Sample records for flow-through time resolved

  1. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  2. Fluid mechanics and heat transfer spirally fluted tubing

    NASA Astrophysics Data System (ADS)

    Yampolsky, J. S.; Libby, P. A.; Launder, B. E.; Larue, J. C.

    1984-12-01

    The objective of this program is to develop an understanding of the fluid mechanics and heat transfer mechanisms that result in the demonstrated performance of the spiral fluted tubing under development at GA Technologies Inc. Particularly emphasized are the processes that result in the augmentation of the heat transfer coefficient without an increase in friction coefficient in the single-phase flow. Quantitative delineation of these processes would allow for their application to the optimal solution of heat transfer problems in general was well as to tubular heat exchanges using spiral fluted tubes. The experimental phase of the program consisted of the following: (1) Flow visualization studies using high-speed photography of dye injected into water flowing in a cast acrylic spiral fluted tube. (2) Time-resolved axial velocity measurements as a function of radius at the exit plane of a spiral fluted tube with water flowing through the tube. (3) Simultaneous time-resolved measurements of the axial and radial velocity components and temperature with heated air flowing through the tube cooled by a water jacket.

  3. Identifying Coherent Structures in a 3-Stream Supersonic Jet Flow using Time-Resolved Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Coleman, Thomas; Berry, Matthew; Magstadt, Andy; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Shock cells and large scale structures present in a three-stream non-axisymmetric jet are studied both qualitatively and quantitatively. Large Eddy Simulation is utilized first to gain an understanding of the underlying physics of the flow and direct the focus of the physical experiment. The flow in the experiment is visualized using long exposure Schlieren photography, with time resolved Schlieren photography also a possibility. Velocity derivative diagnostics are calculated from the grey-scale Schlieren images are analyzed using continuous wavelet transforms. Pressure signals are also captured in the near-field of the jet to correlate with the velocity derivative diagnostics and assist in unraveling this complex flow. We acknowledge the support of AFRL through an SBIR grant.

  4. Application of the flow-through time-resolved analysis technique to trace element determination in ostracod shells

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; De Baere, Bart; Francois, Roger; Frenzel, Peter; Schwalb, Antje

    2014-05-01

    Trace element analyses of ostracod shells are a vital tool for paleoenvironmental reconstructions from lake sediments (Börner et al., 2013). Conventional batch dissolution ICP-MS is the most common way for analyzing trace elements in ostracod shells. However, due to dissolution or secondary overgrowth the primary signal may be masked. Resulting variations in trace element composition have been identified to be in the order of a magnitude range. Therefore, the application of the newly developed flow-through technique will be assessed. The flow-through time-resolved analysis technique allows to chemically separate mineral phases of different solubility such as, in particular, original shell calcite from overgrowth calcite, and thus to correct the measurements for the biogenic signal. During a flow-through experiment, eluent is continuously pumped through a sample column, typically a filter in which the ostracod valves are loaded. The gradual dissolution of the substrate is controlled by a combination of eluent type, eluent temperature and eluent flow rate. The dissolved sample then flows directly to a mass spectrometer. The resulting data is a chromatogram, featuring different mineral phases dissolving as time progresses. Hence, the flow-through technique provides a detailed geochemical fingerprint of the substrate and therefore additional data relative to conventional methods. To calibrate this technique for the application to ostracods we use ostracod shells from Southern Tibetan Plateau lakes, which feature an alkaline environment but show highly diverse hydrochemistry. Cleaned as well as uncleaned ostracod shells show similarity in their trace element signals, allowing measurements without prior cleaning of the shells, and thus more time-efficient sample throughput. Measurements of unclean shells are corrected for the biogenic signal using an equation from Klinkhammer et al. (2004). Another advantage is that the measurements can be carried out on single ostracod shells, as not every single sediment sample contains enough adult intact specimens of all required genera, making batch cleaning dissolution impossible. The flow-through time-resolved analysis technique gives an accurate and high-resolution dataset. The trace elemental data for living ostracods compared to the hydrological data from each sampling site provides a calibration dataset for further hydrological and thus climatological reconstruction of a sediment core from Nam Co. Mg/Ca and Sr/Ca ratios in ostracod shells will provide information about past water temperature and salinity resulting from changes in precipitation vs. evaporation ratios and monsoon activity. Further, we will exploit Mn/Ca, Fe/Ca and U/Ca ratios as redox indicators to reconstruct oxygenation cycles and Ba/Ca ratios to detect changes in productivity and/or salinity. This reconstruction should provide a more extensive insight in past climatic change, e.g. precipitation - evaporation balance, lake level and circulation changes, and the recording of environmental signatures by ostracod shells. Börner, N., De Baere, B., Yang, Q., Jochum, K.P., Frenzel, P., Andreae, M.O., Schwalb, A., 2013. Ostracod shell chemistry as proxy for paleoenvironmental change. Quaternary International 313-314, 17-37. Klinkhammer, G.P., Haley, B.A., Mix, A.C., Benway, H., Cheseby, M., 2004. Evaluation of automated flow-through time-resolved analysis of foraminifera for Mg/Ca paleothermometry. Paleoceanography 19, PA4030.

  5. Quantitative flow and velocity measurements of pulsatile blood flow with 4D-DSA

    NASA Astrophysics Data System (ADS)

    Shaughnessy, Gabe; Hoffman, Carson; Schafer, Sebastian; Mistretta, Charles A.; Strother, Charles M.

    2017-03-01

    Time resolved 3D angiographic data from 4D DSA provides a unique environment to explore physical properties of blood flow. Utilizing the pulsatility of the contrast waveform, the Fourier components can be used to track the waveform motion through vessels. Areas of strong pulsatility are determined through the FFT power spectrum. Using this method, we find an accuracy from 4D-DSA flow measurements within 7.6% and 6.8% RMSE of ICA PCVIPR and phantom flow probe validation measurements, respectively. The availability of velocity and flow information with fast acquisition could provide a more quantitative approach to treatment planning and evaluation in interventional radiology.

  6. Time Resolved Stereo Particle Image Velocimetry Measurements of the Instabilities Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Time-resolved particle image velocimetry (TRPIV) measurements are performed down-stream of a swept backward-facing step, with a height of 49% of the boundary-layer thickness. The results agree well qualitatively with previously reported hotwire measurements, though the amplitudes of the fluctuating components measured using TRPIV are higher. Nonetheless, the low-amplitude instabilities in the flow are fairly well resolved using TR- PIV. Proper orthogonal decomposition is used to study the development of the traveling cross flow and Tollmien-Schlichting (TS) instabilities downstream of the step and to study how they interact to form the large velocity spikes that ultimately lead to transition. A secondary mode within the traveling cross flow frequency band develops with a wavelength close to that of the stationary cross flow instability, so that at a certain point in the phase, it causes an increase in the spanwise modulation initially caused by the stationary cross flow mode. This increased modulation leads to an increase in the amplitude of the TS mode, which, itself, is highly modulated through interactions with the stationary cross flow. When the traveling cross flow and TS modes align in time and space, the large velocity spikes occur. Thus, these three instabilities, which are individually of low amplitude when the spikes start to occur (U'rms/Ue <0.03), interact and combine to cause a large flow disturbance that eventually leads to transition.

  7. High-Energy, High-Pulse-Rate Light Sources for Enhanced Time-Resolved Tomographic PIV of Unsteady and Turbulent Flows

    DTIC Science & Technology

    2017-07-31

    Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email

  8. CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.

    2017-08-01

    Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.

  9. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  10. High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Webster, D. R.; Yen, J.

    2012-11-01

    Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.

  11. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  12. Resolved simulations of a granular-fluid flow through a check dam with a SPH-DCDEM model

    NASA Astrophysics Data System (ADS)

    Birjukovs Canelas, Ricardo; Domínguez, Jose; Crespo, Alejandro; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2017-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research. Experimental research in laboratory facilities or in the field is fundamental to characterize the fundamental rheological properties of these flows and to provide insights on its structure. However, characterizing interparticle contacts and the structure of the motion of the granular phase is difficult, even in controlled laboratory conditions, and possible only for simple geometries. This work addresses the need for a numerical simulation tool applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts and susceptible to complement laboratory research. The DualSPHysics meshless numerical implementation based on Smoothed Particle Hydrodynamics (SPH) is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The specific objective is to test the SPH-DCDEM approach by comparing its results with experimental data. An experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced through a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle possibly undergoing several simultaneous contacts, thousands of time-evolving interactions are efficiently treated due to the model's algorithmic structure and the HPC implementation of DualSPHysics. The results, comprising mainly of retention curves, are in good agreement with the measurements, correctly reproducing the changes in efficiency with slit spacing and density. The encouraging results, coupled with the prospect of so far unique insights into the internal dynamics of a debris flow show the potential of high-performance resolved approaches to the description of the flow and the study of its mitigation strategies. This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).

  13. Numerical investigation of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Kim, J.

    1981-01-01

    Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.

  14. Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow

    NASA Technical Reports Server (NTRS)

    Berdanier, Reid A.; Key, Nicole L.

    2017-01-01

    The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the trajectory of the tip leakage flow through the rotor passage. Further, these data extend previous measurements identifying a modulation of the tip leakage flow due to upstream stator wake propagation. Finally, a novel instrumentation technique has been implemented to measure pressures in the shrouded stator cavities. These data provide boundary conditions relating to the flow across the shrouded stator knife seal teeth. Moreover, the utilization of fast-response pressure sensors provides a new look at the time-resolved pressure field, leading to instantaneous differential pressures across the seal teeth. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.

  15. The role of surface vorticity during unsteady separation

    NASA Astrophysics Data System (ADS)

    Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán

    2018-04-01

    Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.

  16. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  17. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  18. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    NASA Astrophysics Data System (ADS)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  19. Characterization of Rare Reverse Flow Events in Adverse Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Fuchs, Thomas

    2017-11-01

    Time-resolved tomographic flow fields measured in the viscous sublayer region of a turbulent boundary layer subjected to an adverse pressure gradient (APG) are examined with the aim to resolve and characterize reverse flow events at Reτ = 5000. The fields were measured using a novel high resolution tomographic particle tracking technique. It is shown that this technique is able to fully resolve mean and time dependent features of the complex three-dimensional flow with high accuracy down to very near-wall distances ( 10 μm). From time resolved Lagrangian particle trajectories, statistical information as well as instantaneous topological features of near-wall flow events are deduced. Similar to the zero pressure gradient case (ZPG), it was found that individual events with reverse flow components still occur relatively rarely under the action of the pressure gradient investigated here. However, reverse flow events comprised of many individual events, are shown to appear in relatively organized groupings in both spanwise and streamise directions. Furthermore, instantaneous measurements of reverse flow events show that these events are associated with the motion of low-momentum streaks in the near-wall region. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures and the individual project Grant KA1808/8-2 of the Deutsche Forschungsgemeinschaft.

  20. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  1. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  2. Filming the invisible - time-resolved visualization of compressible flows

    NASA Astrophysics Data System (ADS)

    Kleine, H.

    2010-04-01

    Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately introduced near-isentropic perturbation wavelets. This new diagnostic tool can be used to qualitatively and quantitatively determine otherwise inaccessible thermodynamic properties of a compressible flow.

  3. Study of Varying Boundary Layer Height on Turret Flow Structures

    DTIC Science & Technology

    2011-06-01

    fluid dynamics. The difficulties of the problem arise in modeling several complex flow features including separation, reattachment, three-dimensional...impossible. In this case, the approach is to create a model to calculate the properties of interest. The main issue with resolving turbulent flows...operation and their effect is modeled through subgrid scale models . As a result, the the most important turbulent scales are resolved and the

  4. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon

    2017-08-01

    Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.

  5. Hemodynamic flow visualization of early embryonic great vessels using μPIV.

    PubMed

    Goktas, Selda; Chen, Chia-Yuan; Kowalski, William J; Pekkan, Kerem

    2015-01-01

    Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

  6. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.

  8. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  9. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    NASA Astrophysics Data System (ADS)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  10. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris

    PubMed Central

    Merkle, Conrad W.; Leahy, Conor; Srinivasan, Vivek J.

    2016-01-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo. DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution. PMID:27867732

  11. Dynamic contrast optical coherence tomography images transit time and quantifies microvascular plasma volume and flow in the retina and choriocapillaris.

    PubMed

    Merkle, Conrad W; Leahy, Conor; Srinivasan, Vivek J

    2016-10-01

    Despite the prevalence of optical imaging techniques to measure hemodynamics in large retinal vessels, quantitative measurements of retinal capillary and choroidal hemodynamics have traditionally been challenging. Here, a new imaging technique called dynamic contrast optical coherence tomography (DyC-OCT) is applied in the rat eye to study microvascular blood flow in individual retinal and choroidal layers in vivo . DyC-OCT is based on imaging the transit of an intravascular tracer dynamically as it passes through the field-of-view. Hemodynamic parameters can be determined through quantitative analysis of tracer kinetics. In addition to enabling depth-resolved transit time, volume, and flow measurements, the injected tracer also enhances OCT angiograms and enables clear visualization of the choriocapillaris, particularly when combined with a post-processing method for vessel enhancement. DyC-OCT complements conventional OCT angiography through quantification of tracer dynamics, similar to fluorescence angiography, but with the important added benefit of laminar resolution.

  12. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  13. Time Resolved Digital PIV Measurements of Flow Field Cyclic Variation in an Optical IC Engine

    NASA Astrophysics Data System (ADS)

    Jarvis, S.; Justham, T.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.

    2006-07-01

    Time resolved digital particle image velocimetry (DPIV) experimental data is presented for the in-cylinder flow field development of a motored four stroke spark ignition (SI) optical internal combustion (IC) engine. A high speed DPIV system was employed to quantify the velocity field development during the intake and compression stroke at an engine speed of 1500 rpm. The results map the spatial and temporal development of the in-cylinder flow field structure allowing comparison between traditional ensemble average and cycle average flow field structures. Conclusions are drawn with respect to engine flow field cyclic variations.

  14. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  15. Chromatographic-ICPMS methods for trace element and isotope analysis of water and biogenic calcite

    NASA Astrophysics Data System (ADS)

    Klinkhammer, G. P.; Haley, B. A.; McManus, J.; Palmer, M. R.

    2003-04-01

    ICP-MS is a powerful technique because of its sensitivity and speed of analysis. This is especially true for refractory elements that are notoriously difficult using TIMS and less energetic techniques. However, as ICP-MS instruments become more sensitive to elements of interest they also become more sensitive to interference. This becomes a pressing issue when analyzing samples with high total dissolved solids. This paper describes two trace element methods that overcome these problems by using chromatographic techniques to precondition samples prior to analysis by ICP-MS: separation of rare earth elements (REEs) from seawater using HPLC-ICPMS, and flow-through dissolution of foraminiferal calcite. Using HPLC in combination with ICP-MS it is possible to isolate the REEs from matrix, other transition elements, and each other. This method has been developed for small volume samples (5ml) making it possible to analyze sediment pore waters. As another example, subjecting foram shells to flow-through reagent addition followed by time-resolved analysis in the ICP-MS allows for systematic cleaning and dissolution of foram shells. This method provides information about the relationship between dissolution tendency and elemental composition. Flow-through is also amenable to automation thus yielding the high sample throughput required for paleoceanography, and produces a highly resolved elemental matrix that can be statistically analyzed.

  16. Pulsating Flows in a Tube with Expandable Wall

    NASA Astrophysics Data System (ADS)

    Raguso, Frank; Goushcha, Oleg

    2017-11-01

    A mean axial fluid flow inside a cardiovascular system has a periodic behavior driven by a heart. In one period, the flow through aorta is accelerated to a Reynolds number associated with turbulent flow and decelerated to nearly stagnant condition. The cyclic pressure in the aorta also exerts time-dependent forces on the walls of the cardiovascular system. Since walls are not rigid, they can expand under fluidic pressure. It is of interest to examine the effect of expandable walls on the flow regime transition. To achieve this, an experimental apparatus has been set up. The periodic mean axial flow inside the tubes is driven by a motor-controlled piston programmed to induce a periodic flow. A time-resolved particle image velocimetry method has been used to calculate the flow velocity field in two tubes: (1) a rigid tube and (2) a flexible tube with expandable walls. The velocity fields from two tubes were comparted to identify any differences in flow transition mechanisms.

  17. Evaluation of Collaterals and Clot Burden Using Time-Resolved C-Arm Conebeam CT Angiography in the Angiography Suite: A Feasibility Study.

    PubMed

    Yang, P; Niu, K; Wu, Y; Struffert, T; Doerfler, A; Holter, P; Aagaard-Kienitz, B; Strother, C; Chen, G-H

    2017-04-01

    The assessment of collaterals and clot burden in patients with acute ischemic stroke provides important information about treatment options and clinical outcome. Time-resolved C-arm conebeam CT angiography has the potential to provide accurate and reliable evaluations of collaterals and clot burden in the angiographic suite. Experience with this technique is extremely limited, and feasibility studies are needed to validate this technique. Our purpose was to present such a feasibility study. Ten C-arm conebeam CT perfusion datasets from 10 subjects with acute ischemic stroke acquired before endovascular treatment were retrospectively processed to generate time-resolved conebeam CTA. From time-resolved conebeam CTA, 2 experienced readers evaluated the clot burden and collateral flow in consensus by using previously reported scoring systems and assessed the clinical value of this novel imaging technique independently. Interobserver agreement was analyzed by using the intraclass correlation analysis method. Clot burden and collateral flow can be assessed by using the commonly accepted scoring systems for all eligible cases. Additional clinical information (eg, the quantitative dynamic information of collateral flow) can be obtained from this new imaging technique. Two readers agreed that time-revolved C-arm conebeam CTA is the preferred method for evaluating the clot burden and collateral flow compared with other conventional imaging methods. Comprehensive evaluations of clot burden and collateral flow are feasible by using time-resolved C-arm conebeam CTA data acquired in the angiography suite. This technique further enriches the imaging tools in the angiography suite to enable a "one-stop- shop" imaging workflow for patients with acute ischemic stroke. © 2017 by American Journal of Neuroradiology.

  18. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    PubMed

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  19. An Experimental Investigation of the Flow Physics Associated With End Wall Losses and Large Rotor Tip Clearances as Found in the Rear Stages of a High Pressure Compressor

    NASA Technical Reports Server (NTRS)

    Berdanier, Reid A.; Key, Nicole L.

    2015-01-01

    The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These measurements have also been used to calculate streamwise vorticity. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100% corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements, as well as the time-resolved total pressures and velocities have helped to reveal a profound influence of the upstream stator vane on the size and shape of the rotor tip leakage flow. Finally, a novel particle image velocimetry (PIV) technique has been developed as a proof-of- concept. In contrast to PIV methods that have been typically been utilized for turbomachinery applications in the past, the method used for this study introduced the laser light through the same access window that was also used to image the flow. This new method addresses potential concerns related to the intrusive laser-introducing techniques that have typically been utilized by other authors in the past. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.

  20. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    NASA Astrophysics Data System (ADS)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  1. Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.

    2011-07-01

    High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.

  2. Experimental Characterization of the Jet Wiping Process

    NASA Astrophysics Data System (ADS)

    Mendez, Miguel Alfonso; Enache, Adriana; Gosset, Anne; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental characterization of the jet wiping process, used in continuous coating applications to control the thickness of a liquid coat using an impinging gas jet. Time Resolved Particle Image Velocimetry (TR-PIV) is used to characterize the impinging gas flow, while an automatic interface detection algorithm is developed to track the liquid interface at the impact. The study of the flow interaction is combined with time resolved 3D thickness measurements of the liquid film remaining after the wiping, via Time Resolved Light Absorption (TR-LAbs). The simultaneous frequency analysis of liquid and gas flows allows to correlate their respective instability, provide an experimental data set for the validation of numerical studies and allows for formulating a working hypothesis on the origin of the coat non-uniformity encountered in many jet wiping processes.

  3. Monitoring carbonate dissolution using spatially resolved under-sampled NMR propagators and MRI

    NASA Astrophysics Data System (ADS)

    Sederman, A. J.; Colbourne, A.; Mantle, M. D.; Gladden, L. F.; Oliveira, R.; Bijeljic, B.; Blunt, M. J.

    2017-12-01

    The dissolution of a porous rock matrix by an acidic flow causes a change in the pore structure and consequently the pattern of fluid flow and rock permeability. This process is relevant to many areas of practical relevance such as enhanced oil recovery, water contaminant migration and sequestration of supercritical CO2. The most important governing factors for the type of change in the pore space are related by the Péclet (Pe) and Damköhler (Da) dimensionless numbers; these compare the transport properties of the fluid in the porous medium with the reactive properties of the solid matrix and the incident fluid respectively. Variation in Pe and Da can cause very different evolution regimes of the pore space and flow can occur, ranging from a uniform dissolution through different "wormholing" regimes (shown on the left hand side of figure 1) to face dissolution. NMR has a unique capability of measuring both the flow and structural changes during such dissolution whilst the characteristics of flow in the highly heterogeneous matrix that is formed can be predicted by the CTRW modelling approach. Here, NMR measurements of displacement probability distributions, or propagators, have been used to monitor the evolution of fluid flow during a reactive dissolution rock core floods. Developments in the NMR method by undersampling the acquisition data enable spatially resolved measurements of the propagators to be done at sufficient displacement resolution and in a timescale that is short enough to capture the changes in structure and flow. The highly under-sampled (4%) data, which typically reduces the acquisition time from 2 hours to 6 minutes, has been shown to produce equivalent propagator results to the fully sampled experiment. Combining these propagator measurements with quantitative and fast imaging techniques a full time-resolved picture of the dissolution reaction is built up. Experiments have been done for both Ketton and Estaillades carbonate rock cores, which exhibit very different dissolution behaviours, and for which experiments and model comparisons will be shown.

  4. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  5. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  6. Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi

    2017-11-01

    Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.

  7. High-Fidelity PIV of a Naturally Grown High Reynolds Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; White, Chris; Klewicki, Joeseph

    2017-11-01

    High-fidelity particle image velocimetry data acquired in the Flow Physics Facility (FPF) at the University of New Hampshire is presented. Having a test section length of 72m, the FPF employs the ``big and slow'' approach to obtain well-resolved turbulent boundary layer measurements at high Reynolds number. We report on PIV measurements acquired in the streamwise-wall-normal plane at a downstream position 59m from the test-section inlet over the friction Reynolds number range 7000 < Reτ < 15000 . Local flow tracer seeding is employed through a wall-mounted slot fed by a large volume plenum located 13.4m upstream of the PIV measurement station. Both time-independent and time-dependent turbulent flow statistics are presented and compared to existing data.

  8. Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk

    2016-09-15

    We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less

  9. Single-Walled Carbon Nanotubes, Carbon Nanofibers and Laser-Induced Incandescence

    NASA Technical Reports Server (NTRS)

    Schubert, Kathy (Technical Monitor); VanderWal, Randy L.; Ticich, Thomas M.; Berger, Gordon M.; Patel, Premal D.

    2004-01-01

    Laser induced incandescence applied to a heterogeneous, multi-element reacting flows is characterized by a) temporally resolved emission spectra, time-resolved emission at selected detection wavelengths and fluence dependence. Laser fluences above 0.6 Joules per square centimeter at 1064 nm initiate laser-induced vaporization, yielding a lower incandescence intensity, as found through fluence dependence measurements. Spectrally derived temperatures show that values of excitation laser fluence beyond this value lead to a super-heated plasma, well above the vaporization of temperature of carbon. The temporal evolution of the emission signal at these fluences is consistent with plasma dissipation processes, not incandescence from solid-like structures.

  10. High-resolution structure, interactions, and dynamics of self-assembled virus-like partilces

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Asor, R.; Ben-Shaul, O.; Oppenheim, A.; Schlicksup, L. C.; Seltzer, L.; Jarrold, M. F.; Zlotnick, A.

    Using SAXS, in combination with Monte Carlo simulations, and our unique solution x-ray scattering data analysis program, we resolved at high spatial resolution, the manner by which wtSV40 packages its 5.2kb circular DNA about 20 histone octamers in the virus capsid (Figure 1). This structure, known as a mini-chromosome, is highly dynamic and could not be resolved by microscopy methods. Using time-resolved solution SAXS, stopped-flow, and flow-through setups the assembly process of VP1, the major caspid protein of the SV40 virus, with RNA or DNA to form virus-like particles (VLPs) was studied in msec temporal resolution. By mixing the nucleotides and the capsid protein, virus-like particles formed within 35 msec, in the case of RNA that formed T =1 particles, and within 15 seconds in the case of DNA that formed T =7 particles, similar to wt SV40. The structural changes leading to the particle formation were followed in detail. More recently, we have extended this work to study the assembly of HBV virus-like particles.

  11. Development of a Rayleigh Scattering Diagnostic for Time-Resolved Gas Flow Velocity, Temperature, and Density Measurements in Aerodynamic Test Facilities

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2007-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded turbulent flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultiplier tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. An acoustically driven nozzle flow is studied to validate velocity fluctuation measurements, and an asymmetric oscillating counterflow with unequal enthalpies is studied to validate the measurement of temperature fluctuations. Velocity fluctuations are compared with constant temperature anemometry measurements and temperature fluctuations are compared with constant current anemometry measurements at the same locations. Time-series and power spectra of the temperature and velocity measurements are presented. A numerical simulation of the light scattering and detection process was developed and compared with experimental data for future use as an experiment design tool.

  12. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device.

    PubMed

    Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M

    2014-01-01

    Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.

  13. Using resolvent analysis for the design of separation control on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Taira, Kunihiko

    2017-11-01

    A combined effort based on large-eddy simulation and resolvent analysis on the separated flow over a NACA 0012 airfoil is conducted to design active flow control for suppression of separation. This study considers the the airfoil at 6 deg. angle-of-attack and Reynolds number of 23000. The response mode obtained from the resolvent analysis about the baseline turbulent mean flow reveals modal structures that can be categorized into three families when sweeping through the resonant frequency: (1) von Karman wake structure for low frequency; (2) Kelvin-Helmholtz structure in the separation bubble for high frequency; (3) blended structure of (1) and (2) for the intermediate frequency. Leveraging the insights from resolvent analysis, unsteady thermal actuation is introduced to the flow near the leading-edge to examine the use of the frequencies from three families for separation control in LES. As indicated by the resolvent response modes, we find that the use of intermediate frequencies are most effective in suppressing the flow separation, since the shear layer over the separation bubble and the wake are both receptive to the perturbation at the these frequencies. The resolvent-analysis-based control strategy achieves 35% drag reduction and 9% lift increase with effective frequency. This work was supported by Office of Naval Research (N00014-15-R-FO13) and Army Research Office (W911NF-14-1-0224).

  14. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  15. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  16. Time Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  17. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  18. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM).

    PubMed

    Kramer, Tobias; Noack, Matthias; Reinefeld, Alexander; Rodríguez, Mirta; Zelinskyy, Yaroslav

    2018-06-11

    Time- and frequency-resolved optical signals provide insights into the properties of light-harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency-resolved processes in light-harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Unsteady aerodynamics of membrane wings with adaptive compliance

    NASA Astrophysics Data System (ADS)

    Kiser, Jillian; Breuer, Kenneth

    2016-11-01

    Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.

  20. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  1. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  2. Continuous flow hygroscopicity-resolved relaxed eddy accumulation (Hy-Res REA) method of measuring size-resolved sodium chloride particle fluxes

    EPA Science Inventory

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here, we present the design, testing, and analysis of data collected through the first instrument capable of measuring ...

  3. Success in Science, Success in Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.

    2016-08-25

    This is a series of four different scientific problems which were resolved through collaborations. They are: "Better flow cytometry through novel focusing technology", "Take Off ®: Helping the Agriculture Industry Improve the Viability of Sustainable, Large-Production Crops", "The National Institutes of Health's Models of Infectious Disease Agent Study (MIDAS)", and "Expanding the capabilities of SOLVE/RESOLVE through the PHENIX Consortium." For each one, the problem is listed, the solution, advantages, bottom line, then information about the collaboration including: developing the technology, initial success, and continued success.

  4. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model

    NASA Astrophysics Data System (ADS)

    Geoghegan, P. H.; Buchmann, N. A.; Soria, J.; Jermy, M. C.

    2013-05-01

    Compliant (flexible) structures play an important role in several biological flows including the lungs, heart and arteries. Coronary heart disease is caused by a constriction in the artery due to a build-up of atherosclerotic plaque. This plaque is also of major concern in the carotid artery which supplies blood to the brain. Blood flow within these arteries is strongly influenced by the movement of the wall. To study these problems experimentally in vitro, especially using flow visualisation techniques, can be expensive due to the high-intensity and high-repetition rate light sources required. In this work, time-resolved particle image velocimetry using a relatively low-cost light-emitting diode illumination system was applied to the study of a compliant flow phantom representing a stenosed (constricted) carotid artery experiencing a physiologically realistic flow wave. Dynamic similarity between in vivo and in vitro conditions was ensured in phantom construction by matching the distensibility and the elastic wave propagation wavelength and in the fluid system through matching Reynolds ( Re) and Womersley number ( α) with a maximum, minimum and mean Re of 939, 379 and 632, respectively, and a α of 4.54. The stenosis had a symmetric constriction of 50 % by diameter (75 % by area). Once the flow rate reached a critical value, Kelvin-Helmholtz instabilities were observed to occur in the shear layer between the main jet exiting the stenosis and a reverse flow region that occurred at a radial distance of 0.34 D from the axis of symmetry in the region on interest 0-2.5 D longitudinally downstream from the stenosis exit. The instability had an axis-symmetric nature, but as peak flow rate was approached this symmetry breaks down producing instability in the flow field. The characteristics of the vortex train were sensitive not only to the instantaneous flow rate, but also to whether the flow was accelerating or decelerating globally.

  5. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  6. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  7. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry.

    PubMed

    Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.

  8. 4D blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Zickus, Vytautas; Taylor, Jonathan M.

    2018-02-01

    Fluid-structure interaction in the developing heart is an active area of research in developmental biology. However, investigation of heart dynamics is mostly limited to computational uid dynamics simulations using heart wall structure information only, or single plane blood ow information - so there is a need for 3D + time resolved data to fully understand cardiac function. We present an imaging platform combining selective plane illumination microscopy (SPIM) with micro particle image velocimetry (μPIV) to enable 3D-resolved flow mapping in a microscopic environment, free from many of the sources of error and bias present in traditional epi uorescence-based μPIV systems. By using our new system in conjunction with optical heart beat synchronization, we demonstrate the ability obtain non-invasive 3D + time resolved blood flow measurements in the heart of a living zebrafish embryo.

  9. Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

    PubMed

    Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V

    2003-02-15

    Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.

  10. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGES

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  11. Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals

    NASA Astrophysics Data System (ADS)

    Legrand, Mathieu; Nogueira, José; Lecuona, Antonio

    2011-10-01

    At least two circumstances point to the need of postprocessing techniques to recover lost time information from non-time-resolved data: the increasing interest in identifying and tracking coherent structures in flows of industrial interest and the high data throughput of global measuring techniques, such as PIV, for the validation of computational fluid dynamics (CFD) codes. This paper offers the mathematic fundamentals of a space--time reconstruction technique from non-time-resolved, statistically independent data. An algorithm has been developed to identify and track traveling coherent structures in periodic flows. Phase-averaged flow fields are reconstructed with a correlation-based method, which uses information from the Proper Orthogonal Decomposition (POD). The theoretical background shows that the snapshot POD coefficients can be used to recover flow phase information. Once this information is recovered, the real snapshots are used to reconstruct the flow history and characteristics, avoiding neither the use of POD modes nor any associated artifact. The proposed time reconstruction algorithm is in agreement with the experimental evidence given by the practical implementation proposed in the second part of this work (Legrand et al. in Exp Fluids, 2011), using the coefficients corresponding to the first three POD modes. It also agrees with the results on similar issues by other authors (Ben Chiekh et al. in 9 Congrès Francophone de Vélocimétrie Laser, Bruxelles, Belgium, 2004; Van Oudheusden et al. in Exp Fluids 39-1:86-98, 2005; Meyer et al. in 7th International Symposium on Particle Image Velocimetry, Rome, Italy, 2007a; in J Fluid Mech 583:199-227, 2007b; Perrin et al. in Exp Fluids 43-2:341-355, 2007). Computer time to perform the reconstruction is relatively short, of the order of minutes with current PC technology.

