Sample records for flowable composite resin

  1. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    PubMed

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C

    2012-01-01

    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P < 0.05). Among the high viscosity composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  2. Depth of Cure of New Flowable Composite Resins

    DTIC Science & Technology

    2012-03-30

    Flowable composites were introduced to the dental community in the late 1990’s (Ikeda, 2009; Bayne, 1998). The advantage of flowable composite-based...Depth of Cure of New Flowable Composite Resins A THESIS Presented to the Faculty of The Air Force Postgraduate Dental School...SCIENCE In Oral Biology By Inaam A. Pedalino, BS, DDS Dunn Dental Clinic Lackland AFB, TX 30 March 2012 Depth of Cure of New

  3. The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations.

    PubMed

    Belli, S; Inokoshi, S; Ozer, F; Pereira, P N; Ogata, M; Tagami, J

    2001-01-01

    This in vitro study evaluated the interfacial integrity of Class II resin composite restorations. The influence of a flowable composite and additional enamel etching was also evaluated. Deep, saucer-shaped Class II cavities were prepared in the mesial and distal proximal surfaces of 25 extracted human molars and assigned to five treatment groups. The gingival margins were extended to approximately 1 mm above the CEJ in 40 cavities and below the CEJ in 10 cavities. The prepared cavities were then restored with a self-etching primer system (Clearfil Liner Bond II) and a hybrid resin composite (Clearfil AP-X), with and without a flowable composite (Protect Liner F) and additional enamel etching with 37% phosphoric acid gel (K-etchant). After finishing, polishing and thermocycling (4 and 60 degrees C, x300), the samples were longitudinally sectioned through the restorations and resin-tooth interfaces were observed directly under a laser scanning microscope. Statistical analysis indicated that the use of a flowable composite produced significantly more (p = 0.04) gap-free resin-dentin interfaces than teeth restored without the flowable composite. However, both flowable composite and enamel etching could not prevent gap formation at enamel-resin interfaces and crack formation on enamel walls.

  4. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    PubMed

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  5. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite

    PubMed Central

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    Summary Aim To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Methods Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). Results No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. Conclusions No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations. PMID:27486505

  6. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    PubMed

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  7. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions.

    PubMed

    Sumino, Natsu; Tsubota, Keishi; Takamizawa, Toshiki; Shiratsuchi, Koji; Miyazaki, Masashi; Latta, Mark A

    2013-01-01

    To determine the localized wear and flexural properties of flowable resin composites for posterior lesions compared with universal resin composites produced by the same manufacturers. Ten specimens of each of three flowable resins, G-ænial Universal Flo, G-ænial Flo and Clearfil Majesty Flow, and the corresponding resin composite materials, Kalore and Clearfil Majesty Esthetics, were prepared in custom fixtures and subjected to 400,000 wear machine cycles to simulate localized wear. The total maximum depth and volume loss of the wear facets was calculated for each specimen using a profilometer. A three-point bending test was performed to determine the flexural strength, modulus of elasticity and resilience. Values were statistically compared using one-way analysis of variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) test. The wear depth ranged from 58.3-126.9 m and the volumetric loss ranged from 0.019-0.049 mm(3), with significant differences observed between restorative materials. The wear depth of G-ænial Universal Flo was significantly smaller than those of the other resin composites tested. The flexural strengths and elastic modulus ranged from 90.5-135.1 MPa and from 4.7-7.6 GPa, respectively. A significantly greater flexural strength and higher elastic modulus was found for G-ænial Universal Flo than the other composites. The wear and mechanical properties of the flowable resin composites tested suggested improved performance compared with universal resin composites.

  8. Repair of bis-acryl provisional restorations using flowable composite resin.

    PubMed

    Bohnenkamp, David M; Garcia, Lily T

    2004-11-01

    Provisional restorations provide interim coverage for prepared teeth while fixed definitive restorations are fabricated. Several types of autopolymerizing acrylic resins have been used for many years to fabricate provisional restorations. In recent years, bis-acryl resin composite material has gained popularity among clinicians for the direct fabrication of provisional fixed restorations. Occasionally, deficiencies may occur while fabricating a direct provisional restoration and require chairside repair. This article describes an effective procedure for the use of light-polymerized flowable composite resin for the intraoral repair of bis-acryl provisional restorations.

