial function, suggesting that CoQ improved endothelial function via reversal of mitochondrial dysfunction in patients with ischaemic LVSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Dietary rose hip exerts antiatherosclerotic effects and increases nitric oxide-mediated dilation in ApoE-null mice.

    PubMed

    Cavalera, Michele; Axling, Ulrika; Rippe, Catarina; Swärd, Karl; Holm, Cecilia

    2017-06-01

    Atherosclerosis is a disease in which atheromatous plaques develop inside arteries, leading to reduced or obstructed blood flow that in turn may cause stroke and heart attack. Rose hip is the fruit of plants of the genus Rosa, belonging to the Rosaceae family, and it is rich in antioxidants with high amounts of ascorbic acid and phenolic compounds. Several studies have shown that fruits, seeds and roots of these plants exert antidiabetic, antiobesity and cholesterol-lowering effects in rodents as well as humans. The aim of this study was to elucidate the mechanisms by which rose hip lowers plasma cholesterol and to evaluate its effects on atherosclerotic plaque formation. ApoE-null mice were fed either an HFD (CTR) or HFD with rose hip supplementation (RH) for 24 weeks. At the end of the study, we found that blood pressure and atherosclerotic plaques, together with oxidized LDL, total cholesterol and fibrinogen levels were markedly reduced in the RH group. Fecal cholesterol content, liver expression of Ldlr and selected reverse cholesterol transport (RCT) genes such as Abca1, Abcg1 and Scarb1 were significantly increased upon RH feeding. In the aorta, the scavenger receptor Cd36 and the proinflammatory Il1β genes were markedly down-regulated compared to the CTR mice. Finally, we found that RH increased nitric oxide-mediated dilation of the caudal artery. Taken together, these results suggest that rose hip is a suitable dietary supplement for preventing atherosclerotic plaques formation by modulating systemic blood pressure and the expression of RCT and inflammatory genes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Relationships of vascular function with measures of ambulatory blood pressure variation.

    PubMed

    Hodgson, Jonathan M; Woodman, Richard J; Croft, Kevin D; Ward, Natalie C; Bondonno, Catherine P; Puddey, Ian B; Lukoshkova, Elena V; Head, Geoffrey A

    2014-03-01

    Characteristics of short-term blood pressure (BP) variation may influence cardiovascular disease risk via effects on vascular function. In a cross-sectional study of a group of treated hypertensive and untreated largely normotensive subjects we investigated the relationships of measures of short-term BP variation with brachial artery vasodilator function. A total of 163 treated hypertensive (n = 91) and untreated largely normotensive (n = 72) men and women were recruited from the general population. Measures of systolic and diastolic BP variation were calculated from 24 h ambulatory BP assessments and included: (i) rate of measurement-to-measurement BP variation (SBP-var and DBP-var); and (ii) day-to-night BP dip (SBP-dip and DBP dip). Endothelium-dependent vasodilation was assessed as flow-mediated dilation (FMD) and endothelium-independent vasodilation was assessed in response to glyceryl trinitrate (GTN). Relationships were explored using univariate and multivariate linear regression. The relationships of brachial artery vasodilator function with BP variation were not significantly different between treated hypertensive and untreated subjects, therefore these groups were combined for analysis. In univariate analysis, higher SBP-var (P < 0.001) and lower DBP-dip (P = 0.004) were associated with lower FMD; and higher SBP-var (P = 0.002) and lower SBP-dip (P = 0.003) and DBP-dip (P = 0.001) were associated with lower GTN-mediated dilation. In multivariate analysis, lower SBP-dip (P = 0.007) and DBP-dip (P = 0.03) were independently associated with lower GTN response. Our results indicate that a lower day-to-night BP dip is independently associated with impaired smooth muscle cell function. Although rate of BP variation was associated with measures of endothelial and smooth muscle cell function, relationships were attenuated after accounting for age and BP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of paricalcitol on endothelial function and inflammation in type 2 diabetes and chronic kidney disease.

    PubMed

    Thethi, Tina K; Bajwa, Muhammad A; Ghanim, Husam; Jo, Chanhee; Weir, Monica; Goldfine, Allison B; Umpierrez, Guillermo; Desouza, Cyrus; Dandona, Paresh; Fang-Hollingsworth, Ying; Raghavan, Vasudevan; Fonseca, Vivian A

    2015-04-01

    Patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD) have impaired endothelial function. Vitamin D and its analogs may play a role in regulation of endothelial function and inflammation. We studied effects of paricalcitol compared to placebo on endothelial function and markers of inflammation and oxidative stress in patients with T2DM and CKD. A double blind, randomized, placebo-controlled trial was conducted in 60 patients with T2DM and stage 3 or 4 CKD. Paricalcitol 1 mcg or placebo was administered orally once daily for three months. Brachial artery flow mediated dilatation (FMD), nitroglycerine mediated dilation (NMD), and plasma concentrations of inflammatory cytokines, tumor necrosis factor -α and interleukin-6, highly-sensitive C-reactive protein; endothelial surface proteins, intercellular adhesion molecule -1 and monocyte chemo attractant protein-1, and plasma glucose, insulin, free fatty acids, and urinary isoprostane were measured at baseline and end of three months. 27 patients in the paricalcitol group and 28 patients in the control group completed the study, though analysis of FMD at both time points was possible in 23 patients in each group. There was no significant difference in the change in FMD, NMD or the biomarkers examined after paricalcitol or placebo treatment. Treatment with paricalcitol at this dose and duration did not affect brachial artery FMD or biomarkers of inflammation and oxidative stress. The lack of significance may be due to the fact that the study patients had advanced CKD and that effects of paricalcitol are not additive to the effects of glycemic, lipid and anti-hypertensive therapies. Published by Elsevier Inc.

  11. The differential effect of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women: relationship with the metabolic status.

    PubMed

    Villa, Paola; Costantini, Barbara; Suriano, Rosanna; Perri, Concetta; Macrì, Francesca; Ricciardi, Luigi; Panunzi, Simona; Lanzone, Antonio

    2009-02-01

    The wide family of the phytoestrogens has become an alternative to the classical hormonal therapy in menopause; nevertheless, some findings are still conflicting. To examine the effect of genistein administration on metabolic parameters and vascular reactivity considering the basal endocrine status of the patients. A randomized placebo controlled study was conducted at a university hospital. Fifty postmenopausal women participated. Thirty subjects (group A) were randomized to receive 54 mg/d genistein while 20 subjects (group B) were treated with the placebo for 24 wk. In group A, we distinguish two subgroups: 14 normoinsulinemic and 12 hyperinsulinemic patients. Anthropometric measures, hormonal and lipid assays, oral glucose tolerance test with glycemic, insulin, and C-peptide evaluation, indexes of insulin sensitivity and endothelial function, and euglycemic-hyperinsulinemic clamps were performed. The insulin basal values significantly decreased in group A, whereas the homeostasis model index of insulin sensitivity and the fasting glucose levels significantly improved compared with placebo group. The genistein administration decreased fasting glucose and area under the curve glucose levels in the normoinsulinemic patients after treatment. In the hyperinsulinemic patients, a significant reduction in fasting insulin, fasting C-peptide, and area under the curve insulin levels as well as an increase in fractional hepatic insulin extraction was shown. In these patients, high-density lipoprotein cholesterol levels were significantly improved. The endothelium-dependent and -independent dilatation improved in the treated group. Normoinsulinemic patients showed both a significantly enhanced flow-mediated and nitrate-mediated dilatation, whereas no significant changes were found in the hyperinsulinemic group. The glycoinsulinemic metabolism and the endothelial function were significantly influenced by genistein. In particular, normoinsulinemic patients showed an improvement in glycemic and vascular reactivity indexes. Conversely, an improvement in the insulin sensitivity indexes was noted in hyperinsulinemic patients.

  12. The effects of left and right monocular viewing on hemispheric activation.

    PubMed

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  13. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study.

    PubMed

    Bacchiega, Bruno Cesar; Bacchiega, Ana Beatriz; Usnayo, Magali Justina Gomez; Bedirian, Ricardo; Singh, Gurkirpal; Pinheiro, Geraldo da Rocha Castelar

    2017-03-13

    Atherosclerosis is a chronic inflammatory disease, with interleukin 6 (IL-6) as a major player in inflammation cascade. IL-6 blockade may reduce cardiovascular risk, but current treatments to block IL-6 also induce dyslipidemia, a finding with an uncertain prognosis. We aimed to determine the endothelial function responses to the IL-6-blocking agent tocilizumab, anti-tumor necrosis factor α, and synthetic disease-modifying antirheumatic drug therapies in patients with rheumatoid arthritis in a 16-week prospective study. Sixty consecutive patients with rheumatoid arthritis were enrolled. Tocilizumab and anti-tumor necrosis factor α therapy were started in 18 patients each while 24 patients were treated with synthetic disease-modifying antirheumatic drugs. Forty patients completed the 16-week follow-up period. The main outcome was flow-mediated dilation percentage variation before and after therapy. In the tocilizumab group, flow-mediated dilation percentage variation increased statistically significantly from a pre-treatment mean of (3.43% [95% CI, 1.28-5.58] to 5.96% [95% CI, 3.95-7.97]; P =0.03). Corresponding changes were 4.78% (95% CI, 2.13-7.42) to 6.75% (95% CI, 4.10-9.39) ( P =0.09) and 2.87% (95% CI, -2.17 to 7.91) to 4.84% (95% CI, 2.61-7.07) ( P =0.21) in the anti-tumor necrosis factor α and the synthetic disease-modifying antirheumatic drug groups, respectively (both not statistically significant). Total cholesterol increased significantly in the tocilizumab group from 197.5 (95% CI, 177.59-217.36) to 232.3 (201.62-263.09) ( P =0.003) and in the synthetic disease-modifying antirheumatic drug group from 185.8 (95% CI, 169.76-201.81) to 202.8 (95% CI, 176.81-228.76) ( P =0.04), but not in the anti-tumor necrosis factor α group. High-density lipoprotein did not change significantly in any group. Endothelial function is improved by tocilizumab in a high-risk population, even as it increases total cholesterol and low-density lipoprotein levels. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Endothelial Function in HIV-Infected Antiretroviral Naïve Subjects Before and After Starting Potent Antiretroviral Therapy: AIDS Clinical Trials Group Study 5152s

    PubMed Central

    Torriani, Francesca J.; Komarow, Lauren; Parker, Robert A.; Cotter, Bruno R.; Currier, Judith S.; Dubé, Michael P.; Fichtenbaum, Carl J.; Gerschenson, Mariana; Mitchell, Carol K.C.; Murphy, Robert L.; Squires, Kathleen; Stein, James H.

    2008-01-01

    Objectives This study evaluated the effects of three class-sparing antiretroviral therapy (ART) regimens on endothelial function in HIV-infected subjects participating in a randomized trial. Background Endothelial dysfunction has been observed in patients receiving ART for human immunodeficiency virus (HIV) infection. Methods This was a prospective, multicenter study of treatment-naïve subjects who were randomly assigned to receive a protease inhibitor-sparing regimen of nucleoside reverse transcriptase inhibitors (NRTIs) + efavirenz, a non-nucleoside reverse transcriptase inhibitor-sparing regimen of NRTIs + lopinavir/ritonavir, or a NRTI-sparing regimen of efavirenz + lopinavir/ritonavir. NRTIs were lamivudine + stavudine, zidovudine, or tenofovir. Brachial artery flow-mediated dilation (FMD) was determined by B-mode ultrasound before starting on ART, then after 4 and 24 weeks. Results There were 82 subjects (median age 35 years, 91% men, 54% white). Baseline CD4 cell counts and plasma HIV RNA values were 245 cells/mm3 and 4.8 log10 copies/ml, respectively. At baseline, FMD was 3.68% (interquartile range 1.98 – 5.51%). After 4 and 24 weeks of ART, plasma HIV RNA decreased by 2.1 and 3.0 log10 copies/mL, respectively. FMD increased by 0.74% (−0.62 – +2.74, p=0.003) and 1.48% (−0.20 – +4.30%, p< 0.001), respectively, with similar changes in each arm (pKW>0.600). The decrease in plasma HIV RNA at 24 weeks was associated with greater FMD (rs=− 0.30, p=0.017). Conclusions Among treatment-naïve individuals with HIV, three different ART regimens rapidly improved endothelial function. Benefits were similar for all ART regimens, appeared quickly, and persisted at 24 weeks. Condensed Abstract Among 82 treatment-naïve HIV-infected subjects participating in a prospective, multicenter study of three class-sparing antiretroviral therapy regimens, flow-mediated dilation of the brachial artery improved after 4 (+0.74%, p=0.003) and 24 weeks (+1.48%, p< 0.001), with similar changes in each arm (pKW>0.600). PMID:18687253

  15. Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults.

    PubMed

    Yoo, Jeung-Ki; Pinto, Michelle M; Kim, Han-Kyul; Hwang, Chueh-Lung; Lim, Jisok; Handberg, Eileen M; Christou, Demetra D

    2017-05-01

    There is growing evidence of sex differences in the chronic effect of aerobic exercise on endothelial function (flow-mediated dilation; FMD) in older adults, but whether there are sex differences also in the acute effect of aerobic exercise on FMD in older adults is unknown. The purpose of this study was to test the hypothesis that sex modulates the FMD response to acute aerobic exercise in older adults. Thirteen older men and fifteen postmenopausal women (67±1 vs. 65±2years, means±SE, P=0.6), non-smokers, free of major clinical disease, participated in this randomized crossover study. Brachial artery FMD was measured: 1) prior to exercise; 2) 20min after a single bout of high-intensity interval training (HIIT; 40min; 4×4 intervals 90% peak heart rate (HRpeak)), moderate-intensity continuous training (MICT; 47min 70% HRpeak) and low-intensity continuous training (LICT; 47min 50% HRpeak) on treadmill; and 3) following 60-min recovery from exercise. In older men, FMD was attenuated by 45% following HIIT (5.95±0.85 vs. 3.27±0.52%, P=0.003) and by 37% following MICT (5.97±0.87 vs. 3.73±0.47%, P=0.03; P=0.9 for FMD response to HIIT vs. MICT) and was normalized following 60-min recovery (P=0.99). In postmenopausal women, FMD did not significantly change in response to HIIT (4.93±0.55 vs. 6.31±0.57%, P=0.14) and MICT (5.32±0.62 vs. 5.60±0.68%, P=0.99). In response to LICT, FMD did not change in postmenopausal women nor older men (5.21±0.64 vs. 6.02±0.73%, P=0.7 and 5.70±0.80 vs. 5.55±0.67%, P=0.99). In conclusion, sex and exercise intensity influence the FMD response to acute aerobic exercise in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease.

    PubMed

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-05-01

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity-a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904.

  17. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease123

    PubMed Central

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-01-01

    Background: Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. Objective: The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. Design: We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. Results: In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Conclusions: Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity—a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904. PMID:21411615

  18. Pupil dilation signals uncertainty and surprise in a learning gambling task.

    PubMed

    Lavín, Claudio; San Martín, René; Rosales Jubal, Eduardo

    2013-01-01

    Pupil dilation under constant illumination is a physiological marker where modulation is related to several cognitive functions involved in daily decision making. There is evidence for a role of pupil dilation change during decision-making tasks associated with uncertainty, reward-prediction errors and surprise. However, while some work suggests that pupil dilation is mainly modulated by reward predictions, others point out that this marker is related to uncertainty signaling and surprise. Supporting the latter hypothesis, the neural substrate of this marker is related to noradrenaline (NA) activity which has been also related to uncertainty signaling. In this work we aimed to test whether pupil dilation is a marker for uncertainty and surprise in a learning task. We recorded pupil dilation responses in 10 participants performing the Iowa Gambling Task (IGT), a decision-making task that requires learning and constant monitoring of outcomes' feedback, which are important variables within the traditional study of human decision making. Results showed that pupil dilation changes were modulated by learned uncertainty and surprise regardless of feedback magnitudes. Interestingly, greater pupil dilation changes were found during positive feedback (PF) presentation when there was lower uncertainty about a future negative feedback (NF); and by surprise during NF presentation. These results support the hypothesis that pupil dilation is a marker of learned uncertainty, and may be used as a marker of NA activity facing unfamiliar situations in humans.

  19. Pupil dilation signals uncertainty and surprise in a learning gambling task

    PubMed Central

    Lavín, Claudio; San Martín, René; Rosales Jubal, Eduardo

    2014-01-01

    Pupil dilation under constant illumination is a physiological marker where modulation is related to several cognitive functions involved in daily decision making. There is evidence for a role of pupil dilation change during decision-making tasks associated with uncertainty, reward-prediction errors and surprise. However, while some work suggests that pupil dilation is mainly modulated by reward predictions, others point out that this marker is related to uncertainty signaling and surprise. Supporting the latter hypothesis, the neural substrate of this marker is related to noradrenaline (NA) activity which has been also related to uncertainty signaling. In this work we aimed to test whether pupil dilation is a marker for uncertainty and surprise in a learning task. We recorded pupil dilation responses in 10 participants performing the Iowa Gambling Task (IGT), a decision-making task that requires learning and constant monitoring of outcomes’ feedback, which are important variables within the traditional study of human decision making. Results showed that pupil dilation changes were modulated by learned uncertainty and surprise regardless of feedback magnitudes. Interestingly, greater pupil dilation changes were found during positive feedback (PF) presentation when there was lower uncertainty about a future negative feedback (NF); and by surprise during NF presentation. These results support the hypothesis that pupil dilation is a marker of learned uncertainty, and may be used as a marker of NA activity facing unfamiliar situations in humans. PMID:24427126

  20. Massage Therapy Restores Peripheral Vascular Function following Exertion

    PubMed Central

    Franklin, Nina C.; Ali, Mohamed M.; Robinson, Austin T.; Norkeviciute, Edita; Phillips, Shane A.

    2014-01-01

    Objective To determine if lower extremity exercise-induced muscle injury (EMI) reduces vascular endothelial function of the upper extremity and if massage therapy (MT) improves peripheral vascular function after EMI. Design Randomized, blinded trial with evaluations at 90 minutes, 24 hours, 48 hours, and 72 hours. Setting Clinical research center at an academic medical center and laboratory Participants Thirty-six sedentary young adults were randomly assigned to one of three groups: 1) EMI + MT (n=15; mean age ± standard error (SE): 26.6±0.3), 2) EMI only (n=10; mean age ± SE: 23.6±0.4), and 3) MT only (n=11; mean age ± SE: 25.5 ± 0.4). Intervention Participants were assigned to either EMI only (a single bout of bilateral, eccentric leg-press exercise), MT only (30-minute lower extremity massage using Swedish technique), or EMI + MT. Main outcome measures Brachial artery flow-mediated dilation (FMD) was determined by ultrasound at each time point. Nitroglycerin-induced dilation was also assessed (NTG; 0.4 mg). Results Brachial FMD increased from baseline in the EMI + MT group and the MT only group (7.38±0.18 to 9.02±0.28%, p<0.05 and 7.77±0.25 to 10.20±0.22%, p < 0.05, respectively) at 90 minutes remaining elevated until 72 hrs. In the EMI only group FMD was reduced from baseline at 24 and 48 hrs (7.78±0.14 to 6.75±0.11%, p<0.05 and 6.53±0.11, p<0.05, respectively) returning to baseline after 72 hrs. Dilations to NTG were similar over time. Conclusions Our results suggest that MT attenuates impairment of upper extremity endothelial function resulting from lower extremity EMI in sedentary young adults. PMID:24583315

  1. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: The Framingham Heart Study.

    PubMed

    Andersson, Charlotte; Enserro, Danielle; Sullivan, Lisa; Wang, Thomas J; Januzzi, James L; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Larson, Martin G; Mitchell, Gary F; Vasan, Ramachandran S

    2016-05-01

    Growth differentiation factor-15 (GDF-15), soluble (s)ST2, and high-sensitivity troponin-I (hs-TnI) are associated with incident cardiovascular disease (CVD) including heart failure, yet the underlying mechanisms are not fully understood. We investigated if GDF-15, sST2, and hs-TnI are related to subclinical vascular dysfunction in the community, which may explain the relations of these biomarkers with CVD. We evaluated 1823 Framingham Study participants (mean age 61 ± 10 years, 54% women) who underwent routine assessment of vascular function. We related circulating GDF-15, sST2, and hs-TnI concentrations to measures of arterial stiffness (carotid-femoral pulse wave velocity, CFPWV; augmentation index; and forward pressure wave amplitude, FW), endothelial-dependent vasodilation (flow-mediated dilation, FMD), and baseline and hyperemic brachial flow velocities using linear regression adjusting for standard risk factors. After multivariable adjustment, GDF-15 levels were positively associated with CFPWV (0.044 [95% confidence interval 0.007-0.081] standard deviation [SD] change per SD increase in loge[GDF-15], p = 0.02) and FW (0.076 [0.026-0.126] SD change per SD increase in loge[GDF-15], p = 0.003) and inversely related to FMD (-0.051 [-0.101-0.0003] SD change per SD increase in loge[GDF-15], p = 0.048). sST2 was positively associated with CFPWV (0.032 [0.0005-0.063] SD change per SD increase in loge[sST2], p = 0.046), and hs-TnI inversely associated with hyperemic flow velocity (-0.041 [-0.082-0.0004] SD change per SD increase in loge[hs-TnI], p = 0.048). In our community-based investigation, individual cardiac stress biomarkers were differentially related to select aspects of vascular function. These findings may contribute to the associations of circulating GDF-15, sST2, and hs-TnI with incident CVD and heart failure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  3. Dilation and breakage dissipation of granular soils subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Sun, Yifei; Xiao, Yang; Ji, Hua

    2016-12-01

    Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become stabilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule considering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by particle breakage.