  12. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the computed stresses, with modeled stresses having higher explanatory power. Deposition is mainly occurring in wake regions of specific ridges that strongly affect wind flow patterns. These larger ridges also lock in place elongated streaks of relatively high speeds with axes along the stream-wise direction, and which are largely responsible for the observed erosion.

  13. Mechanism of Na+ binding to thrombin resolved by ultra-rapid kinetics

    PubMed Central

    Gianni, Stefano; Ivarsson, Ylva; Bah, Alaji; Bush-Pelc, Leslie A.; Di Cera, Enrico

    2007-01-01

    The interaction of Na+ and K+ with proteins is at the basis of numerous processes of biological importance. However, measurement of the kinetic components of the interaction has eluded experimentalists for decades because the rate constants are too fast to resolve with conventional stopped-flow methods. Using a continuous-flow apparatus with a dead time of 50 μs we have been able to resolve the kinetic rate constants and entire mechanism of Na+ binding to thrombin, an interaction that is at the basis of the procoagulant and prothrombotic roles of the enzyme in the blood. PMID:17935858

  14. Time-resolved microscopy of fs-laser-induced heat flows in glasses

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Seuthe, Thomas; Grehn, Moritz; Eberstein, Markus; Rosenfeld, Arkadi; Mermillod-Blondin, Alexandre

    2018-01-01

    Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient d n/d T. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser-matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.

  15. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  16. Time resolved PIV and flow visualization of 3D sheet cavitation

    NASA Astrophysics Data System (ADS)

    Foeth, E. J.; van Doorne, C. W. H.; van Terwisga, T.; Wieneke, B.

    2006-04-01

    Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.

  17. Measurement of LNAPL flow using single-well tracer dilution techniques.

    PubMed

    Sale, Tom; Taylor, Geoffrey Ryan; Iltis, Gabriel; Lyverse, Mark

    2007-01-01

    This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.

  18. PIV measurements and flow characteristics downstream of mangrove root models

    NASA Astrophysics Data System (ADS)

    Kazemi, Amirkhosro; Curet, Oscar

    2016-11-01

    Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.

  19. Continuous Flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) Method of Measuring Size-Resolved Sea-Salt Particle Fluxes

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Royalty, T. M.; Phillips, B.; Dawson, K. W.; Petters, M. D.; Reed, R.; Weinstein, J.; Hook, D.; Wiener, R.

    2017-12-01

    The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The different components of the instrument were extensively tested inside the US Environmental Protection Agency's Aerosol Test Facility for sea-salt and ammoniums sulfate particle fluxes. The new REA system design does not require particle accumulation, therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of the traditional REA devices. The Hy-Res REA system used in this study includes a 3-D sonic anemometer, two fast-response solenoid valves, two Condensation Particle Counters (CPCs), a Scanning Mobility Particle Sizer (SMPS), and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). A linear relationship was found between the sea-salt particle fluxes measured by eddy covariance and REA techniques, with comparable theoretical (0.34) and measured (0.39) proportionality constants. The sea-salt particle detection limit of the Hy-Res REA flux system is estimated to be 6x105 m-2s-1. For the conditions of ammonium sulfate and sea-salt particles of comparable source strength and location, the continuous-flow Hy-Res REA instrument was able to achieve better than 90% accuracy of measuring the sea-salt particle fluxes. In principle, the instrument can be applied to measure fluxes of particles of variable size and distinct hygroscopic properties (i.e., mineral dust, black carbon, etc.).

  20. Determining Near-Bottom Fluxes of Passive Tracers in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Bluteau, Cynthia E.; Ivey, Gregory N.; Donis, Daphne; McGinnis, Daniel F.

    2018-03-01

    In aquatic systems, the eddy correlation method (ECM) provides vertical flux measurements near the sediment-water interface. The ECM independently measures the turbulent vertical velocities w' and the turbulent tracer concentration c' at a high sampling rate (> 1 Hz) to obtain the vertical flux w'c'¯ from their time-averaged covariance. This method requires identifying and resolving all the flow-dependent time (and length) scales contributing to w'c'¯. With increasingly energetic flows, we demonstrate that the ECM's current technology precludes resolving the smallest flux-contributing scales. To avoid these difficulties, we show that for passive tracers such as dissolved oxygen, w'c'¯ can be measured from estimates of two scalar quantities: the rate of turbulent kinetic energy dissipation ɛ and the rate of tracer variance dissipation χc. Applying this approach to both laboratory and field observations demonstrates that w'c'¯ is well resolved by the new method and can provide flux estimates in more energetic flows where the ECM cannot be used.

  1. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  2. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  3. Upscaling transport of a reacting solute through a peridocially converging-diverging channel at pre-asymptotic times

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Bolster, Diogo; Dawson, Clint

    2015-11-01

    In this study we extend the Spatial Markov model, which has been successfully used to upscale conservative transport across a diverse range of porous media flows, to test if it can accurately upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We test the model in a well known highly simplified geometry, commonly considered as an idealized pore or fracture structure, a periodic channel with wavy boundaries. The edges of the flow domain have a layer through which there is no flow, but in which diffusion of a solute still occurs. Reactions are confined to this region. We demonstrate that the Spatial Markov model, an upscaled random walk model that enforces correlation between successive jumps, can reproduce breakthrough curves measured from microscale simulations that explicitly resolve all pertinent processes. We also demonstrate that a similar random walk model that does not enforce successive correlations is unable to reproduce all features of the measured breakthrough curves.

  4. Micro PIV measurements of turbulent flow over 2D structured roughness

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Perlin, Marc

    2015-11-01

    We investigate the turbulent boundary layer over surfaces with 2D spanwise square and triangular protrusions having nominal heights of 100 - 300 microns for Reynolds numbers ranging from Reτ ~ 1500 through Reτ ~ 4500 using a high speed, high magnification imaging system. Micro PIV analysis gives finely resolved velocity fields of the flow (on the order of 10 microns between vectors) enabling a detailed look at the inner region as well as the flow in the immediate vicinity of the roughness elements. Additionally, planar PIV with lower resolution is performed to capture the remainder of the boundary layer to the freestream flow. Varying the streamwise distance between individual roughness elements from one to ten times the nominal heights allows investigation of k-type and d-type roughness in both the transitionally rough and fully rough regimes. Preliminary results show a shift in the mean velocity profile similar to the results of previous studies. Turbulent statistics will be presented also. The authors would like to acknowledge the support of NAVSEA which funded this project through the Naval Engineering Education Center (NEEC).

  5. Head and neck vascular malformations: time-resolved MR projection angiography.

    PubMed

    Ziyeh, S; Schumacher, M; Strecker, R; Rössler, J; Hochmuth, A; Klisch, J

    2003-10-01

    Extracranial vascular anomalies can be divided into haemangiomas and vascular malformations. The latter can be subdivided on the basis of the predominant type of vascular channels. Separation of high- and low-flow vascular malformations is of clinical importance. We report preliminary observations on time-resolved magnetic resonance projection angiography (MRPA) of vascular malformations of the head and neck. We examined eight patients with vascular anomalies of the head and neck. On MRPA the time between the early arterial phase and enhancement of the malformation could be used to distinguish high- and low-flow lesions. High-flow arteriovenous malformations showed early, intense enhancement. Venous malformations were either not visible on MRPA or showed late enhancement of veins. One patient was examined after embolisation of an arteriovenous fistula of the mandible. Normal MRPA was taken to indicate absence of a residual lesion.

  6. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  7. Low Dimensional Study of a Supersonic Multi-Stream Jet Flow

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques

    2017-11-01

    In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.

  8. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  9. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  10. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  11. Non-invasive flow path characterization in a mining-impacted wetland

    USGS Publications Warehouse

    Bethune, James; Randell, Jackie; Runkel, Robert L.; Singha, Kamini

    2015-01-01

    Time-lapse electrical resistivity (ER) was used to capture the dilution of a seasonal pulse of acid mine drainage (AMD) contamination in the subsurface of a wetland downgradient of the abandoned Pennsylvania mine workings in central Colorado. Data were collected monthly from mid-July to late October of 2013, with an additional dataset collected in June of 2014. Inversion of the ER data shows the development through time of multiple resistive anomalies in the subsurface, which corroborating data suggest are driven by changes in total dissolved solids (TDS) localized in preferential flow pathways. Sensitivity analyses on a synthetic model of the site suggest that the anomalies would need to be at least several meters in diameter to be adequately resolved by the inversions. The existence of preferential flow paths would have a critical impact on the extent of attenuation mechanisms at the site, and their further characterization could be used to parameterize reactive transport models in developing quantitative predictions of remediation strategies.

  12. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  13. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO

    PubMed Central

    Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.

    2012-01-01

    In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647

  14. Heat transfer and pressure measurements for the SSME fuel turbine

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  15. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  16. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  17. A method for the computational modeling of the physics of heart murmurs

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Bakhshaee, Hani; Garreau, Guillaume; Zhu, Chi; Andreou, Andreas; Thompson, William R.; Mittal, Rajat

    2017-05-01

    A computational method for direct simulation of the generation and propagation of blood flow induced sounds is proposed. This computational hemoacoustic method is based on the immersed boundary approach and employs high-order finite difference methods to resolve wave propagation and scattering accurately. The current method employs a two-step, one-way coupled approach for the sound generation and its propagation through the tissue. The blood flow is simulated by solving the incompressible Navier-Stokes equations using the sharp-interface immersed boundary method, and the equations corresponding to the generation and propagation of the three-dimensional elastic wave corresponding to the murmur are resolved with a high-order, immersed boundary based, finite-difference methods in the time-domain. The proposed method is applied to a model problem of aortic stenosis murmur and the simulation results are verified and validated by comparing with known solutions as well as experimental measurements. The murmur propagation in a realistic model of a human thorax is also simulated by using the computational method. The roles of hemodynamics and elastic wave propagation on the murmur are discussed based on the simulation results.

  18. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    USGS Publications Warehouse

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  19. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  20. Vibrational Energy Transfer from Heme through Atomic Contacts in Proteins.

    PubMed

    Yamashita, Satoshi; Mizuno, Misao; Tran, Duy Phuoc; Dokainish, Hisham M; Kitao, Akio; Mizutani, Yasuhisa

    2018-05-10

    A pathway of vibrational energy flow in myoglobin was studied by time-resolved anti-Stokes ultraviolet resonance Raman spectroscopy combined with site-directed mutagenesis. Our previous study suggested that atomic contacts in proteins provide the dominant pathway for energy transfer while covalent bonds do not. In the present study, we directly examined the contributions of covalent bonds and atomic contacts to the pathway of vibrational energy flow by comparing the anti-Stokes resonance Raman spectra of two myoglobin mutants: one lacked a covalent bond between heme and the polypeptide chain and the other retained the intact bond. The two mutants showed no significant difference in temporal changes in the anti-Stokes Raman intensities of the tryptophan bands, implying that the dominant channel of vibrational energy transfer is not through the covalent bond but rather through van der Waals atomic contacts between heme and the protein moiety. The obtained insights contribute to our general understanding of energy transfer in the condensed phase.

  1. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.

    PubMed

    Sotiropoulos, Fotis; Borazjani, Iman

    2009-03-01

    In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.

  2. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves

    PubMed Central

    Borazjani, Iman

    2009-01-01

    In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid–structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment. PMID:19194734

  3. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  4. Preliminary Experimental Results using a Steady State ICP Flow Reactor to Investigate Condensation Chemistry for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe

    2016-10-01

    The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    PubMed

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.

    PubMed

    Balogh, Peter; Bagchi, Prosenjit

    2017-12-19

    We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  8. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups.

    PubMed

    Hammer, Simone; Uller, Wibke; Manger, Florentine; Fellner, Claudia; Zeman, Florian; Wohlgemuth, Walter A

    2017-01-01

    Quantitative evaluation of hemodynamic characteristics of arteriovenous and venous malformations using time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla. Time-resolved MRA with interleaved stochastic trajectories (TWIST) at 3.0 Tesla was studied in 83 consecutive patients with venous malformations (VM) and arteriovenous malformations (AVM). Enhancement characteristics were calculated as percentage increase of signal intensity above baseline over time. Maximum percentage signal intensity increase (signal max ), time intervals between onset of arterial enhancement and lesion enhancement (t onset ), and time intervals between beginning of lesion enhancement and maximum percentage of lesion enhancement (t max ) were analyzed. All AVMs showed a high-flow hemodynamic pattern. Two significantly different (p < 0.001) types of venous malformations emerged: VMs with arteriovenous fistulas (AVF) (median signal max 737 %, IQR [interquartile range] = 511 - 1182 %; median t onset 5 s, IQR = 5 - 10 s; median t max 35 s, IQR = 26 - 40 s) and without AVFs (median signal max 284 %, IQR = 177-432 %; median t onset 23 s, IQR = 15 - 30 s; median t max 60 s, IQR = 55 - 75 s). Quantitative evaluation of time-resolved MRA at 3.0 Tesla provides hemodynamic characterization of vascular malformations. VMs can be subclassified into two hemodynamic subgroups due to presence or absence of AVFs. • Time-resolved MRA at 3.0 Tesla provides quantitative hemodynamic characterization of vascular malformations. • Malformations significantly differ in time courses of enhancement and signal intensity increase. • AVMs show a distinctive high-flow hemodynamic pattern. • Two significantly different types of VMs emerged: VMs with and without AVFs.

  9. Time-resolved imaging of contrast kinetics does not improve performance of follow-up MRA of embolized intracranial aneurysms.

    PubMed

    Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-07-01

    The use of contrast media and the time-resolved imaging of contrast kinetics (TRICKS) technique have some theoretical advantages over time-of-flight magnetic resonance angiography (TOF-MRA) in the follow-up of intracranial aneurysms after endovascular treatment. We prospectively compared the diagnostic performance of TRICKS and TOF-MRA with digital subtracted angiography (DSA) in the assessment of occlusion of embolized aneurysms. Seventy-two consecutive patients with 72 aneurysms were examined 3 months after embolization. Test characteristics of TOF-MRA and TRICKS were calculated for the detection of residual flow. The results of quantification of flow were compared with weighted kappa. Intraobserver and interobserver reproducibility was determined. The sensitivity of TOF-MRA was 85% (95% CI, 65-96%) and of TRICKS, 89% (95% CI, 70-97%). The specificity of both methods was 91% (95% CI, 79-98%). The accuracy of the flow quantification ranged from 0.76 (TOF-MRA) to 0.83 (TRICKS). There was no significant difference between the methods in the area under the ROC curve regarding both the detection and the quantification of flow. Intraobserver reproducibility was very good with both techniques (kappa, 0.86-0.89). The interobserver reproducibility was moderate for TOF-MRA and very good for TRICKS (kappa, 0.74-0.80). In this study, TOF-MRA and TRICKS presented similar diagnostic performance; therefore, the use of time-resolved contrast-enhanced MRA is not justified in the follow-up of embolized aneurysms.

  10. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  11. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  12. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.

  13. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  14. An upwind method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1992-10-01

    A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

  15. Development of Fast Response In-situ Sensors for Simultaneous Measurements of Seawater Carbon Dioxide Parameters

    NASA Astrophysics Data System (ADS)

    Wang, A. Z.; Sonnichsen, F. N.; Chu, S. N.; Bradley, A. M.; Hoering, K.

    2016-02-01

    The marine CO2 (inorganic carbon) system is characterized by four primary parameters - total dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), and pH. These parameters are central to the study of the marine carbon cycle and ocean acidification. Simultaneous measurements of two of the four CO2 parameters are required to fully resolve the seawater CO2 system, and DIC is one of the preferred parameters. A self-calibrating, in-situ sensor, Channelized Optical System (CHANOS), has recently been developed to provide simultaneous measurements of both DIC and pH, resolving carbonate chemistry with a single system. CHANOS is among the first to achieve simultaneous, in-situ measurements of a desired pair of CO2 parameters. DIC and pH channels both use flow-through, spectrophotometric methods to detect relative absorbances of the acid and base forms of a pH-sensitive indicator. The precision of CHANOS in laboratory and in-situ tests are ±0.002 and ±3.0 µmol kg-1 for pH and DIC, respectively. In-situ comparison with bottle sampling and analyses indicate that the accuracies for pH and DIC are ±0.004 and ±5.0 µmol kg-1, respectively. It has been demonstrated that CHANOS can make in-situ, climatology-quality measurements to resolve the CO2 system in dynamic aquatic environments. To further improve response time of the sensor, especially for DIC measurements, a new generation of CHANOS-DIC is under development. The new system adapts the recently developed spectrophotometric DIC method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time as fast as 22s. Continuous measurements are also achievable. Because of the fast response of CHANOS measurements, it is versatile and suitable for deployments on both fixed (e.g. buoys) and mobile (e.g., AUV, ROV, and profilers) platforms.

  16. Effects of preferential concentration on direct radiation transmission in a turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Villafane, Laura; Banko, Andrew; Kim, Ji Hoon; Elkins, Chris; Eaton, John

    2017-11-01

    Inertial particles in turbulent flows preferentially concentrate, giving rise to spatial and temporal fluctuations of particle number density that affect radiation transmission through the medium. Positive particle correlations enhance direct transmission when compared to the exponential attenuation predicted by the Beer's Law for randomly distributed particles. In the context of a particle based solar receiver, this work studies the effects of preferential concentration and optical depth on direct transmission through a particle laden turbulent duct flow. Time resolved measurements of transmission through the mixture were performed for various particle loadings and Reynolds numbers, thus varying particle correlation lengths, optical depth and concentration fluctuations. These measurements were made using a photodiode to record the transmission of a collimated laser beam along the wall bisector of the duct. A synchronized high-speed camera provided particle positions along most of the beam path. Average and fluctuating radiation transmission results are compared to predictions derived from the imaged number density fields and to simplified analytical models. Simplified models are able to capture the correct trends with varying loading and preferential concentration. This work is funded by the Department of Energy's National Nuclear Security Administration, Grant #DE-NA0002373-1.

  17. Influence of flow variability on floodplain formation and destruction, Little Missouri River, North Dakota

    USGS Publications Warehouse

    Miller, J.R.; Friedman, J.M.

    2009-01-01

    Resolving observations of channel change into separate planimetric measurements of floodplain formation and destruction reveals distinct relations between these processes and the flow regime. We analyzed a time sequence of eight bottomland images from 1939 to 2003 along the Little Missouri River, North Dakota, to relate geomorphic floodplain change to flow along this largely unregulated river. At the decadal scale, floodplain formation and destruction varied independently. Destruction was strongly positively correlated with the magnitude of infrequent high flows that recur every 5-10 yr, whereas floodplain formation was negatively correlated with the magnitude of frequent low flows exceeded 80% of the time. At the century scale, however, a climatically induced decrease in peak flows has reduced the destruction rate, limiting the area made available for floodplain formation. The rate of destruction was not uniform across the floodplain. Younger surfaces were consistently destroyed at a higher rate than older surfaces, suggesting that throughput of contaminants would have occurred more rapidly than predicted by models that assume uniform residence time of sediment across the floodplain. Maps of floodplain ages produced by analysis of sequential floodplain images are similar to maps of forest ages produced through dendrochronology, confirming the assumption of dendrogeomorphic studies that riparian tree establishment in this system is limited to recent channel locations. ?? 2009 Geological Society of America.

  18. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    ERIC Educational Resources Information Center

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  19. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  20. On resolving the 180 deg ambiguity for a temporal sequence of vector magnetograms

    NASA Astrophysics Data System (ADS)

    Cheung, M. C.

    2008-05-01

    The solar coronal magnetic field evolves in response to the underlying photospheric driving. To study this connection by means of data-driven modeling, an accurate knowledge of the evolution of the photospheric vector field is essential. While there is a large body of work on attempts to resolve the 180 deg ambiguity in the component of the magnetic field transverse to the line of sight, most of these methods are applicable only to individual frames. With the imminent launch of the Solar Dynamics Observatory, it is especially timely for us to develop possible automated methods to resolve the ambiguity for temporal sequences of magnetograms. We present here the temporal acute angle method, which makes use of preceding disambiguated magnetograms as reference solutions for resolving the ambiguity in subsequent frames. To find the strengths and weaknesses of this method, we have carried out tests (1) on idealized magnetogram sequences involving simple rotating, shearing and straining flows and (2) on a synthetic magnetogram sequence from a 3D radiative MHD simulation of an buoyant magnetic flux tube emerging through granular convection. A metric for automatically picking out regions where the method is likely to fail is also presented.

  1. Numerical studies of dispersion due to tidal flow through Moskstraumen, northern Norway

    NASA Astrophysics Data System (ADS)

    Lynge, Birgit Kjoss; Berntsen, Jarle; Gjevik, Bjørn

    2010-08-01

    The effect of horizontal grid resolution on the horizontal relative dispersion of particle pairs has been investigated on a short time scale, i.e. one tidal M 2 cycle. Of particular interest is the tidal effect on dispersion and transports in coastal waters where small-scale flow features are important. A three-dimensional ocean model has been applied to simulate the tidal flow through the Moskstraumen Maelstrom outside Lofoten in northern Norway, well known for its strong current and whirlpools (Gjevik et al., Nature 388(6645):837-838, 1997; Moe et al., Cont Shelf Res 22(3):485-504, 2002). Simulations with spatial resolution down to 50 m have been carried out. Lagrangian tracers were passively advected with the flow, and Lyapunov exponents and power law exponents have been calculated to analyse the separation statistics. It is found that the relative dispersion of particles on a short time scale (12-24 h) is very sensitive to the grid size and that the spatial variability is also very large, ranging from 0 to 100 km2 over a distance of 100 m. This means that models for prediction of transport and dispersion of oil spills, fish eggs, sea lice etc. using a single diffusion coefficient will be of limited value, unless the models actually resolves the small-scale eddies of the tidal current.

  2. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid-solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge-Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier-Stokes solver.

  3. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2018-02-01

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  4. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight.

    PubMed

    Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J; Guglielmo, Christopher G; Kopp, Gregory A; Liberzon, Alexander; Gurka, Roi

    2015-01-01

    We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.

  5. On the Estimation of Time Dependent Lift of a European Starling (Sturnus vulgaris) during Flapping Flight

    PubMed Central

    Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J.; Guglielmo, Christopher G.; Kopp, Gregory A.; Liberzon, Alexander; Gurka, Roi

    2015-01-01

    We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion. PMID:26394213

  6. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  7. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Berendt, A.; Podlinski, J.

    2016-05-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of which is practically limited to the interelectrode duct, ends when the first mushroom-like minijet reaches the collecting electrode.

  8. Simultaneous temporally resolved DPIV and pressure measurements of symmetric oscillations in a scaled-up vocal fold model

    NASA Astrophysics Data System (ADS)

    Ringenberg, Hunter; Rogers, Dylan; Wei, Nathaniel; Krane, Michael; Wei, Timothy

    2017-11-01

    The objective of this study is to apply experimental data to theoretical framework of Krane (2013) in which the principal aeroacoustic source is expressed in terms of vocal fold drag, glottal jet dynamic head, and glottal exit volume flow, reconciling formal theoretical aeroacoustic descriptions of phonation with more traditional lumped-element descriptions. These quantities appear in the integral equations of motion for phonatory flow. In this way time resolved velocity field measurements can be used to compute time-resolved estimates of the relevant terms in the integral equations of motion, including phonation aeroacoustic source strength. A simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine symmetric, i.e. `healthy', oscillatory motion of the vocal folds. By using water as the working fluid, very high spatial and temporal resolution was achieved. Temporal variation of transglottal pressure was simultaneously measured with flow on the vocal fold model mid-height. Experiments were dynamically scaled to examine a range of frequencies corresponding to male and female voice. The simultaneity of the pressure and flow provides new insights into the aeroacoustics associated with vocal fold oscillations. Supported by NIH Grant No. 2R01 DC005642-11.

  9. Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Morton, Scott

    2002-08-01

    An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.

  10. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle.

    PubMed

    Wittsack, Hans-Jörg; Lanzman, Rotem S; Quentin, Michael; Kuhlemann, Julia; Klasen, Janina; Pentang, Gael; Riegger, Caroline; Antoch, Gerald; Blondin, Dirk

    2012-04-01

    To evaluate the influence of pulsatile blood flow on apparent diffusion coefficients (ADC) and the fraction of pseudodiffusion (F(P)) in the human kidney. The kidneys of 6 healthy volunteers were examined by a 3-T magnetic resonance scanner. Electrocardiogram (ECG)-gated and respiratory-triggered diffusion-weighted imaging (DWI) and phase-contrast flow measurements were performed. Flow imaging of renal arteries was carried out to quantify the dependence of renal blood flow on the cardiac cycle. ECG-triggered DWI was acquired in the coronal plane with 16 b values in the range of 0 s/mm(2) and 750 s/mm(2) at the time of minimum (MIN) (20 milliseconds after R wave) and maximum renal blood flow (MAX) (197 ± 24 milliseconds after R wave). The diffusion coefficients were calculated using the monoexponential approach as well as the biexponential intravoxel incoherent motion model and correlated to phase-contrast flow measurements. Flow imaging showed pulsatile renal blood flow depending on the cardiac cycle. The mean flow velocity at MIN was 45 cm/s as compared with 61 cm/s at MAX. F(p) at MIN (0.29) was significantly lower than at MAX (0.40) (P = 0.001). Similarly, ADC(mono), derived from the monoexponential model, also showed a significant difference (P < 0.001) between MIN (ADC(mono) = 2.14 ± 0.08 × 10(-3) mm(2)/s) and MAX (ADC(mono) = 2.37 ± 0.04 × 10(-3) mm(2)/s). The correlation between renal blood flow and F(p) (r = 0.85) as well as ADC(mono) (r = 0.67) was statistically significant. Temporally resolved ECG-gated DWI enables for the determination of the diffusion coefficients at different time points of the cardiac cycle. ADC(mono) and FP vary significantly among acquisitions at minimum (diastole) and maximum (systole) renal blood flow. Temporally resolved ECG-gated DWI might therefore serve as a novel technique for the assessment of pulsatility in the human kidney.

  11. Extrahepatic portosystemic shunt in congenital absence of the portal vein depicted by time-resolved contrast-enhanced MR angiography.

    PubMed

    Goo, Hyun Woo

    2007-07-01

    Congenital absence of the portal vein is a rare malformation in which mesenteric and splenic venous flow bypasses the liver and drains into various sites in the systemic venous system via an extrahepatic portosystemic shunt. In an 11-year-old girl with congenital absence of the portal vein, the detailed anatomy of the extrahepatic portosystemic shunt is demonstrated by time-resolved contrast-enhanced MR angiography.

  12. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  13. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  14. Three Dimensional Energetics of Left Ventricle Flows Using Time-Resolved DPIV

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga; Vlachos, Pavlos

    2006-11-01

    Left ventricular (LV) flows in the human heart are very complex and in the presence of unhealthy or prosthetic heart valves (HV), the complexity of the flow is further increased. Yet to date, no study has documented the complex 3D hemodynamic characteristics and energetics of LV flows. We present high sampling frequency Time Resolved DPIV results obtained in a flexible, transparent LV documenting the evolution of eddies and turbulence. The purpose is to characterize the energetics of the LV flow field in the presence of four orientations of the most commonly implanted mechanical bileaflet HV and a porcine valve. By decomposing the energy scales of the flow field, the ultimate goal is to quantify the total energy losses associated with vortex ring formation and turbulence dissipation. The energies associated to vortex ring formation give a measure of the energy trapped within the structure while estimations of the turbulence dissipation rate (TDR) give a measure of the energy dissipated at the smaller scales. For the first time in cardiovascular applications, an LES-based PIV method, which overcomes the limitations of conventional TDR estimation methods that assume homogeneous isotropic turbulence, was employed. We observed that energy lost at the larger scales (vortex ring) is much higher than the energy lost at the smaller scales due to turbulence dissipation.

  15. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  16. Comparison of a vertically-averaged and a vertically-resolved model for hyporheic flow beneath a pool-riffle bedform

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ahmad; Steffler, Peter; She, Yuntong

    2018-02-01

    The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.

  17. Effects of combined xenon and hypothermia on cerebral blood flow and oxygen consumption in newborn piglets measured with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Hadway, Jennifer; Morrison, Laura B.; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2013-02-01

    Mild hypothermia (HT), in which the brain is cooled to 32-33°C, has been shown to be neuroprotective for neurological emergencies such as head trauma and neonatal asphyxia. Xenon (Xe), a scarce and expensive anesthetic gas, has also shown great promise as a neuroprotectant, particularly when combined with HT. The purpose of the present study was to investigate the combined effect of Xe and HT on the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). A closed circuit re-breathing system was used to deliver the Xe in order to make the treatment efficient and economical. A bolus-tracking method using indocyanine green (ICG) as a flow tracer with time-resolved near-infrared (TR-NIR) technique was used to measure CBF and CMRO2 in newborn piglets.

  18. Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI

    PubMed Central

    Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo

    2018-01-01

    Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738

  19. Resolving key drivers of variability through an important circulation choke point in the western Mediterranean Sea; using gliders, models & satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Heslop, Emma; Aguiar, Eva; Mourre, Baptiste; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    The Ibiza Channel plays an important role in the circulation of the Western Mediterranean Sea, it governs the north/south exchange of different water masses that are known to affect regional ecosystems and is influenced by variability in the different drivers that affect sub-basins to the north (N) and south (S). A complex system. In this study we use a multi-platform approach to resolve the key drivers of this variability, and gain insight into the inter-connection between the N and S of the Western Mediterranean Sea through this choke point. The 6-year glider time series from the quasi-continuous glider endurance line monitoring of the Ibiza Channel, undertaken by SOCIB (Balearic Coastal Ocean observing and Forecasting System), is used as the base from which to identify key sub-seasonal to inter-annual patterns and shifts in water mass properties and transport volumes. The glider data indicates the following key components in the variability of the N/S flow of different water mass through the channel; regional winter mode water production, change in intermediate water mass properties, northward flows of a fresher water mass and the basin-scale circulation. To resolve the drivers of these components of variability, the strength of combining datasets from different sources, glider, modeling, altimetry and moorings, is harnessed. To the north atmospheric forcing in the Gulf of Lions is a dominant driver, while to the south the mesoscale circulation patterns of the Atlantic Jet and Alboran gyres dominate the variability but do not appear to influence the fresher inflows. Evidence of a connection between the northern and southern sub-basins is however indicated. The study highlights importance of sub-seasonal variability and the scale of rapid change possible in the Mediterranean, as well as the benefits of leveraging high resolution glider datasets within a multi-platform and modelling study.

  20. Science with Constellation-X, Choice of Instrumentation

    NASA Technical Reports Server (NTRS)

    Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean

    2007-01-01

    The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.

  1. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, E.; Darny, T.; Dozias, S.