  9. Evaluation of Four Different Restorative Materials for Restoration of the Periodontal Condition of Wedge-Shaped Defect: A Comparative Study.

    PubMed

    Ruan, Jian-Yong; Gong, Zheng-Lin; Zhang, Rui-Zhi; Zhang, Zhe; Xu, Ran; Li, Da-Xu; Ren, Le; Tao, Hong

    2017-09-16

    BACKGROUND This study aimed to conduct a clinical evaluation of four restorative materials for restoration of dental wedge-shaped defect (WSD) and their impacts on periodontal tissues. MATERIAL AND METHODS A total of 280 maxillary premolars with dental WSD were selected from 106 patients; the patient cases were divided into eight groups according to different combinations of restorative materials (flowable resin composites, Dyract compomers, glass ionomer cement (GIC), light-curing composite resin), and WSD positions (approaching gingival and subgingival positions). Gingival crevicular fluid (GCF) volume, levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), and interleukin-1β (IL-1β) in GCF were analyzed, while probing depth (PD), plaque index (PLI), and sulcus bleeding index (SBI) were also measured. The periodontal conditions of all patients were followed prior to restoration, as well as six months and 12 months after restoration. RESULTS After six months of restoration, the overall clinical success rates of flowable resin composites, Dyract compomers, and light-curing composite resin were greater than those of GIC. GCF volume, GCF-AST, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. After 12 months of restoration, the overall clinical success rates of flowable resin composites and Dyract compomers were greater than those of light-curing composite resin and GIC. GCF volume, GCF-AST, GCF-ALP, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. CONCLUSIONS Our study provided evidence that the clinical efficacy of flowable resin composites, Dyract compomers, and light-curing composite resin was greater than that of GIC for restoration of dental WSD.

  10. Evaluation of Four Different Restorative Materials for Restoration of the Periodontal Condition of Wedge-Shaped Defect: A Comparative Study

    PubMed Central

    Ruan, Jian-Yong; Gong, Zheng-Lin; Zhang, Rui-Zhi; Zhang, Zhe; Xu, Ran; Li, Da-Xu; Ren, Le; Tao, Hong

    2017-01-01

    Background This study aimed to conduct a clinical evaluation of four restorative materials for restoration of dental wedge-shaped defect (WSD) and their impacts on periodontal tissues. Material/Methods A total of 280 maxillary premolars with dental WSD were selected from 106 patients; the patient cases were divided into eight groups according to different combinations of restorative materials (flowable resin composites, Dyract compomers, glass ionomer cement (GIC), light-curing composite resin), and WSD positions (approaching gingival and subgingival positions). Gingival crevicular fluid (GCF) volume, levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), and interleukin-1β (IL-1β) in GCF were analyzed, while probing depth (PD), plaque index (PLI), and sulcus bleeding index (SBI) were also measured. The periodontal conditions of all patients were followed prior to restoration, as well as six months and 12 months after restoration. Results After six months of restoration, the overall clinical success rates of flowable resin composites, Dyract compomers, and light-curing composite resin were greater than those of GIC. GCF volume, GCF-AST, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. After 12 months of restoration, the overall clinical success rates of flowable resin composites and Dyract compomers were greater than those of light-curing composite resin and GIC. GCF volume, GCF-AST, GCF-ALP, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. Conclusions Our study provided evidence that the clinical efficacy of flowable resin composites, Dyract compomers, and light-curing composite resin was greater than that of GIC for restoration of dental WSD. PMID:28917087

  11. Seventeen Years of Using Flowable Resin Restoratives--A Dental Practitioner's Personal Clinical Review.

    PubMed

    Firla, Markus Th

    2015-04-01

    Seen through the author's eyes on the basis of his practising dentistry for almost three decades, light-activated flowable resin restoratives (FRCs) or, in common clinical dental terminology, flowable composites have gradually gained major importance in restorative dentistry. Inputs to this ongoing trend are coming from continuous improvements in material properties and the favourable handling characteristics experienced with this particular group of restoratives. Intended to be used in direct adhesive filling procedures, the number and variety of recent generations of flowable composites for lining, restoration of all cavity classes (I-V), core build-ups and, more recently, 'bulk-fill-restorations', however, necessitates a profound clinical understanding of the selective use of flowable composites to ensure clinical success and guarantee long-term high quality results. Clinical relevance: Today's flowable composites allow for reliable restoration of all kinds of defects. However, both the handling characteristics and the material properties of FRCs must be fully understood before taking advantage of their potentially excellent clinical performance.