  4. 6D.03: FLOW-MEDIATED DILATATION (FMD) AND ENDOTHELIUM-INDEPENDENT DILATATION (EID) IN PATIENTS WITH MULTIFOCAL FIBROMUSCULAR DYSPLASIA: A CROSS-SECTIONAL STUDY.

    PubMed

    Khettab, H; Lorthior, A; Niarra, R; Chambon, Y; Jeunemaitre, X; Plouin, P F; Laurent, S; Boutouyrie, P; Azizi, M

    2015-06-01

    Fibromuscular dysplasia (FD) is a rare idiopathic, segmental, non-atherosclerotic non-inflammatory vascular disease. We previously showed that FD is a general arterial disease with focal exacerbation of the trait. However, whether endothelial dysfunction may be involved in the pathophysiology of FD is unclear. In a cross sectional study, we compared the endothelial function between 50 patients with multifocal FD of renal/carotid arteries confirmed by CT-angiography, 50 essential hypertensive (EH) patients matched for age, sex, ethnicity and BP and 50 healthy subjects (HS) matched for age, sex and ethnicity. Exclusion criteria were: tobacco consumption, hypercholesterolemia, diabetes, aspirin or statin treatment. Brachial artery (BA) FMD after release of hand ischemia and glyceryl trinitrate (GTN)-induced EID was measured using a high-resolution radiofrequency-based echotracking system blind to the diagnosis. FD, EH and HS were well matched (52yrs, 85% women, 80% caucasian). SBP was higher in FD (125 ± 15mmHg) and EH (121 ± 12mmHg) than EH (113 ± 10mmHg) despite antihypertensive treatments. BA external diameter was significantly lower in FD than in both HS and EH before, during and after hand ischemia and after GTN. BA intima media thickness (IMT), internal diameter did not differ between the 3 groups. FMD (%) or EID (%) did not significantly differ between the 3 groups. BA flow velocity did not significantly differ in any experimental condition.(Figure is included in full-text article.) : In conclusion, despite showing similar acute vasodilatory responses to flow and GTN, FD patients differed from EH and HS in terms of arterial morphology with smaller BA diameter associated with similar IMT. This paradoxical remodeling may suggest a chronic defect in the endothelium-dependent pathways involved in arterial remodeling in FD patients.

  5. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  6. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy.

    PubMed

    Pepe, Martino; Mamdani, Mohammed; Zentilin, Lorena; Csiszar, Anna; Qanud, Khaled; Zacchigna, Serena; Ungvari, Zoltan; Puligadda, Uday; Moimas, Silvia; Xu, Xiaobin; Edwards, John G; Hintze, Thomas H; Giacca, Mauro; Recchia, Fabio A

    2010-06-25

    Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy, which limits apoptotic cell loss and delays the progression toward failure.

  7. Computational fluid dynamics simulation of pressure and velocity distribution inside Meniere’s diseased vestibular system

    NASA Astrophysics Data System (ADS)

    Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.

    2017-09-01

    Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.

  8. Comparative effects of torasemide and furosemide on gap junction proteins and cardiac fibrosis in a rat model of dilated cardiomyopathy.

    PubMed

    Watanabe, Kenichi; Sreedhar, Remya; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Giridharan, Vijayasree V; Antony, Shanish; Harima, Meilei; Nakamura, Masahiko; Suzuki, Kenji; Suzuki, Hiroshi; Sone, Hirohito; Arumugam, Somasundaram

    2017-03-01

    Cardiac fibrosis is the major hallmark of adverse cardiac remodeling in chronic heart failure (CHF) and its therapeutic targeting might help against cardiac dysfunction during chronic conditions. Diuretic agents are potentially useful in these cases, but their effects on the cardiac fibrosis pathogenesis are yet to be identified. This study was designed to identify and compare the effects of diuretic drugs torasemide and furosemide on cardiac fibrosis in a rat model of dilated cardiomyopathy induced by porcine cardiac myosin mediated experimental autoimmune myocarditis. Gap junction proteins, connexin-43 and N-cadherin, expressions were downregulated in the hearts of CHF rats, while torasemide treatment has upregulated their expression. Western blotting and immunohistochemical analysis for various cardiac fibrosis related proteins as well as histopathological studies have shown that both drugs have potential anti-fibrotic effects. Among them, torasemide has superior efficacy in offering protection against adverse cardiac remodeling in the selected rat model of dilated cardiomyopathy. In conclusion, torasemide treatment has potential anti-fibrotic effect in the hearts of CHF rats, possibly via improving the gap junction proteins expression and thereby improving the cell-cell interaction in the heart. © 2016 BioFactors, 43(2):187-194, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  9. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart

    PubMed Central

    Kjekshus, John K.; Mjøs, Ole D.

    1972-01-01

    Since elevation of plasma concentrations of free fatty acids (FFA) increases myocardial oxygen consumption without influencing mechanical performance in normal hearts, it was the purpose of this study to determine whether FFA would modify mechanical performance at limited oxygen supply. Left coronary blood flow was reduced by gradual clamping of a shunt from the left carotid artery until moderate ventricular dilatation supervened. Left ventricular systolic pressure (LVSP), its maximal rate of rise (dP/dt) and stroke volume (SV) were unchanged or slightly reduced. The ischemia resulted in a decrease in myocardial oxygen consumption (MVO2) from 9.7±1.1 ml/min to 7.9±0.8 ml/min, and myocardial lactate uptake was reduced or reversed to excretion. Increasing the plasma concentrations of FFA from 359±47 μEq/1 to 3688±520 μEq/1 by intravenous infusion of a triglyceride emulsion and heparin resulted in further ventricular dilatation, accompanied by increased excretion of lactate. The ventricular decompensation and enhancement of anaerobic myocardial metabolism associated with increased uptake of FFA was not related to changes in coronary flow, MVO2, or LVSP. dP/dt and SV were virtually unchanged. Intravenous infusion of glucose/insulin, which lowered plasma concentrations of FFA, reversed ventricular dilatation and lactate excretion. The data support the hypothesis that high concentrations of FFA play a significant role in increasing myocardial oxygen requirement and thereby promote depression of contractility of the hypoxic heart in experimental animals. Images PMID:5032525

  10. Prognostic indicators for dogs with dilated cardiomyopathy.

    PubMed

    Borgarelli, Michele; Santilli, Roberto A; Chiavegato, David; D'Agnolo, Gino; Zanatta, Renato; Mannelli, Alessandro; Tarducci, Alberto

    2006-01-01

    The purpose of this study was to investigate the prognostic value of various clinical, ECG, echocardiographic, and Doppler echocardiographic variables in dogs with dilated cardiomyopathy. The relationship to survival of 11 variables was evaluated in 63 dogs. Studied variables were age at time of diagnosis, class of heart failure (HF), dyspnea, ascites, atrial fibrillation (AF), ejection fraction (EF), E-point septal separation, end-diastolic volume index, end-systolic volume index (ESV-I), and restrictive or nonrestrictive transmitral flow (TMF) pattern. Median survival time was 671 days (lower 95% confidence limit, 350 days). Survival curves showed that severity of HF, ascites, ESV-I greater than 140 mL/m2, EF less than 25%, and restrictive TMF pattern had a significant negative relation to survival time. Thirty-nine dogs with both sinus rhythm and AF presented adequate TMF recordings; in these dogs, after stratification by TMF pattern, the restrictive TMF pattern was the most important negative prognostic indicator. We conclude that in dogs with dilated cardiomyopathy the restrictive TMF pattern appears to represent a useful prognostic indicator. Class of HF, ascites, ESV-I, and EF are also useful indexes if an adequate TMF pattern is not recorded.

  11. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.

    PubMed

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines

    2016-09-01

    Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function.

    PubMed

    Cortés, Berenice; Núñez, Isabel; Cofán, Montserrat; Gilabert, Rosa; Pérez-Heras, Ana; Casals, Elena; Deulofeu, Ramón; Ros, Emilio

    2006-10-17

    We sought to investigate whether the addition of walnuts or olive oil to a fatty meal have differential effects on postprandial vasoactivity, lipoproteins, markers of oxidation and endothelial activation, and plasma asymmetric dimethylarginine (ADMA). Compared with a Mediterranean diet, a walnut diet has been shown to improve endothelial function in hypercholesterolemic patients. We hypothesized that walnuts would reverse postprandial endothelial dysfunction associated with consumption of a fatty meal. We randomized in a crossover design 12 healthy subjects and 12 patients with hypercholesterolemia to 2 high-fat meal sequences to which 25 g olive oil or 40 g walnuts had been added. Both test meals contained 80 g fat and 35% saturated fatty acids, and consumption of each meal was separated by 1 week. Venipunctures and ultrasound measurements of brachial artery endothelial function were performed after fasting and 4 h after test meals. In both study groups, flow-mediated dilation (FMD) was worse after the olive oil meal than after the walnut meal (p = 0.006, time-period interaction). Fasting, but not postprandial, triglyceride concentrations correlated inversely with FMD (r = -0.324; p = 0.024). Flow-independent dilation and plasma ADMA concentrations were unchanged, and the concentration of oxidized low-density lipoproteins decreased (p = 0.051) after either meal. The plasma concentrations of soluble inflammatory cytokines and adhesion molecules decreased (p < 0.01) independently of meal type, except for E-selectin, which decreased more (p = 0.033) after the walnut meal. Adding walnuts to a high-fat meal acutely improves FMD independently of changes in oxidation, inflammation, or ADMA. Both walnuts and olive oil preserve the protective phenotype of endothelial cells.

  13. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    PubMed

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron communication in the brain slice defined here as vasculo-neuronal coupling. We showed that, in response to increases in parenchymal arteriole tone, astrocyte intracellular Ca 2+ increased and cortical neuronal activity decreased. On the other hand, decreasing parenchymal arteriole tone increased resting cortical pyramidal neuron activity. Vasculo-neuronal coupling was partly mediated by TRPV4 channels as genetic ablation, or pharmacological blockade impaired increased flow/pressure-evoked neuronal inhibition. Increased flow/pressure-evoked neuronal inhibition was blocked in the presence of adenosine A1 receptor and GABA B receptor blockade. Results provide evidence for the concept of vasculo-neuronal coupling and highlight the importance of understanding the interplay between basal CBF and resting neuronal activity. Copyright © 2016 the authors 0270-6474/16/3612624-16$15.00/0.

  14. The effect of Bikram yoga on endothelial function in young and middle-aged and older adults.

    PubMed

    Hunter, Stacy D; Dhindsa, Mandeep S; Cunningham, Emily; Tarumi, Takashi; Alkatan, Mohammed; Nualnim, Nantinee; Elmenshawy, Ahmed; Tanaka, Hirofumi

    2017-01-01

    The purpose of this investigation was to determine if Bikram yoga, a style of heated hatha yoga, would improve endothelial function in young and middle-aged and older, healthy adults. This trial was performed in 36 young (n = 17) and middle-aged and older adults (n = 19) who completed 3 weekly Bikram yoga classes for 8 weeks. Height, body weight and body composition were determined and endothelial function was measured noninvasively using brachial artery flow-mediated dilation (FMD) before and after the intervention. No changes in body weight, BMI or body fat percentage occurred as a result of the intervention in either group. Brachial artery FMD was significantly increased in middle-aged and older (P < 0.05) but not in young adults as a result of the intervention. The results demonstrate that a relatively short-term Bikram yoga practice might significantly improve vascular endothelial function in middle-aged and older adults. While apparently healthy individuals in this study experienced no adverse events, those with preexisting conditions should take caution and consult with a physician prior to engaging in this style of yoga. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of cerebral blood vessel movements on the position of perivascular synapses.

    PubMed

    Urrecha, Miguel; Romero, Ignacio; DeFelipe, Javier; Merchán-Pérez, Angel

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow.

  16. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.

  17. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    PubMed Central

    Hasham, Muneer G.; Baxan, Nicoleta; Stuckey, Daniel J.; Branca, Jane; Perkins, Bryant; Dent, Oliver; Duffy, Ted; Hameed, Tolani S.; Stella, Sarah E.; Bellahcene, Mohammed; Schneider, Michael D.; Harding, Sian E.; Rosenthal, Nadia

    2017-01-01

    ABSTRACT Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. PMID:28250051

  18. Viscous Energy Loss in the Presence of Abnormal Aortic Flow

    PubMed Central

    Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R. O.; Carr, J.; Collins, J.; Malaisrie, C.; Markl, M.

    2014-01-01

    Purpose To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses, and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Methods 4D flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n=12, age=37±10), patients with aortic dilation (n=16, age=52±8), and patients with aortic valve stenosis matched for age and aortic size (n=14, age=46±15), using a relationship between the 3D velocity field and viscous energy dissipation. Results Viscous energy loss was significantly elevated in the thoracic aorta for patients with dilated aorta (3.6±1.3 mW, p=0.024) and patients with aortic stenosis (14.3±8.2 mW, p<0.001) compared to healthy volunteers (2.3±0.9 mW). The same pattern of significant differences were seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2±1.1 mW, p=0.021) and patients with aortic stenosis (10.9±6.8 mW, p<0.001) were elevated compared to healthy volunteers (1.2±0.6 mW). Conclusion This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. PMID:24122967

  19. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

  20. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

  1. Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.

    PubMed

    Coffman, J D

    1994-12-01

    The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.

  2. Preliminary Evidence for the Impact of Combat Experiences on Gray Matter Volume of the Posterior Insula

    PubMed Central

    Clausen, Ashley N.; Billinger, Sandra A.; Sisante, Jason-Flor V.; Suzuki, Hideo; Aupperle, Robin L.

    2017-01-01

    Background: Combat-exposed veteran populations are at an increased risk for developing cardiovascular disease. The anterior cingulate cortex (ACC) and insula have been implicated in both autonomic arousal to emotional stressors and homeostatic processes, which may contribute to cardiovascular dysfunction in combat veteran populations. The aim of the present study was to explore the intersecting relationships of combat experiences, rostral ACC and posterior insula volume, and cardiovascular health in a sample of combat veterans. Method: Twenty-four male combat veterans completed clinical assessment of combat experiences and posttraumatic stress symptoms. Subjects completed a magnetic resonance imaging scan and autosegmentation using FreeSurfer was used to estimate regional gray matter volume (controlling for total gray matter volume) of the rostral ACC and posterior insula. Flow-mediated dilation (FMD) was conducted to assess cardiovascular health. Theil-sen robust regressions and Welch's analysis of variance were used to examine relationships of combat experiences and PTSD symptomology with (1) FMD and (2) regional gray matter volume. Results: Increased combat experiences, deployment duration, and multiple deployments were related to smaller posterior insula volume. Combat experiences were marginally associated with poorer cardiovascular health. However, cardiovascular health was not related to rostral ACC or posterior insula volume. Conclusion: The present study provides initial evidence for the relationships of combat experiences, deployment duration, and multiple deployments with smaller posterior insula volume. Results may suggest that veterans with increased combat experiences may exhibit more dysfunction regulating the autonomic nervous system, a key function of the posterior insula. However, the relationship between combat and cardiovascular health was not mediated by regional brain volume. Future research is warranted to further clarify the cardiovascular or functional impact of smaller posterior insula volume in combat veterans. PMID:29312038

  3. How effective are current dietary guidelines for cardiovascular disease prevention in healthy middle-aged and older men and women? A randomized controlled trial.

    PubMed

    Reidlinger, Dianne P; Darzi, Julia; Hall, Wendy L; Seed, Paul T; Chowienczyk, Philip J; Sanders, Thomas A B

    2015-05-01

    Controversy surrounds the effectiveness of dietary guidelines for cardiovascular disease (CVD) prevention in healthy middle-aged and older men and women. The objective was to compare effects on vascular and lipid CVD risk factors of following the United Kingdom dietary guidelines with a traditional British diet (control). With the use of a parallel-designed randomized controlled trial in 165 healthy nonsmoking men and women (aged 40-70 y), we measured ambulatory blood pressure (BP) on 5 occasions, vascular function, and CVD risk factors at baseline and during 12 wk after random assignment to treatment. The primary outcomes were differences between treatments in daytime ambulatory systolic BP, flow-mediated dilation, and total cholesterol/HDL cholesterol. Secondary outcomes were differences between treatment in carotid-to-femoral pulse wave velocity, high-sensitivity C-reactive protein, and a measure of insulin sensitivity (Revised Quantitative Insulin Sensitivity Check Index). Data were available on 162 participants, and adherence to the dietary advice was confirmed from dietary records and biomarkers of compliance. In the dietary guidelines group (n = 80) compared with control (n = 82), daytime systolic BP was 4.2 mm Hg (95% CI: 1.7, 6.6 mm Hg; P < 0.001) lower, the treatment effect on flow-mediated dilation [-0.62% (95% CI: -1.48%, 0.24%)] was not significant, the total cholesterol:HDL cholesterol ratio was 0.13 (95% CI: 0, 0.26; P = 0.044) lower, pulse wave velocity was 0.29 m/s (95% CI: 0.07, 0.52 m/s; P = 0.011) lower, high-sensitivity C-reactive protein was 36% (95% CI: 7%, 48%; P = 0.017) lower, the treatment effect on the Revised Quantitative Insulin Sensitivity Check Index [2% (95% CI: -2%, 5%)] was not significant, and body weight was 1.9 kg (95% CI: 1.3, 2.5 kg; P < 0.001) lower. Causal mediated effects analysis based on urinary sodium excretion indicated that sodium reduction explained 2.4 mm Hg (95% CI: 1.0, 3.9 mm Hg) of the fall in blood pressure. Selecting a diet consistent with current dietary guidelines lowers BP and lipids, which would be expected to reduce the risk of CVD by one-third in healthy middle-aged and older men and women. This study is registered at www.isrctn.com as 92382106. © 2015 American Society for Nutrition.

  4. Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates.

    PubMed

    Chadderdon, Scott M; Belcik, J Todd; Smith, Elise; Pranger, Lindsay; Kievit, Paul; Grove, Kevin L; Lindner, Jonathan R

    2012-09-01

    Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This study's objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) after sedation with ketamine and during maintenance anesthesia with isoflurane. Thirteen normal-activity (NA) and six activity-restricted (AR) primates underwent contrast-enhanced ultrasound to determine skeletal muscle capillary blood volume (CBV) during an intravenous glucose tolerance test (IVGTT) and during contractile exercise. NO bioactivity was assessed by flow-mediated vasodilation. Although there were no differences in weight, basal glucose, basal insulin, or truncal fat, AR primates were insulin resistant compared with NA primates during an IVGTT (2,225 ± 734 vs. 5,171 ± 3,431 μg·ml⁻¹·min⁻¹, P < 0.05). Peak CBV was lower in AR compared with NA primates during IVGTT (0.06 ± 0.01 vs. 0.12 ± 0.02 ml/g, P < 0.01) and exercise (0.10 ± 0.02 vs. 0.20 ± 0.02 ml/g, P < 0.01), resulting in a lower peak skeletal muscle blood flow in both circumstances. The insulin-mediated changes in CBV correlated inversely with the degree of IR and directly with activity. Flow-mediated dilation was lower in the AR primates (4.6 ± 1.0 vs. 9.8 ± 2.3%, P = 0.01). Thus, activity restriction produces impaired skeletal muscle capillary recruitment during a carbohydrate challenge and contributes to IR in the absence of obesity. Reduced NO bioactivity may be a pathological link between inactivity and impaired capillary function.

  5. Compressible Turbulent Channel Flows: DNS Results and Modeling

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.

  6. Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Chakraborty, Suman

    2018-02-01

    The effect of surface viscosity on the motion of a surfactant-laden droplet in the presence of a non-isothermal Poiseuille flow is studied, both analytically and numerically. The presence of bulk-insoluble surfactants along the droplet surface results in interfacial shear and dilatational viscosities. This, in turn, is responsible for the generation of surface-excess viscous stresses that obey the Boussinesq-Scriven constitutive law for constant values of surface shear and dilatational viscosities. The present study is primarily focused on finding out how this confluence can be used to modulate droplet dynamics in the presence of Marangoni stress induced by nonuniform distribution of surfactants and temperature along the droplet surface, by exploiting an intricate interplay of the respective forcing parameters influencing the interfacial stresses. Under the assumption of negligible fluid inertia and thermal convection, the steady-state migration velocity of a non-deformable spherical droplet, placed at the centerline of an imposed unbounded Poiseuille flow, is obtained for the limiting case when the surfactant transport along the interface is dominated by surface diffusion. Our analysis proves that the droplet migration velocity is unaffected by the shear viscosity whereas the dilatational viscosity has a significant effect on the same. The surface viscous effects always retard the migration of a surfactant-laden droplet when the temperature in the far-field increases in the direction of the imposed flow although the droplet always migrates towards the hotter region. On the contrary, if a large temperature gradient is applied in a direction opposite to that of the imposed flow, the direction of droplet migration gets reversed. However, for a sufficiently high value of dilatational surface viscosity, the direction of droplet migration reverses. For the limiting case in which the surfactant transport along the droplet surface is dominated by surface convection, on the other hand, surface viscosities do not have any effect on the motion of the droplet. These results are likely to have far-reaching consequences in designing an optimal migration path in droplet-based microfluidic technology.

  7. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution.

    PubMed

    Alberti, C

    2012-02-01

    The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions, thus predicting which patients must require an obstruction correcting surgery and in which patients, instead, the hydronephrosis will spontaneously resolve.