    2015-12-15

    Atmospheric pressure plasma propagation inside long dielectric tubes is analyzed for the first time through nonintrusive and nonperturbative time resolved bi-directional electric field (EF) measurements. This study unveils that plasma propagation occurs in a region where longitudinal EF exists ahead the ionization front position usually revealed from plasma emission with ICCD measurement. The ionization front propagation induces the sudden rise of a radial EF component. Both of these EF components have an amplitude of several kV/cm for helium or neon plasmas and are preserved almost constant along a few tens of cm inside a capillary. All these experimental measurements aremore » in excellent agreement with previous model calculations. The key roles of the voltage pulse polarity and of the target nature on the helium flow patterns when plasma jet is emerging in ambient air are documented from Schlieren visualization. The second part of this work is then dedicated to the development of multi jet systems, using two different setups, based on a single plasma source. Plasma splitting in dielectric tubes drilled with sub millimetric orifices, but also plasma transfer across metallic tubes equipped with such orifices are reported and analyzed from ICCD imaging and time resolved EF measurements. This allows for the design and the feasibility validation of plasma jet arrays but also emphasizes the necessity to account for voltage pulse polarity, target potential status, consecutive helium flow modulation, and electrostatic influence between the produced secondary jets.« less

  2. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiang; Fan, Liang-Shih, E-mail: fan.1@osu.edu

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information suchmore » as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid–solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge–Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier–Stokes solver. - Highlights: • The IBM is embedded in the LBM using Runge–Kutta time schemes. • The effectiveness of the present IB-LBM is validated by benchmark applications. • For the first time, the IB-LBM achieves the second-order accuracy. • The numerical stability of the present IB-LBM is better than previous methods.« less

  3. Compact 3D Camera for Shake-the-Box Particle Tracking

    NASA Astrophysics Data System (ADS)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  4. Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes

    2017-11-01

    Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.

  5. An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations

    NASA Astrophysics Data System (ADS)

    Ferrer, Esteban

    2017-11-01

    We present an implicit Large Eddy Simulation (iLES) h / p high order (≥2) unstructured Discontinuous Galerkin-Fourier solver with sliding meshes. The solver extends the laminar version of Ferrer and Willden, 2012 [34], to enable the simulation of turbulent flows at moderately high Reynolds numbers in the incompressible regime. This solver allows accurate flow solutions of the laminar and turbulent 3D incompressible Navier-Stokes equations on moving and static regions coupled through a high order sliding interface. The spatial discretisation is provided by the Symmetric Interior Penalty Discontinuous Galerkin (IP-DG) method in the x-y plane coupled with a purely spectral method that uses Fourier series and allows efficient computation of spanwise periodic three-dimensional flows. Since high order methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough numerical dissipation to enable under-resolved high Reynolds computations (i.e. as necessary in the iLES approach), we adapt the laminar version of the solver to increase (controllably) the dissipation and enhance the stability in under-resolved simulations. The novel stabilisation relies on increasing the penalty parameter included in the DG interior penalty (IP) formulation. The latter penalty term is included when discretising the linear viscous terms in the incompressible Navier-Stokes equations. These viscous penalty fluxes substitute the stabilising effect of non-linear fluxes, which has been the main trend in implicit LES discontinuous Galerkin approaches. The IP-DG penalty term provides energy dissipation, which is controlled by the numerical jumps at element interfaces (e.g. large in under-resolved regions) such as to stabilise under-resolved high Reynolds number flows. This dissipative term has minimal impact in well resolved regions and its implicit treatment does not restrict the use of large time steps, thus providing an efficient stabilization mechanism for iLES. The IP-DG stabilisation is complemented with a Spectral Vanishing Viscosity (SVV) method, in the z-direction, to enhance stability in the continuous Fourier space. The coupling between the numerical viscosity in the DG plane and the SVV damping, provides an efficient approach to stabilise high order methods at moderately high Reynolds numbers. We validate the formulation for three turbulent flow cases: a circular cylinder at Re = 3900, a static and pitch oscillating NACA 0012 airfoil at Re = 10000 and finally a rotating vertical-axis turbine at Re = 40000, with Reynolds based on the circular diameter, airfoil chord and turbine diameter, respectively. All our results compare favourably with published direct numerical simulations, large eddy simulations or experimental data. We conclude that the DG-Fourier high order solver, with IP-SVV stabilisation, proves to be a valuable tool to predict turbulent flows and associated statistics for both static and rotating machinery.

  6. Pressure spectra from single-snapshot tomographic PIV

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.

  7. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  8. Evaluation of the topological characteristics of the turbulent flow in a `box of turbulence' through 2D time-resolved particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lian, Huan; Soulopoulos, Nikolaos; Hardalupas, Yannis

    2017-09-01

    The experimental evaluation of the topological characteristics of the turbulent flow in a `box' of homogeneous and isotropic turbulence (HIT) with zero mean velocity is presented. This requires an initial evaluation of the effect of signal noise on measurement of velocity invariants. The joint probability distribution functions (pdfs) of experimentally evaluated, noise contaminated, velocity invariants have a different shape than the corresponding noise-free joint pdfs obtained from the DNS data of the Johns Hopkins University (JHU) open resource HIT database. A noise model, based on Gaussian and impulsive Salt and Pepper noise, is established and added artificially to the DNS velocity vector field of the JHU database. Digital filtering methods, based on Median and Wiener Filters, are chosen to eliminate the modeled noise source and their capacity to restore the joint pdfs of velocity invariants to that of the noise-free DNS data is examined. The remaining errors after filtering are quantified by evaluating the global mean velocity, turbulent kinetic energy and global turbulent homogeneity, assessed through the behavior of the ratio of the standard deviation of the velocity fluctuations in two directions, the energy spectrum of the velocity fluctuations and the eigenvalues of the rate-of-strain tensor. A method of data filtering, based on median filtered velocity using different median filter window size, is used to quantify the clustering of zero velocity points of the turbulent field using the radial distribution function (RDF) and Voronoï analysis to analyze the 2D time-resolved particle image velocimetry (TR-PIV) velocity measurements. It was found that a median filter with window size 3 × 3 vector spacing is the effective and efficient approach to eliminate the experimental noise from PIV measured velocity images to a satisfactory level and extract the statistical two-dimensional topological turbulent flow patterns.

  9. Characterization of vertical aerosol flows by single particle mass spectrometry for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Gelhausen, Elmar; Hinz, Klaus-Peter; Schmidt, Andres; Spengler, Bernhard

    2011-10-01

    A single particle mass spectrometer LAMPAS 2 (Laser Mass Analyzer for Particles in the Airborne State) was combined with an ultrasonic anemometer to provide a measurement system for monitoring environmental substance exchange as caused by emission/deposition of aerosol particles. For this study, 681 mass spectra of detected particles were sorted into groups of similarity by a clustering algorithm leading to five classes of different particle types. Each single mass spectrum was correlated to corresponding anemometer data (vertical wind vector and wind speed) in a time-resolved analysis. Due to sampling constraints time-resolution was limited to 36 s, as a result of transition time distributions through the sampling tube. Vertical particle flow (emission/deposition) was determined for all particles based on these data as acquired during a measuring campaign in Giessen, Germany. For a selected particle class a detailed up- and downwards flow consideration was performed to prove the developed approach. Particle flow of that class was dominated by an emission trend as expected. The presented combination of single-particle mass spectrometry and ultrasonic anemometry provides for the possibility to correlate chemical particle data and wind data in a distinct assignment for the description of turbulent particle behavior near earth surface. Results demonstrate the ability to apply the method to real micrometeorological systems, if sampling issues are properly considered for an intended time resolution.

  10. An experimental application of the Periodic Tracer Hierarchy (PERTH) method to quantify time-variable water and solute transport in a sloping soil lysimeter

    NASA Astrophysics Data System (ADS)

    Pangle, L. A.; Cardoso, C.; Kim, M.; Lora, M.; Wang, Y.; Troch, P. A. A.; Harman, C. J.

    2014-12-01

    Water molecules traverse myriad flow paths and spend different lengths of time on or within the landscape before they are discharged into a stream channel. The transit-time distribution (TTD) is a probability distribution that represents the range and likelihood of transit times for water and conservative solutes within soils and catchments, and is useful for comparative analysis and prediction of solute transport into streams. The TTD has customarily been assumed to be time-invariant in practical applications, but is understood to vary due to unsteady flow rates, changes in water-balance partitioning, and shifting flow pathways. Recent theoretical advances have clarified how the distribution of transit times experienced by water and solutes within a stream channel at any moment in time is conditional on the specific series of precipitation events preceding that time. Observations resolving how TTDs vary during a specific sequence of precipitation events could be obtained by introducing unique and conservative tracers during each event and quantifying their distinct breakthrough curves in the stream. At present, the number of distinct and conservative tracers available for this purpose is insufficient. Harman and Kim [Harman, C.J. and Kim, M., 2014, Geophysical Research Letters, 41, 1567-1575] proposed a new experimental method—based on the establishment of periodic steady-state conditions—that allows multiple overlapping breakthrough curves of non-unique tracers to be decomposed, thus enabling analysis of the distinct TTDs associated with their specific times of introduction through precipitation. We present results from one of the first physical experiments to test this methodology. Our experiment involves a sloping lysimeter (10° slope) that contains one cubic meter of crushed basalt rock (loamy sand texture), an irrigation system adaptable to controlled tracer introductions, and instruments that enable total water balance monitoring. We imposed a repeated sequence of rainfall pulses and achieved periodic-steady-state conditions over 24 days. Using systematic introductions of deuterium- and chloride-enriched water, and the PERTH method, we resolve the time-conditional TTDs associated with tracer injections that occurred during specific intervals of the overall rainfall sequence.

  11. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time correlation coefficient demonstrates the increased velocity field accuracy of SMTE compared with MART.

  12. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.

  13. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Quantification of joint inflammation in rheumatoid arthritis by time-resolved diffuse optical spectroscopy and tracer kinetic modeling

    NASA Astrophysics Data System (ADS)

    Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou

    2015-03-01

    Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.

  16. Highly-resolved numerical simulations of bed-load transport in a turbulent open-channel flow

    NASA Astrophysics Data System (ADS)

    Vowinckel, Bernhard; Kempe, Tobias; Nikora, Vladimir; Jain, Ramandeep; Fröhlich, Jochen

    2015-11-01

    The study presents the analysis of phase-resolving Direct Numerical Simulations of a horizontal turbulent open-channel flow laden with a large number of spherical particles. These particles have a mobility close to their threshold of incipient motion andare transported in bed-load mode. The coupling of the fluid phase with the particlesis realized by an Immersed Boundary Method. The Double-Averaging Methodology is applied for the first time convolutingthe data into a handy set of quantities averaged in time and space to describe the most prominent flow features.In addition, a systematic study elucidatesthe impact of mobility and sediment supply on the pattern formation of particle clusters ina very large computational domain. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence and to a modified hydraulic resistance. Conditional averaging isapplied toerosion events providingthe processes involved inincipient particle motion. Furthermore, the detection of moving particle clusters as well as their surrounding flow field is addressedby a a moving frameanalysis. Funded by German Research Foundation (DFG), project FR 1593/5-2, computational time provided by ZIH Dresden, Germany, and JSC Juelich, Germany.

  17. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  18. Application of method of volume averaging coupled with time resolved PIV to determine transport characteristics of turbulent flows in porous bed

    NASA Astrophysics Data System (ADS)

    Patil, Vishal; Liburdy, James

    2012-11-01

    Turbulent porous media flows are encountered in catalytic bed reactors and heat exchangers. Dispersion and mixing properties of these flows play an essential role in efficiency and performance. In an effort to understand these flows, pore scale time resolved PIV measurements in a refractive index matched porous bed were made. Pore Reynolds numbers, based on hydraulic diameter and pore average velocity, were varied from 400-4000. Jet-like flows and recirculation regions associated with large scale structures were found to exist. Coherent vortical structures which convect at approximately 0.8 times the pore average velocity were identified. These different flow regions exhibited different turbulent characteristics and hence contributed unequally to global transport properties of the bed. The heterogeneity present within a pore and also from pore to pore can be accounted for in estimating transport properties using the method of volume averaging. Eddy viscosity maps and mean velocity field maps, both obtained from PIV measurements, along with the method of volume averaging were used to predict the dispersion tensor versus Reynolds number. Asymptotic values of dispersion compare well to existing correlations. The role of molecular diffusion was explored by varying the Schmidt number and molecular diffusion was found to play an important role in tracer transport, especially in recirculation regions. Funding by NSF grant 0933857, Particulate and Multiphase Processing.

  19. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  20. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Krank, Benjamin; Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-11-01

    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ = 180 as well as 590.

  1. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  2. In vivo flow cytometry and time-resolved near-IR angiography and lymphography

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Tuchin, Valery V.; Brock, Robert W.; Zharov, Vladimir P.

    2007-05-01

    Integration of photoacoustic and photothermal techniques with high-speed, high-resolution transmission and fluorescence microscopy shows great potential for in vivo flow cytometry and indocyanine green (ICG) near-infrared (IR) angiography of blood and lymph microvessels. In particular, the capabilities of in vivo flow cytometry using rat mesentery and nude mouse ear models are demonstrated for real-time quantitative detection of circulating and migrating individual blood and cancer cells in skin, mesentery, lymph nodes, liver, kidney; studying vascular dynamics with a focus on lymphatics; monitoring cell traffic between blood and lymph systems; high-speed imaging of cell deformability in flow; and label-free real-time monitoring of single cell extravasation from blood vessel lumen into tissue. As presented, the advantages of ICG IR-angiography include estimation of time resolved dye dynamics (appearance and clearance) in blood and lymph microvessels using fluorescent and photoacoustic modules of the integrated technique. These new approaches are important for monitoring and quantifying metastatic and apoptotic cells; comparative measurements of plasma and cell velocities; analysis of immune responses; monitoring of circulating macromolecules, chylomicrons, bacteria, viruses and nanoparticles; molecular imaging. In the future, we believe that the integrated technique presented will have great potential for translation to early disease diagnoses (e.g. cancer) or assessment of innovative therapeutic interventions in humans.

  3. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  4. Dynamical photo-induced electronic properties of molecular junctions

    NASA Astrophysics Data System (ADS)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  5. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  6. Flow in cerebral aneurysms: 4D Flow MRI measurements and CFD models

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Schnell, Susanne

    2017-11-01

    4D Flow MRI is capable of measuring blood flow in vivo, providing time-resolved velocity fields in 3D. The dynamic range of the 4D Flow MRI is determined by a velocity sensitivity parameter (venc), set above the expected maximum velocity, which can result in noisy data for slow flow regions. A dual-venc 4D flow MRI technique, where both low- and high-venc data are acquired, can improve velocity-to-noise ratio and, therefore, quantification of clinically-relevant hemodynamic metrics. In this study, patient-specific CFD simulations were used to evaluate the advantages of the dual-venc approach for assessment of the flow in cerebral aneurysms. The flow in 2 cerebral aneurysms was measured in vivo with dual-venc 4D Flow MRI and simulated with CFD, using the MRI data to prescribe flow boundary conditions. The flow fields obtained with computations were compared to those measured with a single- and dual-venc 4D Flow MRI. The numerical models resolved small flow structures near the aneurysmal wall, that were not detected with a single-venc acquisition. Comparison of the numerical and imaging results shows that the dual-venc approach can improve the accuracy of the 4D Flow MRI measurements in regions characterized by high-velocity jets and slow recirculating flows.

  7. Sea Butterfly Swimming: Time-resolved Tomographic PIV measurements

    NASA Astrophysics Data System (ADS)

    Murphy, David; Zheng, Lingxiao; Mittal, Rajat; Webster, Donald; Yen, Jeannette

    2011-11-01

    The planktonic sea butterfly Limacina helicina swims by flapping its flexible, wing-like parapodia. The appendage stroke kinematics of this shell-bearing pteropod are three-dimensional and likely contain elements of both drag-based (rowing) and lift-based (flapping) propulsion. Unsteady lift-generating mechanisms such as clap-and-fling may also be present. Upstroke and downstroke motions both propel the animal upward and roll it forwards and backwards, resulting in a sawtooth trajectory. We present time-resolved, tomographic PIV measurements of flow generated by free-swimming pteropods (Limacina helicina) moving upwards with average swimming speeds of 5 - 17 mm/s. The pteropods beat their appendages with a stroke frequency of 4 - 5 Hz. With a size range of 1 - 2 mm, the animals filmed in this study operate in a viscous environment with a Reynolds number of 5 to 20. The volumetric flow measurements provide insight into the three dimensional nature of the flow and into the relative importance of drag- and lift-based propulsion at this low Reynolds number. Preliminary results from Navier-Stokes simulations of the flow associated with the swimming of this organism will also be presented.

  8. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  9. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    PubMed

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  11. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  12. 4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo

    2016-11-01

    Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.

  13. Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1996-01-01

    A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.

  14. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.

  15. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    NASA Astrophysics Data System (ADS)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  16. Laser-plasma interaction experiments and diagnostics at NRL (Naval Research Laboratory). Memorandum report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripin, B.H.; Grun, J.; Herbst, M.J.

    Laser plasma interaction experiments have now advanced to the point where very quantitative measurements are required to elucidate the physic issues important for laser fusion and other applications. Detailed time-resolved knowledge of the plasma density, temperature, velocity gradients, spatial structure, heat flow characteristics, radiation emission, etc, are needed over tremendou ranges of plasma density and temperature. Moreover, the time scales are very short, aggrevating the difficulty of the measurements further. Nonetheless, such substantial progress has been made in diagnostic development during the past few years that we are now able to do well diagnosed experiments. In this paper the authorsmore » review recent diagnostic developments for laser-plasma interactions, outline their regimes of applicability, and show examples of their utility. In addition to diagnostics for the high densities and temperature characteristic of laser fusion physics studies, diagnostics designed to study the two-stream interactions of laser created plasma flowing through an ambient low density plasma will be described.« less

  17. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  18. The potential of flow-through microdialysis for probing low-molecular weight organic anions in rhizosphere soil solution.

    PubMed

    Sulyok, Michael; Miró, Manuel; Stingeder, Gerhard; Koellensperger, Gunda

    2005-08-01

    In this paper, flow-through microdialysis is presented as a novel analytical tool for automatic sampling of low molecular weight organic anions (LMWOA), such as oxalate and citrate, in solid samples of environmental concern. The microsampling methodology involves the implantation of dedicated capillary-type probes offering unrivalled spatial resolution (ca. 200μm) in definite soil sites. These passive samplers are aimed at monitoring local processes, such as the release of organic acids occurring in the rhizosphere environment, in nearly real-time. The influence of chemical and physical variables (composition and flow rate of the perfusion liquid, ionic strength and pH of the outer medium and presence of metal ions therein) was assessed in vitro using liquid-phase assays. On the other hand, the resistance of the external solid medium to mass transfer, and the actual applicability of in vivo calibration methods were investigated using quartz sand as an inert model soil. Microdialysers furnished with 3cm long semipermeable tubular membranes were perfused with 0.01M NaNO 3 at a flow rate of 2.0μl/min, yielding dialysis recoveries ≥45% for both assayed LMWOAs in simulated background soil electrolyte solutions, and ≥24% in the interstitial liquid of complex solid samples. Full knowledge of the fate of LMWOAs in soils was obtained through the application of stimulus-response approaches that mimic the discrete exudation pulses of roots. Highly time-resolved microdialysates were used to discern readily available species such as free carboxylic anions and LMW metal-organic acid complexes from adsorbed, precipitated or mineralised analyte species in a variety of soil samples containing variable amounts of organic matter, exchangeable cations and different levels of metal pollution.

  19. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A.

    2018-02-01

    Quantitative measurement of blood flow velocity in capillaries is challenging due to their small size (around 5-10 μm), and the discontinuity and single-file feature of RBCs flowing in a capillary. In this work, we present a phase-resolved Optical Coherence Tomography (OCT) method for accurate measurement of the red blood cell (RBC) speed in cerebral capillaries. To account for the discontinuity of RBCs flowing in capillaries, we applied an M-mode scanning strategy that repeated A-scans at each scanning position for an extended time. As the capillary size is comparable to the OCT resolution size (3.5×3.5×3.5μm), we applied a high pass filter to remove the stationary signal component so that the phase information of the dynamic component (i.e. from the moving RBC) could be enhanced to provide an accurate estimate of the RBC axial speed. The phase-resolved OCT method accurately quantifies the axial velocity of RBC's from the phase shift of the dynamic component of the signal. We validated our measurements by RBC passage velocimetry using the signal magnitude of the same OCT time series data. These proposed method of capillary velocimetry proved to be a robust method of mapping capillary RBC speeds across the micro-vascular network.

  20. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  1. Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration

    2016-10-01

    Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  2. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVille, R.E.L., E-mail: rdeville@illinois.edu; Riemer, N., E-mail: nriemer@illinois.edu; West, M., E-mail: mwest@illinois.edu

    2011-09-20

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangianmore » trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.« less

  3. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.

    PubMed

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A

    2017-10-01

    We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.

  4. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    NASA Astrophysics Data System (ADS)

    DeVille, R. E. L.; Riemer, N.; West, M.

    2011-09-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  5. Stall behavior of a scaled three-dimensional wind turbine blade

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen; Melius, Matthew; Cal, Raul Bayoan

    2014-11-01

    The power generation of a wind turbine is influenced by many factors including the unsteady incoming flow characteristics, pitch regulation, and the geometry of the various turbine components. Within the framework of maximizing energy extraction, it is important to understand and tailor the aerodynamics of a wind turbine. In the interest of seeking further understanding into the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. A wind tunnel experiment has been carried out in the 2.2 m × 1.8 m cross-section closed loop wind tunnel at DLR in Göttingen by means of time-resolved stereoscopic PIV. An extensive coherent structure analysis of the time-resolved velocity field over the suction side of the blade was performed to study stall characteristics under a geometrically induced pressure gradient. In particular, the radial extent and propagation of stalled flow regions were characterized for various static angles of attack.

  6. Coherent instability in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Hack, M. J. Philipp

    2017-11-01

    Hairpin vortices are commonly considered one of the major classes of coherent fluid motions in shear layers, even as their significance in the grand scheme of turbulence has remained an openly debated question. The statistical prevalence of the dynamic process that gives rise to the hairpins across different types of flows suggests an origin in a robust common mechanism triggered by conditions widespread in wall-bounded shear layers. This study seeks to shed light on the physical process which drives the generation of hairpin vortices. It is primarily facilitated through an algorithm based on concepts developed in the field of computer vision which allows the topological identification and analysis of coherent flow processes across multiple scales. Application to direct numerical simulations of boundary layers enables the time-resolved sampling and exploration of the hairpin process in natural flow. The analysis yields rich statistical results which lead to a refined characterization of the hairpin process. Linear stability theory offers further insight into the flow physics and especially into the connection between the hairpin and exponential amplification mechanisms. The results also provide a sharpened understanding of the underlying causality of events.

  7. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  8. Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors

    DTIC Science & Technology

    2016-03-31

    resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3    Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically

  9. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  10. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction.

    PubMed

    Minitti, M P; Budarz, J M; Kirrander, A; Robinson, J S; Ratner, D; Lane, T J; Zhu, D; Glownia, J M; Kozina, M; Lemke, H T; Sikorski, M; Feng, Y; Nelson, S; Saita, K; Stankus, B; Northey, T; Hastings, J B; Weber, P M

    2015-06-26

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  11. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.

  12. Fluid Flow Characterization of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry

    DTIC Science & Technology

    2015-08-01

    completed in order to begin further experimentation. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser ...9 2.3.2 Planar Laser Induced Fluorescence (PLIF...35 Figure 4.4: Solenoid valve (a), proportional control valve (b) and flowmeter (c) ...................................... 36 Figure 4.5

  13. Transitional hemodynamics in intracranial aneurysms - Comparative velocity investigations with high resolution lattice Boltzmann simulations, normal resolution ANSYS simulations, and MR imaging.

    PubMed

    Jain, Kartik; Jiang, Jingfeng; Strother, Charles; Mardal, Kent-André

    2016-11-01

    Blood flow in intracranial aneurysms has, until recently, been considered to be disturbed but still laminar. Recent high resolution computational studies have demonstrated, in some situations, however, that the flow may exhibit high frequency fluctuations that resemble weakly turbulent or transitional flow. Due to numerous assumptions required for simplification in computational fluid dynamics (CFD) studies, the occurrence of these events, in vivo, remains unsettled. The detection of these fluctuations in aneurysmal blood flow, i.e., hemodynamics by CFD, poses additional challenges as such phenomena cannot be captured in clinical data acquisition with magnetic resonance (MR) due to inadequate temporal and spatial resolutions. The authors' purpose was to address this issue by comparing results from highly resolved simulations, conventional resolution laminar simulations, and MR measurements, identify the differences, and identify their causes. Two aneurysms in the basilar artery, one with disturbed yet laminar flow and the other with transitional flow, were chosen. One set of highly resolved direct numerical simulations using the lattice Boltzmann method (LBM) and another with adequate resolutions under laminar flow assumption were conducted using a commercially available ANSYS Fluent solver. The velocity fields obtained from simulation results were qualitatively and statistically compared against each other and with MR acquisition. Results from LBM, ANSYS Fluent, and MR agree well qualitatively and quantitatively for one of the aneurysms with laminar flow in which fluctuations were <80 Hz. The comparisons for the second aneurysm with high fluctuations of > ∼ 600 Hz showed vivid differences between LBM, ANSYS Fluent, and magnetic resonance imaging. After ensemble averaging and down-sampling to coarser space and time scales, these differences became minimal. A combination of MR derived data and CFD can be helpful in estimating the hemodynamic environment of intracranial aneurysms. Adequately resolved CFD would suffice gross assessment of hemodynamics, potentially in a clinical setting, and highly resolved CFD could be helpful in a detailed and retrospective understanding of the physiological mechanisms.

  14. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  15. A cellular automata approach for modeling surface water runoff

    NASA Astrophysics Data System (ADS)

    Jozefik, Zoltan; Nanu Frechen, Tobias; Hinz, Christoph; Schmidt, Heiko

    2015-04-01

    This abstract reports the development and application of a two-dimensional cellular automata based model, which couples the dynamics of overland flow, infiltration processes and surface evolution through sediment transport. The natural hill slopes are represented by their topographic elevation and spatially varying soil properties infiltration rates and surface roughness coefficients. This model allows modeling of Hortonian overland flow and infiltration during complex rainfall events. An advantage of the cellular automata approach over the kinematic wave equations is that wet/dry interfaces that often appear with rainfall overland flows can be accurately captured and are not a source of numerical instabilities. An adaptive explicit time stepping scheme allows for rainfall events to be adequately resolved in time, while large time steps are taken during dry periods to provide for simulation run time efficiency. The time step is constrained by the CFL condition and mass conservation considerations. The spatial discretization is shown to be first-order accurate. For validation purposes, hydrographs for non-infiltrating and infiltrating plates are compared to the kinematic wave analytic solutions and data taken from literature [1,2]. Results show that our cellular automata model quantitatively accurately reproduces hydrograph patterns. However, recent works have showed that even through the hydrograph is satisfyingly reproduced, the flow field within the plot might be inaccurate [3]. For a more stringent validation, we compare steady state velocity, water flux, and water depth fields to rainfall simulation experiments conducted in Thies, Senegal [3]. Comparisons show that our model is able to accurately capture these flow properties. Currently, a sediment transport and deposition module is being implemented and tested. [1] M. Rousseau, O. Cerdan, O. Delestre, F. Dupros, F. James, S. Cordier. Overland flow modeling with the Shallow Water Equation using a well balanced numerical scheme: Adding efficiency or sum more complexity?. 2012. [2] Fritz R. Fiedler, J. A. Ramirez. A numerical method for simulating discontinuous shallow flow over an infiltrating surface. In. J. Numer. Mech. Fluids 200: 32: 219-240. [3] C. Mügler, O. Planchon, J. Patin, S. Weill, N. Silvera, P. Richard, E. Mouche. Comparison of Roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale. Journal of Hydrology. 402 (2011) 25-40.

  16. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow.

    PubMed

    Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex

    2007-04-01

    To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.

  17. Resolving Low-Density Lipoprotein (LDL) on the Human Aortic Surface Using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Karlsson, Matts

    2011-11-01

    The prediction and understanding of the genesis of vascular diseases is one of the grand challenges in biofluid engineering. The progression of atherosclerosis is correlated to the build- up of LDL on the arterial surface, which is affected by the blood flow. A multi-physics simulation of LDL mass transport in the blood and through the arterial wall of a subject specific human aorta was performed, employing a LES turbulence model to resolve the turbulent flow. Geometry and velocity measurements from magnetic resonance imaging (MRI) were incorporated to assure physiological relevance of the simulation. Due to the turbulent nature of the flow, consecutive cardiac cycles are not identical, neither in vivo nor in the simulations. A phase average based on a large number of cardiac cycles is therefore computed, which is the proper way to get reliable statistical results from a LES simulation. In total, 50 cardiac cycles were simulated, yielding over 2.5 Billion data points to be post-processed. An inverse relation between LDL and WSS was found; LDL accumulated on locations where WSS was low and vice-versa. Large temporal differences were present, with the concentration level decreasing during systolic acceleration and increasing during the deceleration phase. This method makes it possible to resolve the localization of LDL accumulation in the normal human aorta with its complex transitional flow.

  18. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  19. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  20. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  1. Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction

    DOE PAGES

    Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...

    2016-08-01

    In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less

  2. The dynamics of plate tectonics and mantle flow: from local to global scales.

    PubMed

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  3. Turbine-99 unsteady simulations - Validation

    NASA Astrophysics Data System (ADS)

    Cervantes, M. J.; Andersson, U.; Lövgren, H. M.

    2010-08-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  4. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  5. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith.

    PubMed

    Yuan, Ruijuan; Wang, Yan; Ding, Guosheng

    2010-01-01

    A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.

  6. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  7. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  8. Seasonal transport variations in the straits connecting Prince William Sound to the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Halverson, Mark J.; Bélanger, Claude; Gay, Shelton M.

    2013-07-01

    Exchange of water between Prince William Sound and the Gulf of Alaska has a significant impact on its circulation and biological productivity. Current meter records from moored instruments in the two major straits connecting Prince William Sound to the Gulf of Alaska are analyzed to characterize the seasonal variations in water exchange. Eight individual deployments, each lasting for about 6 months, were made during the years 2005-2010. Two moorings were placed across each passage to account for horizontal flow variability. Monthly averaged, depth-integrated transport in winter is characterized by a strong barotropic inflow through Hinchinbrook Entrance and outflow through Montague Strait. The transport through each passage can reach 0.2Sv, which could replenish the volume of Prince William Sound in as little as 3 months. Depth-integrated transport is weaker and more variable in direction in summer than in winter, implying that Prince William sound is not always a simple flow-through system. Monthly transports range between -0.05 and 0.08Sv in each passage, and the corresponding flushing times exceed 1 year. The flow through both passages is highly baroclinic in the summer, so that the layer transport can be significant. For example, the deep inflow through Hinchinbrook Entrance can reach 0.05Sv, which would flush the deep regions of Prince William Sound (>400m) in only 23 days. The transport imbalance between Montague Strait and Hinchinbrook Entrance cannot be accounted for by considering other terms in a volume budget such as local freshwater input, meaning the imbalance is mostly a result of under-resolving the cross-strait flow variability. The magnitude of the monthly mean depth-integrated transport through Montague Strait and Hinchinbrook Entrance depends non-linearly on the shelf winds. Strong downwelling conditions, characteristic of the winter, drive inflow through Hinchinbrook Entrance, which is balanced by outflow through Montague Strait. Weak downwelling or upwelling conditions, characteristic of the summer, allow deep water from below the shelf break to flow in through Hinchinbrook Entrance.

  9. Energetics and dynamics through time-resolved measurements in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lifshitz, Chava

    Results of recent work on time-resolved photoionization and electron ionization mass spectrometry carried out in Jerusalem are reviewed. Time-resolved photoionization mass spectrometry in the vacuum ultraviolet is applied to polycyclic aromatic hydrocarbons, for example naphthalene, pyrene and fluoranthene as well as to some bromo derivatives (bromonaphthalene and bromoanthracene). Time-resolved photoionization efficiency curves are modelled by Rice-Ramsperger-Kassel-Marcus QET rate-energy k ( E ) dependences of the unimolecular dissociative processes and by the rate process infrared radiative relaxation k . Experimental results are augmented by time-resolved photorad dissociation data for the same species, whenever available. Kinetic shifts, conventional and intrinsic (due to competition between dissociative and radiative decay), are evaluated. Activation parameters (activation energies and entropies) are deduced. Thermochemical information is obtained including bond energies and ionic heats of formation. Fullerenes, notably C , are studied by time-resolved electron ionization and a large intrinsic shift, due to competition with black-bodylike radiative decay in the visible is discussed.