  12. Fissure sealant materials: Wear resistance of flowable composite resins.

    PubMed

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  13. Fissure sealant materials: Wear resistance of flowable composite resins

    PubMed Central

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  14. Depth of cure of bulk-fill flowable composite resins.

    PubMed

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  15. Evaluation of the polymerization shrinkage of experimental flowable composite resins through optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; Cajazeira, Marlus R. R.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    This study evaluated the polymerization shrinkage of two experimental flowable composite resins (CR) with different proportions of Urethane dimethacrylate (UDMA)/triethylene glycol dimethacrylate (TEGDMA) monomers in the organic matrix (50:50 and 60:40, respectively). A commercially available flowable CR, Tetric N-Flow (Ivoclair Vivadent, Liechtenstein, Germany), was employed as the control group. The resins were inserted in a cylindrical teflon mold (7 mm diameter, 0.6 mm height) and scanned with OCT before photoactivation, immediately after and 15 minutes after light-curing (Radii-Cal, SDI, Australia, 1,200 mW/cm2 ) exposure. A Callisto SD-OCT system (Thorlabs Inc, USA), operating at 930 nm central wavelength was employed for imaging acquisition. Cross-sectional OCT images were captured with 8 mm transverse scanning (2000x512 matrix), and processed by the ImageJ software, for comparison between the scanning times and between groups. Pearson correlation showed significant shrinkage for all groups in each time analyzed. Kruskal-Wallis test showed greater polymerization shrinkage for the 50:50 UDMA/TEGDMA group (p=0.001), followed by the control group (p=0.018). TEGDMA concentration was proportionally related to the polymerization shrinkage of the flowable composite resins.

  16. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Yadav, Suman; Yadav, Harish

    2014-05-01

    The purpose of the present study was to comparatively evaluate the effect of flowable composite resin liner and resin modified glass ionomer liner on gingival marginal adaptation of class II cavities restored using three bonding agents (Single Bond 3M ESPE, One Coat Self Etching Bond Coltene Whaledent; Adper Easy Bond Self-Etch Adhesive 3M ESPE) and respective composite resins, under cyclic loading. The marginal adaptation was evaluated in terms of 'continuous margin' (CM) at the gingival margin. Ninety class II cavities with margins extending 1mm below the cement-enamel junction were prepared in extracted mandibular third molars. The samples were divided into three groups: no liner placement; 0.5-1mm thick flowable resin liner placement (Filtek Z350 XT flowable resin) on gingival floor and; light cure glass ionomer (Ketac N100) liner. The groups were further subdivided into three sub-groups on the basis of the bonding agents used. Cavities were restored with composite resins (Z350 for Single Bond and Adper Easy Bond; and Synergy D6 Universal, for One Coat Self Etching Bond) in 2mm increments and the samples were mechanically loaded (60N, 1,50,000 cycles). Marginal adaptation was evaluated using a low vacuum scanning electron microscope. Statistical analysis was done with two way ANOVA with Holm-Sidak's correction for multiple comparisons. Placement of flowable composite liner significantly improved the CM values of Single Bond (78±11%) and One Coat Self Etching Bond (77±9%) compared with no liner group, but the values of CM of Adper Easy Bond were not improved (61±12%). Placement of glass ionomer liner significantly improved the values of CM in all the sub-groups (78±9%, 72±10% and 77±10% for Single Bond, One Coat Self Etching Bond & Adper Easy Bond respectively) compared with no liner group. Placement of liners improved the values of 'continuous margin' in the gingival floor of the proximal cavities restored with composite resins using different bonding agent. Placement of flowable composite liner or glass ionomer liner will improve the marginal integrity of composite restorations using etch-and-rinse and two bottle-two step self etch adhesives. To improve the marginal integrity of a single bottle adhesive, glass ionomer liner should be applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Flowable Resin Composites: A Systematic Review and Clinical Considerations

    PubMed Central

    Rodrigues, Jean C.