  8. Dilatancy of Shear Transformations in a Colloidal Glass

    NASA Astrophysics Data System (ADS)

    Lu, Y. Z.; Jiang, M. Q.; Lu, X.; Qin, Z. X.; Huang, Y. J.; Shen, J.

    2018-01-01

    Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear, which is the focus of the present study. Here, we use a colloidal glass under shear as the prototype to directly observe the shear-transformation events in real space. By tracing the colloidal-particle rearrangements, we quantitatively determine two basic properties of shear transformations: local shear strain and dilatation (or free volume). It is revealed that the local free volume undergoes a significantly temporary increase prior to shear transformations, eventually leading to a jump of local shear strain. We clearly demonstrate that shear transformations have no memory of the initial free volume of local regions. Instead, their emergence strongly depends on the dilatancy ability of these local regions, i.e., the dynamic creation of free volume. More specifically, the particles processing the high dilatancy ability directly participate in subsequent shear transformations. These results experimentally enrich Argon's statement about the dilatancy nature of shear transformations and also shed insight into the structural origin of amorphous plasticity.

  9. Cohesion, Cracking, Dilation, and Flow -- Rheological Behavior of Cohesive Pharmaceutical Powders

    NASA Astrophysics Data System (ADS)

    Muzzio, Fernando

    2007-03-01

    Cohesive powders can be loosely defined as systems where the attractive forced between particles exceed the average particle weight. Cohesive powder flow is interesting from a wide range of reasons. Their main characteristic, intermittence, is evidenced both in the interruption of flow out of hoppers (a mundane issue causing great annoyance to industrial practitioners) and in the sudden avalanching of snow and dirt that has terrified and terrified mankind since the dawn of time. At the present time, our ability to predict either of these phenomena (and many more involving cohesive powders) is very limited, primarily due to an incomplete understanding of their constitutive behavior. To wit, consider just a simple fact: a flowing powder never has constant density. Equations describing the relationship between velocity, shear, stress, and density are rudimentary at best. Computational and experimental approaches for characterizing flow behavior are in their infancy. In this talk, I will describe some recent progress achieved at Rutgers by our group. New instruments have been developed to determine simultaneously powder density and cohesive flow effects. Extensive measurements have been carried out focusing on pharmaceutical blends. These results have been used to fine-tune computational models that accurately predict dilation, flow in drums, and flow in hoppers. Impact of these observations for pharmaceutical manufacturing applications will be discussed in some detail.

  10. Endothelial function in highly endurance-trained and sedentary, healthy young women.

    PubMed

    Moe, Ingvild T; Hoven, Heidi; Hetland, Eva V; Rognmo, Oivind; Slørdahl, Stig A

    2005-05-01

    Endothelial function is reduced by age, chronic heart failure, coronary artery disease, hypertension or type 2 diabetes, and it is shown that aerobic exercise may reverse this trend. The effect of a high aerobic training status on endothelial function in young, healthy subjects is however less clear. The present study was designed to determine whether endothelial function is improved in highly endurance-trained young women compared to sedentary, healthy controls. Brachial artery diameter was measured in 16 endurance-trained (age: 23.7 +/- 2.5 years, maximal oxygen uptake (VO2max): 60.6 +/- 4.5 ml/kg per min) and 14 sedentary females (age: 23.7 +/- 2.1 years, VO2max: 40.5 +/- 5.6 ml/kg per min) at rest, during flow-mediated dilation (FMD) and after sublingual glycerol trinitrate administration, using high-resolution ultrasound. FMD did not differ between the endurance-trained and the sedentary females (14.8% vs 16.4%, p = NS), despite a substantial difference in VO2max of 50% (p < 0.001). The endurance-trained group possessed however, a 9% larger resting brachial artery diameter when adjusted for body surface area. The results of the present study suggest that endothelial function is well preserved in young, healthy women, and that a high aerobic training status due to long term aerobic training does not improve the dilating capacity any further.

  11. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes.

    PubMed

    Anastasiou, E; Lekakis, J P; Alevizaki, M; Papamichael, C M; Megas, J; Souvatzoglou, A; Stamatelopoulos, S F

    1998-12-01

    To assess whether otherwise healthy women with a history of gestational diabetes mellitus (GDM) may have abnormalities in endothelial function at a very early stage, before glucose intolerance occurs. A total of 33 women with previous GDM (17 nonobese [BMI < 27] and 16 obese [BMI > or = 27]) and 19 healthy nonobese women were examined. A 75-g oral glucose tolerance test was performed, and insulin levels and biochemical parameters were also measured. Using high-resolution ultrasound, we measured vasodilatory responses of the brachial artery during reactive hyperemia (endothelium-dependent vasodilatation), and after nitroglycerin administration, an endothelium-independent vasodilator. Flow-mediated dilatation (FMD) was significantly and equally decreased in both groups of women with previous GDM, compared with control subjects (1.6 +/- 3.7% in the nonobese GDM group and 1.6 +/- 2.5% in the obese GDM group vs. 10.3 +/- 4.4% in control subjects, P < 0.001). FMD correlated inversely with serum uric acid levels, BMI, serum total cholesterol, and basal insulin resistance (homeostasis model assessment). Nitrate-induced dilatation was significantly decreased only in the obese GDM group compared with control subjects, (21.4 +/- 5.1 vs. 27.9 +/- 9.5, P < 0.05). Endothelial dysfunction, which is considered as a very early index of atherogenesis, is already present in both obese and nonobese women with a history of GDM, even when they have normal glucose tolerance.

  12. Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving.

    PubMed

    Obad, Ante; Valic, Zoran; Palada, Ivan; Brubakk, Alf O; Modun, Darko; Dujić, Zeljko

    2007-12-01

    We have recently shown that a single air dive leads to acute arterial vasodilation and impairment of endothelium-dependent vasodilatation in humans. Additionally we have found that predive antioxidants at the upper recommended daily allowance partially prevented some of the negative effects of the dive. In this study we prospectively evaluated the effect of long-term antioxidants at a lower RDA dose on arterial endothelial function. Eight professional male divers performed an open sea air dive to 30 msw. Brachial artery flow-mediated dilation (FMD) was assessed before and after diving. The first dive, without antioxidants, caused significant brachial arterial diameter increase from 3.85 +/- 0.55 to 4.04 +/- 0.5 mm and a significant reduction of FMD from 7.6 +/- 2.7 to 2.8 +/- 2.1%. The second dive, with antioxidants, showed unchanged arterial diameter and significant reduction of FMD from 8.11 +/- 2.4 to 6.8 +/- 1.4%. The FMD reduction was significantly less with antioxidants. Vascular smooth muscle function, assessed by nitroglycerine (endothelium-independent dilation), was unaffected by diving. This study shows that long-term antioxidant treatment at a lower RDA dose ending 3-4 h before a dive reduces the endothelial dysfunction in divers. Since the scuba dive was of a similar depth and duration to those practiced by numerous recreational divers, this study raises the possibility of routine predive supplementation with antioxidants.

  13. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers

    PubMed Central

    Bahra, M.; Kapil, V.; Pearl, V.; Ghosh, S.; Ahluwalia, A.

    2012-01-01

    Ingestion of inorganic nitrate elevates blood and tissue levels of nitrite via bioconversion in the entero-salivary circulation. Nitrite is converted to NO in the circulation, and it is this phenomenon that is thought to underlie the beneficial effects of inorganic nitrate in humans. Our previous studies have demonstrated that oral ingestion of inorganic nitrate decreases blood pressure and inhibits the transient endothelial dysfunction caused by ischaemia–reperfusion injury in healthy volunteers. However, whether inorganic nitrate might improve endothelial function per se in the absence of a pathogenic stimulus and whether this might contribute to the blood pressure lowering effects is yet unknown. We conducted a randomised, double-blind, crossover study in 14 healthy volunteers to determine the effects of oral inorganic nitrate (8 mmol KNO3) vs. placebo (8 mmol KCl) on endothelial function, measured by flow-mediated dilatation (FMD) of the brachial artery, prior to and 3 h following capsule ingestion. In addition, blood pressure (BP) was measured and aortic pulse wave velocity (aPWV) determined. Finally, blood, saliva and urine samples were collected for chemiluminescence analysis of [nitrite] and [nitrate] prior to and 3 h following interventions. Inorganic nitrate supplementation had no effect on endothelial function in healthy volunteers (6.9 ± 1.1% pre- to 7.1 ± 1.1% post-KNO3). Despite this, there was a significant elevation of plasma [nitrite] (0.4 ± 0.1 μM pre- to 0.7 ± 0.2 μM post-KNO3, p < 0.001). In addition these changes in [nitrite] were associated with a decrease in systolic BP (116.9 ± 3.8 mm Hg pre- vs. 112.1 ± 3.4 mm Hg post-KNO3, p < 0.05) and aPWV (6.5 ± 0.1 m/s pre- to 6.2 ± 0.1 post-KNO3, p < 0.01). In contrast KCl capsules had no effect on any of the parameters measured. These findings demonstrate that although inorganic nitrate ingestion does not alter endothelial function per se, it does appear to improve blood flow, in combination with a reduction in blood pressure. It is likely that these changes are due to the intra-vascular production of NO. PMID:22285857

  14. Influence of cerebral blood vessel movements on the position of perivascular synapses

    PubMed Central

    DeFelipe, Javier

    2017-01-01

    Synaptic activity is regulated and limited by blood flow, which is controlled by blood vessel dilation and contraction. Traditionally, the study of neurovascular coupling has mainly focused on energy consumption and oxygen delivery. However, the mechanical changes that blood vessel movements induce in the surrounding tissue have not been considered. We have modeled the mechanical changes that movements of blood vessels cause in neighboring synapses. Our simulations indicate that synaptic densities increase or decrease during vascular dilation and contraction, respectively, near the blood vessel walls. This phenomenon may alter the concentration of neurotransmitters and vasoactive substances in the immediate vicinity of the vessel wall and thus may have an influence on local blood flow. PMID:28199396

  15. Trauma exposure and endothelial function among midlife women.

    PubMed

    Thurston, Rebecca C; Barinas-Mitchell, Emma; von Känel, Roland; Chang, Yuefang; Koenen, Karestan C; Matthews, Karen A

    2018-04-01

    Trauma is a potent exposure that can have implications for health. However, little research has considered whether trauma exposure is related to endothelial function, a key process in the pathophysiology of cardiovascular disease (CVD). We tested whether exposure to traumatic experiences was related to poorer endothelial function among midlife women, independent of CVD risk factors, demographic factors, psychosocial factors, or a history of childhood abuse. In all, 272 nonsmoking perimenopausal and postmenopausal women aged 40 to 60 years without clinical CVD completed the Brief Trauma Questionnaire, the Child Trauma Questionnaire, physical measures, a blood draw, and a brachial ultrasound for assessment of brachial artery flow-mediated dilation (FMD). Relations between trauma and FMD were tested in linear regression models controlling for baseline vessel diameter, demographics, depression/anxiety, CVD risk factors, health behaviors, and, additionally, a history of childhood abuse. Over 60% of the sample had at least one traumatic exposure, and 18% had three or more exposures. A greater number of traumatic exposures was associated with lower FMD, indicating poorer endothelial function in multivariable models (beta, β [standard error, SE] -1.05 [0.40], P = 0.01). Relations between trauma exposure and FMD were particularly pronounced for three or more trauma exposures (b [SE] -1.90 [0.71], P = 0.008, relative to no exposures, multivariable). A greater number of traumatic exposures were associated with poorer endothelial function. Relations were not explained by demographics, CVD risk factors, mood/anxiety, or a by history of childhood abuse. Women with greater exposure to trauma over life maybe at elevated CVD risk.

  16. Effect of a Flared Renal Stent on the Performance of Fenestrated Stent-Grafts at Rest and Exercise Conditions.

    PubMed

    Kandail, Harkamaljot; Hamady, Mohamad; Xu, Xiao Yun

    2016-10-01

    To quantify the hemodynamic impact of a flared renal stent on the performance of fenestrated stent-grafts (FSGs) by analyzing flow patterns and wall shear stress-derived parameters in flared and nonflared FSGs in different physiologic scenarios. Hypothetical models of FSGs were created with and without flaring of the proximal portion of the renal stent. Flared FSGs with different dilation angles and protrusion lengths were examined, as well as a nonplanar flared FSG to account for lumbar curvature. Laminar and pulsatile blood flow was simulated by numerically solving Navier-Stokes equations. A physiologically realistic flow rate waveform was prescribed at the inlet, while downstream vasculature was modeled using a lumped parameter 3-element windkessel model. No slip boundary conditions were imposed at the FSG walls, which were assumed to be rigid. While resting simulations were performed on all the FSGs, exercise simulations were also performed on a flared FSG to quantify the effect of flaring in different physiologic scenarios. For cycle-averaged inflow of 2.94 L/min (rest) and 4.63 L/min (exercise), 27% of blood flow was channeled into each renal branch at rest and 21% under exercise for all the flared FSGs examined. Although the renal flow waveform was not affected by flaring, flow within the flared FSGs was disturbed. This flow disturbance led to high endothelial cell activation potential (ECAP) values at the renal ostia for all the flared geometries. Reducing the dilation angle or protrusion length and exercise lowered the ECAP values for flared FSGs. Flaring of renal stents has a negligible effect on the time dependence of renal flow rate waveforms and can maintain sufficient renal perfusion at rest and exercise. Local flow patterns are, however, strongly dependent on renal flaring, which creates a local flow disturbance and may increase the thrombogenicity at the renal ostia. Smaller dilation angles, shorter protrusion lengths, and moderate lower limb exercise are likely to reduce the risk of thrombosis in flared geometries. © The Author(s) 2016.

  17. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

  18. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    PubMed Central

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  19. Labor induction and cesarean delivery: A prospective cohort study of first births in Pennsylvania, USA.

    PubMed

    Kjerulff, Kristen H; Attanasio, Laura B; Edmonds, Joyce K; Kozhimannil, Katy B; Repke, John T

    2017-09-01

    Mode of delivery at first childbirth largely determines mode of delivery at subsequent births, so it is particularly important to understand risk factors for cesarean delivery at first childbirth. In this study, we investigated risk factors for cesarean delivery among nulliparous women, with focus on the association between labor induction and cesarean delivery. A prospective cohort study of 2851 nulliparous women with singleton pregnancies who attempted vaginal delivery at hospitals in Pennsylvania, 2009-2011, was conducted. We used nested logistic regression models and multiple mediational analyses to investigate the role of three groups of variables in explaining the association between labor induction and unplanned cesarean delivery-the confounders of maternal characteristics and indications for induction, and the mediating (intrapartum) factors-including cervical dilatation, labor augmentation, epidural analgesia, dysfunctional labor, dystocia, fetal intolerance of labor, and maternal request of cesarean during labor. More than a third of the women were induced (34.3%) and 24.8% underwent cesarean delivery. Induced women were more likely to deliver by cesarean (35.9%) than women in spontaneous labor (18.9%), unadjusted OR 2.35 (95% CI 1.97-2.79). The intrapartum factors significantly mediated the association between labor induction and cesarean delivery (explaining 76.7% of this association), particularly cervical dilatation <3 cm at hospital admission, fetal intolerance of labor, and dystocia. The indications for labor induction only explained 6.2%. Increased risk of cesarean delivery after labor induction among nulliparous women is attributable mainly to lower cervical dilatation at hospital admission and higher rates of labor complications. © 2017 Wiley Periodicals, Inc.

  20. Effect of Grape Seed Extract and Quercetin on Cardiovascular and Endothelial Parameters in High-Risk Subjects

    PubMed Central

    Clifton, Peter M.

    2004-01-01

    Grape seed extract (GSE) has in vitro antioxidant activity but whether or not it works in vivo is not clear. In a fully randomised, crossover trial with 4-week treatment periods on 36 men and women with above-average vascular risk, we aimed to demonstrate that 2 g/day of GSE (1 g of polyphenols) alone, or with 1 g/day of added quercetin in yoghurt, favourably alters vascular function, endothelial function, and degree of oxidative damage in comparison to a control yoghurt. GSE alone improved flow-mediated dilatation determined ultrasonically by an absolute 1.1% compared with control. There was no effect of the combination of GSE with quercetin. No other blood or urine measure was altered. Thus sufficient polyphenols from GSE appear to be absorbed to influence endothelial nitric oxide production, and GSE has the potential to favourably influence vascular function. PMID:15577189

  1. Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials

    DTIC Science & Technology

    2011-06-01

    questionnaire for Asperger Syndrome and other high-functioning autism spectrum disorders in school age children. Journal of Autism & Developmental...10-1-0404 TITLE: Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related...W81XWH-10-1-0404 Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related

  2. Receptive Vocabulary Knowledge in Low-Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials

    DTIC Science & Technology

    2012-06-01

    for Asperger Syndrome and other high-functioning autism spectrum disorders in school age children. Journal of Autism & Developmental Disorders, 29...Functioning Autism as Assessed by Eye Movements, Pupillary Dilation, and Event-Related Potentials PRINCIPAL INVESTIGATOR: Barry Gordon...Knowledge in Low-Functioning Autism as Assessed by Eye- Movements, Pupillary Dilation, and Event-Related Potentials 5b. GRANT NUMBER W81XWH-10-1-0404

  3. Elevation in blood flow and shear rate prevents hyperglycemia-induced endothelial dysfunction in healthy subjects and those with type 2 diabetes.

    PubMed

    Greyling, Arno; Schreuder, Tim H A; Landman, Thijs; Draijer, Richard; Verheggen, Rebecca J H M; Hopman, Maria T E; Thijssen, Dick H J

    2015-03-01

    Hyperglycemia, commonly present after a meal, causes transient impairment in endothelial function. We examined whether increases in blood flow (BF) protect against the hyperglycemia-mediated decrease in endothelial function in healthy subjects and patients with type 2 diabetes mellitus (T2DM). Ten healthy subjects and 10 age- and sex-matched patients with T2DM underwent simultaneous bilateral assessment of brachial artery endothelial function by means of flow-mediated dilation (FMD) using high-resolution echo-Doppler. FMD was examined before and 60, 120, and 150 min after a 75-g oral glucose challenge. We unilaterally manipulated BF by heating one arm between minute 30 and minute 60. Oral glucose administration caused a statistically significant, transient increase in blood glucose in both groups (P < 0.001). Forearm skin temperature, brachial artery BF, and shear rate significantly increased in the heated arm (P < 0.001), and to a greater extent compared with the nonheated arm in both groups (interaction effect P < 0.001). The glucose load caused a transient decrease in FMD% (P < 0.05), whereas heating significantly prevented the decline (interaction effect P < 0.01). Also, when correcting for changes in diameter and shear rate, we found that the hyperglycemia-induced decrease in FMD can be prevented by local heating (P < 0.05). These effects on FMD were observed in both groups. Our data indicate that nonmetabolically driven elevation in BF and shear rate can similarly prevent the hyperglycemia-induced decline in conduit artery endothelial function in healthy volunteers and in patients with type 2 diabetes. Additional research is warranted to confirm that other interventions that increase BF and shear rate equally protect the endothelium when challenged by hyperglycemia. Copyright © 2015 the American Physiological Society.

  4. Reflex limb dilatation following norepinephrine and angiotensin II in conscious dogs

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.; Mcritchie, R. J.

    1976-01-01

    The extent to which norepinephrine (NE) and angiotensin II (AN) constrict the mesenteric, renal, and iliac beds in conscious dogs is evaluated with a view to elicit opposing reflex actions tempering the vasoconstriction in the limb of the animals tested. The afferent and efferent mechanisms mediating this reflex are analyzed. It is shown that intravenous NE and AN cause striking reflex iliac dilatation in the limb of the conscious dog. The afferent arc of this reflex involves both arterial baroreceptor and vagal path-ways, whereas the efferent mechanism involves an interaction of alpha-adrenergic and histaminergic receptors.

  5. Coil embolization of an aneurysmal type B dissection persistent false lumen after visceral hybrid repair.

    PubMed

    Riga, Celia; Bicknell, Colin; Jenkins, Michael; Hamady, Mohamad

    2009-01-01

    Complex aortic dissections with subsequent dilatation may be managed by using a visceral hybrid approach. In some cases, however, there is substantial retrograde blood flow into the false lumen, leaving a pressurized aneurysmal segment. The authors describe a novel treatment method whereby successful seal of a distal type 1 endoleak was achieved with coil embolization and a liquid injectable embolic agent. The patient was followed up for 2 years without further aortic dilatation or complications.

  6. Optimal ECG (Electrocardiogram) Electrode Sites and Criteria for Detection of Asymptomatic Coronary Artery Disease at Rest and with Exercise.