  10. Assessment of the pseudo-tracking approach for the calculation of material acceleration and pressure fields from time-resolved PIV: part II. Spatio-temporal filtering

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Schrijer, F. F. J.; van Oudheusden, B. W.

    2018-04-01

    The present study characterises the spatio-temporal filtering associated with pseudo-tracking. A combined theoretical and numerical assessment is performed that uses the relatively simple flow case of a two-dimensional Taylor vortex as analytical test case. An additional experimental assessment considers the more complex flow of a low-speed axisymmetric base flow, for which time-resolved tomographic PIV measurements and microphone measurements were obtained. The results of these assessments show how filtering along Lagrangian tracks leads to amplitude modulation of flow structures. A cut-off track length and spatial resolution are specified to support future applications of the pseudo-tracking approach. The experimental results show a fair agreement between PIV and microphone pressure data in terms of fluctuation levels and pressure frequency spectra. The coherence and correlation between microphone and PIV pressure measurements were found to be substantial and almost independent of the track length, indicating that the low-frequency behaviour of the flow could be reproduced regardless of the track length. It is suggested that a spectral analysis can be used inform the selection of a suitable track length and to estimate the local error margin of reconstructed pressure values.

  11. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    PubMed

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  12. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2008-01-01

    A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  13. Large eddy simulation of forced ignition of an annular bluff-body burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less

  14. Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.; Wang, Qiqi

    2018-02-01

    Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.

  15. Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Chong, Shau Poh; Srinivasan, Vivek J.

    2016-01-01

    We introduce and implement interferometric near-infrared spectroscopy (iNIRS), which simultaneously extracts optical and dynamical properties of turbid media through analysis of a spectral interference fringe pattern. The spectral interference fringe pattern is measured using a Mach-Zehnder interferometer with a frequency-swept narrow linewidth laser. Fourier analysis of the detected signal is used to determine time-of-flight (TOF)-resolved intensity, which is then analyzed over time to yield TOF-resolved intensity autocorrelations. This approach enables quantification of optical properties, which is not possible in conventional, continuous-wave near-infrared spectroscopy (NIRS). Furthermore, iNIRS quantifies scatterer motion based on TOF-resolved autocorrelations, which is a feature inaccessible by well-established diffuse correlation spectroscopy (DCS) techniques. We prove this by determining TOF-resolved intensity and temporal autocorrelations for light transmitted through diffusive fluid phantoms with optical thicknesses of up to 55 reduced mean free paths (approximately 120 scattering events). The TOF-resolved intensity is used to determine optical properties with time-resolved diffusion theory, while the TOF-resolved intensity autocorrelations are used to determine dynamics with diffusing wave spectroscopy. iNIRS advances the capabilities of diffuse optical methods and is suitable for in vivo tissue characterization. Moreover, iNIRS combines NIRS and DCS capabilities into a single modality. PMID:26832264

  16. OH and CH luminescence in opposed flow methane oxy-flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A.

    Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measuredmore » chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)« less

  17. An approach for drag correction based on the local heterogeneity for gas-solid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingwen; Wang, Limin; Rogers, William

    2016-09-22

    The drag models typically used for gas-solids interaction are mainly developed based on homogeneous systems of flow passing fixed particle assembly. It has been shown that the heterogeneous structures, i.e., clusters and bubbles in fluidized beds, need to be resolved to account for their effect in the numerical simulations. Since the heterogeneity is essentially captured through the local concentration gradient in the computational cells, this study proposes a simple approach to account for the non-uniformity of solids spatial distribution inside a computational cell and its effect on the interaction between gas and solid phases. Finally, to validate this approach, themore » predicted drag coefficient has been compared to the results from direct numerical simulations. In addition, the need to account for this type of heterogeneity is discussed for a periodic riser flow simulation with highly resolved numerical grids and the impact of the proposed correction for drag is demonstrated.« less

  18. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements.

    PubMed

    van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna

    2012-03-01

    Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface segmentation results were shown to closely approximate manual segmentations.

  19. Mantle plumes and associated flow beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Joon; Van der Lee, Suzan

    2011-02-01

    We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.

  20. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    PubMed

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  1. Computing Normal Shock-Isotropic Turbulence Interaction With Tetrahedral Meshes and the Space-Time CESE Method

    NASA Astrophysics Data System (ADS)

    Venkatachari, Balaji Shankar; Chang, Chau-Lyan

    2016-11-01

    The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).

  2. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2015-08-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.

  3. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  4. Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor

    DOE PAGES

    Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.; ...

    2017-12-01

    Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less

  5. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  6. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  7. Secondary flow structures in the presence of Type-IV stent fractures through a bent tube model for curved arteries: Effect of circulation thresholding

    NASA Astrophysics Data System (ADS)

    Hussain, Shadman; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    A common treatment for atherosclerosis is the opening of narrowed arteries resulting from obstructive lesions by angioplasty and stent implantation to restore unrestricted blood flow. ``Type-IV'' stent fractures involve complete transverse, linear fracture of stent struts, along with displacement of the stent fragments. Experimental data pertaining to secondary flows in the presence of stents that underwent ``Type-IV'' fractures in a bent artery model under physiological inflow conditions were obtained through a two-component, two-dimensional (2C-2D) PIV technique. Concomitant stent-induced flow perturbations result in secondary flow structures with complex, multi-scale morphologies and varying size-strength characteristics. Ultimately, these flow structures may have a role to play in restenosis and progression of atherosclerotic plaque. Vortex circulation thresholds were established with the goal of resolving and tracking iso-circulation secondary flow vortical structures and their morphological changes. This allowed for a parametric evaluation and quantitative representation of secondary flow structures undergoing deformation and spatial reorganization. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  8. Time-resolved PIV investigation of flashback in stratified swirl flames of hydrogen-rich fuel

    NASA Astrophysics Data System (ADS)

    Ranjan, Rakesh; Clemens, Noel

    2016-11-01

    Hydrogen is one of the promising alternative fuels to achieve greener power generation. However, susceptibility of flashback in swirl flames of hydrogen-rich fuels acts as a major barrier to its adoption in gas turbine combustors. The current study seeks to understand the flow-flame interaction during the flashback of the hydrogen-rich flame in stratified conditions. Flashback experiments are conducted with a model combustor equipped with an axial swirler and a center-body. Fuel is injected in the main swirl flow via the fuel ports on the swirler vanes. To achieve mean radial stratification, these fuel ports are located at a radial location closer to the outer wall of the mixing tube. Stratification in the flow is assessed by employing Anisole PLIF imaging. Flashback is triggered by a rapid increase in the global equivalence ratio. The upstream propagation of the flame is investigated by employing time-resolved stereoscopic PIV and chemiluminescence imaging. Stratification leads to substantially different flame propagation behavior as well as increased flame surface wrinkling. We gratefully acknowledge the sponsorship by the DOE NETL under Grant DEFC2611-FE0007107.

  9. Understanding the mechanisms of amorphous creep through molecular simulation

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Short, Michael P.; Yip, Sidney

    2017-12-01

    Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

  10. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  11. Non-normality and classification of amplification mechanisms in stability and resolvent analysis

    NASA Astrophysics Data System (ADS)

    Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.

    2018-05-01

    Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.

  12. An comprehensive time-distance measurement of deep meridional flow and its temporal variation

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-10-01

    We report our latest results on the Sun's deep solar meridional-flow measurements by time-distance helioseismology technique using 6 years of SDO/HMI Doppler-velocity data. Determination of the meridional flow by time-distance helioseismology depends on a precise measurement of the flow-induced travel-time shifts of acoustic waves traveling in the solar interior. To resolve the weak travel-time-shift signals due to deep meridional flow, we need a high signal-to-noise ratio and a robust removal of the center-to-limb (CtoL) effect, which dominates the travel-time shifts. Here we perform an ultimately comprehensive measurement that tracks acoustic waves between any two points on solar surface. The travel-time shifts are composed of CtoL effect, which is a function of disk-centric distances, and contribution from the flow component parallel to wave traveling direction, which is a function of latitude and orientation. Assuming these two effects are independent, we can derive the CtoL effect and meridional-flow contributions by solving a set of linear equations in a least-square sense. We show the solved CtoL effect and the inversion results for the solar meridional flow, and analyze the annual variation of meridional flow from May 2010 to Apr 2016.

  13. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  14. An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows

    NASA Astrophysics Data System (ADS)

    Wu, Heng

    2000-10-01

    In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.

  15. Topology optimization of natural convection: Flow in a differentially heated cavity

    NASA Astrophysics Data System (ADS)

    Saglietti, Clio; Schlatter, Philipp; Berggren, Martin; Henningson, Dan

    2017-11-01

    The goal of the present work is to develop methods for optimization of the design of natural convection cooled heat sinks, using resolved simulation of both fluid flow and heat transfer. We rely on mathematical programming techniques combined with direct numerical simulations in order to iteratively update the topology of a solid structure towards optimality, i.e. until the design yielding the best performance is found, while satisfying a specific set of constraints. The investigated test case is a two-dimensional differentially heated cavity, in which the two vertical walls are held at different temperatures. The buoyancy force induces a swirling convective flow around a solid structure, whose topology is optimized to maximize the heat flux through the cavity. We rely on the spectral-element code Nek5000 to compute a high-order accurate solution of the natural convection flow arising from the conjugate heat transfer in the cavity. The laminar, steady-state solution of the problem is evaluated with a time-marching scheme that has an increased convergence rate; the actual iterative optimization is obtained using a steepest-decent algorithm, and the gradients are conveniently computed using the continuous adjoint equations for convective heat transfer.

  16. An affordable and accurate conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Carminati, Marco; Luzzatto-Fegiz, Paolo

    2015-11-01

    In stratified flow experiments, conductivity (combined with temperature) is often used to measure density. The probes typically used can provide very fine spatial scales, but can be fragile, expensive to replace, and sensitive to environmental noise. A complementary instrument, comprising a low-cost conductivity probe, would prove valuable in a wide range of applications where resolving extremely small spatial scales is not needed. We propose using micro-USB cables as the actual conductivity sensors. By removing the metallic shield from a micro-B connector, 5 gold-plated microelectrodes are exposed and available for 4-wire measurements. These have a cell constant ~550m-1, an intrinsic thermal noise of at most 30pA/Hz1/2, as well as sub-millisecond time response, making them highly suitable for many stratified flow measurements. In addition, we present the design of a custom electronic board (Arduino-based and Matlab-controlled) for simultaneous acquisition from 4 sensors, with resolution (in conductivity, and resulting density) exceeding the performance of typical existing probes. We illustrate the use of our conductivity-measuring system through stratified flow experiments, and describe plans to release simple instructions to construct our complete system for around 200.

  17. Development of a two-parameter slit-scan flow cytometer for screening of normal and aberrant chromosomes: application to a karyotype of Sus scrofa domestica (pig)

    NASA Astrophysics Data System (ADS)

    Hausmann, Michael; Doelle, Juergen; Arnold, Armin; Stepanow, Boris; Wickert, Burkhard; Boscher, Jeannine; Popescu, Paul C.; Cremer, Christoph

    1992-07-01

    Laser fluorescence activated slit-scan flow cytometry offers an approach to a fast, quantitative characterization of chromosomes due to morphological features. It can be applied for screening of chromosomal abnormalities. We give a preliminary report on the development of the Heidelberg slit-scan flow cytometer. Time-resolved measurement of the fluorescence intensity along the chromosome axis can be registered simultaneously for two parameters when the chromosome axis can be registered simultaneously for two parameters when the chromosome passes perpendicularly through a narrowly focused laser beam combined by a detection slit in the image plane. So far automated data analysis has been performed off-line on a PC. In its final performance, the Heidelberg slit-scan flow cytometer will achieve on-line data analysis that allows an electro-acoustical sorting of chromosomes of interest. Interest is high in the agriculture field to study chromosome aberrations that influence the size of litters in pig (Sus scrofa domestica) breeding. Slit-scan measurements have been performed to characterize chromosomes of pigs; we present results for chromosome 1 and a translocation chromosome 6/15.

  18. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  19. Dynamic stall reattachment revisited

    NASA Astrophysics Data System (ADS)

    Mulleners, Karen

    2017-11-01

    Dynamic stall on pitching airfoils is an important practical problem that affects for example rotary wing aircraft and wind turbines. It also comprises a number of interesting fundamental fluid dynamical phenomena such as unsteady flow separation, vortex formation and shedding, unsteady flow reattachment, and dynamic hysteresis. Following up on past efforts focussing on the separation development, we now revisited the flow reattachment or stall recovery process. Experimental time-resolved velocity field and surface pressure data for a two-dimensional sinusoidally pitching airfoil with various reduced frequencies was analysed using different Eulerian, Lagrangian, and modal decomposition methods. This complementary analysis resulted in the identification of the chain of events that play a role in the flow reattachment process, a detailed description of that role, and characterisation of the individual events by the governing time-scales and flow features.

  20. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states established that the number density of these excited species is much lower than estimated using frozen-chemistry approximations. This key finding suggests that in the post-expansion region there is not a significant energy sequestration in electronically excited species. Finally, TDL measurements of atomic potassium seeded into the test cabin flow were used to directly measure the static temperature of the test gas. The results of this study illustrate the high potential of time-resolved TDL measurements for routine and economical sensing of arc-heater health (gas temperature and electrode erosion) as well as the time-resolved test-cabin-flow conditions in front of the model.

  1. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM

    NASA Astrophysics Data System (ADS)

    Schlegel, N.-J.; Larour, E.; Seroussi, H.; Morlighem, M.; Box, J. E.

    2013-06-01

    The behavior of the Greenland Ice Sheet, which is considered a major contributor to sea level changes, is best understood on century and longer time scales. However, on decadal time scales, its response is less predictable due to the difficulty of modeling surface climate, as well as incomplete understanding of the dynamic processes responsible for ice flow. Therefore, it is imperative to understand how modeling advancements, such as increased spatial resolution or more comprehensive ice flow equations, might improve projections of ice sheet response to climatic trends. Here we examine how a finely resolved climate forcing influences a high-resolution ice stream model that considers longitudinal stresses. We simulate ice flow using a two-dimensional Shelfy-Stream Approximation implemented within the Ice Sheet System Model (ISSM) and use uncertainty quantification tools embedded within the model to calculate the sensitivity of ice flow within the Northeast Greenland Ice Stream to errors in surface mass balance (SMB) forcing. Our results suggest that the model tends to smooth ice velocities even when forced with extreme errors in SMB. Indeed, errors propagate linearly through the model, resulting in discharge uncertainty of 16% or 1.9 Gt/yr. We find that mass flux is most sensitive to local errors but is also affected by errors hundreds of kilometers away; thus, an accurate SMB map of the entire basin is critical for realistic simulation. Furthermore, sensitivity analyses indicate that SMB forcing needs to be provided at a resolution of at least 40 km.

  2. An engineering closure for heavily under-resolved coarse-grid CFD in large applications

    NASA Astrophysics Data System (ADS)

    Class, Andreas G.; Yu, Fujiang; Jordan, Thomas

    2016-11-01

    Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.

  3. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  4. Wake losses from averaged and time-resolved power measurements at full scale wind turbines

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Becchetti, Matteo; Segalini, Antonio

    2017-05-01

    This work deals with the experimental analysis of wake losses fluctuations at full-scale wind turbines. The test case is a wind farm sited on a moderately complex terrain: 4 turbines are installed, having 2 MW of rated power each. The sources of information are the time-resolved data, as collected from the OPC server, and the 10-minutes averaged SCADA data. The objective is to compare the statistical distributions of wake losses for far and middle wakes, as can be observed through the “fast” lens of time-resolved data, for certain selected test-case time series, and through the “slow” lens of SCADA data, on a much longer time basis that allow to set the standards of the mean wake losses along the wind farm. Further, time-resolved data are used for an insight into the spectral properties of wake fluctuations, highlighting the role of the wind turbine as low-pass filter. Summarizing, the wind rose, the layout of the site and the structure of the data sets at disposal allow to study middle and far wake behavior, with a “slow” and “fast” perspective.

  5. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    NASA Astrophysics Data System (ADS)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  6. Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part I: Analytical solutions with the extended method of moments.

    NASA Astrophysics Data System (ADS)

    Ginzburg, Irina; Vikhansky, Alexander

    2018-05-01

    The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous structure and a novel scheme for EMM numerical formulation, are called for validation of the constructed analytical predictions.

  7. On the estimation of wall pressure coherence using time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Pröbsting, Stefan; Scarano, Fulvio; Bernardini, Matteo; Pirozzoli, Sergio

    2013-07-01

    Three-dimensional time-resolved velocity field measurements are obtained using a high-speed tomographic Particle Image Velocimetry (PIV) system on a fully developed flat plate turbulent boundary layer for the estimation of wall pressure fluctuations. The work focuses on the applicability of tomographic PIV to compute the coherence of pressure fluctuations, with attention to the estimation of the stream and spanwise coherence length. The latter is required for estimations of aeroacoustic noise radiation by boundary layers and trailing edge flows, but is also of interest for vibro-structural problems. The pressure field is obtained by solving the Poisson equation for incompressible flows, where the source terms are provided by time-resolved velocity field measurements. Measured 3D velocity data is compared to results obtained from planar PIV, and a Direct Numerical Simulation (DNS) at similar Reynolds number. An improved method for the estimation of the material based on a least squares estimator of the velocity derivative along a particle trajectory is proposed and applied. Computed surface pressure fluctuations are further verified by means of simultaneous measurements by a pinhole microphone and compared to the DNS results and a semi-empirical model available from literature. The correlation coefficient for the reconstructed pressure time series with respect to pinhole microphone measurements attains approximately 0.5 for the band-pass filtered signal over the range of frequencies resolved by the velocity field measurements. Scaled power spectra of the pressure at a single point compare favorably to the DNS results and those available from literature. Finally, the coherence of surface pressure fluctuations and the resulting span- and streamwise coherence lengths are estimated and compared to semi-empirical models and DNS results.

  8. Space and Time Resolved Detection of Platelet Activation and von Willebrand Factor Conformational Changes in Deep Suspensions.

    PubMed

    Biasetti, Jacopo; Sampath, Kaushik; Cortez, Angel; Azhir, Alaleh; Gilad, Assaf A; Kickler, Thomas S; Obser, Tobias; Ruggeri, Zaverio M; Katz, Joseph

    2017-01-01

    Tracking cells and proteins' phenotypic changes in deep suspensions is critical for the direct imaging of blood-related phenomena in in vitro replica of cardiovascular systems and blood-handling devices. This paper introduces fluorescence imaging techniques for space and time resolved detection of platelet activation, von Willebrand factor (VWF) conformational changes, and VWF-platelet interaction in deep suspensions. Labeled VWF, platelets, and VWF-platelet strands are suspended in deep cuvettes, illuminated, and imaged with a high-sensitivity EM-CCD camera, allowing detection using an exposure time of 1 ms. In-house postprocessing algorithms identify and track the moving signals. Recombinant VWF-eGFP (rVWF-eGFP) and VWF labeled with an FITC-conjugated polyclonal antibody are employed. Anti-P-Selectin FITC-conjugated antibodies and the calcium-sensitive probe Indo-1 are used to detect activated platelets. A positive correlation between the mean number of platelets detected per image and the percentage of activated platelets determined through flow cytometry is obtained, validating the technique. An increase in the number of rVWF-eGFP signals upon exposure to shear stress demonstrates the technique's ability to detect breakup of self-aggregates. VWF globular and unfolded conformations and self-aggregation are also observed. The ability to track the size and shape of VWF-platelet strands in space and time provides means to detect pro- and antithrombotic processes.

  9. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.

    2018-01-01

    We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533

  10. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  11. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Daniel

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less

  12. Coil occlusion of residual shunts after surgical closure of patent ductus arteriosus.

    PubMed

    Fujii, Yoko; Keene, Bruce W; Mathews, Kyle G; Atkins, Clarke E; Defrancesco, Teresa C; Hardie, Elizabeth M; Wakao, Yoshito

    2006-12-01

    OBJECTIVE; To describe use of coil embolization to occlude residual flow through a patent ductus arteriosus (PDA) after incomplete surgical ligation. Clinical study. Dogs (n=4) with continuous murmur after surgical ligation of PDA. After PDA ligation, residual ductal flow through the PDA was visible on color-flow Doppler examination and left ventricular end-diastolic diameter remained increased. Coil embolization by an arterial approach was performed to achieve complete occlusion of the PDA. Embolization coils were delivered without complications and hemodynamically successful occlusion was achieved. Doppler-visible flow resolved in 2 dogs within 3 months after embolization. Left ventricular end-diastolic diameter indexed to body weight decreased in all dogs. Transcatheter coil embolization appears to be a safe and minimally invasive procedure for complete occlusion of residual PDA flow after incomplete surgical ligation. Transcatheter coil embolization should be considered for correction of hemodynamically significant residual shunts in dogs that have incomplete PDA occlusion after open surgical ligation.

  13. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis

    PubMed Central

    Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura

    2011-01-01

    Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214

  15. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    PubMed

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  16. Insights into flame-flow interaction during boundary layer flashback of swirl flames

    NASA Astrophysics Data System (ADS)

    Ranjan, Rakesh; Ebi, Dominik; Clemens, Noel

    2017-11-01

    Boundary layer flashback in swirl flames is a frequent problem in industrial gas turbine combustors. During this event, an erstwhile stable swirl flame propagates into the upstream region of the combustor, through the low momentum region in the boundary layer. Owing to the involvement of various physical factors such as turbulence, flame-wall interactions and flame-flow interactions, the current scientific understanding of this phenomenon is limited. The transient and three-dimensional nature of the swirl flow, makes it even more challenging to comprehend the underlying physics of the swirl flame flashback. In this work, a model swirl combustor with an axial swirler and a centerbody was used to carry out the flashback experiments. We employed high-speed chemiluminescence imaging and simultaneous stereoscopic PIV to understand the flow-flame interactions during flashback. A novel approach to reconstruct the three-dimensional flame surface using time-resolved slice information is utilized to gain insight into the flame-flow interaction. It is realized that the blockage effect imposed by the flame deflects the approaching streamlines in axial as well as azimuthal directions. A detailed interpretation of streamline deflection during boundary layer flashback shall be presented. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107.

  17. Flow-Through Leaching of Marine Barite: New Insights on its Composition and Diagenesis

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Torres, M. E.; Ungerer, A.; Klinkhammer, G. P.

    2007-12-01

    The distribution of stable mineral barite (BaSO4) in marine sediments has long been studied as a proxy for paleoproductivity. It is important to investigate the variation in Sr/Ba ratios of crystal barite, as it has a great influence on barite solubility and its early diagenetic processes. In addition, the role of alternative barium carriers to the sediments (e.g. aluminum silicates and oxyhydroxides) and their contributions to overall barium budget and burial efficiency need to be resolved. The techniques currently used to describe and quantify barium phases are all based on batch leaching techniques that define barium phases operationally, not chemically. Because during batch analyses each phase is characterized by a single-point measurement, variations due to phase heterogeneities cannot be resolved; nor can the results of these experiments be related in any systematic way to what happens in nature. To overcome this problem, we are developing a flow-through method that makes use of automated chromatographic techniques, which allows complete monitoring of the dissolution of barite samples with time-resolved analysis (TRA) as each phase is sequentially leached using different reagents. We have analyzed a barite sample recovered from seeps along the San Clemente escarpment, and show that we can attain complete dissolution of the sample (>85%) in 2 hours, using DTPA at 80°C. Approximately 100 μg of barite are first leached with distilled water (pH 5) for 30 minutes. During this step ~2% of the barite is removed. This highly soluble phase has Sr/Ba ratios that range from 30 to 120 mmol/mol. Acid leaching of the samples with 10 mM HNO3 removes an additional 4~8% of the barite, and this phase has Sr/Ba ratios ranging from 13 to 35 mmol/mol. Higher acid concentration (100 mM HNO3) dissolves up to 40% of the barite. These results are consistent with electron microprobe data that show clear oscillatory zoning of the (Ba,Sr)SO4. Unlike the barite sample, sediment samples collected at the base of the escarpment did not show a Ba release in the water leach. We might speculate that the highly susceptible Sr-rich barium phase present in the barite sample, dissolved during transport from a seep site leaving a barite with a lower Sr/Ba ratio, as found in the sediment samples. Our analytical approach has the potential to further address a variety of outstanding questions on the complex geochemical cycle of barium and its applications to climate change, upper ocean fertility and ocean circulation through time.

  18. The Role of Flow Reversals in Transition and Relaminarization of Pulsating Flows

    NASA Astrophysics Data System (ADS)

    Gomez, Joan; Goushcha, Oleg; Andreopoulos, Yiannis

    2017-11-01

    Pulsating flows, such as the flows in cardiovascular systems, exhibit a cyclic behavior of the axial velocity. They are of particular interest because at different times of the cycle the flow is laminar or turbulent, depending on the local Reynolds number. An experiment was setup to replicate the cyclic motion of the fluid in a clear, rigid tube. The flow was driven by a piston-motor assembly controlled by a computer. The motion of the piston was programmed to induce a forward-only cyclic motion of the mean flow by adjusting the amplitude of the longitudinal velocity pulsation in relation to the mean velocity. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination sheet. Flow reversal occurs first near the walls and the corresponding strong shearing induces transition to turbulence where the rest of the flow remains laminar. The behavior of reversed flow was analyzed under various Reynolds and Womersley numbers.

  19. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  20. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  1. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    PubMed

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics show that highest accuracy and precision is obtained when the video resolution is >300 pixels per drop. Analysis time increases proportionally with video resolution. The current version of the software provides throughputs of 2-30 fps, suggesting the potential for real time analysis.

  2. Experimental study of the flow over a backward-facing rounded ramp

    NASA Astrophysics Data System (ADS)

    Duriez, Thomas; Aider, Jean-Luc; Wesfreid, Jose Eduardo

    2010-11-01

    The backward-facing rounded ramp (BFR) is a very simple geometry leading to boundary layer separation, close to the backward facing step (BFS) flow. The main difference with the BFS flow is that the separation location depends on the incoming flow while it is fixed to the step edge for the BFS flow. Despite the simplicity of the geometry, the flow is complex and the transition process still has to be investigated. In this study we investigate the BFR flow using time-resolved PIV. For Reynolds number ranging between 300 and 12 000 we first study the time averaged properties such as the positions of the separation and reattachment, the recirculation length and the shear layer thickness. The time resolution also gives access to the characteristic frequencies of the time-dependant flow. An appropriate Fourier filtering of the flow field, around each frequency peak in the global spectrum, allows an investigation of each mode in order to extract its wavelength, phase velocity, and spatial distribution. We then sort the spectral content and relate the main frequencies to the most amplified Kelvin-Helmholtz instability mode and its harmonics, the vortex pairing, the low frequency recirculation bubble oscillation and the interactions between all these phenomena.

  3. Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T.

    PubMed

    Heusch, Philipp; Wittsack, Hans-Jörg; Kröpil, Patric; Blondin, Dirk; Quentin, Michael; Klasen, Janina; Pentang, Gael; Antoch, Gerald; Lanzman, Rotem S

    2013-01-01

    To evaluate the impact of renal blood flow on apparent diffusion coefficients (ADC) and fractional anisotropy (FA) using time-resolved electrocardiogram (ECG)-triggered diffusion-tensor imaging (DTI) of the human kidneys. DTI was performed in eight healthy volunteers (mean age 29.1 ± 3.2) using a single slice coronal echoplanar imaging (EPI) sequence (3 b-values: 0, 50, and 300 s/mm(2)) at the timepoint of minimum (20 msec after R wave) and maximum renal blood flow (200 msec after R wave) at 3T. Following 2D motion correction, region of interest (ROI)-based analysis of cortical and medullary ADC- and FA-values was performed. ADC-values of the renal cortex at maximum blood flow (2.6 ± 0.19 × 10(-3) mm(2)/s) were significantly higher than at minimum blood flow (2.2 ± 0.11 × 10(-3) mm(2)/s) (P < 0.001), while medullary ADC-values did not differ significantly (maximum blood flow: 2.2 ± 0.18 × 10(-3) mm(2)/s; minimum blood flow: 2.15 ± 0.14 × 10(-3) mm(2)/s). FA-values of the renal medulla were significantly greater at maximal blood (0.53 ± 0.05) than at minimal blood flow (0.47 ± 0.05) (P < 0.01). In contrast, cortical FA-values were comparable at different timepoints of the cardiac cycle. ADC-values in the renal cortex as well as FA-values in the renal medulla are influenced by renal blood flow. This impact has to be considered when interpreting renal ADC- and FA-values. Copyright © 2012 Wiley Periodicals, Inc.

  4. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  5. Pore‐Scale Hydrodynamics in a Progressively Bioclogged Three‐Dimensional Porous Medium: 3‐D Particle Tracking Experiments and Stochastic Transport Modeling

    PubMed Central

    Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.

    2018-01-01

    Abstract Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3‐D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean‐squared displacements, are found to be non‐Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered. PMID:29780184

  6. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling

    NASA Astrophysics Data System (ADS)

    Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2018-03-01

    Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.

  7. Application of low-dimensional techniques for closed-loop control of turbulent flows

    NASA Astrophysics Data System (ADS)

    Ausseur, Julie

    The groundwork for an advanced closed-loop control of separated shear layer flows is laid out in this document. The experimental testbed for the present investigation is the turbulent flow over a NACA-4412 model airfoil tested in the Syracuse University subsonic wind tunnel at Re=135,000. The specified control objective is to delay separation - or stall - by constantly keeping the flow attached to the surface of the wing. The proper orthogonal decomposition (POD) is shown to he a valuable tool to provide a low-dimensional estimate of the flow state and the first POD expansion coefficient is proposed to he used as the control variable. Other reduced-order techniques such as the modified linear and quadratic stochastic measurement methods (mLSM, mQSM) are applied to reduce the complexity of the flow field and their ability to accurately estimate the flow state from surface pressure measurements alone is examined. A simple proportional feedback control is successfully implemented in real-time using these tools and flow separation is efficiently delayed by over 3 degrees angle of attack. To further improve the quality of the flow state estimate, the implementation of a Kalman filter is foreseen, in which the knowledge of the flow dynamics is added to the computation of the control variable to correct for the potential measurement errors. To this aim, a reduced-order model (ROM) of the flow is developed using the least-squares method to obtain the coefficients of the POD/Galerkin projection of the Navier-Stokes equations from experimental data. To build the training ensemble needed in this experimental procedure, the spectral mLSM is performed to generate time-resolved series of POD expansion coefficients from which temporal derivatives are computed. This technique, which is applied to independent PIV velocity snapshots and time-resolved surface measurements, is able to retrieve the rational temporal evolution of the flow physics in the entire 2-D measurement area. The quality of the spectral measurements is confirmed by the results from both the linear and quadratic dynamical systems. The preliminary results from the linear ROM strengthens the motivation for future control implementation of a linear Kalman filter in this flow.

  8. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  9. Time-Resolved Analysis of Turbulent Mixing Flow Characteristics of Intermittent Multi-Hole Diesel Spray Using 2-D PDPA

    NASA Astrophysics Data System (ADS)

    Lee, Jeekuen; Kang, Shinjae; Rho, Byungjoon

    The turbulent mixing flow characteristics of an intermittent diesel spray were investigated. A 5-hole diesel nozzle (dn=0.32mm) with a 2-spring nozzle holder, which is widely used in heavy-duty diesel engines, was tested. Time-resolved analysis of the turbulent mixing flow characteristics of the spray, injected intermittently into the still ambient air, was made under room temperature by using a 2-D PDPA system. The mean and the fluctuation velocities of the spray were measured. The axial velocity distribution shows similar to that of the free air jets at the downstream of the spray, and the distribution well coincides with the result proposed by Hinze at R/b<1.5. The turbulent intensity of the axial velocity component is high near the spray axis, and it decreases gradually with the increase in the radial distance. The turbulent shear stress increases with proceeding to the trailing edge as well as the downstream of the spray. The maximum value of the turbulent shear stress is observed near R/b≈1.0, regardless of the evolution time. The turbulent shear stress in the central parts of the spray is lower than that of the continuous free air jets, whereas that in the trailing edge is considerably higher.

  10. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  11. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    NASA Technical Reports Server (NTRS)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  12. Vector Flow Visualization of Urinary Flow Dynamics in a Bladder Outlet Obstruction Model.

    PubMed

    Ishii, Takuro; Yiu, Billy Y S; Yu, Alfred C H

    2017-11-01

    Voiding dysfunction that results from bladder outlet (BO) obstruction is known to alter significantly the dynamics of urine passage through the urinary tract. To non-invasively image this phenomenon on a time-resolved basis, we pursued the first application of a recently developed flow visualization technique called vector projectile imaging (VPI) that can track the spatiotemporal dynamics of flow vector fields at a frame rate of 10,000 fps (based on plane wave excitation and least-squares Doppler vector estimation principles). For this investigation, we designed a new anthropomorphic urethral tract phantom to reconstruct urinary flow dynamics under controlled conditions (300 mm H 2 O inlet pressure and atmospheric outlet pressure). Both a normal model and a diseased model with BO obstruction were developed for experimentation. VPI cine loops were derived from these urinary flow phantoms. Results show that VPI is capable of depicting differences in the flow dynamics of normal and diseased urinary tracts. In the case with BO obstruction, VPI depicted the presence of BO flow jet and vortices in the prostatic urethra. The corresponding spatial-maximum flow velocity magnitude was estimated to be 2.43 m/s, and it is significantly faster than that for the normal model (1.52 m/s) and is in line with values derived from computational fluid dynamics simulations. Overall, this investigation demonstrates the feasibility of using vector flow visualization techniques to non-invasively examine internal flow characteristics related to voiding dysfunction in the urethral tract. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Heat transfer characteristics within an array of impinging jets. Effects of crossflow temperature relative to jet temperature

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Su, C. C.

    1985-01-01

    Spanwise average heat fluxes, resolved in the streamwise direction to one stream-wise hole spacing were measured for two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate. The jet flow, after impingement, was constrained to exit in a single direction along the channel formed by the jet orifice plate and heat transfer surface. The crossflow originated from the jets following impingement and an initial crossflow was present that approached the array through an upstream extension of the channel. The regional average heat fluxes are considered as a function of parameters associated with corresponding individual spanwise rows within the array. A linear superposition model was employed to formulate appropriate governing parameters for the individual row domain. The effects of flow history upstream of an individual row domain are also considered. The results are formulated in terms of individual spanwise row parameters. A corresponding set of streamwise resolved heat transfer characteristics formulated in terms of flow and geometric parameters characterizing the overall arrays is described.

  14. Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.

  15. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  16. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; Skifton, Richard; Stoots, Carl

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less

  17. Microgravity Particle Dynamics

    NASA Technical Reports Server (NTRS)

    Clark, Ivan O.; Johnson, Edward J.

    1996-01-01

    This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.

  18. Characterizing the performance of an affordable, multichannel conductivity probe for density measurements in stratified flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo

    2017-11-01

    In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.

  19. Understanding Satellite Characterization Knowledge Gained from Radiometric Data

    DTIC Science & Technology

    2011-09-01

    observation model, the time - resolved pose of a satellite can be estimated autonomously through each pass from non- resolved radiometry. The benefits of...and we assume the satellite can achieve both the set attitude and the necessary maneuver to change its orientation from one time -step to the next...Observation Model The UKF observation model uses the Time domain Analysis Simulation for Advanced Tracking (TASAT) software to provide high-fidelity satellite

  20. Flow-mediated transport around a macroscopic arterial thrombus

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Garduno, Jocelyn; Shadden, Shawn

    2017-11-01

    Pathological blood clotting (thrombosis) is the acute cause of most major cardiovascular events including heart attack and stroke. Local blood and plasma transport in the neighborhood of a clot is thought to govern the thrombotic process (e.g. growth and consolidation), embolization, and the effectiveness of pharmacological treatments. To better understand the fluid mechanics near a clot it is necessary to resolve the dynamic interactions between a realistic thrombus with arbitrary shape and microstructure, and viscous, pulsatile flow. Here, we describe a computational technique to characterize flow-mediated transport phenomena in the vicinity of macro-scale arterial clots. The technique comprises (a) resolving unsteady flow around a thrombus model using a discrete particle fictitious domain finite element method; (b) identifying coherent transport features using finite time Lyapunov exponent fields, and (c) characterizing mixing using a particle-based approach. Numerical examples are discussed using realistic thrombus aggregates derived from experimental data, and pulsatile flow typical in human arteries. The results indicate the existence of local transport barriers and coherent regions in the vicinity of the clot with potential influence to local biochemical mechanics. National Science Foundation Award: 1354541; American Heart Association Award: 16POST27500023.

  1. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M.; Tynan, G. R.; Holland, C.

    2010-03-15

    Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less

  2. Investigation of Ion Acoustic Wave Instabilities Near Positive Electrodes

    NASA Astrophysics Data System (ADS)

    Hood, Ryan; Chu, Feng; Baalrud, Scott; Merlino, Robert; Skiff, Fred

    2017-10-01

    Electron sheaths occur when an electrode is biased above the plasma potential, most often during the electron saturation portion of a Langmuir probe trace. Through the presheath, electrons are accelerated to velocities exceeding the electron thermal speed at the sheath edge, while ions do not develop any appreciable flow. PIC simulations have shown that ion acoustic instabilities are excited by the differential flow between ions and electrons in the presheath region of a low temperature plasma. We present the first experimental measurements investigating these instabilities using Laser-Induced Fluorescence diagnostics in a multidipole argon plasma. The plasma dispersion relation is measured from the power spectra of the imaged LIF signal and compared to the simulation results. In addition, optical pumping is measured using time-resolved LIF measurements and fit to a model in order to determine the diffusion rate, which may be enhanced due to the instability. This research was supported by the Office of Fusion Energy Sciences at the U.S. Department of Energy under contract DE-AC04-94SL85000.

  3. The Royal Road to Time: How Understanding of the Evolution of Time in the Brain Addresses Memory, Dreaming, Flow, and Other Psychological Phenomena.

    PubMed

    Hancock, Peter A

    2015-01-01

    It has been claimed that dreams are the royal road to the unconscious mind. The present work argues that dreams and associated brain states such as memory, attention, flow, and perhaps even consciousness itself arise from diverse conflicts over control of time in the brain. Dreams are the brain's offline efforts to distill projections of the future, while memory represents the vestiges of the past successes and survived failures of those and other conscious projections. Memory thus acts to inform and improve the prediction of possible future states through the use of conscious prospects (planning) and unconscious prospective memory (dreams). When successful, these prospects result in states of flow for conscious planning and déjà vu for its unconscious comparator. In consequence, and contrary to normal expectation, memory is overwhelmingly oriented to deal with the future. Consciousness is the comparable process operating in the present moment. Thus past, present, and future are homeomorphic with the parts of memory (episodic and autobiographical) that recall a personal past, consciousness, and the differing dimensions of prospective memory to plan for future circumstances, respectively. Dreaming (i.e., unconscious prospective memory), has the luxury to run multiple "what if" simulations of many possible futures, essentially offline. I explicate these propositions and their relations to allied constructs such as déjà vu and flow. More generally, I propose that what appear to us as a range of normal psychological experiences are actually manifestations of an ongoing pathological battle for control within the brain. The landscape of this conflict is time. I suggest that there are at least 3 general systems bidding for this control, and in the process of evolution, each system has individually conferred a sequentially increasing survival advantage, but only at the expense of a still incomplete functional integration. Through juxtaposition of these respective brain systems, I endeavor to resolve some fundamental paradoxes and conundrums expressed in the basic psychological and behavioral processes of sleep, consciousness, and memory. The implication of this conceptual framework for the overall conception of time is then briefly adumbrated.

  4. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were retrieved using conditional averaging with phase like in [5]. Basing on these data we then retrieve the pressure field and find the air-sea interaction parameters. Peculiarity of these experiments was the presence of noticeable modulation of the waves, so we describe peculiarities of the pressure distribution over a wave-train. This work was supported by the Russian Foundation of Basic Research (project codes 16-05-00839, 16-55-52025, 15-35-20953), President Grant for young scientists MK-2041.2017.5, Russian Science Foundation (Agreements 14-17-00667, 15-17-20009) and FP7 Collaborative Project No. 612610. References 1. Saveliev I., et. al. (2011) J. Phys. Oceanogr. 41. 1328-1344. 2. Grare, L., et. al. (2013) J. Fluid Mech., 722, 5-50. 3. van Oudheusden B.W. (2013) Meas. Sci. Technol. 24. 032001 (32pp) 4. Reul N., et.al. (1999) Phys. Fluids. 11. 1959-1961. 5. Troitskaya Yu., et. al.(2011). J. Phys. Oceanogr., 41, 1421-1454

  5. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less

  6. Impact of clocking on the aero-thermodynamics of a second stator tested in a one and a half stage HP turbine

    NASA Astrophysics Data System (ADS)

    Billiard, N.; Paniagua, Guillermo; Dénos, R.

    2008-06-01

    This paper focuses on the experimental investigation of the time-averaged and time-accurate aero-thermodynamics of a second stator tested in a 1.5 stage high-pressure turbine. The effect of clocking on aerodynamic and heat transfer are investigated. Tests are performed under engine representative conditions in the VKI compression tube CT3. The test program includes four different clocking positions, i.e. relative pitch-wise positions between the first and the second stator. Probes located upstream and downstream of the second stator provide the thermodynamic conditions of the flow field. On the second stator airfoil, measurements are taken around the blade profile at 15, 50 and 85% span with pressure sensors and thin-film gauges. Both time-averaged and time-resolved aspects of the flow field are addressed. Regarding the time-averaged results, clocking effects are mainly observed within the leading edge region of the second stator, the largest effects being observed at 15% span. The surface static pressure distribution is changed locally, hence affecting the overall airfoil performance. For one clocking position, the thermal load of the airfoil is noticeably reduced. Pressure fluctuations are attributed to the passage of the upstream transonic rotor and its associated pressure gradients. The pattern of these fluctuations changes noticeably as a function of clocking. The time-resolved variations of heat flux and static pressure are analyzed together showing that the major effect is due to a potential interaction. The time-resolved pressure distribution integrated along the second stator surface yields the unsteady forces on the vane. The magnitude of the unsteady force is very dependent on the clocking position.

  7. In situ sensor technology for simultaneous spectrophotometric measurements of seawater total dissolved inorganic carbon and pH.

    PubMed

    Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard

    2015-04-07

    A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.

  8. Multi-fluid Dynamics for Supersonic Jet-and-Crossflows and Liquid Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hassan, Ezeldin A.

    Multi-fluid dynamics simulations require appropriate numerical treatments based on the main flow characteristics, such as flow speed, turbulence, thermodynamic state, and time and length scales. In this thesis, two distinct problems are investigated: supersonic jet and crossflow interactions; and liquid plug propagation and rupture in an airway. Gaseous non-reactive ethylene jet and air crossflow simulation represents essential physics for fuel injection in SCRAMJET engines. The regime is highly unsteady, involving shocks, turbulent mixing, and large-scale vortical structures. An eddy-viscosity-based multi-scale turbulence model is proposed to resolve turbulent structures consistent with grid resolution and turbulence length scales. Predictions of the time-averaged fuel concentration from the multi-scale model is improved over Reynolds-averaged Navier-Stokes models originally derived from stationary flow. The response to the multi-scale model alone is, however, limited, in cases where the vortical structures are small and scattered thus requiring prohibitively expensive grids in order to resolve the flow field accurately. Statistical information related to turbulent fluctuations is utilized to estimate an effective turbulent Schmidt number, which is shown to be highly varying in space. Accordingly, an adaptive turbulent Schmidt number approach is proposed, by allowing the resolved field to adaptively influence the value of turbulent Schmidt number in the multi-scale turbulence model. The proposed model estimates a time-averaged turbulent Schmidt number adapted to the computed flowfield, instead of the constant value common to the eddy-viscosity-based Navier-Stokes models. This approach is assessed using a grid-refinement study for the normal injection case, and tested with 30 degree injection, showing improved results over the constant turbulent Schmidt model both in mean and variance of fuel concentration predictions. For the incompressible liquid plug propagation and rupture study, numerical simulations are conducted using an Eulerian-Lagrangian approach with a continuous-interface method. A reconstruction scheme is developed to allow topological changes during plug rupture by altering the connectivity information of the interface mesh. Rupture time is shown to be delayed as the initial precursor film thickness increases. During the plug rupture process, a sudden increase of mechanical stresses on the tube wall is recorded, which can cause tissue damage.

  9. Assessing the Transient Gust Response of a Representative Ship Airwake using Proper Orthogonal Decomposition

    DTIC Science & Technology

    Velocimetry system was then used to acquire flow field data across a series of three horizontal planes spanning from 0.25 to 1.5 times the ship hangar height...included six separate data points at gust-frequency referenced Strouhal numbers ranging from 0.430 to1.474. A 725-Hertz time -resolved Particle Image

  10. Time-Resolved Magneto-Optical Imaging of Superconducting YBCO Thin Films in the High-Frequency AC Current Regime

    NASA Astrophysics Data System (ADS)

    Frey, Alexander

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  11. Velocity and Vorticity in the Right Heart from 4DMRI Measurements

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jean; Browning, James; Fenster, Brett

    2016-11-01

    Measurements of blood flow in the human heart were made using time-resolved 3D cardiac magnetic resonance phase contrast flow imaging (4DMRI). This work focuses on blood flow in the right ventricle (RV) and right atrium (RA) in both normal subjects and patients with pulmonary hypertension (PH). Although cardiac output is unchanged early in the disease, details of the flow field differ between normals and PH patients. In particular, vorticity at peak diastole has been found to correlate with PH. The underlying physics of this difference are being explored by a qualitative visual comparison of 3D flow structures in the vena cava, RA, and RV between healthy subjects and pulmonary hypertensive patients.

  12. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  13. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  14. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    NASA Technical Reports Server (NTRS)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  15. Numerical analysis of the hemodynamic effect of plaque ulceration in the stenotic carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Wong, Emily Y.; Milner, Jaques S.; Steinman, David A.; Poepping, Tamie L.; Holdsworth, David W.

    2009-02-01

    The presence of ulceration in carotid artery plaque is an independent risk factor for thromboembolic stroke. However, the associated pathophysiological mechanisms - in particular the mechanisms related to the local hemodynamics in the carotid artery bifurcation - are not well understood. We investigated the effect of carotid plaque ulceration on the local time-varying three-dimensional flow field using computational fluid dynamics (CFD) models of a stenosed carotid bifurcation geometry, with and without the presence of ulceration. CFD analysis of each model was performed with a spatial finite element discretization of over 150,000 quadratic tetrahedral elements and a temporal discretization of 4800 timesteps per cardiac cycle, to adequately resolve the flow field and pulsatile flow, respectively. Pulsatile flow simulations were iterated for five cardiac cycles to allow for cycle-to-cycle analysis following the damping of initial transients in the solution. Comparison between models revealed differences in flow patterns induced by flow exiting from the region of the ulcer cavity, in particular, to the shape, orientation and helicity of the high velocity jet through the stenosis. The stenotic jet in both models exhibited oscillatory motion, but produced higher levels of phase-ensembled turbulence intensity in the ulcerated model. In addition, enhanced out-of-plane recirculation and helical flow was observed in the ulcerated model. These preliminary results suggest that local fluid behaviour may contribute to the thrombogenic risk associated with plaque ulcerations in the stenotic carotid artery bifurcation.

  16. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization

    NASA Astrophysics Data System (ADS)

    Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh

    2018-03-01

    The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.

  17. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  18. In vivo quantification of intraventricular flow during left ventricular assist device support

    NASA Astrophysics Data System (ADS)

    Vu, Vi; Wong, Kin; Del Alamo, Juan; Aguilo, Pablo M. L.; May-Newman, Karen; Department of Bioengineering, San Diego State University Collaboration; Department of Mechanical; Aerospace Engineering, University of California San Diego Collaboration; Mechanical Assist Device Program, Sharp Memorial Hospital Collaboration

    2014-11-01

    Left ventricular assist devices (LVADs) are mechanical pumps that are surgically connected to the left ventricle (LV) and aorta to increase aortic flow and end-organ perfusion. Clinical studies have demonstrated that LVADs improve patient health and quality of life and significantly reduce the mortality of cardiac failure. However, In the presence of left ventricular assisted devices (LVAD), abnormal flow patterns and stagnation regions are often linked to thrombosis. The aim of our study is to evaluate the flow patterns in the left ventricle of the LVAD-assisted heart, with a focus on alterations in vortex development and blood stasis. To this aim, we applied color Doppler echocardiography to measure 2D, time resolved velocity fields in patients before and after implantation of LVADs. In agreement with our previous in vitro studies (Wong et al., Journal of Biomechanics 47, 2014), LVAD implantation resulted in decreased flow velocities and increased blood residence time near the outflow tract. The variation of residence time changes with LVAD operational speed was characterized for each patient.

  19. In vivo vascular flow profiling combined with optical tweezers based blood routing

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  20. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.

  1. Modelling Time and Length Scales of Scour Around a Pipeline

    NASA Astrophysics Data System (ADS)

    Smith, H. D.; Foster, D. L.

    2002-12-01

    The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the scour process based on dimensionless parameters such as the Reynolds number, the Keulegan-Carpenter number, and the sediment mobility number. This research is sponsored by the Office of Naval Research - Mine Burial Program.

  2. Quasilinear models through the lens of resolvent analysis

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley; Chini, Greg

    2017-11-01

    Quasilinear (QL) and generalized quasilinear (GQL) analyses, e.g. Marston et al., also variously described as statistical state dynamics models, e.g., Farrell et al., restricted nonlinear models, e.g. Thomas et al., or 2D/3C models, e.g. Gayme et al., have achieved considerable success in recovering the mean velocity profile for a range of turbulent flows. In QL approaches, the portion of the velocity field that can be represented as streamwise constant, i.e. with streamwise wavenumber kx = 0 , is fully resolved, while the streamwise-varying dynamics are linearized about the streamwise-constant field; that is, only those nonlinear interactions that drive the streamwise-constant field are retained, and the non-streamwise constant ``fluctuation-fluctuation'' interactions are ignored. Here, we show how these QL approaches can be reformulated in terms of the closed-loop resolvent analysis of McKeon & Sharma (2010), which enables us to identify reasons for their evident success as well as algorithms for their efficient computation. The support of ONR through Grant No. N00014-17-2307 is gratefully acknowledged.

  3. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolić, M.; Newton, J.; Sukenik, C. I.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. Wemore » also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.« less

  4. A POD reduced order model for resolving angular direction in neutron/photon transport problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchan, A.G., E-mail: andrew.buchan@imperial.ac.uk; Calloo, A.A.; Goffin, M.G.

    2015-09-01

    This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead theymore » are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.« less

  5. Statistical parameters of thermally driven turbulent anabatic flow

    NASA Astrophysics Data System (ADS)

    Hilel, Roni; Liberzon, Dan

    2016-11-01

    Field measurements of thermally driven turbulent anabatic flow over a moderate slope are reported. A collocated hot-films-sonic anemometer (Combo) obtained the finer scales of the flow by implementing a Neural Networks based in-situ calibration technique. Eight days of continuous measurements of the wind and temperature fluctuations reviled a diurnal pattern of unstable stratification that forced development of highly turbulent unidirectional up slope flow. Empirical fits of important turbulence statistics were obtained from velocity fluctuations' time series alongside fully resolved spectra of velocity field components and characteristic length scales. TKE and TI showed linear dependence on Re, while velocity derivative skewness and dissipation rates indicated the anisotropic nature of the flow. Empirical fits of normalized velocity fluctuations power density spectra were derived as spectral shapes exhibited high level of similarity. Bursting phenomenon was detected at 15% of the total time. Frequency of occurrence, spectral characteristics and possible generation mechanism are discussed. BSF Grant #2014075.

  6. Development of the Patient-specific Cardiovascular Modeling System Using Immersed Boundary Technique

    NASA Astrophysics Data System (ADS)

    Tay, Wee-Beng; Lin, Liang-Yu; Tseng, Wen-Yih; Tseng, Yu-Heng

    2010-05-01

    A computational fluid dynamics (CFD) based, patient-specific cardiovascular modeling system is under-developed. The system can identify possible diseased conditions and facilitate physicians' diagnosis at early stage through the hybrid CFD simulation and time-resolved magnetic resonance imaging (MRI). The CFD simulation is initially based on the three-dimensional heart model developed by McQueen and Peskin, which can simultaneously compute fluid motions and elastic boundary motions using the immersed boundary method. We extend and improve the three-dimensional heart model for the clinical application by including the patient-specific hemodynamic information. The flow features in the ventricles and their responses are investigated under different inflow and outflow conditions during diastole and systole phases based on the quasi-realistic heart model, which takes advantage of the observed flow scenarios. Our results indicate distinct differences between the two groups of participants, including the vortex formation process in the left ventricle (LV), as well as the flow rate distributions at different identified sources such as the aorta, vena cava and pulmonary veins/artery. We further identify some key parameters which may affect the vortex formation in the LV. Thus it is hypothesized that disease-related dysfunctions in intervals before complete heart failure can be observed in the dynamics of transmitral blood flow during early LV diastole.

  7. Some issues in the simulation of two-phase flows: The relative velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräbel, J.; Hensel, S.; Ueberholz, P.

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less

  8. An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.

  9. Low Reynolds number flow near tiny leaves, stems, and trichomes

    NASA Astrophysics Data System (ADS)

    Strickland, Christopher; Pasour, Virginia; Miller, Laura

    2016-11-01

    In terrestrial and aquatic environments such as forest canopies, grass fields, and seagrass beds, the density and shape of trunks, branches, stems, leaves and trichomes (the hairs or fine outgrowths on plants) can drastically alter both the average wind speed and profile through these environments and near each plant. While many studies of flow in these environments have focused on bulk properties of the flow at scales on the order of meters, the low Reynolds number flow close to vegetative structures is especially complex and relevant to nutrient exchange. Using three-dimensional immersed boundary simulations, we resolve the flow around trichomes and small leaves and quantify velocities, shear stresses, and mixing while varying the height and density of idealized structures. National Science Foundation Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute, and the Army Research Office.

  10. Dynamically consistent parameterization of mesoscale eddies. Part III: Deterministic approach

    NASA Astrophysics Data System (ADS)

    Berloff, Pavel

    2018-07-01

    This work continues development of dynamically consistent parameterizations for representing mesoscale eddy effects in non-eddy-resolving and eddy-permitting ocean circulation models and focuses on the classical double-gyre problem, in which the main dynamic eddy effects maintain eastward jet extension of the western boundary currents and its adjacent recirculation zones via eddy backscatter mechanism. Despite its fundamental importance, this mechanism remains poorly understood, and in this paper we, first, study it and, then, propose and test its novel parameterization. We start by decomposing the reference eddy-resolving flow solution into the large-scale and eddy components defined by spatial filtering, rather than by the Reynolds decomposition. Next, we find that the eastward jet and its recirculations are robustly present not only in the large-scale flow itself, but also in the rectified time-mean eddies, and in the transient rectified eddy component, which consists of highly anisotropic ribbons of the opposite-sign potential vorticity anomalies straddling the instantaneous eastward jet core and being responsible for its continuous amplification. The transient rectified component is separated from the flow by a novel remapping method. We hypothesize that the above three components of the eastward jet are ultimately driven by the small-scale transient eddy forcing via the eddy backscatter mechanism, rather than by the mean eddy forcing and large-scale nonlinearities. We verify this hypothesis by progressively turning down the backscatter and observing the induced flow anomalies. The backscatter analysis leads us to formulating the key eddy parameterization hypothesis: in an eddy-permitting model at least partially resolved eddy backscatter can be significantly amplified to improve the flow solution. Such amplification is a simple and novel eddy parameterization framework implemented here in terms of local, deterministic flow roughening controlled by single parameter. We test the parameterization skills in an hierarchy of non-eddy-resolving and eddy-permitting modifications of the original model and demonstrate, that indeed it can be highly efficient for restoring the eastward jet extension and its adjacent recirculation zones. The new deterministic parameterization framework not only combines remarkable simplicity with good performance but also is dynamically transparent, therefore, it provides a powerful alternative to the common eddy diffusion and emerging stochastic parameterizations.

  11. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular resolution is small. The results from OpenFOAM and CFX are very similar as long as the inlet data resolution is fine enough. CFX seems to be more sensitive to that resolution.

  12. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10–30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. PMID:26443811

  13. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  14. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  15. Coherent structures in a supersonic complex nozzle

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  16. Development of a Nonequilibrium Radiative Heating Prediction Method for Coupled Flowfield Solutions

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.

    1991-01-01

    A method for predicting radiative heating and coupling effects in nonequilibrium flow-fields has been developed. The method resolves atomic lines with a minimum number of spectral points, and treats molecular radiation using the smeared band approximation. To further minimize computational time, the calculation is performed on an optimized spectrum, which is computed for each flow condition to enhance spectral resolution. Additional time savings are obtained by performing the radiation calculation on a subgrid optimally selected for accuracy. Representative results from the new method are compared to previous work to demonstrate that the speedup does not cause a loss of accuracy and is sufficient to make coupled solutions practical. The method is found to be a useful tool for studies of nonequilibrium flows.

  17. Revealing the distinct folding phases of an RNA three-helix junction.

    PubMed

    Plumridge, Alex; Katz, Andrea M; Calvey, George D; Elber, Ron; Kirmizialtin, Serdal; Pollack, Lois

    2018-05-14

    Remarkable new insight has emerged into the biological role of RNA in cells. RNA folding and dynamics enable many of these newly discovered functions, calling for an understanding of RNA self-assembly and conformational dynamics. Because RNAs pass through multiple structures as they fold, an ensemble perspective is required to visualize the flow through fleetingly populated sets of states. Here, we combine microfluidic mixing technology and small angle X-ray scattering (SAXS) to measure the Mg-induced folding of a small RNA domain, the tP5abc three helix junction. Our measurements are interpreted using ensemble optimization to select atomically detailed structures that recapitulate each experimental curve. Structural ensembles, derived at key stages in both time-resolved studies and equilibrium titrations, reproduce the features of known intermediates, and more importantly, offer a powerful new structural perspective on the time-progression of folding. Distinct collapse phases along the pathway appear to be orchestrated by specific interactions with Mg ions. These key interactions subsequently direct motions of the backbone that position the partners of tertiary contacts for later bonding, and demonstrate a remarkable synergy between Mg and RNA across numerous time-scales.

  18. Time-resolved perfusion imaging at the angiography suite: preclinical comparison of a new flat-detector application to computed tomography perfusion.

    PubMed

    Jürgens, Julian H W; Schulz, Nadine; Wybranski, Christian; Seidensticker, Max; Streit, Sebastian; Brauner, Jan; Wohlgemuth, Walter A; Deuerling-Zheng, Yu; Ricke, Jens; Dudeck, Oliver

    2015-02-01

    The objective of this study was to compare the parameter maps of a new flat-panel detector application for time-resolved perfusion imaging in the angiography room (FD-CTP) with computed tomography perfusion (CTP) in an experimental tumor model. Twenty-four VX2 tumors were implanted into the hind legs of 12 rabbits. Three weeks later, FD-CTP (Artis zeego; Siemens) and CTP (SOMATOM Definition AS +; Siemens) were performed. The parameter maps for the FD-CTP were calculated using a prototype software, and those for the CTP were calculated with VPCT-body software on a dedicated syngo MultiModality Workplace. The parameters were compared using Pearson product-moment correlation coefficient and linear regression analysis. The Pearson product-moment correlation coefficient showed good correlation values for both the intratumoral blood volume of 0.848 (P < 0.01) and the blood flow of 0.698 (P < 0.01). The linear regression analysis of the perfusion between FD-CTP and CTP showed for the blood volume a regression equation y = 4.44x + 36.72 (P < 0.01) and for the blood flow y = 0.75x + 14.61 (P < 0.01). This preclinical study provides evidence that FD-CTP allows a time-resolved (dynamic) perfusion imaging of tumors similar to CTP, which provides the basis for clinical applications such as the assessment of tumor response to locoregional therapies directly in the angiography suite.

  19. Simultaneous CARS and Interferometric Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.

    2006-01-01

    This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.

  20. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  1. Insight into the time-resolved extraction of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-MS.

    PubMed

    Sánchez-López, José A; Zimmermann, Ralf; Yeretzian, Chahan

    2014-12-02

    Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.

  2. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  3. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-04-01

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.

  4. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the HT-6M tokamak

    PubMed

    Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan

    2000-04-24

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.

  5. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  6. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    NASA Astrophysics Data System (ADS)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  7. Interest of HYPR flow dynamic MRA for characterization of cerebral arteriovenous malformations: comparison with TRICKS MRA and catheter DSA.

    PubMed

    Dautry, Raphaël; Edjlali, Myriam; Roca, Pauline; Rabrait, Cécile; Wu, Yijing; Johnson, Kevin; Wieben, Olivier; Trystram, Denis; Rodriguez-Régent, Christine; Alshareef, Fawaz; Turski, Patrick; Meder, Jean-François; Naggara, Olivier; Oppenheim, Catherine

    2015-11-01

    HYPR flow is a 3D dynamic contrast-enhanced MRA technique providing isotropic sub-millimetre resolution with half-second temporal resolution. We compared HYPR flow and time-resolved imaging of contrast kinetics (TRICKS) MRA for the characterization of cerebral arteriovenous malformations (cAVMs), using catheter DSA as reference. Twenty-two patients underwent HYPR flow and TRICKS MRA within 15 days of DSA. HYPR flow and TRICKS datasets were reviewed separately by two readers for image quality, Spetzler-Martin grade, venous ectasia, and deep venous drainage. Image quality was better for HYPR flow than for TRICKS (narrower full width at half maximum; larger arterial diagnostic window; greater number of arterial frames, P ≤ 0.05). Using HYPR flow, inter-reader agreement was excellent for all cAVM characteristics. The agreement with DSA for the overall Spetzler-Martin grade was excellent for HYPR flow (ICC = 0.96 and 0.98, depending on the reader) and TRICKS (ICC = 0.82 and 0.95). In comparison to TRICKS, HYPR flow showed higher concordance with DSA for the identification of venous ectasia and deep venous drainage. Owing to an excellent agreement with DSA with respect to depiction of the vascular architecture of cAVMs, HYPR flow could be useful for the non-invasive characterization of cAVMs. • Dynamic MRA is used for cerebral AVM depiction and follow-up • HYPR flow is a new, highly-resolved dynamic MRA sequence • HYPR flow provides whole brain coverage • HYPR flow provides excellent agreement with the Spetzler-Martin grade • Compared to TRICKS MRA, HYPR flow improves cerebral AVM characterization.

  8. Sound propagation through a variable area duct - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.

    1981-01-01

    A comparison of experiment and theory has been made for the propagation of sound through a variable area axisymmetric duct with zero mean flow. Measurement of the acoustic pressure field on both sides of the constricted test section was resolved on a modal basis for various spinning mode sources. Transmitted and reflected modal amplitudes and phase angles were compared with finite element computations. Good agreement between experiment and computation was obtained over a wide range of frequencies and modal transmission variations. The study suggests that modal transmission through a variable area duct is governed by the throat modal cut-off ratio.