    DTIC Science & Technology

    1985-12-01

    a healthy coronary artery can increase flow ninefold by dilating during peak workloads. By preventing dilation , circum- ferential atherosclerosis...Ischemic Canine Myocardium, J. Electrocardiol. 15(4):335, 1982. 127. Burgess, M.J., Green, L.S., Millar, K., Wyatt, R., and Abildskov, J.A.: The...Refractory Periods of Ischemic Canine Ventricular Myocardium, J. Electrocardiol. 15(1):I, 1982. 129. Burgess, M.J., Lux, R.L., Wyatt, R.F., and Abildskov, J.A

  7. Hydrogen Peroxide Inhibits Cytochrome P450 Epoxygenases

    PubMed Central

    Larsen, Brandon T.; Gutterman, David D.; Sato, Atsushi; Toyama, Kazuyoshi; Campbell, William B.; Zeldin, Darryl C.; Manthati, Vijay L.; Falck, John R.; Miura, Hiroto

    2008-01-01

    The cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic acid the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2) both function as endothelium-derived hyperpolarizing factors (EDHFs) in the human coronary microcirculation. However, the relative importance of and potential interactions between these 2 vasodilators remain unexplored. We identified a novel inhibitory interaction between CYPs and H2O2 in human coronary arterioles, where EDHF-mediated vasodilatory mechanisms are prominent. Bradykinin induced vascular superoxide and H2O2 production in an endothelium-dependent manner and elicited a concentration-dependent dilation that was reduced by catalase but not by 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE), 6-(2-propargyloxyphenyl)hexanoic acid, sulfaphenazole, or iberiotoxin. However, in the presence of catalase, an inhibitory effect of these compounds was unmasked. In a tandem-bioassay preparation, application of bradykinin to endothelium-intact donor vessels elicited dilation of downstream endothelium-denuded detectors that was partially inhibited by donor-applied catalase but not by detector-applied EEZE; however, EEZE significantly inhibited dilation in the presence of catalase. EET production by human recombinant CYP 2C9 and 2J2, 2 major epoxygenase isozymes expressed in human coronary arterioles, was directly inhibited in a concentration-dependent fashion by H2O2 in vitro, as observed by high-performance liquid chromatography (HPLC); however, EETs were not directly sensitive to oxidative modification. H2O2 inhibited dilation to arachidonic acid but not to 11,12-EET. These findings suggest that an inhibitory interaction exists between 2 EDHFs in the human coronary microcirculation. CYP epoxygenases are directly inhibited by H2O2, and this interaction may modulate vascular EET bioavailability. PMID:17975109

  8. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    NASA Astrophysics Data System (ADS)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  9. The transition from brittle faulting to cataclastic flow: Permeability evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlu; Wong, Teng-Fong

    1997-02-01

    Triaxial compression experiments were conducted to investigate influences of stress and failure mode on axial permeability of five sandstones with porosities ranging from 15% to 35%. In the cataclastic flow regime, permeability and porosity changes closely track one another. A drastic decrease in permeability was triggered by the onset of shear-enhanced compaction caused by grain crushing and pore collapse. The compactive yield stress C* maps out a boundary in stress space separating two different types of permeability evolution. Before C* is attained, permeability and porosity both decrease with increasing effective mean stress, but they are independent of deviatoric stresses. However, with loading beyond C*, both permeability and porosity changes are strongly dependent on the deviatoric and effective mean stresses. In the brittle faulting regime, permeability and porosity changes are more complex. Before the onset of shear-induced dilation C', both permeability and porosity decrease with increasing effective mean stress. Beyond C', permeability may actually decrease in a dilating rock prior to brittle failure. After the peak stress has been attained, the development of a relatively impermeable shear band causes an accelerated decrease of permeability. Permeability evolution in porous sandstones is compared with that in low-porosity crystalline rocks. A conceptual model for the coupling of deformation and fluid transport is proposed in the form of a deformation-permeability map.

  10. Hydrocephalus secondary to obstruction of the lateral apertures in two dogs.

    PubMed

    Kent, M; Glass, E N; Haley, A C; Shaikh, L S; Sequel, M; Blas-Machado, U; Bishop, T M; Holmes, S P; Platt, S R

    2016-11-01

    Traditionally, hydrocephalus is divided into communicating or non-communicating (obstructive) based on the identification of a blockage of cerebrospinal fluid (CSF) flow through the ventricular system. Hydrocephalus ex vacuo refers to ventricular enlargement as a consequence of neuroparenchymal loss. Hydrocephalus related to obstruction of the lateral apertures of the fourth ventricles has rarely been described. The clinicopathologic findings in two dogs with hydrocephalus secondary to obstruction of the lateral apertures of the fourth ventricle are reported. Signs were associated with a caudal cervical spinal cord lesion in one dog and a caudal brain stem lesion in the other dog. Magnetic resonance imaging (MRI) disclosed dilation of the ventricular system, including the lateral recesses of the fourth ventricle. In one dog, postmortem ventriculography confirmed obstruction of the lateral apertures. Microscopic changes were identified in the choroid plexus in both dogs, yet a definitive cause of the obstructions was not identified. The MRI findings in both dogs are similar to membranous occlusion of the lateral and median apertures in human patients. MRI detection of dilation of the entire ventricular system in the absence of an identifiable cause should prompt consideration of an obstruction of the lateral apertures. In future cases, therapeutic interventions aimed at re-establishing CSF flow or ventriculoperitoneal catheterisation should be considered. © 2016 Australian Veterinary Association.

  11. Preserved arterial flow secures hepatic oxygenation during haemorrhage in the pig

    PubMed Central

    Rasmussen, Allan; Skak, Claus; Kristensen, Michael; Ott, Peter; Kirkegaard, Preben; Secher, Niels H

    1999-01-01

    This study examined the extent of liver perfusion and its oxygenation during progressive haemorrhage. We examined hepatic arterial flow and hepatic oxygenation following the reduced portal flow during haemorrhage in 18 pigs. The hepatic surface oxygenation was assessed by near-infrared spectroscopy and the hepatic metabolism of oxygen, lactate and catecholamines determined the adequacy of the hepatic flow. Stepwise haemorrhage until circulatory collapse resulted in proportional reductions in cardiac output and in arterial, central venous and pulmonary wedge pressures. While heart rate increased, pulmonary arterial pressure remained stable. In addition, renal blood flow decreased, renal vascular resistance increased and there was elevated noradrenaline spill-over. Further, renal surface oxygenation was lowered from the onset of haemorrhage. Similarly, the portal blood flow was reduced in response to haemorrhage, and, as for the renal flow, the reduced splanchnic blood flow was associated with an elevated noradrenaline spill-over. In contrast, hepatic arterial blood flow was only slightly reduced by haemorrhage, and surface oxygenation did not change. The hepatic oxygen uptake was maintained until the blood loss represented more than 30 % of the estimated blood volume. At 30 % reduced blood volume, hepatic catecholamine uptake was reduced, and the lactate uptake approached zero. Subsequent reduction of cardiac output and portal blood flow elicited a selective dilatation of the hepatic arterial vascular bed. Due to this dilatation liver blood flow and hepatic cell oxygenation and metabolism were preserved prior to circulatory collapse. PMID:10087351

  12. Sex and Gender Differences in Myocarditis and Dilated Cardiomyopathy

    PubMed Central

    Fairweather, DeLisa; Cooper, Leslie T; Blauwet, Lori A

    2014-01-01

    Heart failure due to nonischemic dilated cardiomyopathy (DCM) contributes significantly to the global burden of cardiovascular disease. Myocarditis is in turn a major cause of acute dilated cardiomyopathy in both men and women. However, recent clinical and experimental evidence suggests that the pathogenesis and prognosis of DCM differ between the sexes. This seminar provides a contemporary perspective on the immune mediators of myocarditis, including interdependent elements of the innate and adaptive immune response. The heart's acute response to injury is influenced by sex hormones that appear to determine the subsequent risk of chronic DCM. Preliminary data suggest additional genetic variations may account for some of the differences in epidemiology, left ventricular recovery and survival between men and women. We highlight the gaps in our knowledge regarding the management of women with acute DCM and discuss emerging therapies, including bromocriptine for the treatment of peripartum cardiomyopathy. PMID:23158412

  13. [Successful endoscopic dilatation of a stenosis in relation to an ileorectal anastomosis by acute ileus].

    PubMed

    Kjærgaard, Jane Christensen; Hendel, Jakob; Gügenur, Ismail

    2014-02-17

    Endoscopic dilatation is a treatment option for patients with Crohns disease suffering from stenosis in relation to an ileorectal anastomosis. We present a case of a patient with Crohns disease who was admitted with acute obstructive symptoms due to a stensosis of the ileorectal anastomosis. The patient was septic. We performed a successful endoscopic dilatation in the acute phase and the patient was discharged few days after an uneventful recovery. Endoscopic dilatation of an ileorectal anastomsis in patients with Crohns disease is a treatment option in the acute setting when performed by experienced endoscopists.

  14. A new numerical approach for compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Lekoudis, S. G.

    1982-01-01

    A numerical approach for computing unsteady compressible viscous flows was developed. This approach offers the capability of confining the region of computation to the viscous region of the flow. The viscous region is defined as the region where the vorticity is nonnegligible and the difference in dilatation between the potential flow and the real flow around the same geometry is also nonnegligible. The method was developed and tested. Also, an application of the procedure to the solution of the steady Navier-Stokes equations for incompressible internal flows is presented.

  15. Dark Chocolate Acutely Improves Walking Autonomy in Patients With Peripheral Artery Disease

    PubMed Central

    Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco

    2014-01-01

    Background NOX‐2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow‐mediated dilation (FMD). Dark chocolate exerts artery dilatation via down‐regulating NOX2‐mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress‐mediated mechanism. Methods and Results FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2‐dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross‐over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (−23%; P=0.01) and sNOX2‐dp (−37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E‐selectin (P<0.001) and VCAM1 (P<0.001). Conclusion In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress‐mediated mechanism involving NOX2 regulation. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01947712. PMID:24990275

  16. Mental Stress-Induced-Myocardial Ischemia in Young Patients With Recent Myocardial Infarction: Sex Differences and Mechanisms.

    PubMed

    Vaccarino, Viola; Sullivan, Samaah; Hammadah, Muhammad; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Elon, Lisa; Pimple, Pratik M; Garcia, Ernest V; Nye, Jonathon; Shah, Amit J; Alkhoder, Ayman; Levantsevych, Oleksiy; Gay, Hawkins; Obideen, Malik; Huang, Minxuan; Lewis, Tené T; Bremner, J Douglas; Quyyumi, Arshed A; Raggi, Paolo

    2018-02-20

    Mental stress-induced myocardial ischemia (MSIMI) is frequent in patients with coronary artery disease and is associated with worse prognosis. Young women with a previous myocardial infarction (MI), a group with unexplained higher mortality than men of comparable age, have shown elevated rates of MSIMI, but the mechanisms are unknown. We studied 306 patients (150 women and 156 men) ≤61 years of age who were hospitalized for MI in the previous 8 months and 112 community controls (58 women and 54 men) frequency matched for sex and age to the patients with MI. Endothelium-dependent flow-mediated dilation and microvascular reactivity (reactive hyperemia index) were measured at rest and 30 minutes after mental stress. The digital vasomotor response to mental stress was assessed using peripheral arterial tonometry. Patients received 99m Tc-sestamibi myocardial perfusion imaging at rest, with mental (speech task) and conventional (exercise/pharmacological) stress. The mean age of the sample was 50 years (range, 22-61). In the MI group but not among controls, women had a more adverse socioeconomic and psychosocial profile than men. There were no sex differences in cardiovascular risk factors, and among patients with MI, clinical severity tended to be lower in women. Women in both groups showed a higher peripheral arterial tonometry ratio during mental stress but a lower reactive hyperemia index after mental stress, indicating enhanced microvascular dysfunction after stress. There were no sex differences in flow-mediated dilation changes with mental stress. The rate of MSIMI was twice as high in women as in men (22% versus 11%, P =0.009), and ischemia with conventional stress was similarly elevated (31% versus 16%, P =0.002). Psychosocial and clinical risk factors did not explain sex differences in inducible ischemia. Although vascular responses to mental stress (peripheral arterial tonometry ratio and reactive hyperemia index) also did not explain sex differences in MSIMI, they were predictive of MSIMI in women only. Young women after MI have a 2-fold likelihood of developing MSIMI compared with men and a similar increase in conventional stress ischemia. Microvascular dysfunction and peripheral vasoconstriction with mental stress are implicated in MSIMI among women but not among men, perhaps reflecting women's proclivity toward ischemia because of microcirculatory abnormalities. © 2018 American Heart Association, Inc.

  17. The effect of periodontal therapy on C-reactive protein, endothelial function, lipids and proinflammatory biomarkers in patients with stable coronary artery disease: study protocol for a randomized controlled trial.

    PubMed

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Rabelo-Silva, Eneida Rejane; Polanczyk, Carisi Anne; Rösing, Cassiano Kuchenbecker; Haas, Alex Nogueira

    2013-09-06

    Scarce information exists regarding the preventive effect of periodontal treatment in the recurrence of cardiovascular events. Prevention may be achieved by targeting risk factors for recurrent coronary artery disease (CAD) in patients with previous history of cardiovascular events. The aim of this trial is to compare the effect of two periodontal treatment approaches on levels of C-reactive protein, lipids, flow-mediated dilation and serum concentrations of proinflammatory and endothelial markers in stable CAD patients with periodontitis over a period of 12 months. This is a randomized, parallel design, examiner blinded, controlled clinical trial. Individuals from both genders, 35 years of age and older, with concomitant diagnosis of CAD and periodontitis will be included. CAD will be defined as the occurrence of at least one of the following events 6 months prior to entering the trial: documented history of myocardial infarction; surgical or percutaneous myocardial revascularization and lesion >50% in at least one coronary artery assessed by angiography; presence of angina and positive noninvasive testing of ischemia. Diagnosis of periodontitis will be defined using the CDC-AAP case definition (≥2 interproximal sites with clinical attachment loss ≥6 mm and ≥1 interproximal site with probing depth ≥5 mm). Individuals will have to present at least ten teeth present to be included. One hundred individuals will be allocated to test (intensive periodontal treatment comprised by scaling and root planing) or control (community periodontal treatment consisting of one session of supragingival plaque removal only) treatment groups. Full-mouth six sites per tooth periodontal examinations and subgingival biofilm samples will be conducted at baseline, 3, 6 and 12 months after treatment. The primary outcome of this study will be C-reactive protein changes over time. Secondary outcomes include levels of total cholesterol, LDL-C, HDL-C, triglycerides, IL-1β, IL-6, TNFα, fibrinogen, ICAM-1, VCAM-1 and E-selectin. These outcomes will be assessed at all time points over 12 months. Flow-mediated dilation will be assessed at baseline, 1, 3 and 6 months after periodontal therapy. This trial will provide new evidence regarding the effect of periodontal treatment on risk markers for recurrence of cardiovascular events in stable coronary artery disease patients. ClinicalTrials.gov Identifier, NCT01609725.

  18. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals.

    PubMed

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; di Giosia, Paolo; Barnabei, Remo; Allegaert, Leen; Bernaert, Herwig; Ferri, Claudio

    2015-02-01

    Cocoa flavonoids exert beneficial vascular effects and reduce the risk of cardiovascular morbidity and mortality. Nevertheless, the involved mechanisms have not been clarified and no study has yet focused on the dose-response effects. We aimed to investigate the effects of different doses of cocoa flavonoids on flow-mediated dilation (FMD), endothelin-1 (ET-1), pulse wave velocity (PWV), and SBP and DBP. According to a randomized, double-blind, controlled, cross-over design, 20 healthy volunteers (1.5% improvement in FMD in 20 individuals: 0.99 at alpha = 0.05) were assigned to receive either five treatments with daily intake of 10 g cocoa (0, 80, 200, 500 and 800 mg cocoa flavonoids/day) in five periods lasting 1 week each. Cocoa dose-dependently increased FMD from 6.2% (control) to 7.3, 7.6, 8.1 and 8.2% after the different flavonoid doses, respectively (P < 0.0001). Compared with the control, even 80  mg cocoa flavonoids per day increased FMD (P < 0.0001). Cocoa dose-dependently decreased PWV (P < 0.0001). Cocoa intake decreased office blood pressure (BP) (SBP: -4.8 ± 1.03  mmHg, P < 0.0001; DBP: -3.03 ± 1.07 mmHg, P = 0.0011). With respect to control, cocoa ingestion decreased 24-h (P = 0.05) and daytime (P = 0.038) SBP, and 24-h (P = 0.0064), daytime (P = 0.0088) and night-time (P = 0.0352) pulse pressure. Compared with the control, cocoa dose-dependently decreased ET-1 levels [from 17.1 (control) to 15.2, 14.5, 14.2 and 14.1 pg/ml, after the different flavonoid doses, respectively (P for treatment <0.05)]. Compared with the control, significant changes were observed for all doses of flavonoids (ET-1; P < 0.05). Our study showed for the first time that cocoa dose-dependently improved FMD and decreased PWV and ET-1 also by ameliorating office and monitored BP. Our findings are clinically relevant, suggesting cocoa, with very low calorie intake, might be reasonably incorporated into a dietary approach, representing a consistent tool in cardiovascular prevention.

  19. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  20. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed

    Wang, Hung-Hsuan; Chiu, Hsin-Hui; Tseng, Wen-Yih Isaac; Peng, Hsu-Hsia

    2016-08-01

    To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Four-dimensional flow MRI was performed in 20 MFS patients and 12 age-matched normal subjects with a 3T system. The cross-sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial , WSScirc ), oscillatory shear index (OSIaxial , OSIcirc ), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05-0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R(2)  = 0.50-0.72) in MFS patients. The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow-up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500-508. © 2016 Wiley Periodicals, Inc.

  1. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed Central

    Wang, Hung‐Hsuan; Chiu, Hsin‐Hui; Tseng, Wen‐Yih Isaac

    2016-01-01

    Purpose To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Materials and Methods Four‐dimensional flow MRI was performed in 20 MFS patients and 12 age‐matched normal subjects with a 3T system. The cross‐sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial, WSScirc), oscillatory shear index (OSIaxial, OSIcirc), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Results Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05–0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R2 = 0.50–0.72) in MFS patients. Conclusion The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow‐up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500–508. PMID:26854646

  2. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  3. A predictive model for canine dilated cardiomyopathy-a meta-analysis of Doberman Pinscher data.

    PubMed

    Simpson, Siobhan; Edwards, Jennifer; Emes, Richard D; Cobb, Malcolm A; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Dilated cardiomyopathy is a prevalent and often fatal disease in humans and dogs. Indeed dilated cardiomyopathy is the third most common form of cardiac disease in humans, reported to affect approximately 36 individuals per 100,000 individuals. In dogs, dilated cardiomyopathy is the second most common cardiac disease and is most prevalent in the Irish Wolfhound, Doberman Pinscher and Newfoundland breeds. Dilated cardiomyopathy is characterised by ventricular chamber enlargement and systolic dysfunction which often leads to congestive heart failure. Although multiple human loci have been implicated in the pathogenesis of dilated cardiomyopathy, the identified variants are typically associated with rare monogenic forms of dilated cardiomyopathy. The potential for multigenic interactions contributing to human dilated cardiomyopathy remains poorly understood. Consistent with this, several known human dilated cardiomyopathy loci have been excluded as common causes of canine dilated cardiomyopathy, although canine dilated cardiomyopathy resembles the human disease functionally. This suggests additional genetic factors contribute to the dilated cardiomyopathy phenotype.This study represents a meta-analysis of available canine dilated cardiomyopathy genetic datasets with the goal of determining potential multigenic interactions relating the sex chromosome genotype (XX vs. XY) with known dilated cardiomyopathy associated loci on chromosome 5 and the PDK4 gene in the incidence and progression of dilated cardiomyopathy. The results show an interaction between known canine dilated cardiomyopathy loci and an unknown X-linked locus. Our study is the first to test a multigenic contribution to dilated cardiomyopathy and suggest a genetic basis for the known sex-disparity in dilated cardiomyopathy outcomes.

  4. Conference Support for the 1999 International Hypoxia Symposium

    DTIC Science & Technology

    2000-03-01

    selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28: 1430-1436...bradykinin- and kallikrein-induced cerebral arteriolar dilation by a specific bradykinin antagonist. Stroke 18: 792-795,1987. 33. Földes, I., and B...role of bradykinin in mediating ischemic brain edema in rats. Stroke 24: 571-576,1993. Mediators of Cerebral Edema 13 7 48. Kawauchi, N., S., M

  5. Duodenal Loop Obstruction as an Unusual Cause of Acute Pancreatitis: A Case Series.

    PubMed

    Lee, Hyeonmin; Choi, Yonghyeok; Jeong, Hyewon; Lim, Jae Kyu; Jung, Taeyoung; Han, Joung Ho; Park, Seon Mee

    2016-12-25

    Duodenal loop obstruction is an unusual cause of acute pancreatitis. Increased intraluminal pressure hinders pancreatic flow, causing dilatation of the pancreatic duct and inducing acute pancreatitis. We experienced three cases of acute pancreatitis that resulted from duodenal loop obstruction after (1) an esophagectomy with gastric pull-up procedure for esophageal cancer, (2) a gastrectomy with Billroth I reconstruction for gastric cancer, and (3) a gastrojejunostomy for abdominal trauma. An abdominal CT scan revealed a distended duodenal loop, dilated pancreatic duct, and inflamed pancreas with fluid collection. Acute pancreatitis with duodenal loop obstruction was diagnosed by abdominal pain, elevated serum amylase/lipase, and abdominal CT findings. Immediate decompression with a nasogastric tube was performed, and all patients showed improvement within one week after admission. Each patient was followed up for more than two years without recurrence. Our findings suggest the usefulness of nasogastric tube decompression as the first line of treatment for acute pancreatitis related to duodenal loop obstruction.

  6. Contribution of KV1.5 Channel to H2O2-Induced Human Arteriolar Dilation and its Modulation by Coronary Artery Disease

    PubMed Central

    Nishijima, Yoshinori; Cao, Sheng; Chabowski, Dawid S.; Korishettar, Ankush; Ge, Alyce; Zheng, Xiaodong; Sparapani, Rodney; Gutterman, David D.; Zhang, David X.