  9. Scale-Resolving simulations (SRS): How much resolution do we really need?

    NASA Astrophysics Data System (ADS)

    Pereira, Filipe M. S.; Girimaji, Sharath

    2017-11-01

    Scale-resolving simulations (SRS) are emerging as the computational approach of choice for many engineering flows with coherent structures. The SRS methods seek to resolve only the most important features of the coherent structures and model the remainder of the flow field with canonical closures. With reference to a typical Large-Eddy Simulation (LES), practical SRS methods aim to resolve a considerably narrower range of scales (reduced physical resolution) to achieve an adequate degree of accuracy at reasonable computational effort. While the objective of SRS is well-founded, the criteria for establishing the optimal degree of resolution required to achieve an acceptable level of accuracy are not clear. This study considers the canonical case of the flow around a circular cylinder to address the issue of `optimal' resolution. Two important criteria are developed. The first condition addresses the issue of adequate resolution of the flow field. The second guideline provides an assessment of whether the modeled field is canonical (stochastic) turbulence amenable to closure-based computations.

  10. Tree-Level Hydrodynamic Approach for Improved Stomatal Conductance Parameterization

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Ivanov, V. Y.

    2014-12-01

    The land-surface models do not mechanistically resolve hydrodynamic processes within the tree. The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) is based on the pervious FETCH model approach, but with finite difference numerics, and simplified single-beam conduit system. FETCH2 simulates water flow through the tree as a simplified system of porous media conduits. It explicitly resolves spatiotemporal hydraulic stresses throughout the tree's vertical extent that cannot be easily represented using other stomatal-conductance models. Empirical equations relate water potential at the stem to stomata conductance at leaves connected to the stem (through unresolved branches) at that height. While highly simplified, this approach bring some realism to the simulation of stomata conductance because the stomata can respond to stem water potential, rather than an assumed direct relationship with soil moisture, as is currently the case in almost all models. By enabling mechanistic simulation of hydrological traits, such as xylem conductivity, conductive area per DBH, vertical distribution of leaf area and maximal and minimal water content in the xylem, and their effect of the dynamics of water flow in the tree system, the FETCH2 modeling system enhanced our understanding of the role of hydraulic limitations on an experimental forest plot short-term water stresses that lead to tradeoffs between water and light availability for transpiring leaves in forest ecosystems. FETCH2 is particularly suitable to resolve the effects of structural differences between tree and species and size groups, and the consequences of differences in hydraulic strategies of different species. We leverage on a large dataset of sap flow from 60 trees of 4 species at our experimental plot at the University of Michigan Biological Station. Comparison of the sap flow and transpiration patterns in this site and an undisturbed control site shows significant difference in hydraulic strategies between species which affect their response to the disturbance. We used FETCH2 to conduct a sensitivity analysis of the total stand-level transpiration to the inter-specific differences in hydraulic strategies and used the results to reflect on the future trajectory of the forest, in terms of species composition and transpiration.

  11. Numerical Methodology for Coupled Time-Accurate Simulations of Primary and Secondary Flowpaths in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.

    2006-01-01

    Detailed information of the flow-fields in the secondary flowpaths and their interaction with the primary flows in gas turbine engines is necessary for successful designs with optimized secondary flow streams. Present work is focused on the development of a simulation methodology for coupled time-accurate solutions of the two flowpaths. The secondary flowstream is treated using SCISEAL, an unstructured adaptive Cartesian grid code developed for secondary flows and seals, while the mainpath flow is solved using TURBO, a density based code with capability of resolving rotor-stator interaction in multi-stage machines. An interface is being tested that links the two codes at the rim seal to allow data exchange between the two codes for parallel, coupled execution. A description of the coupling methodology and the current status of the interface development is presented. Representative steady-state solutions of the secondary flow in the UTRC HP Rig disc cavity are also presented.

  12. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  13. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  14. Fluid flow analysis behind heliostat using LES and RANS: A step towards optimized field design in desert regions

    NASA Astrophysics Data System (ADS)

    Boddupalli, Nibodh; Goenka, Vikash; Chandra, Laltu

    2017-06-01

    Heliostats are used for concentrating beam radiation onto a receiver. The flow induced dust deposition on these reflectors will lead to failure of the receiver. For this purpose, the wake behind a heliostat is analyzed at 25° of inclination and at a Reynolds number of 60000. In this paper the Reynolds Averaged Navier-Stokes (RANS) and the Large Eddy Simulation (LES) approaches are used for analyzing the air-flow behind a heliostat. LES and RANS are performed with a wall-resolved grid. For the purpose of validation, the horizontal velocity is measured in a wind-tunnel with a model heliostat using laser Doppler velocimetry technique. RANS and LES approaches are found to qualitatively predict the statistical quantities, like the mean horizontal-velocity in comparison to experiment. RANS under-predicts root-mean-square of the horizontal-velocity and even failed to capture the flow features behind heliostat. Thus, it is concluded that RANS will suffice with well-resolved grid for analyzing mean flow features. For analyzing wake and to understand the induced dust deposition LES is required. Further, the analysis reveals that the wake-affected region is up to three times the length of the heliostat's mirror. This can be recommended as the minimum distance between any two aligned heliostats in Jodhpur.

  15. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide.

    PubMed

    Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R

    2016-09-28

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  16. Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon

    NASA Astrophysics Data System (ADS)

    Duan, G.; Ngan, K.

    2017-12-01

    Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.

  17. Tomo-PIV measurements of the flow field in the wake of a sphere

    NASA Astrophysics Data System (ADS)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  18. Multigrid schemes for viscous hypersonic flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Radespiel, R.

    1993-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving two different hypersonic flow problems. Some new multigrid schemes, based on semicoarsening strategies, are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6).

  19. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    PubMed

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  20. Snow, topography, and the diurnal cycle in streamflow

    USGS Publications Warehouse

    Lundquist, J.D.; Knowles, N.; Dettinger, M.; Cayan, D.

    2002-01-01

    Because snowmelt processes are spatially complex, point measurements, particularly in mountainous regions, are often inadequate to resolve basin-scale characteristics. Satellite measurements provide good spatial sampling but are often infrequent in time, particularly during cloudy weather. Fortunately, hourly measurements of river discharge provide another widely available, but as yet underutilized, source of information, providing direct information on basin output at a fine temporal scale. The hour of maximum discharge recorded each day reflects the travel time between peak melt and the time most water reaches the gauge. Traditional theories, based on numerical models of melt-water percolation through a snowpack and localized, small-basin observations, report that the hour of daily maximum flow becomes earlier as the snowpack thins and matures, reflecting shorter travel times for surface melt to reach the base of the snowpack. However, an examination of hourly discharge from 100 basins in the Western United States, ranging in size from 1.3 km2 to 10,813 km2, reveals a more complex situation. The sequences of seasonal evolution of the hour of maximum discharge are unique to each basin, but within a given basin are remarkably consistent between years, regardless of the size of the snowpack. This seems to imply that basin topography strongly influences the timing of peak flow. In most of the basins examined, at the end of the melt season, the hour of maximum discharge shifts to later in the day, reflecting increased travel times as the snowline retreats to higher elevations.

  1. Comparison of turbulent separation over a smooth surface and mako shark skin on a NACA 4412 hydrofoil

    NASA Astrophysics Data System (ADS)

    Smith, Drew; Lang, Amy; Wahidi, Redha

    2011-11-01

    Shark skin is being investigated as a means of passive flow separation control due to the flexibility and preferential flow direction of the scales covering the skin. In this study, the effect of the scales is observed in a tripped turbulent boundary layer by comparing the flow over a NACA 4412 hydrofoil with a smooth surface to that over the same hydrofoil with samples of mako shark skin affixed to its upper surface. These samples were taken from the flank area of the shark because the scales at that location have been shown to have the greatest angle of erection, and thus the best potential for separation control. All flow data in this study was obtained using Time-Resolved Digital Particle Image Velocimetry and recorded at multiple angles of attack (between 8 and 16 degrees) and two Reynolds numbers. The flow was primarily analyzed by means of the backflow coefficient (a value based on the percentage of time that flow in a region over the hydrofoil is reversed) and the time history of instantaneous flow velocity values at specific points in the boundary layer over the hydrofoil models. Research performed under NSF grant 0932352.

  2. Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, J. J.; Pak, A., E-mail: pak5@llnl.gov; Field, J. E.

    2016-07-15

    A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. This method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. By inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. This technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ∼13 μm/ns and ∼14°, respectively.« less

  3. Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments

    DOE PAGES

    Ruby, J. J.; Pak, A.; Field, J. E.; ...

    2016-07-01

    A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. Our method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. Furthermore, by inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. Our technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ~13 μm/ns and ~14°, respectively.« less

  4. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    NASA Astrophysics Data System (ADS)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  5. Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh

    2017-10-01

    Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic techniques and their remarkable development in the past two decades in meeting one or all of the above five goals for the spectroscopic measurement of temperature, number density of the atomic and molecular species, and electric field.

  6. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Crua, Cyril; Heikal, Morgan R.

    2014-12-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the natural frequency for the injector’s main internal fuel line. Other spectral peaks were found between 35 and 45 kHz for certain nozzle geometries, suggesting that these particular frequencies may be linked to nozzle dependent cavitation phenomena.

  7. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whethermore » more realistic simulations of the turbine hydraulic environment -those that resolve unsteady turbulent eddies not captured in steady-state RANS computations- are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.« less

  8. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  9. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo.

    PubMed

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J

    2017-02-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.

  10. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  11. DNS of droplet motion in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  12. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  13. An Aeroacoustic Characterization of a Multi-Element High-Lift Airfoil

    NASA Astrophysics Data System (ADS)

    Pascioni, Kyle A.

    The leading edge slat of a high-lift system is known to be a large contributor to the overall radiated acoustic field from an aircraft during the approach phase of the flight path. This is due to the unsteady flow field generated in the slat-cove and near the leading edge of the main element. In an effort to understand the characteristics of the flow-induced source mechanisms, a suite of experimental measurements has been performed on a two-dimensional multi-element airfoil, namely, the MD-30P30N. Particle image velocimetry provide mean flow field and turbulence statistics to illustrate the differences associated with a change in angle of attack. Phase-averaged quantities prove shear layer instabilities to be linked to narrowband peaks found in the acoustic spectrum. Unsteady surface pressure are also acquired, displaying strong narrowband peaks and large spanwise coherence at low angles of attack, whereas the spectrum becomes predominately broadband at high angles. Nonlinear frequency interaction is found to occur at low angles of attack, while being negligible at high angles. To localize and quantify the noise sources, phased microphone array measurements are per- formed on the two dimensional high-lift configuration. A Kevlar wall test section is utilized to allow the mean aerodynamic flow field to approach distributions similar to a free-air configuration, while still capable of measuring the far field acoustic signature. However, the inclusion of elastic porous sidewalls alters both aerodynamic and acoustic characteristics. Such effects are considered and accounted for. Integrated spectra from Delay and Sum and DAMAS beamforming effectively suppress background facility noise and additional noise generated at the tunnel wall/airfoil junction. Finally, temporally-resolved estimates of a low-dimensional representation of the velocity vector fields are obtained through the use of proper orthogonal decomposition and spectral linear stochastic estimation. An estimate of the pressure field is then extracted by Poissons equation. From this, Curles analogy projects the time-resolved pressure forces on the airfoil surface to further establish the connection between the dominating unsteady flow structures and the propagated noise.

  14. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  15. Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals.

    PubMed

    Mader, Kevin; Nauber, Richard; Galindo, Vladimir; Beyer, Hannes; Buttner, Lars; Eckert, Sven; Czarske, Jurgen

    2017-09-01

    Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals. It combines the pulse wave Doppler method with the phased array technique to adaptively focus the ultrasound beam. This makes it possible to resolve smaller flow structures in planar measurements compared with fixed-beam sensors and enables 2c flow mapping with only one acoustical access via the cross beam technique. From simultaneously measured 2-D velocity fields, quantities for turbulence characterization can be derived. The capabilities of this measurement system are demonstrated through measurements in the alloy gallium-indium-tin at room temperature. The 2-D, 2c velocity measurements of a flow in a cubic vessel driven by a rotating magnetic field (RMF) with a spatial resolution of up to 2.2 mm are presented. The measurement results are in good agreement with a semianalytical simulation. As a highlight, two-point correlation functions of the velocity field for different magnitudes of the RMF are presented.

  16. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  17. Settling of hot particles through turbulence

    NASA Astrophysics Data System (ADS)

    Coletti, Filippo; Frankel, Ari; Pouransari, Hadi; Mani, Ali

    2014-11-01

    Particle-laden flows in which the dispersed phase is not isothermal with the continuous phase are common in a wealth of natural and industrial setting. In this study we consider the case of inertial particles heated by thermal radiation while settling through a turbulent transparent gas. Particles much smaller than the minimum flow scales are considered. The particle Stokes number (based on the Kolmogorov time scale) and the nominal settling velocity (normalized by the root-mean-square fluid velocity fluctuation) are both of order unity. In the considered dilute and optically thin regime, each particle receives the same heat flux. Numerical simulations are performed in which the two-way coupling between dispersed and continuous phase is taken into account. The momentum and energy equations are solved in a triply periodic domain, resolving all spatial and temporal scales. While falling, the heated particles shed plumes of buoyant gas, modifying the turbulence structure and enhancing velocity fluctuations in the vertical direction. The radiative forcing does not affect preferential concentration (clustering of particles in low vorticity regions), but reduces preferential sweeping (particle sampling regions of downward fluid motion). Overall, the mean settling velocity varies slightly when heating the particles, while its variance is greatly increased. We gratefully acknowledges support from DOE PSAAP II program.

  18. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  19. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE PAGES

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.; ...

    2017-06-08

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  20. Numerical Study on the Validity of the Taylor Hypothesis in Space Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, Silvia; Servidio, Sergio; Valentini, Francesco

    In situ heliospheric measurements allow us to resolve fluctuations as a function of frequency. A crucial point is to describe the power spectral density as a function of the wavenumber, in order to understand the energy cascade through the scales in terms of plasma turbulence theories. The most favorable situation occurs when the average wind speed is much higher than the phase speed of the plasma modes, equivalent to the fact that the fluctuations’ dynamical times are much longer than their typical crossing period through the spacecraft (frozen-in Taylor approximation). Using driven compressible Hall-magneothydrodynamics simulations, in which an “imaginary” spacecraftmore » flies across a time-evolving turbulence, here we explore the limitations of the frozen-in assumption. We find that the Taylor hypothesis is robust down to sub-proton scales, especially for flows with mean velocities typical of the fast solar wind. For slow mean flows (i.e., speeds of the order of the Alfvèn speed) power spectra are subject to an amplitude shift throughout the scales. At small scales, when dispersive decorrelation mechanisms become significant, the frozen-in assumption is generally violated, in particular for k -vectors almost parallel to the average magnetic field. A discussion in terms of the spacetime autocorrelation function is proposed. These results might be relevant for the interpretation of the observations, in particular for existing and future space missions devoted to very high-resolution measurements.« less

  1. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  2. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  3. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  4. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  5. Flight contaminant trace analyser. Phase 1: Chromatographic input system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development of a chromatographic column capable of resolving compounds associated with spacecraft atmospheres is presented. Consideration is given to sampling techniques, column parameters and operation, and column interface with a mass spectrometer. A capillary column coated with a mixture of polyalkylene glycols is found to provide the best selectivity for resolving multicomponent mixtures found in spacecraft atmospheres. Temperature programming and isothermal operation of the column are evaluated and it is found that temperature programming has a shorter analysis time for a given carrier gas flow rate and overall superior resolution. It is observed that hydrogen provides a 15% savings in analysis time over helium. Following the optimization of column operational parameters, a mixed phase Ucon capillary is prepared for evaluation during the column test period in which the test sample is automatically analyzed. Analysis of the multicomponent test mixture is completed within 45 minutes provided temperature programming is used. All but two of the test compounds are well resolved.

  6. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  7. In-SITU, Time-resolved Raman Spectro-micro-topography of an Operating Lithium Ion Battery

    NASA Technical Reports Server (NTRS)

    Luo, Yu; Cai, Wen-Bin; Xing, Xue-Kun; Scherson, Daniel A.

    2003-01-01

    A Raman microscope has been coupled to a computer-controlled, two-dimensional linear translator attached to a custom-designed, sealed optical chamber to allow in situ acquisition of space-, and time-resolved spectra of an operating thin graphite/LiCoO2 Li-ion battery. This unique arrangement made it possible to collect continuously series of Raman spectra from a sharply defined edge of the battery exposing the anode (A), separator (S), and cathode (C), during charge and discharge, while the device was moved back and forth under the fixed focused laser beam along an axis normal to the layered A/S/C plane. Clear spectral evidence was obtained for changes in the amount of Li(+) within particles of graphite in the anode, and, to a lesser extent, of LiCoO2 in the cathode, during battery discharge both as a function of position and time. Analysis of time-resolved Raman spectro-micro-topography (SMT) measurements of the type described in this work are expected to open new prospects for assessing the validity of theoretical models aimed at simulating the flow of Li(+) within Li-ion batteries under operating conditions.

  8. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  9. In situ insights into shock-driven reactive flow

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  10. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes

    PubMed Central

    Gillies, Laura A; Du, Han; Peters, Bjoern; Knudson, C. Michael; Newmeyer, Donald D.; Kuwana, Tomomi

    2015-01-01

    Bax induces mitochondrial outer membrane permeabilization (MOMP), a critical step in apoptosis in which proteins are released into the cytoplasm. To resolve aspects of the mechanism, we used cryo-electron microscopy (cryo-EM) to visualize Bax-induced pores in purified mitochondrial outer membranes (MOMs). We observed solitary pores that exhibited negative curvature at their edges. Over time, the pores grew to ∼100–160 nm in diameter after 60–90 min, with some pores measuring more than 300 nm. We confirmed these results using flow cytometry, which we used to monitor the release of fluorescent dextrans from isolated MOM vesicles. The dextran molecules were released gradually, in a manner constrained by pore size. However, the release rates were consistent over a range of dextran sizes (10–500 kDa). We concluded that the pores were not static but widened dramatically to release molecules of different sizes. Taken together, the data from cryo-EM and flow cytometry argue that Bax promotes MOMP by inducing the formation of large, growing pores through a mechanism involving membrane-curvature stress. PMID:25411335

  11. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  12. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    NASA Astrophysics Data System (ADS)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  13. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  14. Analysis of high-incidence separated flow past airfoils

    NASA Technical Reports Server (NTRS)

    Chia, K. N.; Osswald, G. A.; Chia, U.

    1989-01-01

    An unsteady Navier-Stokes (NS) analysis is developed and used to carefully examine high-incidence aerodynamic separated flows past airfoils. Clustered conformal C-grids are employed for the 12 percent thick symmetric Joukowski airfoil as well as for the NACA 0012 airfoil with a sharp trailing edge. The clustering is controlled by appropriate one-dimensional stretching transformations. An attempt is made to resolve many of the dominant scales of an unsteady flow with massive separation, while maintaining the transformation metrics to be smooth and continuous in the entire flow field. A fully implicit time-marching alternating-direction implicit-block Gaussian elimination (ADI-BGE) method is employed, in which no use is made of any explicit artificial dissipation. Detailed results are obtained for massively separated, unsteady flow past symmetric Joukowski and NACA 0012 airfoils.

  15. Are reports of randomized controlled trials improving over time? A systematic review of 284 articles published in high-impact general and specialized medical journals.

    PubMed

    To, Matthew J; Jones, Jennifer; Emara, Mohamed; Jadad, Alejandro R

    2013-01-01

    Inadequate reporting undermines findings of randomized controlled trials (RCTs). This study assessed and compared articles published in high-impact general medical and specialized journals. Reports of RCTs published in high-impact general and specialized medical journals were identified through a search of MEDLINE from January to March of 1995, 2000, 2005, and 2010. Articles that provided original data on adult patients diagnosed with chronic conditions were included in the study. Data on trial characteristics, reporting of allocation concealment, quality score, and the presence of a trial flow diagram were extracted independently by two reviewers, and discrepancies were resolved by consensus or independent adjudication. Descriptive statistics were used for quantitative variables. Comparisons between general medical and specialized journals, and trends over time were performed using Chi-square tests. Reports of 284 trials were analyzed. There was a significantly higher proportion of RCTs published with adequate reporting of allocation concealment (p = 0.003), presentation of a trial flow diagram (p<0.0001) and high quality scores (p = 0.038) over time. Trials published in general medical journals had higher quality scores than those in specialized journals (p = 0.001), reported adequate allocation concealment more often (p = 0.013), and presented a trial flow diagram more often (p<0.001). We found significant improvements in reporting quality of RCTs published in high-impact factor journals over the last fifteen years. These improvements are likely attributed to concerted international efforts to improve reporting quality such as CONSORT. There is still much room for improvement, especially among specialized journals.

  16. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  17. Experimental Visualizations of a Generic Launch Vehicle Flow Field: Time-Resolved Shadowgraph and Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.

    2017-01-01

    Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher

  18. Dynamics in the Modern Upper Atmosphere of Venus: Zonal Wind Transition to Subsolar-to-Antisolar Flow

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Kostiuk, T.; Hewagama, T.; Fast, K. E.

    2017-12-01

    We observed Venus on 19-23 Aug 2010 (UT) to investigate equatorial wind velocities from above the cloud tops through the lower thermosphere. Measurements were made from the NASA Infrared Telescope Facility using the NASA Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition. High-resolution spectra were acquired on a CO2 pressure-broadened absorption feature that probes the lower mesosphere ( 70 km altitude) with a non-LTE core emission of the same transition that probes the lower thermosphere ( 110 km). The resolving power of λ/Δλ≈3×107 determines line-of-sight velocity from Doppler shifts to high precision. The altitude differential between the features enables investigating the transition from zonal wind flow near the cloud tops to subsolar-to-antisolar flow in the thermosphere. The fully-resolved carbon dioxide transition was measured near 952.8808 cm-1 (10.494 µm) rest frequency at the equator with 1 arcsec field-of-view on Venus (24 arcsec diameter) distributed about the central meridian and across the terminator at ±15° intervals in longitude. The non-LTE emission is solar-pumped and appears only on the daylight side, probing subsolar-to-antisolar wind velocity vector flowing radially from the subsolar point through the terminator, which was near the central meridian in these observations and had zero line-of-sight wind projection at the terminator. The velocity of the zonal flow is approximately uniform, with maximum line-of-sight projection at the limb, and can be measured by the frequency of the absorption line on both the daylight and dark side. Variations in Doppler shift between the observable features and the differing angular dependence of the contributing wind phenomena thus provide independent mechanisms to distinguish the dynamical processes at the altitude of each observed spectral feature. Winds up to >100 m/s were determined in previous investigations with uncertainties of order 10 m/s or less.

  19. Effects of numerical dissipation and unphysical excursions on scalar-mixing estimates in large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Sharan, Nek; Matheou, Georgios; Dimotakis, Paul

    2017-11-01

    Artificial numerical dissipation decreases dispersive oscillations and can play a key role in mitigating unphysical scalar excursions in large eddy simulations (LES). Its influence on scalar mixing can be assessed through the resolved-scale scalar, Z , its probability density function (PDF), variance, spectra, and the budget of the horizontally averaged equation for Z2. LES of incompressible temporally evolving shear flow enabled us to study the influence of numerical dissipation on unphysical scalar excursions and mixing estimates. Flows with different mixing behavior, with both marching and non-marching scalar PDFs, are studied. Scalar fields for each flow are compared for different grid resolutions and numerical scalar-convection term schemes. As expected, increasing numerical dissipation enhances scalar mixing in the development stage of shear flow characterized by organized large-scale pairings with a non-marching PDF, but has little influence in the self-similar stage of flows with marching PDFs. Flow parameters and regimes sensitive to numerical dissipation help identify approaches to mitigate unphysical excursions while minimizing dissipation.

  20. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  1. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  2. Progress with multigrid schemes for hypersonic flow problems

    NASA Technical Reports Server (NTRS)

    Radespiel, R.; Swanson, R. C.

    1991-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm uses upwind spatial discretization with explicit multistage time stepping. Two level versions of the various multigrid algorithms are applied to the two dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high aspect ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 x 10(exp 6) and Mach numbers up to 25.

  3. Estimation of Atlantic-Mediterranean netflow variability

    NASA Astrophysics Data System (ADS)

    Guerreiro, Catarina; Peliz, Alvaro; Miranda, Pedro

    2016-04-01

    The exchanges at the Strait of Gibraltar are extremely difficult to measure due to the strong temporal and across-strait variabilities; yet the Atlantic inflow into the Mediterranean is extremely important both for climate and to ecosystems. Most of the published numerical modeling studies do not resolve the Strait of Gibraltar realistically. Models that represent the strait at high resolution focus primarily in high frequency dynamics, whereas long-term dynamics are studied in low resolution model studies, and for that reason the Strait dynamics are poorly resolved. Estimating the variability of the exchanges requires long term and high-resolutions studies, thus an improved simulation with explicit and realistic representation of the Strait is necessary. On seasonal to inter-annual timescales the flow is essentially driven by the net evaporation contribution and consequently realistic fields of precipitation and evaporation are necessary for model setup. A comparison between observations, reanalysis and combined products shows ERA-Interim Reanalysis has the most suitable product for Mediterranean Sea. Its time and space variability are in close agreement with NOC 1.1 for the common period (1980 - 1993) and also with evaporation from OAFLUX (1989 - 2014). Subinertial fluctuations, periods from days to a few months, are the second most energetic, after tides, and are the response to atmospheric pressure fluctuations and local winds. Atmospheric pressure fluctuations in the Mediterranean cause sea level oscillations that induce a barotropic flow through the Strait. Candela's analytical model has been used to quantify this response in later studies, though comparison with observations points to an underestimation of the flow at strait. An improved representation of this term contribution to the Atlantic - Mediterranean exchange must be achieved on longer time-scales. We propose a new simulation for the last 36 years (1979 - 2014) for the Mediterranean - Atlantic domain with explicit representation of the Strait. The simulations are performed using the Regional Ocean Modeling System (ROMS) and forced with the different contributions of the freshwater budget, sea level pressure fluctuations and winds from ERA-Interim Reanalysis. The model of sea level pressure induced barotropic fluctuations simulates the barotropic variability at the Strait of Gibraltar for the last decades.

  4. The role of unsteady buoyancy flux on transient eruption plume velocity structure and evolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Clarke, A. B.; Phillips, J. C.

    2010-12-01

    Volcanic vent exit velocities, eruption column velocity profiles, and atmospheric entrainment are important parameters that control the evolution of explosive volcanic eruption plumes. New data sets tracking short-term variability in such parameters are becoming more abundant in volcanology and are being used to indirectly estimate eruption source conditions such vent flux, material properties of the plume, and source mechanisms. However, inadequate theory describing the relationships between time-varying source fluxes and evolution of unsteady turbulent flows such as eruption plumes, limits the interpretation potential of these data sets. In particular, the relative roles of gas-thrust and buoyancy in volcanic explosions is known to generate distinct differences in the ascent dynamics. Here we investigate the role of initial buoyancy in unsteady, short-duration eruption dynamics through scaled laboratory experiments and provide an empirical description of the relationship between unsteady source flux and plume evolution. The experiments involved source fluids of various densities (960-1000 kg/m3) injected, with a range of initial momentum and buoyancy, into a tank of fresh water through a range of vent diameters (3-15 mm). A scaled analysis was used to determine the fundamental parameters governing the evolution of the laboratory plumes as a function of unsteady source conditions. The subsequent model can be applied to predict flow front propagation speeds, and maximum flow height and width of transient volcanic eruption plumes which can not be adequately described by existing steady approximations. In addition, the model describes the relative roles of momentum or gas-thrust and buoyancy in plume motion which is suspected to be a key parameter in quantitatively defining explosive eruption style. The velocity structure of the resulting flows was measured using the Particle Image Velocimetry (PIV) technique in which velocity vector fields were generated from displacements in time-resolved video images of particles in the flow interior. Cross-sectional profiles of vertical velocity and entrainment of ambient fluid were characterized using the resulting velocity vector maps. These data elucidate the relationship between flow front velocity and internal velocity structure which may improve interpretations of field measurements of volcanic explosions. The velocity maps also demonstrate the role of buoyancy in enhancing ambient entrainment and converting vertical velocity to horizontal velocity, which may explain why buoyancy at the vent leads to faster deceleration of the flow.

  5. 40 CFR 1066.140 - Diluted exhaust flow calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... whenever corrective action does not resolve a failure to meet the diluted exhaust flow verification (i.e... subsonic venturi flow meter, a long-radius ASME/NIST flow nozzle, a smooth approach orifice, a laminar flow...

  6. Modeling Coherent Structures in Canopy Flows

    NASA Astrophysics Data System (ADS)

    Luhar, Mitul

    2017-11-01

    It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.

  7. Young-Person's Guide to Detached-Eddy Simulation Grids

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.; Streett, Craig (Technical Monitor)

    2001-01-01

    We give the "philosophy", fairly complete instructions, a sketch and examples of creating Detached-Eddy Simulation (DES) grids from simple to elaborate, with a priority on external flows. Although DES is not a zonal method, flow regions with widely different gridding requirements emerge, and should be accommodated as far as possible if a good use of grid points is to be made. This is not unique to DES. We brush on the time-step choice, on simple pitfalls, and on tools to estimate whether a simulation is well resolved.

  8. Estimation of strait transport in the East China Sea

    NASA Astrophysics Data System (ADS)

    Moon, J.; Hirose, N.; Usui, N.; Tsujino, H.

    2010-12-01

    Volume transport through the major channels is still diverse in realistic eddy-resolving models. For instance, time-mean transport through the Tokara Strait is predicted as 16.9Sv by Maltrud and McClean (2005) or 36-72Sv by Hurlburt et al. (1996). However the difference may be decreased by constraining measurement data, i.e., data assimilation. The assimilated estimates from two different systems of Meteorological Research Institute and Kyushu University (MOVE-WNP and DREAMS_B) show realistic averages of 22-23Sv through the Tokara Strait. Inverse estimation of adjustable parameters implies that reduction of wind stress and strong vertical viscosity are crucial to prevent excessive transport and associated instabilities in a forward model. It is noted that both of the assimilated results show a deep northward flow of 3-4Sv through the Kerama Gap in Ryukyu Islands. The core depth (~500m) of this subsurface current is similar to Ryukyu Current. Further analysis shows coherent changes of Soya and Tsushima Warm Currents, which is consistent to the Okhotsk wind theory of Tsujino et al. (2008). On the other hand, the changes of Tsushima Strait transport are nearly independent from the Kuroshio or the Taiwan Warm Current.

  9. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  10. A numerical framework for the direct simulation of dense particulate flow under explosive dispersal

    NASA Astrophysics Data System (ADS)

    Mo, H.; Lien, F.-S.; Zhang, F.; Cronin, D. S.

    2018-05-01

    In this paper, we present a Cartesian grid-based numerical framework for the direct simulation of dense particulate flow under explosive dispersal. This numerical framework is established through the integration of the following numerical techniques: (1) operator splitting for partitioned fluid-solid interaction in the time domain, (2) the second-order SSP Runge-Kutta method and third-order WENO scheme for temporal and spatial discretization of governing equations, (3) the front-tracking method for evolving phase interfaces, (4) a field function proposed for low-memory-cost multimaterial mesh generation and fast collision detection, (5) an immersed boundary method developed for treating arbitrarily irregular and changing boundaries, and (6) a deterministic multibody contact and collision model. Employing the developed framework, this paper further studies particle jet formation under explosive dispersal by considering the effects of particle properties, particulate payload morphologies, and burster pressures. By the simulation of the dispersal processes of dense particle systems driven by pressurized gas, in which the driver pressure reaches 1.01325× 10^{10} Pa (10^5 times the ambient pressure) and particles are impulsively accelerated from stationary to a speed that is more than 12000 m/s within 15 μ s, it is demonstrated that the presented framework is able to effectively resolve coupled shock-shock, shock-particle, and particle-particle interactions in complex fluid-solid systems with shocked flow conditions, arbitrarily irregular particle shapes, and realistic multibody collisions.