    2016-01-01

    Rationale Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating BKCa channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) as compared to those with CAD remain unknown. Objective We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. Methods and Results H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a BKCa channel blocker, and by 4-AP, a KV channel blocker. Assays of mRNA transcripts, protein expression and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells (VSMCs) and is abundantly localized on the plasma membrane. The selective KV1.5 blocker DPO-1 and the KV1.3/1.5 blocker Psora-4 reduced H2O2-elicited dilation to a similar extent as 4-AP, but the selective KV1.3 blocker PAP-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced and this dilation was inhibited by paxilline but not by 4-AP, DPO-1 or Psora-4. KV1.5 cell membrane localization and DPO-1-sensitive K+ currents were markedly reduced in isolated VSMCs from CAD arterioles, although mRNA or total cellular protein expression were largely unchanged. Conclusions In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined BKCa- and KV (KV1.5)-mediated vasodilation toward a BKCa-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases. PMID:27872049

  7. Impaired endothelial function in lone atrial fibrillation.

    PubMed

    Polovina, Marija; Potpara, Tatjana; Giga, Vojislav; Stepanović, Jelena; Ostojić, Miodrag

    2013-10-01

    Impaired endothelial function has been previously documented in patients with atrial fibrillation (AF) and underlying comorbidities or older patients with idiopathic AF. The aim of this study was to evaluate systemic endothelial function in younger AF patients (less than < 60 years old) with lone AF (that is, without associated cardiopulmonary comorbidities, including arterial hypertension), by comparing brachial artery flow-mediated dilation (FMD) in lone AF patients with FMD of healthy subjects in sinus rhythm. Two groups of participants were prospectively enrolled. The first group comprised of 38 AF patients (the mean age 45 +/- 11 years, 68% male) with persistent (> 7 days) lone AF. The second group comprised of 28 healthy controls in sinus rhythm (the mean age 43 +/- 13, 53% male), matched by age, gender and atherosclerotic risk factors. All the participants underwent physical examination, laboratory analysis [including determination of C-reactive protein (CRP)], standard echocardiography and exercise-stress testing. Brachial artery FMD and endothelium independent dilation (NMD) were assessed with a high-resolution ultrasound probe and arterial diameters taken from 5 consecutive cardiac cycles were averaged for each measurement to accommodate to beat-to-beat flow variations in AF. There were no differences between the 2 groups regarding age, gender and most clinical, laboratory and echocardiographic characteristics (all p > 0.05), apart from the increased heart rate (p = 0.018), body mass index (p = 0.027), CRP levels (p = 0.007) and left atrial anteroposterior dimension (p < 0.001) in AF patients. FMD of AF patients [median value 5.0%, interquartile range (IQR) 2.87%-7.50%] was significantly lower (p < 0.001) than FMD of healthy controls (median value 8.85%, IQR 5.80%-12.50%), whereas there were no differences in median NMD values (p > 0.05). In the multivariate analysis, the independent FMD determinants in our study population were the presence of AF, smoking and total cholesterol levels (all p < 0.001). In patients with AF, the strongest independent FMD determinant was arrhythmia duration (p < 0.001), followed by smoking (p = 0.013) and total cholesterol levels (p = 0.045). Our findings confirm that sustained AF is associated with systemic endothelial dysfunction even in relatively young patients with no cardiovascular disorders or risk factors. AF is an independent contributor to lower FMD and a prolonged arrhythmia duration may confer the risk for more profound endothelial damage.

  8. Electroacupuncture prevents endothelial dysfunction induced by ischemia-reperfusion injury via a cyclooxygenase-2-dependent mechanism: A randomized controlled crossover trial

    PubMed Central

    Park, Jimin; Woo, Jong Shin; Leem, Jungtae; Park, Jun Hyeong; Lee, Sanghoon; Chung, Hyemoon; Lee, Jung Myung; Kim, Jin-Bae; Kim, Woo-Shik; Kim, Kwon Sam; Kim, Weon

    2017-01-01

    Objective Exploring clinically effective methods to reduce ischemia-reperfusion (IR) injury in humans is critical. Several drugs have shown protective effects, but studies using other interventions have been rare. Electroacupuncture (EA) has induced similar protection in several animal studies but no study has investigated how the effects could be translated and reproduced in humans. This study aimed to explore the potential effect and mechanisms of EA in IR-induced endothelial dysfunction in humans. Methods This is a prospective, randomized, crossover, sham-controlled trial consisting of two protocols. Protocol 1 was a crossover study to investigate the effect of EA on IR-induced endothelial dysfunction. Twenty healthy volunteers were randomly assigned to EA or sham EA (sham). Flow mediated dilation (FMD) of the brachial artery (BA), nitroglycerin-mediated endothelial independent dilation, blood pressure before and after IR were measured. In protocol 2, seven volunteers were administered COX-2 inhibitor celecoxib (200 mg orally twice daily) for five days. After consumption, volunteers underwent FMD before and after IR identical to protocol 1. Results In protocol 1, baseline BA diameter, Pre-IR BA diameter and FMD were similar between the two groups (p = NS). After IR, sham group showed significantly blunted FMD (Pre-IR: 11.41 ± 3.10%, Post-IR: 4.49 ± 2.04%, p < 0.001). However, EA protected this blunted FMD (Pre-IR: 10.96 ± 5.30%, Post-IR: 9.47 ± 5.23%, p = NS, p < 0.05 compared with sham EA after IR). In protocol 2, this protective effect was completely abolished by pre-treatment with celecoxib (Pre-IR: 11.05 ± 3.27%; Post-IR: 4.20 ± 1.68%, p = 0.001). Conclusion EA may prevent IR-induced endothelial dysfunction via a COX-2 dependent mechanism. PMID:28591155

  9. Exercise training improves endothelial function in young prehypertensives

    PubMed Central

    Beck, Darren T; Casey, Darren P; Martin, Jeffrey S; Emerson, Blaze D; Braith, Randy W

    2015-01-01

    Prehypertensives exhibit marked endothelial dysfunction, a risk factor for future cardiovascular morbidity and mortality. However, the ability of exercise to ameliorate endothelial dysfunction in prehypertensives is grossly underinvestigated. This prospective randomized and controlled study examined the separate effects of resistance and endurance training on conduit artery endothelial function in young prehypertensives. Forty-three unmedicated prehypertensive (systolic blood pressure [SBP]=120–139 mmHg; diastolic blood pressure [DBP]=80–89 mmHg) but otherwise healthy men and women and 15 normotensive matched time-controls (NMTC); n = 15) between 18 and 35 y of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to either a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). The treatment groups performed exercise training three days per week for eight weeks. The control groups did not initiate exercise programs throughout the study. Flow mediated dilation (FMD) of the brachial artery, biomarkers of enodothelial function and peripheral blood pressure were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP (9.6 ± 3.6 and 11.9 ± 3.4 mmHg, respectively; P < 0.05) and DBP (8.0 ± 5.1 and 7.2 ± 3.4 mmHg, respectively; P < 0.05). Exercise training improved brachial artery FMD absolute diameter, percent dilation and normalized percent dilation by 30%, 34% and 19% for PHRT, P < 0.05; and by 54%, 63% and 75% for PHET, P < 0.05; respectively. PHRT and PHET increased plasma concentrations of 6-keto prostaglandin F1α (19% and 22%, respectively; P < 0.05), NOx (19% and 23%, respectively; P < 0.05), and reduced endothelin-1 by (16% and 24%, respectively; P < 0.01). This study provides novel evidence that resistance and endurance exercise separately have beneficial effects on resting peripheral blood pressure, brachial artery FMD and endothelial-derived vasoactive agents in young prehypertensives. PMID:23760009

  10. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage

    PubMed Central

    Meek, J.; Tyszczuk, L.; Elwell, C.; Wyatt, J

    1999-01-01

    AIMS—To investigate the relation between cerebral blood flow on the first day of postnatal life and the severity of any subsequent germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH).
METHODS—Cerebral blood flow was measured in 24 babies during the first 24 hours of life using near infrared spectroscopy. Repeated cerebral ultrasound examination was performed to define the maximum extent of GMH-IVH. Infants were classified as: normal scan, minor periventricular haemorrhage (haemorrhage that resolved), or severe GMH-IVH (haemorrhage distending the ventricles, that progressed to either post haemorrhagic dilatation or porencephalic cyst formation).
RESULTS—Cerebral blood flow was significantly lower in the infants with GMH-IVH (median 7.0 ml/100 g/min) than those without haemorrhage (median 12.2 ml/100 g/min), despite no difference in carbon dioxide tension and a higher mean arterial blood pressure. On subgroup analysis, those infants with severe GMH-IVH had the lowest cerebral blood flow.
CONCLUSION—A low cerebral blood flow on the first day of life is associated with the subsequent development of severe intraventricular haemorrhage.

 PMID:10375356

  11. Gastric Necrosis due to Acute Massive Gastric Dilatation.

    PubMed

    Aydin, Ibrahim; Pergel, Ahmet; Yucel, Ahmet Fikret; Sahin, Dursun Ali; Ozer, Ender

    2013-01-01

    Gastric necrosis due to acute massive gastric dilatation is relatively rare. Vascular reasons, herniation, volvulus, acute gastric dilatation, anorexia, and bulimia nervosa play a role in the etiology of the disease. Early diagnosis and treatment are highly important as the associated morbidity and mortality rates are high. In this case report, we present a case of gastric necrosis due to acute gastric dilatation accompanied with the relevant literature.

  12. Gastric Necrosis due to Acute Massive Gastric Dilatation

    PubMed Central

    Pergel, Ahmet; Yucel, Ahmet Fikret; Sahin, Dursun Ali; Ozer, Ender

    2013-01-01

    Gastric necrosis due to acute massive gastric dilatation is relatively rare. Vascular reasons, herniation, volvulus, acute gastric dilatation, anorexia, and bulimia nervosa play a role in the etiology of the disease. Early diagnosis and treatment are highly important as the associated morbidity and mortality rates are high. In this case report, we present a case of gastric necrosis due to acute gastric dilatation accompanied with the relevant literature. PMID:23983714

  13. Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus.

    PubMed

    Monnet, Eric; Pelsue, Davyd; MacPhail, Catriona

    2006-02-01

    To validate laser doppler flowmetry (LDF) for measurement of blood flow in the stomach wall of dogs with gastric dilatation-volvulus (GDV). Six purpose-bred dogs and 24 dogs with naturally occurring GDV. Experimental and clinical. Capillary blood flow in the body of the stomach and pyloric antrum was measured with LDF (tissue perfusion unit (TPU) before and after induction of portal hypertension (PH) and after PH plus gastric ischemia (GI; PH + GI) and compared with flow measured by colored microsphere technique. Capillary flow was measured by LDF in the stomach wall of dogs with GDV. PH and PH+GI induced a significant reduction in blood flow in the body of the stomach (P = .019). A significant positive correlation was present between percent changes in capillary blood flow measured by LDF and colored microspheres after induction of PH + GI in the body of the stomach (r = 0.94, P = .014) and in the pyloric antrum (r = 0.95, P = .049). Capillary blood flow measured in the body of the stomach of 6 dogs that required partial gastrectomy (5.00+/-3.30 TPU) was significantly lower than in dogs that did not (28.00+/-14.40 TPU, P = .013). LDF can detect variations in blood flow in the stomach wall of dogs. LDF may have application for evaluation of stomach wall viability during surgery in dogs with GDV.

  14. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy.

    PubMed

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D; Ao, Ying; Kalra, Spandan; Bett, Glenna C L; Rasmusson, Randall L; Denning, Chris; Yang, Lei

    2015-05-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca(2+), mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca(2+) level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. © 2015. Published by The Company of Biologists Ltd.

  15. [Significance of heterogenity in endothelium-dependent vasodilatation occurrence in healthy individuals with or without coronary risk factors].

    PubMed

    Polovina, Marija; Potpara, Tatjana; Giga, Vojislav; Ostojić, Miodrag

    2009-10-01

    Brachial artery flow-mediated dilation (FMD) is extensively used for non-invasive assessment of endothelial function. Traditionally, FMD is calculated as a percent change of arterial diameter from the baseline value at an arbitrary time point after cuff deflation (usually 60 seconds). Considerable individual differences in brachial artery temporal response to hyperemic stimulus have been observed, potentially influenced by the presence of atherosclerotic risk factors (RF). The importance of such differences for the evaluation of endothelial function has not been well established. The aim of the study was to determine the time course of maximal brachial artery endothelium-dependent dilation in healthy adults with and without RF, to explore the correlation of RF with brachial artery temporal response and to evaluate the importance of individual differences in temporal response for the assessment of endothelial function. A total of 115 healthy volunteers were included in the study. Out of them, 58 had no RF (26 men, mean age 44 +/-14 years) and 57 had at least one RF (29 men, mean age 45 +/-14 years). High-resolution color Doppler vascular ultrasound was used for brachial artery imaging. To determine maximal arterial diameter after cuff deflation and the time-point of maximal vasodilation off-line sequential measurements were performed every 10 seconds from 0 to 240 seconds after cuff release. True maximal FMD value was calculated as a percent change of the true maximal diameter from the baseline, and compared with FMD value calculated assuming that every participant reached maximal dilation at 60 seconds post cuff deflation (FMD60). Correlation of different RF with brachial artery temporal response was assessed. A maximal brachial artery endothelium-dependent vasodilation occurred from 30-120 seconds after cuff release, and the mean time of endothelium-dependent dilation was 68 +/-20 seconds. Individuals without RF had faster endothelium-dependent dilation (mean time 62 +/-17 seconds), and a shorter time-span (30 to 100 seconds), than participants with RF (mean time 75 +/-21 seconds, time-span 40 to 120 seconds) (p < 0.001). Time when the maximal endothelium-dependent dilation occurred was independently associated with age, serum lipid fractions (total cholesterol, LDL and HDL cholesterol), smoking, physical activity and C-reactive protein. True maximal FMD value in the whole group (6.7 +/-3.0%) was significantly higher (p < 0.001) than FMD60 (5.2 +/-3.5%). The same results were demonstrated for individuals with RF (4.9 +/- 1.7% vs 3.1 +/- 2.3%, p < 0.001) and without RF (8.4 +/- 2.9% vs 7.2 +/- 3.2%, p < 0.05). The temporal response of endothelium-dependent dilation is influenced by the presence of coronary FR and individually heterogeneous. When calculated according to the commonly used approach, i.e. 60 seconds after cuff deflation, FMD is significantly lower than the true maximal FMD. The routinely used measurement time-points for FMD assessment may not be adequate for the detection of true peak vasodilation in individual persons. More precise evaluation of endothelial function can be achieved with sequential measurement of arterial diameter after hyperemic stimulus.

  16. Heterogeneity of peripheral blood monocytes, endothelial dysfunction and subclinical atherosclerosis in patients with systemic lupus erythematosus.

    PubMed

    Mikołajczyk, T P; Osmenda, G; Batko, B; Wilk, G; Krezelok, M; Skiba, D; Sliwa, T; Pryjma, J R; Guzik, T J

    2016-01-01

    Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction. © The Author(s) 2015.

  17. Effect of short-term estrogen therapy on endothelial function: a double-blinded, randomized, controlled trial.

    PubMed

    Hurtado, R; Celani, M; Geber, S

    2016-10-01

    To evaluate the effect of short-term hormone replacement therapy with 0.625 mg conjugated estrogens daily on endothelial function of healthy postmenopausal women, using flow-mediated dilation (FMD) of the brachial artery. We performed a double-blinded, randomized, controlled trial over 3 years. Randomization was performed using computer-generated sorting. All participants were blinded to the use of conjugated equine estrogens (CEE) or placebo and FMD was assessed by a blinded examiner, before and after 28 days of medication. A total of 64 healthy postmenopausal women were selected and randomly assigned into two groups of treatment: 0.625 mg of CEE or placebo. FMD values were statistically different between the groups (p = 0.025): the group receiving CEE showed a FMD value of 0.011 compared to the placebo group (FMD = -0.082). The two groups were additionally evaluated for homogeneity through the Shapiro-Wilk test in respect to variables that could interfere with endothelial function such as age (p = 0.729), body mass index (p = 0.891), and time since menopause (p = 0.724). Other variables were excluded during selection of the participants such as chronic vascular conditions, smoking, and sedentary lifestyle. Our results demonstrate that the administration of 0.625 mg CEE for 28 days is effective in improving vascular nitric oxide-dependent dilation assessed by FMD of the brachial artery in postmenopausal women. NCT01482416.

  18. Male-Mediated Gene Flow in Patrilocal Primates

    PubMed Central

    Schubert, Grit; Stoneking, Colin J.; Arandjelovic, Mimi; Boesch, Christophe; Eckhardt, Nadin; Hohmann, Gottfried; Langergraber, Kevin; Lukas, Dieter; Vigilant, Linda

    2011-01-01

    Background Many group–living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male–mediated gene flow might occur through rare events such as extra–group matings leading to extra–group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. Methodology/Principal Findings Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y–chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y–chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y–haplotypes within western chimpanzee and bonobo groups is best explained by successful male–mediated gene flow. Conclusions/Significance The similarity of inferred rates of male–mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male–mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos. PMID:21747938

  19. Fibro-vascular coupling in the control of cochlear blood flow.

    PubMed

    Dai, Min; Shi, Xiaorui

    2011-01-01

    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained. We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation. The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity.

  20. Sarcopenia, but not excess weight or increased caloric intake, is associated with coronary subclinical atherosclerosis in the very elderly.

    PubMed

    Campos, Alessandra M; Moura, Filipe A; Santos, Simone N; Freitas, Wladimir M; Sposito, Andrei C

    2017-03-01

    Excess weight is a widespread condition related to increased risk of coronary heart disease (CHD). Sarcopenia is a catabolic pathway common of the aging process and also associated with CHD. In the elderly, both changes occur concurrently and it remains unclear the relative contribution on CHD risk. We aimed to investigate whether sarcopenia, excess weight, or both are associated with subclinical atherosclerosis and/or endothelial dysfunction in very elderly individuals. We performed a cross-sectional study of cohort enrolled individuals, aged 80 years or older (n = 208), who had never manifested cardiovascular diseases. Blood tests, medical and nutritional evaluations, cardiac computed tomography, flow-mediated dilation (FMD) and physical performance tests were obtained at the study admission. Odds ratio (OR) was calculated by multivariate regression models using coronary calcium score (CCS) categories and FMD as dependent variables. Adjustment for potential confounders was done. Muscle mass, but not fatty mass, was inversely associated with CCS categories [OR:2.54(1.06-6.06); p = 0.018]. The lowering of gait speed was negatively related to CCS>100 [OR:2.36 (1.10-5.06); p = 0.028] and skeletal muscle index was directly associated with FMD [OR:5.44 (1.22-24.24); p = 0.026]. Total caloric intake was positively related to fatty mass [OR:2.71 (1.09-6.72); p = 0.031], but was not related to CCS. This study reveals that sarcopenia - comprised by reduction of muscle mass and its strength - is associated with subclinical atherosclerosis and endothelial dysfunction. Surprisingly, the excess of fatty mass seems not to be related to atherosclerotic burden in very elderly individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  2. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-26

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  3. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388

  4. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  5. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2010-12-15

    Cigarette smoking is a major risk factor for atherosclerosis, cerebral and coronary vascular diseases, hypertension, and diabetes mellitus. Chronic smoking impairs endothelial function by decreasing the formation of nitric oxide and increasing the degradation of nitric oxide via generation of oxygen free radicals. Nitric oxide liberated from efferent nitrergic nerves is also involved in vasodilatation, increased regional blood flow, and hypotension that are impaired through nitric oxide sequestering by smoking-induced factors. Influence of smoking on nitric oxide-induced blood flow regulation is not necessarily the same in all organs and tissues. However, human studies are limited mainly to the forearm blood flow measurement that assesses endothelial function under basal and stimulated conditions and also determination of penile tumescence and erection in response to endothelial and neuronal nitric oxide. Therefore, information about blood flow regulation in other organs, such as the brain and placenta, has been provided mainly from studies on experimental animals. Nicotine, a major constituent of cigarette smoke, acutely dilates cerebral arteries and arterioles through nitric oxide liberated from nitrergic neurons, but chronically interferes with endothelial function in various vasculatures, both being noted in studies on experimental animals. Cigarette smoke constituents other than nicotine also have some vascular actions. Not only active but also passive smoking is undoubtedly harmful for both the smokers themselves and their neighbors, who should bear in mind that they can face serious diseases in the future, which may result in lengthy hospitalization, and a shortened lifespan. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. N-acetylcysteine improves coronary and peripheral vascular function.

    PubMed

    Andrews, N P; Prasad, A; Quyyumi, A A

    2001-01-01

    We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.

  7. Effect of oxidative stress on racial differences in vascular function at rest and during hand grip exercise.

    PubMed

    Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo

    2017-10-01

    African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.

  8. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  9. Direct Determination of the Dependence of the Surface Shear and Dilatational Viscosities on the Thermodynamic State of the Interface: Theoretical Foundations.

    PubMed

    Lopez; Hirsa

    1998-10-01

    Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.

  10. Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Trouvé, Arnaud

    2004-09-01

    A pseudo-compressibility method is proposed to modify the acoustic time step restriction found in fully compressible, explicit flow solvers. The method manipulates terms in the governing equations of order Ma2, where Ma is a characteristic flow Mach number. A decrease in the speed of acoustic waves is obtained by adding an extra term in the balance equation for total energy. This term is proportional to flow dilatation and uses a decomposition of the dilatational field into an acoustic component and a component due to heat transfer. The present method is a variation of the pressure gradient scaling (PGS) method proposed in Ramshaw et al (1985 Pressure gradient scaling method for fluid flow with nearly uniform pressure J. Comput. Phys. 58 361-76). It achieves gains in computational efficiencies similar to PGS: at the cost of a slightly more involved right-hand-side computation, the numerical time step increases by a full order of magnitude. It also features the added benefit of preserving the hydrodynamic pressure field. The original and modified PGS methods are implemented into a parallel direct numerical simulation solver developed for applications to turbulent reacting flows with detailed chemical kinetics. The performance of the pseudo-compressibility methods is illustrated in a series of test problems ranging from isothermal sound propagation to laminar premixed flame problems.

  11. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults.

    PubMed

    West, Sheila G; McIntyre, Molly D; Piotrowski, Matthew J; Poupin, Nathalie; Miller, Debra L; Preston, Amy G; Wagner, Paul; Groves, Lisa F; Skulas-Ray, Ann C

    2014-02-01

    The consumption of cocoa and dark chocolate is associated with a lower risk of CVD, and improvements in endothelial function may mediate this relationship. Less is known about the effects of cocoa/chocolate on the augmentation index (AI), a measure of vascular stiffness and vascular tone in the peripheral arterioles. We enrolled thirty middle-aged, overweight adults in a randomised, placebo-controlled, 4-week, cross-over study. During the active treatment (cocoa) period, the participants consumed 37 g/d of dark chocolate and a sugar-free cocoa beverage (total cocoa = 22 g/d, total flavanols (TF) = 814 mg/d). Colour-matched controls included a low-flavanol chocolate bar and a cocoa-free beverage with no added sugar (TF = 3 mg/d). Treatments were matched for total fat, saturated fat, carbohydrates and protein. The cocoa treatment significantly increased the basal diameter and peak diameter of the brachial artery by 6% (+2 mm) and basal blood flow volume by 22%. Substantial decreases in the AI, a measure of arterial stiffness, were observed in only women. Flow-mediated dilation and the reactive hyperaemia index remained unchanged. The consumption of cocoa had no effect on fasting blood measures, while the control treatment increased fasting insulin concentration and insulin resistance (P= 0·01). Fasting blood pressure (BP) remained unchanged, although the acute consumption of cocoa increased resting BP by 4 mmHg. In summary, the high-flavanol cocoa and dark chocolate treatment was associated with enhanced vasodilation in both conduit and resistance arteries and was accompanied by significant reductions in arterial stiffness in women.

  12. Effect of genistein on endothelial function in postmenopausal women: a randomized, double-blind, controlled study.

    PubMed

    Squadrito, Francesco; Altavilla, Domenica; Crisafulli, Alessandra; Saitta, Antonino; Cucinotta, Domenico; Morabito, Nunziata; D'Anna, Rosario; Corrado, Francesco; Ruggeri, Pietro; Frisina, Nicola; Squadrito, Giovanni

    2003-04-15

    Genistein, a phytoestrogen found in soybeans, corrects endothelial dysfunction induced by oophorectomy in animals. Using a double-blind, controlled, randomized design, we evaluated its effects on endothelial function in women. We enrolled 79 healthy postmenopausal women (mean [+/- SD] age, 56 +/- 4 years) and randomly assigned them to receive continuous estrogen/progestin therapy (n = 26; 17beta-estradiol [1 mg/d] combined with norethisterone acetate [0.5 mg/d]), genistein (n = 27; 54 mg/d), or placebo (n = 26). Brachial artery flow-mediated, endothelium-dependent vasodilation and plasma levels of nitrites/nitrates (a marker of nitric oxide metabolism) and endothelin-1 were measured at baseline and after 1 year of therapy. Treatment with genistein increased levels of nitrites/nitrates (mean increase, 21 micromol/L; 95% confidence interval [CI]: 15 to 26 micromol/L; P <0.001 vs. placebo); estrogen/progestin therapy caused similar changes (P <0.001 vs. placebo). Plasma endothelin-1 levels decreased following 12 months of genistein (mean decrease, 7 pg/mL; 95% CI: 3 to 10 pg/mL; P <0.001 vs. placebo) and after 12 months of estrogen/progestin (P <0.001 vs. placebo). When compared with placebo, brachial artery flow-mediated dilation was improved by genistein (mean increase, 5.5%; 95% CI: 3.9% to 7.0%; P <0.001) and by estrogen/progestin (P <0.001). There were no significant differences between estrogen and genistein for any of these parameters (all P >0.4). One year of genistein therapy improves endothelium function in postmenopausal women to a similar extent as does an estrogen/progestin regimen.

  13. Dilated cardiomyopathy and sinoatrial dysfunction in an Estrela mountain dog.

    PubMed

    Lobo, Luis; Pinheiro-Vieira, António; Gomes, João L; Canada, Nuno; Ribeiro, Lenio; Costa, Paulo D; Oliveira, Pedro; Bussadori, Claudio

    2012-01-01

    A 1 yr old male Estrela mountain dog was evaluated as a part of a screening program for dilated cardiomyopathy. The dog came from a family with a history of dilated cardiomyopathy but was asymptomatic. Occult dilated cardiomyopathy and sino-atrial dysfunction were diagnosed based on echocardiography and electrocardiography. These two disorders may be associated given that related dogs have been diagnosed with the same disorders. The dog has remained asymptomatic for 4 years following initial evaluation.

  14. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Macias, Brandon R.; Hargens, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2016-01-01

    Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.

  15. Biomechanical analysis of wrapping of the moderately dilated ascending aorta.

    PubMed

    Plonek, Tomasz; Rylski, Bartosz; Dumanski, Andrzej; Siedlaczek, Przemyslaw; Kustrzycki, Wojciech

    2015-08-01

    External wrapping is a surgical method performed to prevent the dilatation of the aorta and to decrease the risk of its dissection and rupture. However, it is also believed to cause degeneration of the aortic wall. A biomechanical analysis was thus performed to assess the stress of the aortic wall subjected to external wrapping. A stress analysis using the finite elements method was carried out on three models: a non-dilated aorta, a moderately dilated aorta and a wrapped aorta. The models were subjected to a pulsatile flow (120/80 mmHg) and a systolic aortic annulus motion of 11 mm. The finite elements analysis showed that the stress exerted on the outer surface of the ascending aorta in the wrapping model (0.05-0.8 MPa) was similar to that observed in the normal aorta (0.03-0.7 MPa) and was lower than in the model of a moderately dilated aorta (0.06-1.4 MPa). The stress on the inner surface of the ascending aorta ranged from 0.2 MPa to 0.4 MPa in the model of the normal aorta, from 0.3 to 1.3 MPa in the model of the dilated aorta and from 0.05 MPa to 0.4 MPa in the wrapping model. The results of this study suggest that the aortic wall is subjected to similar stress following a wrapping procedure to the one present in the normal aorta.

  16. Brachial and Cerebrovascular Functions Are Enhanced in Postmenopausal Women after Ingestion of Chocolate with a High Concentration of Cocoa.

    PubMed

    Marsh, Channa E; Carter, Howard H; Guelfi, Kym J; Smith, Kurt J; Pike, Kerryn E; Naylor, Louise H; Green, Daniel J

    2017-09-01

    Background: Cocoa contains polyphenols that are thought to be beneficial for vascular health. Objective: We assessed the impact of chocolate containing distinct concentrations of cocoa on cerebrovascular function and cognition. Methods: Using a counterbalanced within-subject design, we compared the acute impact of consumption of energy-matched chocolate containing 80%, 35%, and 0% single-origin cacao on vascular endothelial function, cognition, and cerebrovascular function in 12 healthy postmenopausal women (mean ± SD age: 57.3 ± 5.3 y). Participants attended a familiarization session, followed by 3 experimental trials, each separated by 1 wk. Outcome measures included cerebral blood flow velocity (CBF v ) responses, recorded before and during completion of a computerized cognitive assessment battery (CogState); brachial artery flow-mediated dilation (FMD); and hemodynamic responses (heart rate and blood pressure). Results: When CBF v data before and after chocolate intake were compared between conditions through the use of 2-factor ANOVA, an interaction effect ( P = 0.003) and main effects for chocolate ( P = 0.043) and time ( P = 0.001) were evident. Post hoc analysis revealed that both milk chocolate (MC; 35% cocoa; P = 0.02) and dark chocolate (DC; 80% cocoa; P = 0.003) induced significantly lower cerebral blood flow responses during the cognitive tasks, after normalizing for changes in arterial pressure. DC consumption also increased brachial FMD compared with the baseline value before chocolate consumption ( P = 0.002), whereas MC and white chocolate (0% cocoa) caused no change ( P- interaction between conditions = 0.034). Conclusions: Consumption of chocolate containing high concentrations of cocoa enhanced vascular endothelial function, which was reflected by improvements in FMD. Cognitive function outcomes did not differ between conditions; however, cerebral blood flow responses during these cognitive tasks were lower in those consuming MC and DC. These findings suggest that chocolate containing high concentrations of cocoa may modify the relation between cerebral metabolism and blood flow responses in postmenopausal women. This trial was registered at www.ANZCTR.orgau as ACTRN12616000990426. © 2017 American Society for Nutrition.

  17. Reproductive Hormones and Subclinical Cardiovascular Disease in Midlife Women.

    PubMed

    Thurston, Rebecca C; Bhasin, Shalender; Chang, Yuefang; Barinas Mitchell, Emma; Matthews, Karen A; Jasuja, Ravi; Santoro, Nanette

    2018-05-18

    Reproductive hormones are understood to be important to the pathophysiology of cardiovascular disease (CVD) in women. However, standard estradiol (E2) and testosterone (T) assays lack sensitivity at the levels of postmenopausal women. Investigate relations of mass spectrometry-assessed estrone (E1), estradiol (E2), and testosterone (T), and sex hormone binding globulin (SHBG) and subclinical CVD in women. 304 peri- and postmenopausal women, aged 40-60 years, and free of clinical CVD underwent subclinical CVD measurements. E1, E2, and T were assayed using liquid chromatography-tandem mass spectrometry; Free T (FT) was estimated using ensemble allostery models. Associations between hormones and outcomes were analyzed using regression models adjusting for CVD risk factors. Carotid artery intima media thickness (IMT), inter-adventitial diameter (IAD), plaque; brachial flow mediated dilation (FMD). Higher E1 was related to higher FMD [b(SE)=.77(.37), p=.04], indicating better endothelial function. Higher E2 was related to lower IAD [b(SE)=-.07(.02), p=.004], indicating less carotid remodeling. Higher SHBG was related to higher FMD [b(SE)=1.31(.40), p=.001], yet higher IAD [b(SE)=.15(.06), p=.02] and carotid plaque [OR (95%CI)=1.84(1.16-2.91), p=.009]. Higher FT was associated with lower FMD [b(SE)=-1.58(.52), p=.003], yet lower IAD [b(SE)=-.19(.08), p=.01] and carotid plaque [OR(95%CI)=.49(.28-.88), p=.02]. Thus, higher SHBG and lower FT was associated with better endothelial function, yet greater carotid remodeling and plaque. Endogenous E1 levels were related to endothelial function and E2 to vascular remodeling, suggesting distinct roles of these estrogens. SHBG and free testosterone have a complex role and depend on the vessel under study.

  18. Sex differences in the combined effect of chronic stress with impaired vascular endothelium functioning and the development of early atherosclerosis: The Cardiovascular Risk in Young Finns study

    PubMed Central

    2010-01-01

    Background The syndrome of vital exhaustion (VE), characterized by fatigue and irritability, may contribute to an increased risk of atherosclerosis. The aim of the study was to explore sex differences in the interactions of VE with endothelial dysfunction and VE with reduced carotid elasticity, the important contributors to the development of early atherosclerosis, on preclinical atherosclerosis. Methods The participants were 1002 women and 719 men aged 24-39 examined in the Cardiovascular Risk in Young Finns study. Vital exhaustion was measured using the Maastricht Questionnaire. Preclinical atherosclerosis was assessed by carotid intima-media thickness (IMT), endothelial function was measured by brachial flow-mediated dilatation (FMD), and arterial elasticity by carotid artery compliance (CAC) using ultrasound techniques. Results We found a significant CAC x VE interaction for IMT only for the men. Our results imply that high VE level significantly related to high IMT levels among the men with low CAC, but not among the women with low CAC or among the women or men with high CAC. No significant FMD x VE interactions for IMT for the women or men were found. Conclusions High VE may exert an effect on IMT for men with impaired arterial elasticity. The results suggest that high vitally exhausted men with reduced arterial elasticity are at increased risk of atherosclerosis in early life and imply men's decreased stress coping in relation to stressful psychological coronary risk factors. PMID:20624297

  19. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    PubMed

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  20. Bile Flow Phantom Model and Animal Bile Duct Dilation Model for Evaluating Biliary Plastic Stents with Advanced Hydrophilic Coating

    PubMed Central

    Kwon, Chang-Il; Kim, Gwangil; Jeong, Seok; Lee, Won Seop; Lee, Don Haeng; Ko, Kwang Hyun; Hong, Sung Pyo; Hahm, Ki Baik

    2016-01-01

    Background/Aims The efforts to improve biliary plastic stents (PSs) for decreasing biofilm formation and overcome short patency time have been continued. The aim of this study is to evaluate the effect of advanced hydrophilic coating for patency and biodurability of PS. Methods Using an in vitro bile flow phantom model, we compared patency between prototype PS with hydrophilic coating (PS+HC) and prototype PS without hydrophilic coating (PS−HC). We performed an analysis of the degree of luminal narrowing by microscopic examination. Using an in vivo swine bile duct dilation model made by endoscopic papillary closure and stent insertion, we evaluated biodurability of hydrophilic coating. Results In the phantom model, PS+HC showed less biofilm formation and luminal narrowing than PS−HC at 8 weeks (p<0.05). A total of 31 stents were inserted into the dilated bile duct of seven swine models, and 24 stents were successfully retrieved 8 weeks later. There was no statistical difference of stent patency between the polyethylene PS+HC and the polyurethane PS+HC. The biodurability of hydrophilic coating was sustained up to 8 weeks, when assessing the coating layer by scanning electron microscopy examination. Conclusions Advanced hydrophilic coating technology may extend the patency of PS compared to uncoated PS. PMID:27021507

  1. Exaggerated cardiovascular effects of cocaine in conscious dogs with pacing-induced dilated cardiomyopathy.

    PubMed

    Mathier, Michael A; Shen, You-Tang; Shannon, Richard P

    2002-12-01

    The aim of this study was to explore the characteristics and mechanisms of the cardiovascular effects of cocaine in dilated cardiomyopathy. We studied the cardiovascular responses to acute intravenous cocaine (1 mg/kg) in 8 conscious, chronically instrumented dogs before and after the development of dilated cardiomyopathy induced by rapid ventricular pacing. To help elucidate the role of altered baroreflex function in mediating the cardiovascular effects of cocaine, we also studied responses in 3 conscious, chronically instrumented dogs that had undergone surgical sinoaortic baroreceptor denervation. Cocaine produced greater increases in heart rate (+57 +/- 8% from 112 +/- 5 beats/min versus +28 +/- 3% from 100 +/- 4 beats/min; P <.01), first derivative of left ventricular pressure (+30 +/- 5% from 1,714 +/- 147 mm Hg/sec versus +15 +/- 3% from 3,032 +/- 199 mm Hg/sec; P <.01), coronary vascular resistance (+28 +/- 5% from 2.3 +/- 0.3 mm Hg/mL/min versus +11 +/- 5% from 2.2 +/- 0.3 mm Hg/mL/min; P <.05) and plasma norepinephrine concentration (+130 +/- 31% from 462 +/- 102 pg/mL versus +86 +/- 32% from 286 +/- 77 pg/mL; P <.05) in dogs with dilated cardiomyopathy as compared to controls. In addition, responses were much more rapid in onset following the development of dilated cardiomyopathy. Chronotropic and inotropic responses to cocaine were similarly rapid and exaggerated in dogs after baroreceptor denervation. Cocaine produces rapid and exaggerated chronotropic, inotropic, and coronary vasoconstrictor responses in conscious dogs with pacing-induced dilated cardiomyopathy. Alterations in arterial baroreflex function may play a role in these observations, which in turn may underlie the clinically observed association between cocaine and heart failure.

  2. Clinical evaluation of Apamarga-Ksharataila Uttarabasti in the management of urethral stricture

    PubMed Central

    Reddy, K. Rajeshwar

    2013-01-01

    Stricture urethra, though a rare condition, still is a rational and troublesome problem in the international society. Major complications caused by this disease are obstructed urine flow, urine stasis leading to urinary tract infection, calculi formation, etc. This condition can be correlated with Mutramarga Sankocha in Ayurveda. Modern medical science suggests urethral dilatation, which may cause bleeding, false passage and fistula formation in few cases. Surgical procedures have their own complications and limitations. Uttarabasti, a para-surgical procedure is the most effective available treatment in Ayurveda for the diseases of Mutravaha Strotas. In the present study, total 60 patients of urethral stricture were divided into two groups and treated with Uttarabasti (Group A) and urethral dilatation (Group B). The symptoms like obstructed urine flow, straining, dribbling and prolongation of micturation were assessed before and after treatment. The results of the study were significant on all the parameters. PMID:24250127

  3. Clinical evaluation of Apamarga-Ksharataila Uttarabasti in the management of urethral stricture.

    PubMed

    Reddy, K Rajeshwar

    2013-04-01

    Stricture urethra, though a rare condition, still is a rational and troublesome problem in the international society. Major complications caused by this disease are obstructed urine flow, urine stasis leading to urinary tract infection, calculi formation, etc. This condition can be correlated with Mutramarga Sankocha in Ayurveda. Modern medical science suggests urethral dilatation, which may cause bleeding, false passage and fistula formation in few cases. Surgical procedures have their own complications and limitations. Uttarabasti, a para-surgical procedure is the most effective available treatment in Ayurveda for the diseases of Mutravaha Strotas. In the present study, total 60 patients of urethral stricture were divided into two groups and treated with Uttarabasti (Group A) and urethral dilatation (Group B). The symptoms like obstructed urine flow, straining, dribbling and prolongation of micturation were assessed before and after treatment. The results of the study were significant on all the parameters.

  4. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  5. Compressible homogeneous shear: Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1992-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  6. Compressible homogeneous shear - Simulation and modeling

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1991-01-01

    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

  7. Effect of Regular Aerobic Activity in Young Healthy Athletes on Profile of Endothelial Function and Platelet Activity.

    PubMed

    Podgórska, Katarzyna; Derkacz, Arkadiusz; Szahidewicz-Krupska, Ewa; Jasiczek, Jakub; Dobrowolski, Piotr; Radziwon-Balicka, Aneta; Skomro, Robert; Szuba, Andrzej; Mazur, Grzegorz; Doroszko, Adrian

    2017-01-01

    The aim of the study was to assess the impact of regular professional sports activity on the endothelial and platelet function in young men. The studied group were 79 young men (18-40 y, 25 athletes and 54 without any regular physical activity). The nitric oxide (NO) metabolic pathway intermediates, oxidative stress markers, mediators of inflammation, and platelet aggregation were measured. Flow mediated dilation (FMD) was studied before and after intravenous 16,0 g L-arginine infusion, which was repeated after oral administration of acetylsalicylic acid (ASA-75 mg/day) for 4 days. Both groups had similar demographic characteristics. In the athletes, there was significantly higher hsCRP level, better serum lipid profile, and lower pulse pressure. Greater baseline FMD in athletes and in response to L-arginine disappeared following ASA treatment. There were no differences in the levels of the NO pathway metabolites. The control group was characterized by higher PAI-1 following ASA treatment and sICAM-1 both at baseline and after ASA, but no differences in MDA and 6-keto-PGF-1 alpha and platelet aggregation were noted. Regular professional physical activity modulates endothelial but not platelet function and may thus exert an effect on overall cardiovascular risk.

  8. Effect of Regular Aerobic Activity in Young Healthy Athletes on Profile of Endothelial Function and Platelet Activity

    PubMed Central

    Podgórska, Katarzyna; Jasiczek, Jakub; Dobrowolski, Piotr; Radziwon-Balicka, Aneta; Skomro, Robert; Szuba, Andrzej; Mazur, Grzegorz

    2017-01-01

    The aim of the study was to assess the impact of regular professional sports activity on the endothelial and platelet function in young men. The studied group were 79 young men (18–40 y, 25 athletes and 54 without any regular physical activity). The nitric oxide (NO) metabolic pathway intermediates, oxidative stress markers, mediators of inflammation, and platelet aggregation were measured. Flow mediated dilation (FMD) was studied before and after intravenous 16,0 g L-arginine infusion, which was repeated after oral administration of acetylsalicylic acid (ASA-75 mg/day) for 4 days. Both groups had similar demographic characteristics. In the athletes, there was significantly higher hsCRP level, better serum lipid profile, and lower pulse pressure. Greater baseline FMD in athletes and in response to L-arginine disappeared following ASA treatment. There were no differences in the levels of the NO pathway metabolites. The control group was characterized by higher PAI-1 following ASA treatment and sICAM-1 both at baseline and after ASA, but no differences in MDA and 6-keto-PGF-1 alpha and platelet aggregation were noted. Regular professional physical activity modulates endothelial but not platelet function and may thus exert an effect on overall cardiovascular risk. PMID:28630872

  9. Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease.