  11. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  12. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.

    PubMed

    Secomb, Timothy W

    2016-12-01

    A novel theoretical method is presented for simulating the spatially resolved convective and diffusive transport of reacting solutes between microvascular networks and the surrounding tissues. The method allows for efficient computational solution of problems involving convection and non-linear binding of solutes in blood flowing through microvascular networks with realistic 3D geometries, coupled with transvascular exchange and diffusion and reaction in the surrounding tissue space. The method is based on a Green's function approach, in which the solute concentration distribution in the tissue is expressed as a sum of fields generated by time-varying distributions of discrete sources and sinks. As an example of the application of the method, the washout of an inert diffusible tracer substance from a tissue region perfused by a network of microvessels is simulated, showing its dependence on the solute's transvascular permeability and tissue diffusivity. Exponential decay of the washout concentration is predicted, with rate constants that are about 10-30% lower than the rate constants for a tissue cylinder model with the same vessel length, vessel surface area and blood flow rate per tissue volume. © The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  13. Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s{sub 5}) production in a He-Ar plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sands, Brian L.; Huang, Shih K.; Speltz, Jared W.

    2013-04-21

    Plasma jet devices that use a helium gas flow mixed with a small percentage of argon have been shown to operate with a larger discharge current and enhanced production of the Ar(1s{sub 5}) metastable state, particularly in the discharge afterglow. In this experiment, time-resolved quantitative measurements of He(2{sup 3}S{sub 1}) and Ar(1s{sub 5}) metastable species were combined with current and spectrally resolved emission measurements to elucidate the role of Penning ionization in a helium plasma jet with a variable argon admixture. The plasma jet was enclosed in a glass chamber through which a flowing nitrogen background was maintained at 600more » Torr. At 3%-5% Ar admixture, we observed a {approx}50% increase in the peak circuit current and streamer velocity relative to a pure helium plasma jet for the same applied voltage. The streamer initiation delay also decreased by {approx}20%. Penning ionization of ground-state argon was found to be the dominant quenching pathway for He(2{sup 3}S{sub 1}) up to 2% Ar and was directly correlated with a sharp increase in both the circuit current and afterglow production of Ar(1s{sub 5}) for Ar admixtures up to 1%, but not necessarily with the streamer velocity, which increased more gradually with Ar concentration. Ar(1s{sub 5}) was produced in the afterglow through recombination of Ar{sup +} and dissociative recombination of Ar{sub 2}{sup +} as the local mean electron energy decreased in the plasma channel behind the streamer head. The discharge current and argon metastable enhancement are contingent on the rapid production of He(2{sup 3}S{sub 1}) near the streamer head, >5 Multiplication-Sign 10{sup 12} cm{sup -3} in 30 ns under the conditions of this experiment.« less

  14. Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples

    NASA Astrophysics Data System (ADS)

    Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.

    2012-12-01

    Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.

  15. A Shock-Adaptive Godunov Scheme Based on the Generalised Lagrangian Formulation

    NASA Astrophysics Data System (ADS)

    Lepage, C. Y.; Hui, W. H.

    1995-12-01

    Application of the Godunov scheme to the Euler equations of gas dynamics based on the Eulerian formulation of flow smears discontinuities, sliplines especially, over several computational cells, while the accuracy in the smooth flow region is of the order O( h), where h is the cell width. Based on the generalised Lagrangian formulation (GLF) of Hui et al., the Godunov scheme yields superior accuracy. By the use of coordinate streamlines in the GLF, the slipline—itself a streamline—is resolved crisply. Infinite shock resolution is achieved through the splitting of shock-cells. An improved entropy-conservation formulation of the governing equations is also proposed for computations in smooth flow regions. Finally, the use of the GLF substantially simplifies the programming logic resulting in a very robust, accurate, and efficient scheme.

  16. Tracking the photodissociation dynamics of liquid nitromethane at 266 nm by femtosecond time-resolved broadband transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang

    2016-05-01

    Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.

  17. Revealing the inner accretion flow around black holes using rapid variability

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2015-08-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564. We compare these to the time-averaged spectrum and the spectrum of the rapid (< 0.1s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, so that it is softer at larger radii closer to the truncated disc, and harder in the innermost parts of the flow where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole. We further show how the upcoming launch of ASTRO-H will allow even more specific regions in the accretion flow to be probed.

  18. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE PAGES

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; ...

    2016-08-02

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i), yield (Y n), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate datamore » with a time resolution of ~20 ps and energy resolution of ~100 keV for total neutron yields above ~10 16. Lastly, at lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ~20 ps.« less

  19. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    PubMed

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  20. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenje, J. A., E-mail: jfrenje@psfc.mit.edu; Wink, C. W.; Gatu Johnson, M.

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate datamore » with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.« less

  1. A novel anisotropic fast marching method and its application to blood flow computation in phase-contrast MRI.

    PubMed

    Schwenke, M; Hennemuth, A; Fischer, B; Friman, O

    2012-01-01

    Phase-contrast MRI (PC MRI) can be used to assess blood flow dynamics noninvasively inside the human body. The acquired images can be reconstructed into flow vector fields. Traditionally, streamlines can be computed based on the vector fields to visualize flow patterns and particle trajectories. The traditional methods may give a false impression of precision, as they do not consider the measurement uncertainty in the PC MRI images. In our prior work, we incorporated the uncertainty of the measurement into the computation of particle trajectories. As a major part of the contribution, a novel numerical scheme for solving the anisotropic Fast Marching problem is presented. A computing time comparison to state-of-the-art methods is conducted on artificial tensor fields. A visual comparison of healthy to pathological blood flow patterns is given. The comparison shows that the novel anisotropic Fast Marching solver outperforms previous schemes in terms of computing time. The visual comparison of flow patterns directly visualizes large deviations of pathological flow from healthy flow. The novel anisotropic Fast Marching solver efficiently resolves even strongly anisotropic path costs. The visualization method enables the user to assess the uncertainty of particle trajectories derived from PC MRI images.

  2. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  3. A versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast.

    PubMed

    Forsberg, J; Englund, C-J; Duda, L-C

    2009-08-01

    We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.

  4. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giron, Nicholas H.; Celina, Mathew C.

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  5. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE PAGES

    Giron, Nicholas H.; Celina, Mathew C.

    2017-05-19

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  6. 40 CFR 1065.340 - Diluted exhaust flow (CVS) calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action does not resolve a failure to meet the diluted exhaust flow verification (i.e., propane check) in... subsonic venturi flow meter, a long-radius ASME/NIST flow nozzle, a smooth approach orifice, a laminar flow...

  7. Quantitative measurement of cerebral blood flow during hypothermia with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Diop, Mamadou; St Lawrence, Keith; Lee, Ting-Yim

    2012-02-01

    Hypothermia, in which the brain is cooled to 32-33 °C, has been shown to be neuroprotective for brain injury caused by hypoxia-ischemia, head trauma, or neonatal asphyxia. Neuroprotective effect of Hypothermia is partly due to suppression of brain metabolism and cerebral blood flow (CBF). The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neuro intensive care before brain injury occurs. The purpose of the present study is to investigate the ability of a time-resolved near-infrared (TR-NIR) bolus-tracking method using indocyanine green as an intravascular flow tracer to measure CBF during cooling in a newborn animal model. For validation, CBF was independently measured by computed tomography (CT) perfusion. The results show a good agreement between CBF obtained with the two methods (R2 ~ 0.84, Δ ~ 5.84 ml. min -1.100 g -1, 32-38.5 °C), demonstrating the ability of the TR-NIR technique to non-invasively measure absolute CBF in-vivo during dynamic hypothermia. The TR-NIR technique reveals that CBF decreases from 54.3 +/- 5.4 ml. min -1.100 g -1, at normothermia (Tbrain of 38.5 °C), to 33.8 +/- 0.9 ml. min -1.100 g -1 at Tbrain of 32 °C during the hypothermia treatment.

  8. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  9. CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies

    NASA Astrophysics Data System (ADS)

    Sztáray, Bálint; Voronova, Krisztina; Torma, Krisztián G.; Covert, Kyle J.; Bodi, Andras; Hemberger, Patrick; Gerber, Thomas; Osborn, David L.

    2017-07-01

    Photoelectron photoion coincidence (PEPICO) spectroscopy could become a powerful tool for the time-resolved study of multi-channel gas phase chemical reactions. Toward this goal, we have designed and tested electron and ion optics that form the core of a new PEPICO spectrometer, utilizing simultaneous velocity map imaging for both cations and electrons, while also achieving good cation mass resolution through space focusing. These optics are combined with a side-sampled, slow-flow chemical reactor for photolytic initiation of gas-phase chemical reactions. Together with a recent advance that dramatically increases the dynamic range in PEPICO spectroscopy [D. L. Osborn et al., J. Chem. Phys. 145, 164202 (2016)], the design described here demonstrates a complete prototype spectrometer and reactor interface to carry out time-resolved experiments. Combining dual velocity map imaging with cation space focusing yields tightly focused photoion images for translationally cold neutrals, while offering good mass resolution for thermal samples as well. The flexible optics design incorporates linear electric fields in the ionization region, surrounded by dual curved electric fields for velocity map imaging of ions and electrons. Furthermore, the design allows for a long extraction stage, which makes this the first PEPICO experiment to combine ion imaging with the unimolecular dissociation rate constant measurements of cations to detect and account for kinetic shifts. Four examples are shown to illustrate some capabilities of this new design. We recorded the threshold photoelectron spectrum of the propargyl and the iodomethyl radicals. While the former agrees well with a literature threshold photoelectron spectrum, we have succeeded in resolving the previously unobserved vibrational structure in the latter. We have also measured the bimolecular rate constant of the CH2I + O2 reaction and observed its product, the smallest Criegee intermediate, CH2OO. Finally, the second dissociative photoionization step of iodocyclohexane ions, the loss of ethylene from the cyclohexyl cation, is slow at threshold, as illustrated by the asymmetric threshold photoionization time-of-flight distributions.

  10. Multifarious slips perception on unsteady Casson nanofluid flow impinging on a stretching cylinder in the presence of solar radiation

    NASA Astrophysics Data System (ADS)

    Kundu, Prabir Kumar; Sarkar, Amit

    2017-03-01

    In the present work, a study is prepared for unsteady axisymmetric Casson-type nanofluid flow as a result of a contracting impermeable cylinder under the influence of solar radiation. The model of multifarious slip is included. The governing system of equations takes the form of non-linear ODEs by employing appropriate transformation and then resolve it numerically by RK-Fehlberg scheme in Maple 18 symbolic software. The effects of leading parameters on the flow characteristics are presented through tables and graphs coupled with necessary discussion and physical insinuation. Strong effects of various slip parameters on the physical quantities of interest are found here. The upsurge of surface slip is spotted to boost up temperature profile whereas it slows the flow down. However, thermal slip conducts to drop the temperature but enhancing the heat transfer rate.

  11. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    NASA Astrophysics Data System (ADS)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale required for the delta forming flows to fill the crater. Comparison with the outflow channel dimensions from other craters on Mars provides the potential to both test our hypothesis of contemporaneous lake filling/channel incision and also constrain the hydrologic sources responsible for filling crater lakes.

  12. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  13. Development of a multiperspective optical measuring system for investigating decaying switching arcs at the nozzle exit of circuit breakers.

    PubMed

    Stoffels, M; Simon, S; Nikolic, P G; Stoller, P; Carstensen, J

    2017-03-01

    High-voltage gas circuit breakers, which play an important role in the operation and protection of the power grid, function by drawing an arc between two contacts and then extinguishing it by cooling it using a transonic gas flow. Improving the design of circuit breakers requires an understanding of the physical processes in the interruption of the arc, particularly during the zero crossing of the alternating current (the point in time when the arc can be interrupted). Most diagnostic techniques currently available focus on measurement of current, voltage, and gas pressure at defined locations. However, these integral properties do not give sufficient insight into the arc physics. To understand the current interruption process, spatially resolved information about the density, temperature, and conductivity of the arc and surrounding gas flow is needed. Owing to the three-dimensional, unstable nature of the arc in a circuit breaker, especially near current zero, a spatially resolved, tomographic diagnostic technique is required that is capable of freezing the rapid, transient behavior and that is insensitive to the vibrations and electromagnetic interference inherent in the interruption of short-circuit current arcs. Here a new measurement system, based on background-oriented schlieren (BOS) imaging, is presented and assessed. BOS imaging using four beams consisting of white light sources, a background pattern, imaging optics, and a camera permits measurement of the line-of-sight integrated refractive index. Tomographic reconstruction is used to determine the three-dimensional, spatially resolved index of refraction distribution that in turn is used to calculate the density. The quantitative accuracy of a single beam of the BOS setup is verified by using a calibration lens with a known focal length. The ability of the tomographic reconstruction to detect asymmetric features of the arc and surrounding gas flow is assessed semiquantitatively using a nozzle that generates two gas jets, as described in [Exp. Fluids43, 241 (2007)EXFLDU0723-486410.1007/s00348-007-0331-1]. Experiments using a simple model of a circuit breaker, which provides optical access to an ∼1  kA arc that burns between two contacts and is blown through a nozzle system by synthetic air from a high pressure reservoir, are also described. The density in the decaying arc and surrounding gas flow is reconstructed, and the limitations of the technique, which are related to the temporal and spatial resolution, are addressed.

  14. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  15. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Deep Part Load Flow Analysis in a Francis Model turbine by means of two-phase unsteady flow simulations

    NASA Astrophysics Data System (ADS)

    Conrad, Philipp; Weber, Wilhelm; Jung, Alexander

    2017-04-01

    Hydropower plants are indispensable to stabilize the grid by reacting quickly to changes of the energy demand. However, an extension of the operating range towards high and deep part load conditions without fatigue of the hydraulic components is desirable to increase their flexibility. In this paper a model sized Francis turbine at low discharge operating conditions (Q/QBEP = 0.27) is analyzed by means of computational fluid dynamics (CFD). Unsteady two-phase simulations for two Thoma-number conditions are conducted. Stochastic pressure oscillations, observed on the test rig at low discharge, require sophisticated numerical models together with small time steps, large grid sizes and long simulation times to cope with these fluctuations. In this paper the BSL-EARSM model (Explicit Algebraic Reynolds Stress) was applied as a compromise between scale resolving and two-equation turbulence models with respect to computational effort and accuracy. Simulation results are compared to pressure measurements showing reasonable agreement in resolving the frequency spectra and amplitude. Inner blade vortices were predicted successfully in shape and size. Surface streamlines in blade-to-blade view are presented, giving insights to the formation of the inner blade vortices. The acquired time dependent pressure fields can be used for quasi-static structural analysis (FEA) for fatigue calculations in the future.

  17. Non-axisymmetric Flows and Transport in the Edge of MST

    NASA Astrophysics Data System (ADS)

    Miller, Matthew Charles

    Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.

  18. Singularities in Free Surface Flows

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.

  19. Optical depth in particle-laden turbulent flows

    NASA Astrophysics Data System (ADS)

    Frankel, A.; Iaccarino, G.; Mani, A.

    2017-11-01

    Turbulent clustering of particles causes an increase in the radiation transmission through gas-particle mixtures. Attempts to capture the ensemble-averaged transmission lead to a closure problem called the turbulence-radiation interaction. A simple closure model based on the particle radial distribution function is proposed to capture the effect of turbulent fluctuations in the concentration on radiation intensity. The model is validated against a set of particle-resolved ray tracing experiments through particle fields from direct numerical simulations of particle-laden turbulence. The form of the closure model is generalizable to arbitrary stochastic media with known two-point correlation functions.

  20. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    DTIC Science & Technology

    1992-10-01

    DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology

  1. Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD

    NASA Astrophysics Data System (ADS)

    Viellieber, Mathias; Class, Andreas G.

    2013-11-01

    Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.

  2. Hydraulic Jumps, Waves and Other Flow Features Found by Modeling Stably-Stratified Flows in the Salt Lake Valley

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ludwig, F.; Street, R.

    2003-12-01

    The Advanced Regional Prediction System (ARPS) was used to simulate weak synoptic wind conditions with stable stratification and pronounced drainage flow at night in the vicinity of the Jordan Narrows at the south end of Salt Lake Valley. The simulations showed the flow to be quite complex with hydraulic jumps and internal waves that make it essential to use a complete treatment of the fluid dynamics. Six one-way nested grids were used to resolve the topography; they ranged from 20-km grid spacing, initialized by ETA 40-km operational analyses down to 250-m horizontal resolution and 200 vertically stretched levels to a height of 20 km, beginning with a 10-m cell at the surface. Most of the features of interest resulted from interactions with local terrain features, so that little was lost by using one-way nesting. Canyon, gap, and over-terrain flows have a large effect on mixing and vertical transport, especially in the regions where hydraulic jumps are likely. Our results also showed that the effect of spatial resolution on simulation performance is profound. The horizontal resolution must be such that the smallest features that are likely to have important impact on the flow are spanned by at least a few grid points. Thus, the 250 m minimum resolution of this study is appropriate for treating the effects of features of about 1 km or greater extent. To be consistent, the vertical cell dimension must resolve the same terrain features resolved by the horizontal grid. These simulations show that many of the interesting flow features produce observable wind and temperature gradients at or near the surface. Accordingly, some relatively simple field measurements might be made to confirm that the mixing phenomena that were simulated actually take place in the real atmosphere, which would be very valuable for planning large, expensive field campaigns. The work was supported by the Atmospheric Sciences Program, Office of Biological and Environmental Research, U.S. Department of Energy. The National Energy Research Scientific Computing Center (NERSC) provided computational time. We thank Professor Ming Xue and others at the University of Oklahoma for their help.

  3. Search for subgrid scale parameterization by projection pursuit regression

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Moin, Parviz

    1992-01-01

    The dependence of subgrid-scale stresses on variables of the resolved field is studied using direct numerical simulations of isotropic turbulence, homogeneous shear flow, and channel flow. The projection pursuit algorithm, a promising new regression tool for high-dimensional data, is used to systematically search through a large collection of resolved variables, such as components of the strain rate, vorticity, velocity gradients at neighboring grid points, etc. For the case of isotropic turbulence, the search algorithm recovers the linear dependence on the rate of strain (which is necessary to transfer energy to subgrid scales) but is unable to determine any other more complex relationship. For shear flows, however, new systematic relations beyond eddy viscosity are found. For the homogeneous shear flow, the results suggest that products of the mean rotation rate tensor with both the fluctuating strain rate and fluctuating rotation rate tensors are important quantities in parameterizing the subgrid-scale stresses. A model incorporating these terms is proposed. When evaluated with direct numerical simulation data, this model significantly increases the correlation between the modeled and exact stresses, as compared with the Smagorinsky model. In the case of channel flow, the stresses are found to correlate with products of the fluctuating strain and rotation rate tensors. The mean rates of rotation or strain do not appear to be important in this case, and the model determined for homogeneous shear flow does not perform well when tested with channel flow data. Many questions remain about the physical mechanisms underlying these findings, about possible Reynolds number dependence, and, given the low level of correlations, about their impact on modeling. Nevertheless, demonstration of the existence of causal relations between sgs stresses and large-scale characteristics of turbulent shear flows, in addition to those necessary for energy transfer, provides important insight into the relation between scales in turbulent flows.

  4. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  5. Investigating low flow process controls, through complex modelling, in a UK chalk catchment

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas

    2017-04-01

    The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.

  6. Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures

    NASA Astrophysics Data System (ADS)

    Pereira, Filipe S.; Eça, Luís; Vaz, Guilherme; Girimaji, Sharath S.

    2018-06-01

    The objective of this work is to investigate the challenges encountered in Scale-Resolving Simulations (SRS) of turbulent wake flows driven by spatially-developing coherent structures. SRS of practical interest are expressly intended for efficiently computing such flows by resolving only the most important features of the coherent structures and modelling the remainder as stochastic field. The success of SRS methods depends upon three important factors: i) ability to identify key flow mechanisms responsible for the generation of coherent structures; ii) determine the optimum range of resolution required to adequately capture key elements of coherent structures; and iii) ensure that the modelled part is comprised nearly exclusively of fully-developed stochastic turbulence. This study considers the canonical case of the flow around a circular cylinder to address the aforementioned three key issues. It is first demonstrated using experimental evidence that the vortex-shedding instability and flow-structure development involves four important stages. A series of SRS computations of progressively increasing resolution (decreasing cut-off length) are performed. An a priori basis for locating the origin of the coherent structures development is proposed and examined. The criterion is based on the fact that the coherent structures are generated by the Kelvin-Helmholtz (KH) instability. The most important finding is that the key aspects of coherent structures can be resolved only if the effective computational Reynolds number (based on total viscosity) exceeds the critical value of the KH instability in laminar flows. Finally, a quantitative criterion assessing the nature of the unresolved field based on the strain-rate ratio of mean and unresolved fields is examined. The two proposed conditions and rationale offer a quantitative basis for developing "good practice" guidelines for SRS of complex turbulent wake flows with coherent structures.

  7. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  8. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  9. Time-resolved method to distinguish protein/peptide oxidation during electrospray ionization mass spectrometry.

    PubMed

    Pei, Jiying; Hsu, Cheng-Chih; Yu, Kefu; Wang, Yinghui; Huang, Guangming

    2018-06-29

    Electrospray ionization mass spectrometry (ESI-MS) is one of the most prevalent techniques used to monitor protein/peptide oxidation induced by reactive oxygen species (ROSs). However, both corona discharge (CD) and electrochemistry (EC) can also lead to protein/peptide oxidation during ESI. Because the two types of oxidation occur almost simultaneously, determining the extent to which the two pathways contribute to protein/peptide oxidation is difficult. Herein, a time-resolved method was introduced to identify and differentiate CD- and EC-induced oxidation. Using this approach, we separated the instantaneous CD-induced oxidation from the hysteretic EC-induced oxidation, and the effects of the spray voltage and flow rate of the ESI source on both oxidation types were investigated with a homemade ESI source. For angiotensin II analogue (b-DRVYVHPF-y), the dehydrogenation and oxygenation species were the detected EC-induced oxidation products, while the oxygenation species were the major CD-induced oxidation products. This time-resolved approach was also applicable to a commercial HESI source, in which both CD and EC were responsible for hemoglobin and cytochrome c oxidation with upstream grounding while CD dominated the oxidation without upstream grounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  11. Towards an entropy-based detached-eddy simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Yan, Chao; Li, XinLiang; Kong, WeiXuan

    2013-10-01

    A concept of entropy increment ratio ( s¯) is introduced for compressible turbulence simulation through a series of direct numerical simulations (DNS). s¯ represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f s to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed detached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performances are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic flat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.

  12. On the large eddy simulation of turbulent flows in complex geometry

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip

    1993-01-01

    Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.

  13. Computation of Flow Through Water-Control Structures Using Program DAMFLO.2

    USGS Publications Warehouse

    Sanders, Curtis L.; Feaster, Toby D.

    2004-01-01

    As part of its mission to collect, analyze, and store streamflow data, the U.S. Geological Survey computes flow through several dam structures throughout the country. Flows are computed using hydraulic equations that describe flow through sluice and Tainter gates, crest gates, lock gates, spillways, locks, pumps, and siphons, which are calibrated using flow measurements. The program DAMFLO.2 was written to compute, tabulate, and plot flow through dam structures using data that describe the physical properties of dams and various hydraulic parameters and ratings that use time-varying data, such as lake elevations or gate openings. The program uses electronic computer files of time-varying data, such as lake elevation or gate openings, retrieved from the U.S. Geological Survey Automated Data Processing System. Computed time-varying flow data from DAMFLO.2 are output in flat files, which can be entered into the Automated Data Processing System database. All computations are made in units of feet and seconds. DAMFLO.2 uses the procedures and language developed by the SAS Institute Inc.

  14. Analysis of red blood cell partitioning at bifurcations in simulated microvascular networks

    NASA Astrophysics Data System (ADS)

    Balogh, Peter; Bagchi, Prosenjit

    2018-05-01

    Partitioning of red blood cells (RBCs) at vascular bifurcations has been studied over many decades using in vivo, in vitro, and theoretical models. These studies have shown that RBCs usually do not distribute to the daughter vessels with the same proportion as the blood flow. Such disproportionality occurs, whereby the cell distribution fractions are either higher or lower than the flow fractions and have been referred to as classical partitioning and reverse partitioning, respectively. The current work presents a study of RBC partitioning based on, for the first time, a direct numerical simulation (DNS) of a flowing cell suspension through modeled vascular networks that are comprised of multiple bifurcations and have topological similarity to microvasculature in vivo. The flow of deformable RBCs at physiological hematocrits is considered through the networks, and the 3D dynamics of each individual cell are accurately resolved. The focus is on the detailed analysis of the partitioning, based on the DNS data, as it develops naturally in successive bifurcations, and the underlying mechanisms. We find that while the time-averaged partitioning at a bifurcation manifests in one of two ways, namely, the classical or reverse partitioning, the time-dependent behavior can cycle between these two types. We identify and analyze four different cellular-scale mechanisms underlying the time-dependent partitioning. These mechanisms arise, in general, either due to an asymmetry in the RBC distribution in the feeding vessels caused by the events at an upstream bifurcation or due to a temporary increase in cell concentration near capillary bifurcations. Using the DNS results, we show that a positive skewness in the hematocrit profile in the feeding vessel is associated with the classical partitioning, while a negative skewness is associated with the reverse one. We then present a detailed analysis of the two components of disproportionate partitioning as identified in prior studies, namely, plasma skimming and cell screening. The plasma skimming component is shown to under-predict the disproportionality, leaving the cell screening component to make up for the difference. The crossing of the separation surface by the cells is observed to be a dominant mechanism underlying the cell screening, which is shown to mitigate extreme heterogeneity in RBC distribution across the networks.

  15. Kleinberg Complex Networks

    DTIC Science & Technology

    2014-10-21

    linear combinations of paths. This project featured research on two classes of routing problems , namely traveling salesman problems and multicommodity...flows. One highlight of this research was our discovery of a polynomial-time algorithm for the metric traveling salesman s-t path problem whose...metric TSP would resolve one of the most venerable open problems in the theory of approximation algorithms. Our research on traveling salesman

  16. Direct observation of vibrational energy flow in cytochrome c.

    PubMed

    Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa

    2011-11-10

    Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (< ps), excess vibrational energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.

  17. Deep Zonal Flow and Time Variation of Jupiter’s Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2017-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will advect the non-axisymmetric component of the magnetic field, at depth with even modest electrical conductivity, and create time variations in the magnetic field.The observed time variations of the geomagnetic field has been used to derive surface flows of the Earth’s outer core. The same principle applies to Jupiter, however, the connection between the time variation of the magnetic field (dB/dt) and deep zonal flow (Uphi) at Jupiter is not well understood due to strong radial variation of electrical conductivity. Here we perform a quantitative analysis of the connection between dB/dt and Uphi for Jupiter adopting realistic interior electrical conductivity profile, taking the likely presence of alkali metals into account. This provides a tool to translate expected measurement of the time variation of Jupiter’s magnetic field to deep zonal flows. We show that the current upper limit on the dipole drift rate of Jupiter (3 degrees per 20 years) is compatible with 10 m/s zonal flows with < 500 km vertical scale height below 0.972 Rj. We further demonstrate that fast drift of resolved magnetic features (e.g. magnetic spots) at Jupiter is a possibility.

  18. Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging.

    PubMed

    Zhang, Changyong; Werth, Charles J; Webb, Andrew G

    2007-05-15

    A direct visualization method using magnetic resonance imaging (MRI) was developed to characterize sand grain size distribution, nonaqueous phase liquid (NAPL) source zone architecture, and aqueous flowpaths in a three-dimensional (3-D) flowcell (26.5 cm x 10.5 cm x 10.5 cm) packed with a heterogeneous distribution of five different sand fractions. All images were acquired at a resolution of 0.1875 cm x 0.1875 cm x 0.225 cm. A 1H image of pore water resolved the heterogeneous permeability field; grain size differences as small as 0.1 mm could be distinguished. A time series of 1H images of water doped with the paramagnetic tracer MnCl2 were acquired and used to obtain voxel-scale breakthrough curves. Water preferentially flowed through coarse sands before NAPL release. After NAPL release, the flow bypassed NAPLzones, and bypassing was more evident for high NAPL saturation zones. A time series of 19F images of NAPL were acquired and used to determine voxel-scale NAPL saturation (Sn) during dissolution. Results show that 93% of NAPL mass was in the coarsest sand, most NAPL was trapped as pools and not as residual ganglia, NAPL saturation increased with depth, and the NAPL dissolution front moved vertically from the top to the bottom of the flowcell during the first 170 pore volumes of waterflushed. NAPL component effluent concentrations initially increased due to the development of flow in zones with decreasing NAPL saturation. Flowpath images suggest that this occurs as NAPL transitions from pools (Sn > 0.15) to residual ganglia. The results highlight the importance of flow bypassing and provide the opportunity to develop more accurate NAPL dissolution models.

  19. Femtosecond imaging of nonlinear acoustics in gold.

    PubMed

    Pezeril, Thomas; Klieber, Christoph; Shalagatskyi, Viktor; Vaudel, Gwenaelle; Temnov, Vasily; Schmidt, Oliver G; Makarov, Denys

    2014-02-24

    We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples.

  20. Experimental search for Exact Coherent Structures in turbulent small aspect ratio Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher J.; Krygier, Michael; Grigoriev, Roman O.; Schatz, Michael F.

    2017-11-01

    Recent theoretical and experimental work suggests that the dynamics of turbulent flows are guided by unstable nonchaotic solutions to the Navier-Stokes equations. These solutions, known as exact coherent structures (ECS), play a key role in a fundamentally deterministic description of turbulence. In order to quantitatively demonstrate that actual turbulence in 3D flows is guided by ECS, high resolution, 3D-3C experimental measurements of the velocity need to be compared to solutions from direct numerical simulation of the Navier-Stokes equations. In this talk, we will present experimental measurements of fully time resolved, velocity measurements in a volume of turbulence in a counter-rotating, small aspect ratio Taylor-Couette flow. This work is supported by the Army Research Office (Contract # W911NF-16-1-0281).

  1. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  2. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    NASA Astrophysics Data System (ADS)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  3. Turnover Time

    EPA Science Inventory

    Ecosystems contain energy and materials such as carbon, nitrogen, phosphorus, and water, and are open to their flow-through. Turnover time refers to the amount of time required for replacement by flow-through of the energy or substance of interest contained in the system, and is ...

  4. First photon detection in time-resolved transillumination imaging: a theoretical evaluation.

    PubMed

    Behin-Ain, S; van Doorn, T; Patterson, J R

    2004-09-07

    First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.

  5. Instantaneous 2D Velocity and Temperature Measurements in High Speed Flows Based on Spectrally Resolved Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1995-01-01

    A Rayleigh scattering diagnostic for high speed flows is described for the simultaneous, instantaneous measurement of gas temperature and velocity at a number (up to about one hundred) of locations in a plane illuminated by an injection-seeded, frequency doubled Nd:YAG laser. Molecular Rayleigh scattered light is collected and passed through a planar mirror Fabry-Perot interferometer. The resulting image is analyzed to determine the gas temperature and bulk velocity at each of the regions. The Cramer Rao lower bound for measurement uncertainty is calculated. Experimental data is presented for a free jet and for preliminary measurements in the Lewis 4 inch by 10 inch supersonic wind tunnel.