    PubMed

    Carnevale, R; Loffredo, L; Nocella, C; Bartimoccia, S; Bucci, T; De Falco, E; Peruzzi, M; Chimenti, I; Biondi-Zoccai, G; Pignatelli, P; Violi, F; Frati, G

    2014-01-01

    Platelet activation contributes to the alteration of endothelial function, a critical initial step in atherogenesis through the production and release of prooxidant mediators. There is uncertainty about the precise role of polyphenols in interaction between platelets and endothelial cells (ECs). We aimed to investigate whether polyphenols are able to reduce endothelial activation induced by activated platelets. First, we compared platelet activation and flow-mediated dilation (FMD) in 10 healthy subjects (HS) and 10 patients with peripheral artery disease (PAD). Then, we evaluated the effect of epicatechin plus catechin on platelet-HUVEC interaction by measuring soluble cell adhesion molecules (CAMs), NOx production, and eNOS phosphorylation (p-eNOS) in HUVEC. Compared to HS, PAD patients had enhanced platelet activation. Conversely, PAD patients had lower FMD than HS. Supernatant of activated platelets from PAD patients induced an increase of sCAMs release and a decrease of p-eNOS and nitric oxide (NO) bioavailability compared to unstimulated HUVEC. Coincubation of HUVEC, with supernatant of PAD platelets patients, pretreated with a scalar dose of the polyphenols, resulted in a decrease of sCAMs release and in an increase of p-eNOS and NO bioavailability. This study demonstrates that epicatechin plus catechin reduces endothelial activation induced by activated platelets.

  10. Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates.

    PubMed

    Boban, Mladen; Modun, Darko; Music, Ivana; Vukovic, Jonatan; Brizic, Ivica; Salamunic, Ilza; Obad, Ante; Palada, Ivan; Dujic, Zeljko

    2006-05-01

    By using red wine (RW), dealcoholized red wine (DARW), polyphenols-stripped red wine (PSRW), ethanol-water solution (ET), and water (W), the role of wine polyphenols, ethanol, and urate on vascular function was examined in humans (n = 9 per beverage) and on isolated rat aortic rings (n = 9). Healthy males randomly consumed each beverage in a cross-over design. Plasma ethanol, catechin, and urate concentrations were measured before and 30, 60 and 120 minutes after beverage intake. Endothelial function was assessed before and 60 minutes after beverage consumption by normalized flow-mediated dilation (FMD). RW and DARW induced similar vasodilatation in the isolated vessels whereas PSRW, ET, and W did not. All ethanol-containing beverages induced similar basal vasodilatation of brachial artery. Only intake of RW resulted in enhancement of endothelial response, despite similar plasma catechin concentration after DARW. The borderline effect of RW on FMD (P = 0.0531) became significant after FMD normalization (P = 0.0043) that neutralized blunting effect of ethanol-induced basal vasodilatation. Effects of PSRW and ET did not differ although plasma urate increased after PSRW and not after ET, indicating lack of urate influence on endothelial response. Acute vascular effects of RW, mediated by polyphenols, cannot be predicted by plasma catechin concentration only.

  11. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates.

    PubMed

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radhakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A; Dubb, Jay; Boas, David A; Grant, P Ellen; Franceschini, Maria Angela

    2014-01-15

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing brain, and for using this coupling as a reliable functional imaging marker in neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    PubMed

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.

  13. Test-retest reliability of pulse amplitude tonometry measures of vascular endothelial function: implications for clinical trial design.

    PubMed

    McCrea, Cindy E; Skulas-Ray, Ann C; Chow, Mosuk; West, Sheila G

    2012-02-01

    Endothelial dysfunction is an important outcome for assessing vascular health in intervention studies. However, reliability of the standard non-invasive method (flow-mediated dilation) is a significant challenge for clinical applications and multicenter trials. We evaluated the repeatability of pulse amplitude tonometry (PAT) to measure change in pulse wave amplitude during reactive hyperemia (Itamar Medical Ltd, Caesarea, Israel). Twenty healthy adults completed two PAT tests (mean interval = 19.5 days) under standardized conditions. PAT-derived measures of endothelial function (reactive hyperemia index, RHI) and arterial stiffness (augmentation index, AI) showed strong repeatability (intra-class correlations = 0.74 and 0.83, respectively). To guide future research, we also analyzed sample size requirements for a range of effect sizes. A crossover design powered at 0.90 requires 28 participants to detect a 15% change in RHI. Our study is the first to show that PAT measurements are repeatable in adults over an interval greater than 1 week.

  14. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    PubMed

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  15. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    PubMed

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  16. Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.

    PubMed

    Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto

    2015-05-01

    To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men.

  17. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: a double blind, placebo-controlled, randomized study.

    PubMed

    Vaisman, Nachum; Niv, Eva

    2015-05-01

    Consumption of polyphenol-rich food and food ingredient such as grape and grape products improved various cardiovascular parameters. In this study, we investigate the effect of dietary daily consumption of red grape cell powder (RGC) on blood pressure (BP) and flow-mediated dilatation (FMD) as well as on oxidative stress in 50 subjects with prehypertension and mild hypertension. The subjects were randomized into groups that consumed 200, 400 mg RGC or placebo daily for 12 weeks. RGC consumption was associated with an improvement of FMD (p = 0.013). There was a significant decrease in lipid peroxidation (p = 0.013) after 12 weeks in a combined RGC-treated group. The diastolic BP decreased significantly in the 200 mg RGC group compared to the placebo group (p = 0.032). Our results indicate that a daily supplementation, of red grape cell powder, for 12 weeks affects endothelial function, diastolic BP and oxidative stress without any adverse effects.

  18. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  19. Alegria! Flow in Leisure and Life Satisfaction: The Mediating Role of Event Satisfaction Using Data from an Acrobatics Show

    ERIC Educational Resources Information Center

    Chen, Lung Hung; Ye, Yun-Ci; Chen, Mei-Yen; Tung, I-Wu

    2010-01-01

    The aim of the current study was to examine the role of satisfaction-with-event as a mediator in the relations between flow and life satisfaction based on the bottom-up theory (Andrews and Withey in "Social indicators of well-being: Americans' perceptions of life quality." Plenum, New York, 1976; Lee et al. in "J…

  20. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mei-Fang

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp,more » and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic vasodilation and, possibly, normal blood flow in the brainstem. - Highlights: • Ketamine/amphetamines inhibit nicotine-induced cerebral neurogenic vasdilation. • Ketamine/amphetamines block cerebral perivascular sympathetic nAChR-mediated current. • The inhibitory potency is ketamine > D-amphetamine > methamphetamine > OH-amphetamine.« less

  1. Retinal vein occlusion

    MedlinePlus

    ... of one eye. Exams and Tests Tests to evaluate for vein occlusion include: Exam of the retina after dilating the pupil An eye test that uses a special dye and camera to look at blood flow in the retina and choroid. Intraocular pressure Pupil ...

  2. Intermittent dysphagia for solids associated with a multiringed esophagus: clinical features and response to dilatation.

    PubMed

    Lee, Greta Shao-Chu; Craig, Philip Ian; Freiman, John Saul; de Carle, David; Cook, Ian James

    2007-01-01

    The entity of the multiringed esophagus, generally presenting in adults as intermittent dysphagia for solids, is relatively uncommon and its pathogenesis is unknown. The goal of this study was to describe the demographic, clinical, and endoscopic features of patients presenting with this condition, their response to esophageal dilatation, and the relationship of multiple esophageal rings to eosinophilic esophagitis. Between 1989 and June 2004, 32 patients at this adult hospital fulfilled the following inclusion criteria: (1) intermittent dysphagia for solids, (2) multiple esophageal rings at endoscopy, and (3) esophageal dilatation(s) performed. Response to esophageal dilatation was measured by need for subsequent dilatations. Seventy-five percent of the patients were male. Median age at onset of dysphagia was 21 years and at presentation 36.5 years. All had multiple rings in the proximal or midesophagus on endoscopy and had undergone a total of 73 esophageal dilatations with no esophageal perforations. Median maximal dilator size was 15 mm; however, 16% developed significant esophageal mucosal tears even with 11-mm dilators. Sixty-six percent required repeat dilatation, with the median time interval before recurrence being 8 months. Eosinophilic esophagitis (mucosal eosinophil count > 20/HPF) was present in 50% of this cohort. From this study we conclude that a multiringed esophagus causing intermittent dysphagia occurs predominantly in young males, responds well to dilatation, but repeated dilatations are often necessary. Dilatation can lead to extensive mucosal tears and should be performed with caution. Eosinophilic esophagitis is commonly but not invariably associated with this entity. Frequent relapse of dysphagia highlights the need for effective pharmacotherapy.

  3. Endoscopic electrocautery dilation of benign anastomotic colonic strictures: a single-center experience.

    PubMed

    Bravi, Ivana; Ravizza, Davide; Fiori, Giancarla; Tamayo, Darina; Trovato, Cristina; De Roberto, Giuseppe; Genco, Chiara; Crosta, Cristiano

    2016-01-01

    Benign anastomotic colonic stenosis sometimes occur after surgery and usually require surgical or endoscopic dilation. Endoscopic dilation of anastomotic colonic strictures by using balloon or bougie-type dilators has been demonstrated to be safe and effective in multiple uncontrolled series. However, few data are available on safety and efficacy of endoscopic electrocautery dilation. The aim of our study was to retrospectively investigate safety and efficacy of endoscopic electrocautery dilation of postsurgical benign anastomotic colonic strictures. Sixty patients (37 women; median age 63.6 years, range 22.6-81.7) with benign anastomotic colonic or rectal strictures treated with endoscopic electrocautery dilation between June 2001 and February 2013 were included in the study. Anastomotic stricture was defined as a narrowed anastomosis through which a standard colonoscope could not be passed. Only annular anastomotic strictures were considered suitable for electrocautery dilation which consisted of radial incisions performed with a precut sphincterotome. Treatment was considered successful if the colonic anastomosis could be passed by a standard colonoscope immediately after dilation. Recurrence was defined as anastomotic stricture reappearance during follow-up. The time interval between colorectal surgery and the first endoscopic evaluation or symptoms development was 7.3 months (1.3-60.7). Electrocautery dilation was successful in all the patients. There were no procedure-related complications. Median follow-up was 35.5 months (2.0-144.0). Anastomotic stricture recurrence was observed in three patients who were successfully treated with electrocautery dilation and Savary dilation. Endoscopic electrocautery dilation is a safe and effective treatment for annular benign anastomotic postsurgical colonic strictures.

  4. Dilatation of aortic grafts over time: what to expect and when to be concerned.

    PubMed

    Schroeder, Torben V; Eldrup, Nikolaj; Just, Sven; Hansen, Marc; Nyhuus, Bo; Sillesen, Henrik

    2009-06-01

    Dilatation of aortic prosthetic grafts is commonly reported, but most reports are anecdotal, with little objective data in the literature. We performed a prospective trial of 303 patients who underwent prosthetic graft repair for aortic aneurysm or occlusive disease, randomizing patients between insertion of a woven polyester or expanded polytetrafluoroethylene (ePTFE) graft. Patients were followed with computed tomography and ultrasonography for up to 5 years in order to assess the frequency and magnitude of postoperative dilatation. Graft dilatation was documented in patients with polyester grafts at 12 months. Thereafter and up to 60 months, polyester grafts did not dilate further. After 5 years, polyester prostheses had dilated by 25% and ePTFE by 12.5%, as determined by computed tomography imaging. These observations suggest that dilatation of prosthetic grafts is more frequent with knitted polyester grafts compared with ePTFE. Dilatation occurs within the first year after implantation and can be, in part, explained by a discrepancy between the initial nominal graft diameter and its diameter after clamp release, probably due to an in vivo adaptation of the textile structure. Interestingly, graft dilatation did not appear to be associated with an increased frequency of graft-related complications.

  5. Analysis of flow patterns in a patient-specific aortic dissection model.

    PubMed

    Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y

    2010-05-01

    Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.

  6. Endothelial Ca+-activated K+ channels in normal and impaired EDHF-dilator responses--relevance to cardiovascular pathologies and drug discovery.

    PubMed

    Grgic, Ivica; Kaistha, Brajesh P; Hoyer, Joachim; Köhler, Ralf

    2009-06-01

    The arterial endothelium critically contributes to blood pressure control by releasing vasodilating autacoids such as nitric oxide, prostacyclin and a third factor or pathway termed 'endothelium-derived hyperpolarizing factor' (EDHF). The nature of EDHF and EDHF-signalling pathways is not fully understood yet. However, endothelial hyperpolarization mediated by the Ca(2+)-activated K(+) channels (K(Ca)) has been suggested to play a critical role in initializing EDHF-dilator responses in conduit and resistance-sized arteries of many species including humans. Endothelial K(Ca) currents are mediated by the two K(Ca) subtypes, intermediate-conductance K(Ca) (KCa3.1) (also known as, a.k.a. IK(Ca)) and small-conductance K(Ca) type 3 (KCa2.3) (a.k.a. SK(Ca)). In this review, we summarize current knowledge about endothelial KCa3.1 and KCa2.3 channels, their molecular and pharmacological properties and their specific roles in endothelial function and, particularly, in the EDHF-dilator response. In addition we focus on recent experimental evidences derived from KCa3.1- and/or KCa2.3-deficient mice that exhibit severe defects in EDHF signalling and elevated blood pressures, thus highlighting the importance of the KCa3.1/KCa2.3-EDHF-dilator system for blood pressure control. Moreover, we outline differential and overlapping roles of KCa3.1 and KCa2.3 for EDHF signalling as well as for nitric oxide synthesis and discuss recent evidence for a heterogeneous (sub) cellular distribution of KCa3.1 (at endothelial projections towards the smooth muscle) and KCa2.3 (at inter-endothelial borders and caveolae), which may explain their distinct roles for endothelial function. Finally, we summarize the interrelations of altered KCa3.1/KCa2.3 and EDHF system impairments with cardiovascular disease states such as hypertension, diabetes, dyslipidemia and atherosclerosis and discuss the therapeutic potential of KCa3.1/KCa2.3 openers as novel types of blood pressure-lowering drugs.

  7. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  8. Reduced neural baroreflex sensitivity is related to enhanced endothelial function in patients with end-stage liver disease.

    PubMed

    Sárközi, Adrienn; Cseh, Domonkos; Gerlei, Zsuzsanna; Kollai, Márk

    2018-02-01

    Reduced baroreflex sensitivity (BRS) is a frequent complication in end-stage liver disease, but the underlying mechanism is unknown. We investigated the mechanical and neural components of BRS. Increased nitric oxide (NO) production has been reported in end-stage liver failure. Based on earlier experiments, we hypothesised that enhanced endothelial function might affect baroreflex function. Therefore, we explored the relation between endothelial function and the components of BRS. We enrolled 24 patients and 23 controls. BRS was determined by the spontaneous sequence method. Mechanical component was characterised by the distensibility coefficient (DC) of common carotid artery. Neural component was estimated as the ratio of integrated BRS and DC. Endothelial function was quantified by flow-mediated dilation (FMD) of the brachial artery. Integrated BRS was reduced in patients [7.00 (5.80-9.25) vs. 11.1 (8.50-14.80) ms/mmHg]. The mechanical component was not different in the two groups, whereas neural component showed significant reduction in patients (3.54 ± 1.20 vs. 4.48 ± 1.43 ms/10 -3 ). FMD was higher in patients (9.81 ± 3.77 vs. 5.59 ± 1.36%). FMD and neural BRS were directly related in controls (r = 0.62), but inversely related in patients (r = -0.49). Baroreflex impairment in end-stage liver disease might be explained by deterioration of the neural component, while the mechanical component appears to be preserved. Endothelial NO may enhance BRS in health; however, central endothelial overproduction of NO likely contributes to the reduction of neural component of BRS in patients awaiting liver transplantation.

  9. Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and α-adrenergic-mediated mechanisms

    PubMed Central

    La Favor, Justin D.; Kraus, Raymond M.; Carrithers, Jonathan A.; Roseno, Steven L.; Gavin, Timothy P.

    2014-01-01

    The incidence of cardiovascular disease increases progressively with age, but aging may affect men and women differently. Age-associated changes in vascular structure and function may manifest in impaired nutritive blood flow, although the regulation of nutritive blood flow in healthy aging is not well understood. The purpose of this study was to determine if nitric oxide (NO)-mediated or α-adrenergic-mediated regulation of nutritive skeletal muscle blood flow is impaired with advanced age, and if exercise training improves age-related deficiencies. Nutritive blood flow was monitored in the vastus lateralis of healthy young and aged men and women via the microdialysis-ethanol technique prior to and following seven consecutive days of exercise training. NO-mediated and α-adrenergic-mediated regulation of nutritive blood flow was assessed by microdialysis perfusion of acetylcholine, sodium nitroprusside, NG-monomethyl-l-arginine, norepinephrine, or phentolamine. Pretraining nutritive blood flow was attenuated in aged compared with young women (7.39 ± 1.5 vs. 15.5 ± 1.9 ml·100 g−1·min−1, P = 0.018), but not aged men (aged 13.5 ± 3.7 vs. young 9.4 ± 1.3 ml·100 g−1·min−1, P = 0.747). There were no age-associated differences in NO-mediated or α-adrenergic-mediated nutritive blood flow. Exercise training increased resting nutritive blood flow only in young men (9.4 ± 1.3 vs. 19.7 ml·100 g−1·min−1, P = 0.005). The vasodilatory effect of phentolamine was significantly reduced following exercise training only in young men (12.3 ± 6.14 vs. −3.68 ± 3.26 ml·100 g−1·min−1, P = 0.048). In conclusion, the age-associated attenuation of resting nutritive skeletal muscle blood flow was specific to women, while the exercise-induced alleviation of α-adrenergic mediated vasoconstriction that was specific to young men suggests an age-associated modulation of the sympathetic response to exercise training. PMID:24951753

  10. Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and α-adrenergic-mediated mechanisms.

    PubMed

    La Favor, Justin D; Kraus, Raymond M; Carrithers, Jonathan A; Roseno, Steven L; Gavin, Timothy P; Hickner, Robert C

    2014-08-15

    The incidence of cardiovascular disease increases progressively with age, but aging may affect men and women differently. Age-associated changes in vascular structure and function may manifest in impaired nutritive blood flow, although the regulation of nutritive blood flow in healthy aging is not well understood. The purpose of this study was to determine if nitric oxide (NO)-mediated or α-adrenergic-mediated regulation of nutritive skeletal muscle blood flow is impaired with advanced age, and if exercise training improves age-related deficiencies. Nutritive blood flow was monitored in the vastus lateralis of healthy young and aged men and women via the microdialysis-ethanol technique prior to and following seven consecutive days of exercise training. NO-mediated and α-adrenergic-mediated regulation of nutritive blood flow was assessed by microdialysis perfusion of acetylcholine, sodium nitroprusside, N(G)-monomethyl-L-arginine, norepinephrine, or phentolamine. Pretraining nutritive blood flow was attenuated in aged compared with young women (7.39 ± 1.5 vs. 15.5 ± 1.9 ml·100 g(−1)·min(−1), P = 0.018), but not aged men (aged 13.5 ± 3.7 vs. young 9.4 ± 1.3 ml·100 g(−1)·min(−1), P = 0.747). There were no age-associated differences in NO-mediated or α-adrenergic-mediated nutritive blood flow. Exercise training increased resting nutritive blood flow only in young men (9.4 ± 1.3 vs. 19.7 ml·100 g(−1)·min(−1), P = 0.005). The vasodilatory effect of phentolamine was significantly reduced following exercise training only in young men (12.3 ± 6.14 vs. −3.68 ± 3.26 ml·100 g(−1)·min(−1), P = 0.048). In conclusion, the age-associated attenuation of resting nutritive skeletal muscle blood flow was specific to women, while the exercise-induced alleviation of α-adrenergic mediated vasoconstriction that was specific to young men suggests an age-associated modulation of the sympathetic response to exercise training.

  11. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  12. Scalar dissipation, diffusion and dilatation in turbulent H2-air premixed flames with complex chemistry

    NASA Astrophysics Data System (ADS)

    Swaminathan, N.; Bilger, R. W.

    2001-09-01

    Characteristics of the scalar dissipation rate, N, of a progress variable, c, based on temperature in turbulent H2-air premixed flames are studied via direct numerical simulation with complex chemical kinetics for a range of flow/flame conditions (Baum et al 1994 J. Fluid Mech. 281 1). The flames are in the usually designated wrinkled-flamelet and well-stirred reactor regimes. The normalized conditional average, Nζ+, is observed to be higher than the corresponding planar laminar value because of strain thinning and the augmentation of laminar transport by turbulence within the flame front. Also, Nζ+ varies strongly across the flame-brush when u'/Sl is high. N has a log-normal distribution when u'/Sl is small and has a long negative tail for cases where u'/Sl is large. In the flame with φ = 0.5, \\widetilde{N_{\\zeta}^ + }/\\widetilde{N_^ + }" shows some sensitivity to Pζ and the sensitivity seems to be weak in a φ = 0.35 flame. The effect of turbulence on <ζ> is observed to be marginal. The conditional diffusion and the conditional dilatation, <∇ · u|ζ>, peak on the unburnt side of the flame-front and are higher than the corresponding laminar flame values in all cases. The inter-relationship among the conditional dissipation, diffusion, dilatation and velocity is discussed. A model for uζ obtained from the conditional dilatation is found not to perform as well as a linear model. The above results are limited, however, because, the flow field is two dimensional, hydrogen is used as the fuel, the range of dynamic length scales is small and the sample size is small.

  13. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery.

    PubMed

    Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L

    2018-06-01

    Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Alteration of the systemic and microcirculation by a single oral dose of flavan-3-ols.

    PubMed

    Ingawa, Kodai; Aruga, Nozomi; Matsumura, Yusuke; Shibata, Masahiro; Osakabe, Naomi

    2014-01-01

    Several systematic reviews have reported that flow mediated dilatation (FMD) was significantly increased in subjects after ingestion of chocolate that contains flavan-3-ols; however, the mechanisms responsible for this effect are not clear. In this study, we evaluated the effects of a single oral dose of flavan-3-ols on the systemic circulation and microcirculation in the cremaster muscle using intravital video microscopy in vivo. The cremaster muscle in rats was spread over a plastic chamber and a gastric tube was placed into the stomach. Blood flow in the cremasteric artery was determined using a laser Doppler flowmeter, while blood pressure and heart rate were measured by the tail-cuff method. Red blood cell velocity in arterioles and blood flow in the artery were significantly increased 5 min after the administration of 10 mg/kg flavan-3-ols compared with distilled water treatment. The number of capillaries recruited in the cremaster muscle was also significantly increased 15 min after treatment. Microscopic observation confirmed that increased shear stress on endothelial cells was maintained during the measurement period. The mean arterial blood pressure and heart rate were also significantly elevated soon after administration and returned to baseline before the end of the observation period. Plasma nitrate and nitrite levels, and NO phosphorylation of aortic tissue were significantly increased at 60 min after administration of flavan-3-ols. According to these results, a single oral dose of flavan-3-ols elevates blood pressure and flow transiently, and these effects induce NO production through increased shear stress on endothelial cells.

  15. Alteration of the Systemic and Microcirculation by a Single Oral Dose of Flavan-3-Ols

    PubMed Central

    Ingawa, Kodai; Aruga, Nozomi; Matsumura, Yusuke; Shibata, Masahiro; Osakabe, Naomi

    2014-01-01

    Several systematic reviews have reported that flow mediated dilatation (FMD) was significantly increased in subjects after ingestion of chocolate that contains flavan-3-ols; however, the mechanisms responsible for this effect are not clear. In this study, we evaluated the effects of a single oral dose of flavan-3-ols on the systemic circulation and microcirculation in the cremaster muscle using intravital video microscopy in vivo. The cremaster muscle in rats was spread over a plastic chamber and a gastric tube was placed into the stomach. Blood flow in the cremasteric artery was determined using a laser Doppler flowmeter, while blood pressure and heart rate were measured by the tail-cuff method. Red blood cell velocity in arterioles and blood flow in the artery were significantly increased 5 min after the administration of 10 mg/kg flavan-3-ols compared with distilled water treatment. The number of capillaries recruited in the cremaster muscle was also significantly increased 15 min after treatment. Microscopic observation confirmed that increased shear stress on endothelial cells was maintained during the measurement period. The mean arterial blood pressure and heart rate were also significantly elevated soon after administration and returned to baseline before the end of the observation period. Plasma nitrate and nitrite levels, and NO phosphorylation of aortic tissue were significantly increased at 60 min after administration of flavan-3-ols. According to these results, a single oral dose of flavan-3-ols elevates blood pressure and flow transiently, and these effects induce NO production through increased shear stress on endothelial cells. PMID:24740211

  16. Dynamin and myosin regulate differential exocytosis from mouse adrenal chromaffin cells.

    PubMed

    Chan, Shyue-An; Doreian, Bryan; Smith, Corey

    2010-11-01

    Neuroendocrine chromaffin cells of the adrenal medulla represent a primary output for the sympathetic nervous system. Chromaffin cells release catecholamine as well as vaso- and neuro-active peptide transmitters into the circulation through exocytic fusion of large dense-core secretory granules. Under basal sympathetic activity, chromaffin cells selectively release modest levels of catecholamines, helping to set the "rest and digest" status of energy storage. Under stress activation, elevated sympathetic firing leads to increased catecholamine as well as peptide transmitter release to set the "fight or flight" status of energy expenditure. While the mechanism for catecholamine release has been widely investigated, relatively little is known of how peptide transmitter release is regulated to occur selectively under elevated stimulation. Recent studies have shown selective catecholamine release under basal stimulation is accomplished through a transient, restricted exocytic fusion pore between granule and plasma membrane, releasing a soluble fraction of the small, diffusible molecules. Elevated cell firing leads to the active dilation of the fusion pore, leading to the release of both catecholamine and the less diffusible peptide transmitters. Here we propose a molecular mechanism regulating the activity-dependent dilation of the fusion pore. We review the immediate literature and provide new data to formulate a working mechanistic hypothesis whereby calcium-mediated dephosphorylation of dynamin I at Ser-774 leads to the recruitment of the molecular motor myosin II to actively dilate the fusion pore to facilitate release of peptide transmitters. Thus, activity-dependent dephosphorylation of dynamin is hypothesized to represent a key molecular step in the sympatho-adrenal stress response.

  17. Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men.

    PubMed

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Limb, Marie C; Williams, John P; Smith, Kenneth

    2016-05-01

    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow, and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective, leg blood flow (LBF), muscle microvascular blood volume (MBV), and MPS were measured under postabsorptive and postprandial (intravenous Glamin (Fresenius Kabi, Germany), dextrose to sustain glucose ∼7.5 mmol·L(-1)) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time that nutrition began. Leg (femoral artery) blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound using Definity (Lantheus Medical Imaging, Mass., USA) perflutren contrast agent and MPS using [1, 2-(13)C2]leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However, this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism.

  18. Crack Damage Parameters and Dilatancy of Artificially Jointed Granite Samples Under Triaxial Compression

    NASA Astrophysics Data System (ADS)

    Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.

    2018-06-01

    A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.

  19. Malathion poisoning

    MedlinePlus

    ... AND KIDNEYS Increased urination Inability to control urine flow (incontinence) EYES, EARS, NOSE, AND THROAT Increased salivation Increased tears in the eyes Small or dilated pupils that do not react to light HEART AND BLOOD Low or high blood pressure Slow or rapid heart rate Weakness ...

  20. Shear dilatancy and acoustic emission in dry and saturated granular materials

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via hydrodynamic lubrication which increases the fluid pressure and therefore increases the dilation compared to dry material. The effect is particularly strong for high viscosity fluids, as observed in the silicon oil experiment. Therefore, fluid viscosity can play a crucial role in determining the physics that controls the rheology of the sheared material.

  1. Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields

    NASA Astrophysics Data System (ADS)

    Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis

    2005-02-01

    The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.

  2. Habitual aerobic exercise does not protect against micro- or macrovascular endothelial dysfunction in healthy estrogen-deficient postmenopausal women.

    PubMed

    Santos-Parker, Jessica R; Strahler, Talia R; Vorwald, Victoria M; Pierce, Gary L; Seals, Douglas R

    2017-01-01

    Aging causes micro- and macrovascular endothelial dysfunction, as assessed by endothelium-dependent dilation (EDD), which can be prevented and reversed by habitual aerobic exercise (AE) in men. However, in estrogen-deficient postmenopausal women, whole forearm microvascular EDD has not been studied, and a beneficial effect of AE on macrovascular EDD has not been consistently shown. We assessed forearm blood flow in response to brachial artery infusions of acetylcholine (FBF ACh ), a measure of whole forearm microvascular EDD, and brachial artery flow-mediated dilation (FMD), a measure of macrovascular EDD, in 12 premenopausal sedentary women (Pre-S; 24 ± 1 yr; V̇o 2max = 37.5 ± 1.6 ml·kg -1 ·min -1 ), 25 estrogen-deficient postmenopausal sedentary women (Post-S; 62 ± 1 yr; V̇o 2max = 24.7 ± 0.9 ml·kg -1 ·min -1 ), and 16 estrogen-deficient postmenopausal AE-trained women (Post-AE; 59 ± 1 yr; V̇o 2max = 40.4 ± 1.4 ml·kg -1 ·min -1 ). FBF ACh was lower in Post-S and Post-AE compared with Pre-S women (135 ± 9 and 116 ± 17 vs. 193 ± 21 AUC, respectively, both P < 0.008), whereas Post-S and Post-AE women were not different (P = 0.3). Brachial artery FMD was 34% (5.73 ± 0.67%) and 45% (4.79 ± 0.57%) lower in Post-S and Post-AE, respectively, vs. Pre-S women (8.69 ± 0.95%, both P ≤ 0.01), but not different between Post-S and Post-AE women (P = 0.3). Post-AE women had lower circulating C-reactive protein and oxidized low-density lipoprotein compared with Post-S women (0.5 ± 0.1 vs. 1.1 ± 0.2 mg/l and 40 ± 4 vs. 55 ± 3 U/l, respectively, both P = 0.01), but these markers were not correlated to FBF ACh (P = 0.3) or brachial artery FMD (P = 0.8). These findings are consistent with the idea that habitual AE does not protect against age/menopause-related whole forearm micro- and macrovascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, despite being associated with lower systemic markers of inflammation and oxidative stress. This is the first study to demonstrate that habitual aerobic exercise may not protect against age/menopause-related whole forearm microvascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, consistent with recent findings regarding macrovascular endothelial function. This is in contrast to what is observed in healthy middle-aged and older aerobic exercise-trained men. Copyright © 2017 the American Physiological Society.

  3. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  4. Dilatation-dissipation corrections for advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.

  5. Exercise-induced myalgia may limit the cardiovascular benefits of statins.

    PubMed

    Opie, Lionel H

    2013-12-01

    The positive health benefits of statins extend beyond the cardiovascular and include increased flow mediated dilation, decreased atrial fibrillation, modest antihypertensive effects and reduced risks of malignancies. Prominent among the statin side-effects are myalgia and muscular weakness, which may be associated with a rise in circulating creatine kinase values. In increasing severity and decreasing incidence, the statin-induced muscle related conditions are myalgia, myopathy with elevated creatine kinase (CK) levels with or without symptoms, and rhabdomyolysis. Statin use may increase CK levels without decreasing average muscle strength or exercise performance. In one large study, only about 2 % had myalgia that could be attributed to statin use. A novel current hypothesis is that statins optimize cardiac mitochondrial function but impair the vulnerable skeletal muscle by inducing different levels of reactive oxygen species (ROS) in these two sites. In an important observational study, both statins and exercise reduced the adverse outcomes of cardiovascular disease, and the effects were additive. The major unresolved problem is that either can cause muscular symptoms with elevation of blood creatine kinase levels. There is, as yet, no clearly defined outcomes based policy to deal with such symptoms from use of either statins or exercise or both. A reasonable practical approach is to assess the creatine kinase levels, and if elevated to reduce the statin dose or the intensity of exercise.

  6. Effect of Flavonoids on Oxidative Stress and Inflammation in Adults at Risk of Cardiovascular Disease: A Systematic Review

    PubMed Central

    Suen, Jenni; Thomas, Jolene; Kranz, Amelia; Vun, Simon; Miller, Michelle

    2016-01-01

    Oxidative stress (OS) and inflammatory processes initiate the first stage of cardiovascular disease (CVD). Flavonoid consumption has been related to significantly improved flow-mediated dilation and blood pressure. Antioxidant and anti-inflammatory mechanisms are thought to be involved. The effect of flavonoids on markers of oxidative stress and inflammation, in at risk individuals is yet to be reviewed. Systematic literature searches were conducted in MEDLINE, Cochrane Library, CINAHL and SCOPUS databases. Randomised controlled trials in a Western country providing a food-based flavonoid intervention to participants with one or two modifiable risk factors for CVD measuring a marker of OS and/or inflammation, were included. Reference lists were hand-searched. The Cochrane Collaboration Risk of Bias Tool was used to assess study quality. The search strategy retrieved 1248 articles. Nineteen articles meeting the inclusion criteria were reviewed. Eight studies were considered at low risk of bias. Cocoa flavonoids provided to Type 2 diabetics and olive oil flavonoids to mildly-hypertensive women reduced OS and inflammation. Other food sources had weaker effects. No consistent effect on OS and inflammation across patients with varied CVD risk factors was observed. Study heterogeneity posed a challenge for inter-study comparisons. Rigorously designed studies will assist in determining the effectiveness of flavonoid interventions for reducing OS and inflammation in patients at risk of CVD. PMID:27649255

  7. Effect of Flavonoids on Oxidative Stress and Inflammation in Adults at Risk of Cardiovascular Disease: A Systematic Review.

    PubMed

    Suen, Jenni; Thomas, Jolene; Kranz, Amelia; Vun, Simon; Miller, Michelle

    2016-09-14

    Oxidative stress (OS) and inflammatory processes initiate the first stage of cardiovascular disease (CVD). Flavonoid consumption has been related to significantly improved flow-mediated dilation and blood pressure. Antioxidant and anti-inflammatory mechanisms are thought to be involved. The effect of flavonoids on markers of oxidative stress and inflammation, in at risk individuals is yet to be reviewed. Systematic literature searches were conducted in MEDLINE, Cochrane Library, CINAHL and SCOPUS databases. Randomised controlled trials in a Western country providing a food-based flavonoid intervention to participants with one or two modifiable risk factors for CVD measuring a marker of OS and/or inflammation, were included. Reference lists were hand-searched. The Cochrane Collaboration Risk of Bias Tool was used to assess study quality. The search strategy retrieved 1248 articles. Nineteen articles meeting the inclusion criteria were reviewed. Eight studies were considered at low risk of bias. Cocoa flavonoids provided to Type 2 diabetics and olive oil flavonoids to mildly-hypertensive women reduced OS and inflammation. Other food sources had weaker effects. No consistent effect on OS and inflammation across patients with varied CVD risk factors was observed. Study heterogeneity posed a challenge for inter-study comparisons. Rigorously designed studies will assist in determining the effectiveness of flavonoid interventions for reducing OS and inflammation in patients at risk of CVD.

  8. Microvascular Function Contributes to the Relation Between Aortic Stiffness and Cardiovascular Events: The Framingham Heart Study.

    PubMed

    Cooper, Leroy L; Palmisano, Joseph N; Benjamin, Emelia J; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Hamburg, Naomi M

    2016-12-01

    Arterial dysfunction contributes to cardiovascular disease (CVD) progression and clinical events. Inter-relations of aortic stiffness and vasodilator function with incident CVD remain incompletely studied. We used proportional hazards models to relate individual measures of vascular function to incident CVD in 4547 participants (mean age, 51±11 years; 54% women) in 2 generations of Framingham Heart Study participants. During follow-up (0.02-13.83 years), 232 participants (5%) experienced new-onset CVD events. In multivariable models adjusted for cardiovascular risk factors, both higher carotid-femoral pulse wave velocity (hazard ratio [HR], 1.32; 95% confidence interval [CI], 1.07-1.63; P=0.01) and lower hyperemic mean flow velocity (HR, 0.84; 95% CI, 0.71-0.99; P=0.04) were associated significantly with incident CVD, whereas primary pressure wave amplitude (HR, 1.12; 95% CI, 0.99-1.27; P=0.06), baseline brachial diameter (HR, 1.09; 95% CI, 0.90-1.31; P=0.39), and flow-mediated vasodilation (HR, 0.85; 95% CI, 0.69-1.04; P=0.12) were not. In mediation analyses, 8% to 13% of the relation between aortic stiffness and CVD events was mediated by hyperemic mean flow velocity. Our results suggest that associations between aortic stiffness and CVD events are mediated by pathways that include microvascular damage and remodeling. © 2016 American Heart Association, Inc.

  9. Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity.

    PubMed

    Binter, Christian; Gotschy, Alexander; Sündermann, Simon H; Frank, Michelle; Tanner, Felix C; Lüscher, Thomas F; Manka, Robert; Kozerke, Sebastian

    2017-06-01

    Turbulent kinetic energy (TKE), assessed by 4-dimensional (4D) flow magnetic resonance imaging, is a measure of energy loss in disturbed flow as it occurs, for instance, in aortic stenosis (AS). This work investigates the additional information provided by quantifying TKE for the assessment of AS severity in comparison to clinical echocardiographic measures. Fifty-one patients with AS (67±15 years, 20 female) and 10 healthy age-matched controls (69±5 years, 5 female) were prospectively enrolled to undergo multipoint 4D flow magnetic resonance imaging. Patients were split into 2 groups (severe and mild/moderate AS) according to their echocardiographic mean pressure gradient. TKE values were integrated over the aortic arch to obtain peak TKE. Integrating over systole yielded total TKE sys and by normalizing for stroke volume, normalized TKE sys was obtained. Mean pressure gradient and TKE correlated only weakly ( R 2 =0.26 for peak TKE and R 2 =0.32 for normalized TKE sys ) in the entire study population including control subjects, while no significant correlation was observed in the AS patient group. In the patient population with dilated ascending aorta, both peak TKE and total TKE sys were significantly elevated ( P <0.01), whereas mean pressure gradient was significantly lower ( P <0.05). Patients with bicuspid aortic valves also showed significantly increased TKE metrics ( P <0.01), although no significant difference was found for mean pressure gradient. Elevated TKE levels imply higher energy losses associated with bicuspid aortic valves and dilated ascending aortic geometries that are not assessable by current echocardiographic measures. These findings indicate that TKE may provide complementary information to echocardiography, helping to distinguish within the heterogeneous population of patients with moderate to severe AS. © 2017 American Heart Association, Inc.

  10. Outlook with conservative treatment of peptic oesophageal stricture.

    PubMed Central

    Ogilvie, A L; Ferguson, R; Atkinson, M

    1980-01-01

    In order to assess the outlook for patients with peptic oesophageal strictures treated by Eder Puestow dilatation at fibreoptic endoscopy, 50 patients were followed up for periods ranging from nine months to four years. Twenty patients (40%) required only a single dilatation, and the remaining 30 (60%) required multiple dilatations. The frequency of dilatation tended to decrease with time. There was one death attributable to the procedure. Two patients developed an adenocarcinoma at the site of the stricture. We conclude that conservative management of peptic oesophageal stricture combining the use of dilatation at fibreoptic endoscopy with medical measures to control gastro-oesophageal reflux offers a relatively safe means of providing symptomatic relief, maintaining nutrition, and allowing the patient an acceptable quality of life. PMID:7364314

  11. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  12. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  13. Continuum modeling of rate-dependent granular flows in SPH

    DOE PAGES

    Hurley, Ryan C.; Andrade, José E.

    2016-09-13

    In this paper, we discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker–Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. In conclusion, this technique may therefore be attractive for modeling the time-dependent evolutionmore » of natural and industrial flows.« less

  14. General Anesthesia Inhibits the Activity of the “Glymphatic System”

    PubMed Central

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300

  15. General Anesthesia Inhibits the Activity of the "Glymphatic System".

    PubMed

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.

  16. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the results of the model proposed by Pitman and Le. Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, 2014, ESAIM: Mathematical Modelling and Numerical Analysis, in press. Iverson et al., 2010, J. Geophys. Res. 115: F03005. Jackson, 2000, Cambridge Monographs on Mechanics. Pitman and Le, Phil.Trans. R. Soc. A 363, 1573-1601, 2005.

  17. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the results of the model proposed by Pitman and Le. Bouchut, Fernandez-Nieto, Mangeney, Narbona-Reina, 2014, ESAIM: Mathematical Modelling and Numerical Analysis, in press. Iverson, Logan, LaHusen, Berti, 2010, J. Geophys. Res. 115: F03005. Jackson, 2000, Cambridge Monographs on Mechanics. Pitman and Le, Phil.Trans. R. Soc. A 363, 1573-1601, 2005.

  18. Improved test of time dilation in special relativity.

    PubMed

    Saathoff, G; Karpuk, S; Eisenbarth, U; Huber, G; Krohn, S; Muñoz Horta, R; Reinhardt, S; Schwalm, D; Wolf, A; Gwinner, G

    2003-11-07

    An improved test of time dilation in special relativity has been performed using laser spectroscopy on fast ions at the heavy-ion storage-ring TSR in Heidelberg. The Doppler-shifted frequencies of a two-level transition in 7Li+ ions at v=0.064c have been measured in the forward and backward direction to an accuracy of Deltanu/nu=1 x 10(-9) using collinear saturation spectroscopy. The result confirms the relativistic Doppler formula and sets a new limit of 2.2 x 10(-7) for deviations from the time dilation factor gamma(SR)=(1-v2/c2)(-1/2).

  19. The echocardiographic diagnosis of totally anomalous pulmonary venous connection in the fetus.

    PubMed

    Allan, L D; Sharland, G K

    2001-04-01

    Infants with isolated totally anomalous pulmonary venous return often present severely decompensated, such that they are at high risk for surgical repair. On the other hand, if surgical repair can be safely accomplished, the outlook is usually good. Thus prenatal diagnosis would be expected to improve the prognosis for the affected child. To describe the features of isolated totally anomalous pulmonary venous drainage in the fetus. Four fetuses with isolated totally anomalous pulmonary venous connection were identified and the echocardiographic images reviewed. Measurements of the atrial and ventricular chambers and both great arteries were made and compared with normal values. Referral centre for fetal echocardiography. There were two cases of drainage to the coronary sinus, one to the right superior vena cava, and one to the inferior vena cava. Right heart dilatation relative to left heart structures was a feature of two cases early on, and became evident in some ratios late in pregnancy in the remaining two. Ventricular and great arterial disproportion in the fetus can indicate a diagnosis of totally anomalous pulmonary venous connection above the diaphragm. However, in the presence of an atrial septal defect or with infradiaphragmatic drainage, right heart dilatation may not occur until late in pregnancy. The diagnosis of totally anomalous pulmonary venous drainage in fetal life can only be reliably excluded by direct examination of pulmonary venous blood flow entering the left atrium on colour or pulsed flow mapping.

  20. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence: An analytical theory

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1995-01-01

    The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.

Top