  6. A Fictitious Domain Method for Resolving the Interaction of Blood Flow with Clot Growth

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Shadden, Shawn

    2016-11-01

    Thrombosis and thrombo-embolism cause a range of diseases including heart attack and stroke. Closer understanding of clot and blood flow mechanics provides valuable insights on the etiology, diagnosis, and treatment of thrombotic diseases. Such mechanics are complicated, however, by the discrete and multi-scale phenomena underlying thrombosis, and the complex interactions of unsteady, pulsatile hemodynamics with a clot of arbitrary shape and microstructure. We have developed a computational technique, based on a fictitious domain based finite element method, to study these interactions. The method can resolve arbitrary clot geometries, and dynamically couple fluid flow with static or growing clot boundaries. Macroscopic thrombus-hemodynamics interactions were investigated within idealized vessel geometries representative of the common carotid artery, with realistic unsteady flow profiles as inputs. The method was also employed successfully to resolve micro-scale interactions using a model driven by in-vivo morphology data. The results provide insights into the flow structures and hemodynamic loading around an arbitrarily grown clot at arterial length-scales, as well as flow and transport within the interstices of platelet aggregates composing the clot. The work was supported by AHA Award No: 16POST27500023.

  7. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  8. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo

    PubMed Central

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J.

    2017-01-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer–Lambert Law. Thus, iNIRS is a promising approach for quantitative and non-invasive monitoring of perfusion and optical properties in vivo. PMID:28146535

  9. Subsurface flows in the seasonally stratified central North Sea : analysis of drifter tracks through observations and modelling

    NASA Astrophysics Data System (ADS)

    Chambers, C.; McCloghrie, P.; Fernand, L.; Brown, J.; Young, E. F.

    2003-04-01

    Holey-sock drifters have been tracked by ARGOS satellite in the Central North Sea during summer-stratified conditions of 1996, 1997, 1999, 2001 and 2002. Drogued at depths of 20-30m, they aim to capture the baroclinic jets set up by isolated cold pool bottom fronts. These cold pools of relict winter water remain through the summer in areas of low tidal energy and are effectively sealed off from overlying waters by a strong thermocline. Observational and modelling studies have identified such dynamics in the basins both north of the Dogger Bank - Fladen Grounds - and south - Oyster Grounds. The drifter tracks used in this study were interpolated and tidally filtered to produce regular time interval drifter positions. By correlation with wind data from the UK Meteorological Office Unified Model output, the locally wind-driven and baroclinic components of the drifters' flow were determined. Following assessments of (1) individual drifter tracks and (2) spatial/temporal segmentation of the collective drifter tracks, a regional and interannual understanding of the area has been built up. Additional observational data (including that gathered with high resolution towed undulating CTD's on a Scanfish) have been used to support and quantify the flows, as has a 3-D density-resolving model based on the Princeton Ocean Model (POM). The drifters have been simulated using a particle-tracking model run on POM's flow field output, simulating the paths of drifters at depth. Through running the two together in various modes, it has been possible to account for certain parts of the drifters' tracks. These results contribute to a previously coarser understanding of North Sea circulation and show the importance of seasonal structure there. They demonstrate that fast baroclinic jets have the potential to transport biological and contaminant matter (e.g., fish larvae/eggs; and nutrients/heavy metals) in different and more organised flow fields than those previously recognised. This understanding is essential to the monitoring and management of such a semi-enclosed and intensively used area as the North Sea.

  10. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  11. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    NASA Astrophysics Data System (ADS)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  12. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  13. Lubricated immersed boundary method in two dimensions

    NASA Astrophysics Data System (ADS)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  14. An improved understanding of the Alaska coastal current: The application of a bivalve growth-temperature model to reconstruct freshwater-influenced paleoenvironments

    USGS Publications Warehouse

    Hallmann, N.; Schone, B.R.; Irvine, G.V.; Burchell, M.; Cokelet, E.D.; Hilton, M.R.

    2011-01-01

    Shells of intertidal bivalve mollusks contain sub-seasonally to interannually resolved records of temperature and salinity variations in coastal settings. Such data are essential to understand changing land-sea interactions through time, specifically atmospheric (precipitation rate, glacial meltwater, river discharge) and oceanographic circulation patterns; however, independent temperature and salinity proxies are currently not available. We established a model for reconstructing daily water temperatures with an average standard error of ???1.3 ??C based on variations in the width of lunar daily growth increments of Saxidomus gigantea from southwestern Alaska, United States. Temperature explains 70% of the variability in shell growth. When used in conjunction with stable oxygen isotope data, this approach can also be used to identify changes in past seawater salinity. This study provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). In combination with ??18Oshell values, increment-derived temperatures were used to estimate salinity changes with an average error of 1.4 ?? 1.1 PSU. Our model was calibrated and tested with modern shells and then applied to archaeological specimens. As derived from the model, the time interval of 988-1447 cal yr BP was characterized by ???1-2 ??C colder and much drier (2-5 PSU) summers. During that time, the ACC was likely flowing much more slowly than at present. In contrast, between 599-1014 cal yr BP, the Aleutian low may have been stronger, which resulted in a 3 ??C temperature decrease during summers and 1-2 PSU fresher conditions than today; the ACC was probably flowing more quickly at that time. The shell growth-temperature model can be used to estimate seasonal to interannual salinity and temperature changes in freshwater-influenced environments through time. ?? 2011 SEPM (Society for Sedimentary Geology).

  15. Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    NASA Astrophysics Data System (ADS)

    Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi

    2017-11-01

    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.

  16. Numerical simulation of circular cylinders in free-fall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    2016-02-01

    In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6- DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1,500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD resultsmore » and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re = 3,900, which tested the influence of the turbulence approach (time-averaging vs eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure the hydraulic conditions occurring in operating hydropower turbines.« less

  17. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.

    PubMed

    Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  18. An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH

    NASA Astrophysics Data System (ADS)

    Lee, D.; Gopal, S.; Mohapatra, P.

    2012-07-01

    We introduce a fully implicit solver for FLASH based on a Jacobian-Free Newton-Krylov (JFNK) approach with an appropriate preconditioner. The main goal of developing this JFNK-type implicit solver is to provide efficient high-order numerical algorithms and methodology for simulating stiff systems of differential equations on large-scale parallel computer architectures. A large number of natural problems in nonlinear physics involve a wide range of spatial and time scales of interest. A system that encompasses such a wide magnitude of scales is described as "stiff." A stiff system can arise in many different fields of physics, including fluid dynamics/aerodynamics, laboratory/space plasma physics, low Mach number flows, reactive flows, radiation hydrodynamics, and geophysical flows. One of the big challenges in solving such a stiff system using current-day computational resources lies in resolving time and length scales varying by several orders of magnitude. We introduce FLASH's preliminary implementation of a time-accurate JFNK-based implicit solver in the framework of FLASH's unsplit hydro solver.

  19. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street

    NASA Astrophysics Data System (ADS)

    Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  20. On turbulence decay of a shear-thinning fluid

    NASA Astrophysics Data System (ADS)

    Rahgozar, S.; Rival, D. E.

    2017-12-01

    An experimental investigation of turbulent flow in a shear-thinning fluid is presented. The experimental flow is a boundary-free, uniformly sheared flow at a relatively high Reynolds number (i.e., Re λmax=275 ), which decays in time. As just one example of decaying turbulence, the experiment can be thought of as a simple model of bulk turbulence in large arteries. The dimensionless parameters used are Reynolds, Strouhal, and Womersley numbers, which have been adapted according to the characteristics of the present experiment. The working fluid is a solution of aqueous 35 ppm xanthan gum, a well-known shear-thinning fluid. The velocity fields are acquired via time-resolved particle image velocimetry in the streamwise/cross-stream and streamwise/spanwise planes. The results show that the presence of xanthan gum not only modifies the turbulent kinetic energy and the dissipation rate but also significantly alters the characteristics of the large-scale eddies.

  1. From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing

    NASA Astrophysics Data System (ADS)

    Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda

    2017-12-01

    Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.

  2. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio

    2016-04-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.

  3. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    PubMed

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  4. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  5. Fluid dynamics of stellar jets in real time: Third Epoch Hubble Space Telescope images of HH 1, HH 34, AND HH 47

    DOE PAGES

    Hartigan, P.; Frank, A.; Foster, J. M.; ...

    2011-07-01

    We present new, third-epoch Hubble Space Telescope Hα and [S II] images of three Herbig-Haro (HH) jets (HH 1&2, HH 34, and HH 47) and compare the new images with those from previous epochs. The high spatial resolution, coupled with a time series whose cadence is of order both the hydrodynamic and radiative cooling timescales of the flow, allows us to follow the hydrodynamic/magnetohydrodynamic evolution of an astrophysical plasma system in which ionization and radiative cooling play significant roles. Cooling zones behind the shocks are resolved, so it is possible to identify which way material flows through a given shockmore » wave. The images show that heterogeneity is paramount in these jets, with clumps dominating the morphologies of both bow shocks and their Mach disks. This clumpiness exists on scales smaller than the jet widths and determines the behavior of many of the features in the jets. Evidence also exists for considerable shear as jets interact with their surrounding molecular clouds, and in several cases we observe shock waves as they form and fade where material emerges from the source and as it proceeds along the beam of the jet. Fine structure within two extended bow shocks may result from Mach stems that form at the intersection points of oblique shocks within these clumpy objects. Taken altogether, these observations represent the most significant foray thus far into the time domain for stellar jets, and comprise one of the richest data sets in existence for comparing the behavior of a complex astrophysical plasma flow with numerical simulations and laboratory experiments.« less

  6. Higher-order force moments of active particles

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2018-04-01

    Active particles moving through fluids generate disturbance flows due to their activity. For simplicity, the induced flow field is often modeled by the leading terms in a far-field approximation of the Stokes equations, whose coefficients are the force, torque, and stresslet (zeroth- and first-order force moments) of the active particle. This level of approximation is quite useful, but may also fail to predict more complex behaviors that are observed experimentally. In this study, to provide a better approximation, we evaluate the contribution of the second-order force moments to the flow field and, by reciprocal theorem, present explicit formulas for the stresslet dipole, rotlet dipole, and potential dipole for an arbitrarily shaped active particle. As examples of this method, we derive modified Faxén laws for active spherical particles and resolve higher-order moments for active rod-like particles.

  7. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  8. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  9. Electroosmotic flow hysteresis for dissimilar ionic solutions

    PubMed Central

    Lim, An Eng; Lam, Yee Cheong

    2015-01-01

    Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139

  10. Resolved granular debris-flow simulations with a coupled SPH-DCDEM model

    NASA Astrophysics Data System (ADS)

    Birjukovs Canelas, Ricardo; Domínguez, José M.; Crespo, Alejandro J. C.; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2016-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research (Takahashi, 2007 and references therein). A complete description of the internal processes of a debris-flow is however still an elusive achievement, explained by the difficulty of accurately measuring important quantities in these flows and developing a comprehensive, generalized theoretical framework capable of describing them. This work addresses the need for a numerical model applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts. This corresponds to a brute-force approach: by applying simple interaction laws at local scales the macro-scale properties of the flow should be recovered by upscaling. This methodology effectively bypasses the complexity of modelling the intermediate scales by resolving them directly. The only caveat is the need of high performance computing, a demanding but engaging research challenge. The DualSPHysics meshless numerical implementation, based on Smoothed Particle Hydrodynamics (SPH), is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The model numerically solves the Navier-Stokes and continuity equations for the liquid phase and Newton's motion equations for solid bodies. The interactions between solids are modelled with classical DEM approaches (Kruggel-Emden et al, 2007). Among other validation tests, an experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced trough a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle undergoing tens of possible contacts, several thousand time-evolving contacts are efficiently treated. Fully periodic boundary conditions allow for the recirculation of the material. The results, comprising mainly of retention curves, are in good agreement with the measurements, correctly reproducing the changes in efficiency with slit spacing and effective density. Ackownledgements: Project RECI/ECM-HID/0371/2012, funded by the Portuguese Foundation for Science and Technology (FCT), has partially supported this work. It was also partially funded by Xunta de Galicia under project Programa de Consolidacion e Estructuracion de Unidades de Investigacion Competitivas (Grupos de Referencia Competitiva), financed by European Regional Development Fund (FEDER) and by Ministerio de Economia y Competitividad under de Project BIA2012-38676-C03-03. References Takahashi, T. Debris Flow, Mechanics, Prediction and Countermeasures. Taylor and Francis, 2007 Kruggel-Emden, H.; Simsek, E.; Rickelt, S.; Wirtz, S. & Scherer, V. Review and extension of normal force models for the Discrete Element Method. Powder Technology , 2007, 171, 157 - 173

  11. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  12. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    NASA Astrophysics Data System (ADS)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  13. Non-radiative relaxation dynamics of pyrrole following excitation in the range 249.5-200 nm

    NASA Astrophysics Data System (ADS)

    Kirkby, Oliver M.; Parkes, Michael A.; Neville, Simon P.; Worth, Graham A.; Fielding, Helen H.

    2017-09-01

    The non-radiative relaxation dynamics of pyrrole have been investigated using time-resolved photoelectron spectroscopy and quantum dynamics simulations. Following excitation of the A2 (11 πσ∗) state, we observe population flow out of the Franck-Condon region on a ≲ 50 fs timescale. Following excitation of the B2 (21 ππ∗) state, we observe population being transferred to the A2 (11 πσ∗) state on a <50 fs timescale and subsequently out of the Franck-Condon region, also on a <50 fs timescale. Quantum dynamics calculations suggest that population is transferred from the B2 (21 ππ∗) state through the A2 (1 π 3pz) state to the B1 (21 πσ∗) state before being transferred to the A2 (11 πσ∗) state.

  14. New analytical spiral tube assembly for separation of proteins by counter-current chromatography.

    PubMed

    Ma, Xiaofeng; Ito, Yoichiro

    2015-07-31

    A new spiral column assembly for analytical separation by counter-current chromatography is described. The column is made from a plastic spiral tube support which has 12 interwoven spiral grooves. The PTFE tubing of 1.6mm ID was first flattened by extruding through a narrow slit and inserted into the grooves to make 5 spiral layers with about 60ml capacity. The performance of the spiral column assembly was tested with separation of three stable protein samples including cytochrome C, myoglobin and lysozyme in a polymer phase system composed of polyethylene glycol 1000 and dibasic potassium phosphate each at 12.5% (w/w) in water. At 2ml/min, three protein samples were well resolved in 1h. The separation time may be further shortened by application of higher revolution speed and flow rate by improving the strength of the spiral tube support in the future. Published by Elsevier B.V.

  15. Resolvent analysis of exact coherent solutions

    NASA Astrophysics Data System (ADS)

    Rosenberg, Kevin; McKeon, Beverley

    2017-11-01

    Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.

  16. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  17. High-resolution time-resolved experiments on mixing and entrainment of buoyant jets in stratified environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manera, Annalisa; Bardet, Philippe; Petrov, Victor

    Fluid jets interacting with a stratified layer play an important role in the safety of several reactor designs. In the containment of nuclear power plants, fluid jets dominate the transport and mixing of gaseous species and consequent hydrogen distribution in case of a severe accident. The mixing phenomena in the containment are driven by buoyant high-momentum injections (jets) and low momentum injection plumes. Mixing near the postulated break is initially dominated by high flow velocities. Plumes with moderate flow velocities are instead relevant in the break compartment during the long-term pressurization phase, or in any of the apertures between twomore » connected compartments if the mass flows are sufficiently high and the density differences between efflux and ambient are sufficiently low. Phenomena of interest include free plumes (as produced by the efflux from the break compartment in a larger room or directly from a break flow), wall plumes (such those produced by low mass flows through inter-compartment apertures), and propagating stratification fronts in the ambient (for any stably stratified conditions). These phenomena have been highly ranked about nuclear reactor design, especially regarding of safety protocols. During a Pressurized Thermal Shock (PTS) scenario, the interaction between the cold ECCS injection plume and the stratified fluid present in the cold (or hot) leg is important in order to determine the temperature at the time-dependent temperature at the inlet of the reactor pressure vessel (RPV) and the potential to cause a thermal shock on the RPV wall. In sodium-cooled fast reactors (SFRs), core channels are typically hydro-dynamically isolated so that there exists a considerable temperature variation at the exit of adjacent fuel assemblies. All the above phenomena are characterized by the interaction of buoyant jets with the stratified flow. In stratified layers baroclinic forces create significant redistribution of turbulent kinetic energy and scales, which leads to anisotropy. This important physical phenomenon is highly three dimensional and is challenging to capture even with high-fidelity CFD simulations, due in part to lack of sufficiently resolved validation data. Furthermore, the experimental data available in the open literature do not feature the level of fidelity needed for an extensive validation of turbulence models in lower order CFD. To shed new lights into the crucial phenomena object of the present research project, it was proposed to conduct coordinated experiments and simulations at the University of Michigan and the George Washington University. The project has resulted in an experimental database of high-resolution time-resolved measurements of jets in uniform and stratified environments. The novel experimental data will be used to validate computational fluid dynamic (CFD) codes, including both Large Eddy Simulations (LES) and unsteady Reynolds-averaged Navier-Stokes equations (URANS) methodologies. In the Experimental and Multiphase flow (ECMF) laboratory at Univerisity of Michigan, we built two experimental facilities to investigate also the effect of scaling. The first facility, DESTROJER (DEnsity Stratified Turbulent ROund free Jet ExpeRiment), featuring a contoured jet nozzle with a diameter of D=12.7mm and a 1m×1m×1m cubic tank, which is made of acrylic glass for optical access. The ratio between the tank width and the nozzle diameter is equal to 78, which ensures that there is no direct interaction between the jet and the side walls. A second, modular experimental facility, features three different tank sizes of size 10×10×30, 20×20×30, 30×30×30 cm3 respectively (all tanks have the same height of 30 cm), and a jet diameter of 2mm. For the modular facility, tank-to-nozzle ratio of 50, 100, and 150 are obtained respectively. Experiments with different-density jet impactions and sharp interface with a density difference of 3.16% In the Laboratory at George Washington University, complementary experiments have been carried out at a facility featuring the same dimensions as DESTROYER. Experiments with different jet diameters have been carried out as well. High-resolution time-resolved measurements have been performed at all facilities using high-speed particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF). In this way, simultaneous measurements of velocity and density fields have been carried out. At the University of Michigan, wire-mesh sensors have been designed and built to gather high-resolution, time-dependent data of the stratified front in the tank. These measurements are important to provide accurate initial conditions for the CFD simulations. An important outcome of the project has been the development of novel techniques to achieve refractive index matching (RIM) of acqueous solutions with high density differences. RIM is crucial if optical techniques such as PIV are used to measure velocity fields. Previous to this project, experiments up to 3% density difference had been reported in the literature. With the methodology developed in this project, we have been able to push the envelop to density differences up to 9%. The experiments have been used to validate Reynolds Averaged Navier-Stokes (RANS) turbulence models and Large Eddy Simulations (LES) models. Both NEK5000 and the commercial CFD code STAR-CCM+ have been used. The experimental data will be made available to the community through the NE-KAMS databasehave been successfully conducted in the scaled facility.« less

  18. Investigation of metastable production in a closed-cell dielectric capillary variable pressure He plasma jet with Ar admixture

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Ganguly, Biswa

    2011-10-01

    For plasma processing applications of streamer-like atmospheric pressure plasma jets generated in a dielectric capillary, we have demonstrated that an admixture of Ar to the He gas flow greatly increases the lifetime of energetic species in the core flow through enhanced afterglow production of Ar 1s5 metastable species. To study this effect in more detail, we have used a closed-cell plasma jet that allows control over the background gas pressure and composition. We used a 20 ns risetime positive unipolar voltage pulse for excitation. A He flow with a 0-30% Ar admixture was studied using time-resolved emission and tunable diode laser absorption spectroscopy of the Ar 1s5 and He 23S metastable states. Nitrogen was used as the background gas. In pure He and pure Ar gases the He and Ar metastables respectively are produced in the first ~100 ns only in the active discharge. With Ar added to the He gas flow, He metastables produced in the active discharge are quickly quenched via Penning ionization of Ar while Ar 1s5 is enhanced over 1-2 μs in the afterglow, increasing the number density as high as 1013/cc and extending the effective lifetime up to 10 μs. This implies that He heavy particle kinetics are a key driver of enhanced afterglow plasma chemistry in plasma jets with rare gas mixtures.

  19. Three-dimensional vortex patterns in a starting flow

    NASA Astrophysics Data System (ADS)

    Freymuth, P.; Finaish, F.; Bank, W.

    1985-12-01

    Freymuth et al. (1983, 1984, 1985) have conducted investigations involving chordwise vortical-pattern visualizations in a starting flow of constant acceleration around an airfoil. Detailed resolution of vortical shapes in two dimensions could be obtained. No visualization in the third spanwise dimension is needed as long as the flow remains two-dimensional. However, some time after flow startup, chordwise vortical patterns become blurred, indicating the onset of turbulence. The present investigation is concerned with an extension of the flow visualization from a chordwise cross section to the spanwise dimension. The investigation has the objective to look into the two-dimensionality of the initial vortical developments and to resolve three-dimensional effects during the transition to turbulence. Attention is given to the visualization method, the chordwise vs spanwise visualization in the two-dimensional regime, the spanwise visualization of transition, and the visualization of vortical patterns behind the trailing edge.

  20. Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors

    PubMed Central

    Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Lai, Ming-chia D.; Wang, Jin

    2013-01-01

    Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. PMID:23797665

  1. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2012-12-01

    Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.

  2. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    DOEpatents

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  3. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    PubMed

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  4. Numerical and Experimental Modeling of the Recirculating Melt Flow Inside an Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Asad, Amjad; Bauer, Katrin; Chattopadhyay, Kinnor; Schwarze, Rüdiger

    2018-06-01

    In the paper, a new water model of the turbulent recirculating flow in an induction furnace is introduced. The water model was based on the principle of the stirred vessel used in process engineering. The flow field in the water model was measured by means of particle image velocimetry in order to verify the model's performance. Here, it is indicated that the flow consists of two toroidal vortices similar to the flow in the induction crucible furnace. Furthermore, the turbulent flow in the water model is investigated numerically by adopting eddy-resolving turbulence modeling. The two toroidal vortices occur in the simulations as well. The numerical approaches provide identical time-averaged flow patterns. Moreover, a good qualitative agreement is observed on comparing the experimental and numerical results. In addition, a numerical simulation of the melt flow in a real induction crucible furnace was performed. The turbulent kinetic energy spectrum of the flow in the water model was compared to that of the melt flow in the induction crucible furnace to show the similarity in the nature of turbulence.

  5. Modeling contrast agent flow in cerebral aneurysms: comparison of CFD with medical imaging

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Vali, Alireza; Sigovan, Monica; Lawton, Michael; Saloner, David; Boussel, Loic

    2016-11-01

    PURPOSE: The flow in cerebral aneurysms is routinely assessed with X-ray angiography, an imaging technique based on a contrast agent injection. In addition to requiring a patient's catheterization and radiation exposure, the X-ray angiography may inaccurately estimate the flow residence time, as the injection alters the native blood flow patterns. Numerical modeling of the contrast transport based on MRI imaging, provides a non-invasive alternative for the flow diagnostics. METHODS: The flow in 3 cerebral aneurysms was measured in vivo with 4D PC-MRI, which provides time-resolved, 3D velocity field. The measured velocities were used to simulate a contrast agent transport by solving the advection-diffusion equation. In addition, the flow in the same patient-specific geometries was simulated with CFD and the velocities obtained from the Navier-Stokes solution were used to model the transport of a virtual contrast. RESULTS: Contrast filling and washout patterns obtained in simulations based on MRI-measured velocities were in agreement with those obtained using the Navier-Stokes solution. Some discrepancies were observed in comparison to the X-ray angiography data, as numerical modeling of the contrast transport is based on the native blood flow unaffected by the contrast injection. NIH HL115267.

  6. Comparison of PIV with 4D-Flow in a physiological accurate flow phantom

    NASA Astrophysics Data System (ADS)

    Sansom, Kurt; Balu, Niranjan; Liu, Haining; Aliseda, Alberto; Yuan, Chun; Canton, Maria De Gador

    2016-11-01

    Validation of 4D MRI flow sequences with planar particle image velocimetry (PIV) is performed in a physiologically-accurate flow phantom. A patient-specific phantom of a carotid artery is connected to a pulsatile flow loop to simulate the 3D unsteady flow in the cardiovascular anatomy. Cardiac-cycle synchronized MRI provides time-resolved 3D blood velocity measurements in clinical tool that is promising but lacks a robust validation framework. PIV at three different Reynolds numbers (540, 680, and 815, chosen based on +/- 20 % of the average velocity from the patient-specific CCA waveform) and four different Womersley numbers (3.30, 3.68, 4.03, and 4.35, chosen to reflect a physiological range of heart rates) are compared to 4D-MRI measurements. An accuracy assessment of raw velocity measurements and a comparison of estimated and measureable flow parameters such as wall shear stress, fluctuating velocity rms, and Lagrangian particle residence time, will be presented, with justification for their biomechanics relevance to the pathophysiology of arterial disease: atherosclerosis and intimal hyperplasia. Lastly, the framework is applied to a new 4D-Flow MRI sequence and post processing techniques to provide a quantitative assessment with the benchmarked data. Department of Education GAANN Fellowship.

  7. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    PubMed Central

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  8. Combustion Diagnostics and Flow Visualization of Hypergolic Combustion and Gelled Mixing Behavior

    DTIC Science & Technology

    1997-12-19

    difference. Also, Exciplex Flourescence imaging has been implented to visualize diffusion layers which form at the contact interface of mixing...have been implemented and developed as a result of this effort. Among these techniques the most noteworthy involves a unique application of Exciplex ...fluorescence for visualization of diffusion layers formed between mixing liquids. Time resolved images of Exciplex fluorescence have been obtained

  9. Scintigraphy for Pulmonary Capillary Protein Leak

    DTIC Science & Technology

    1983-09-01

    In previous canine oleic acid studies, we have found that the SI was proportional to the severity of injury and was more sensitive than either...compared favorably to wet to dry lung weight ratios, alveolar epithelial membrane permeability, canine lymph flow, standard radiography and light...following lymph duct cannulation to determine if the pulmonary injury will resolve with time. 2. Canine Studies Dogs weighing approximately 20 kg, were

  10. Pairing top-down and bottom-up approaches to analyze catchment scale management of water quality and quantity

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Band, L. E.

    2016-12-01

    Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.

  11. Three-dimensional shape perception from chromatic orientation flows

    PubMed Central

    Zaidi, Qasim; Li, Andrea

    2010-01-01

    The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963

  12. An assessment of the stationarity of climate and stream flow in watersheds of the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin W.; Ellis, Andrew W.

    2014-02-01

    Several studies drawing upon general circulation models have investigated the potential impacts of future climate change on precipitation and runoff to stream flow in the southwest United States, suggesting reduced runoff in response to increasing temperatures and less precipitation. With the hydroclimatic changes considered to be underway, water management professionals have been counseled to abandon historical assumptions of stationarity in the natural systems governing surface water replenishments. Stationarity is predicated upon an assumption that the generating process is in equilibrium around an underlying mean and that variance remains constant over time. The implications of a more arid future are significant for surface water resources in the semi-arid Colorado River Basin (CRB). To examine the evidence of forthcoming change, eight sub-basins were identified for this study having unregulated runoff to stream flow gages, providing a 22% spatial sampling of the CRB. Their long-term record of surface temperature and precipitation along with corresponding gage records were evaluated with time series analysis methods and testing criteria established per statistical definitions of stationarity. Statistically significant temperature increases in all sub-basins were found, with persistently non-stationary time series in the recent record relative to the earlier historical record. However, tests of precipitation and runoff did not reveal persistent reductions, indicating that they remain stationary processes. Their transitions through periods of drought and excess have been characterized, with precipitation and stream flows found to be currently close to their long-term average. The evidence also indicates that resolving precipitation and runoff trends amidst natural modes of variability will be challenging and unlikely within the next several decades. Abandonment of stationarity assumptions for the CRB is not necessarily supported by the evidence, making it premature to discard its historical record as an instrument by which to assess sustainability of water resource systems.

  13. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar

    2018-05-01

    Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.

  14. The space-time solution element method: A new numerical approach for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1995-01-01

    This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.

  15. Experimental Investigation of Reynolds Number Effects on Test Quality in a Hypersonic Expansion Tube

    NASA Astrophysics Data System (ADS)

    Rossmann, Tobias; Devin, Alyssa; Shi, Wen; Verhoog, Charles

    2017-11-01

    Reynolds number effects on test time and the temporal and spatial flow quality in a hypersonic expansion tube are explored using high-speed pressure, infrared optical, and Schlieren imaging measurements. Boundary layer models for shock tube flows are fairly well established to assist in the determination of test time and flow dimensions at typical high enthalpy test conditions. However, the application of these models needs to be more fully explored due to the unsteady expansion of turbulent boundary layers and contact regions separating dissimilar gasses present in expansion tube flows. Additionally, expansion tubes rely on the development of a steady jet with a large enough core-flow region at the exit of the acceleration tube to create a constant velocity region inside of the test section. High-speed measurements of pressure and Mach number at several locations within the expansion tube allow for the determination of an experimental x-t diagram. The comparison of the experimentally determined x-t diagram to theoretical highlights the Reynolds number dependent effects on expansion tube. Additionally, spatially resolved measurements of the Reynolds number dependent, steady core-flow in the expansion tube viewing section are shown. NSF MRI CBET #1531475, Lafayette College, McCutcheon Foundation.

  16. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    NASA Astrophysics Data System (ADS)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  17. Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck

    2016-11-01

    Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.

  18. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Michaelis, D.; van Oudheusden, B. W.; Weiss, P.-É.; de Kat, R.; Laskari, A.; Jeon, Y. J.; David, L.; Schanz, D.; Huhn, F.; Gesemann, S.; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, D. E.; Schneiders, J. F. G.; Schrijer, F. F. J.

    2017-04-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as continuous time-resolved data which can realistically only be obtained for low-speed flows. Particle images were processed using tomographic PIV processing as well as the LPT algorithm `Shake-The-Box' (STB). Multiple pressure field reconstruction techniques have subsequently been applied to the PIV results (Eulerian approach, iterative least-square pseudo-tracking, Taylor's hypothesis approach, and instantaneous Vortex-in-Cell) and LPT results (FlowFit, Vortex-in-Cell-plus, Voronoi-based pressure evaluation, and iterative least-square pseudo-tracking). All methods were able to reconstruct the main features of the instantaneous pressure fields, including methods that reconstruct pressure from a single PIV velocity snapshot. Highly accurate reconstructed pressure fields could be obtained using LPT approaches in combination with more advanced techniques. In general, the use of longer series of time-resolved input data, when available, allows more accurate pressure field reconstruction. Noise in the input data typically reduces the accuracy of the reconstructed pressure fields, but none of the techniques proved to be critically sensitive to the amount of noise added in the present test case.

  19. Comparison of linear and nonlinear models for coherent hemodynamics spectroscopy (CHS)

    NASA Astrophysics Data System (ADS)

    Sassaroli, Angelo; Kainerstorfer, Jana; Fantini, Sergio

    2015-03-01

    A recently proposed linear time-invariant hemodynamic model for coherent hemodynamics spectroscopy1 (CHS) relates the tissue concentrations of oxy- and deoxy-hemoglobin (outputs of the system) to given dynamics of the tissue blood volume, blood flow and rate constant of oxygen diffusion (inputs of the system). This linear model was derived in the limit of "small" perturbations in blood flow velocity. We have extended this model to a more general model (which will be referred to as the nonlinear extension to the original model) that yields the time-dependent changes of oxy and deoxy-hemoglobin concentrations in response to arbitrary dynamic changes in capillary blood flow velocity. The nonlinear extension to the model relies on a general solution of the partial differential equation that governs the spatio-temporal behavior of oxygen saturation of hemoglobin in capillaries and venules on the basis of dynamic (or time resolved) blood transit time. We show preliminary results where the CHS spectra obtained from the linear and nonlinear models are compared to quantify the limits of applicability of the linear model.

  20. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-02

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

Top