    2015-01-01

    Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238

  18. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  19. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  20. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    PubMed

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  1. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles.

    PubMed

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-11-01

    Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal-Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates.

  2. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin

    PubMed Central

    Kattan, Hiba; Chatzistavrou, Xanthippi; Boynton, James; Dennison, Joseph; Yaman, Peter; Papagerakis, Petros

    2015-01-01

    The aim of this work was to study the physical and antibacterial properties of a flowable resin composite incorporating a sol-gel derived silver doped bioactive glass (Ag-BGCOMP). The depth of the cure was calculated by measuring the surface micro-hardness for the top and bottom surfaces. The volumetric polymerization shrinkage was measured by recording the linear shrinkage as change in length, while the biaxial flexural strength was studied measuring the load at failure. The antibacterial properties of the samples were tested against Streptococcus mutans (S. mutans) and Lactobacillus casei (L. casei). The measured values were slightly decreased for all tested physical properties compared to those of control group (flowable resin composite without Ag-BG), however enhanced bacteria inhibition was observed for Ag-BGCOMP. Ag-BGCOMP could find an application in low stress-bearing areas as well as in small cavity preparations to decrease secondary caries. This work provides a good foundation for future studies on evaluating the effects of Ag-BG addition into packable composites for applications in larger cavity preparations where enhanced mechanical properties are needed. PMID:28793463

  3. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    PubMed

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  4. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    PubMed

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  5. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.

    PubMed

    Beun, Sébastien; Bailly, Christian; Dabin, Anne; Vreven, José; Devaux, Jacques; Leloup, Gaëtane

    2009-02-01

    The purpose of this study was to investigate the rheological behavior of resin composites and to evaluate the influence of each component, organic as well as inorganic, on their viscoelastic properties by testing model experimental formulations. Several unfilled mixtures of 2,2-bis-[4-(methacryloxy-2-hydroxy-propoxy)-phenyl]-propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) were prepared as well as experimental flowable resin composites using a Bis-GMA/TEGDMA 50/50 wt% mixture as organic fraction filled at 60% in weight with varying ratios of silanated barium glass (1 microm) and partially hydrophobic fumed silica (0.1 microm). Their rheological properties were investigated using dynamic oscillatory rheometers. Transmission electron microscopy (TEM) was also performed to investigate the spatial organization of the filler particles. Unfilled Bis-GMA/TEGDMA mixtures all showed a Newtonian behavior. The experimental flowable resin composites were non-Newtonian, shear-thinning fluids. As the quantity of microfiller increased, the viscosity increased and the shear-thinning behavior increased as well. In addition, the experimental composites showed thixotropy, i.e. their viscosity is a function of time after deformation. All these properties were not specifically linked to the creation and destruction of a visible network between inorganic particles, as no difference could be seen between particles' spatial organization at the equilibrium rest state or immediately after deformation. The complex viscoelastic properties of resin composites are due to interactions between microfiller and monomer molecules. Modifying the chemical and physical properties of the particles' surface could possibly improve their flow properties and thus their clinical handling performances.

  6. Randomized Clinical Trial of a Self-Adhering Flowable Composite for Class I Restorations: 2-Year Results.

    PubMed

    Sabbagh, J; Dagher, S; El Osta, N; Souhaid, P

    2017-01-01

    Objectives. To compare the clinical performances of a self-adhering resin composite and a conventional flowable composite with a self-etch bonding system on permanent molars. The influence of using rubber dam versus cotton roll isolation was also investigated. Materials and Methods. Patients aged between 6 and 12 years and presenting at least two permanent molars in need of small class I restorations were selected. Thirty-four pairs of restorations were randomly placed by the same operator. Fifteen patients were treated under rubber dam and nineteen using cotton rolls isolation and saliva ejector. They were evaluated according to the modified USPHS criteria at baseline, 6 months, and 1 and 2 years by two independent evaluators. Results. All patients attended the two-year recall. For all measured variables, there was no significant difference between rubber dam and cotton after 2 years of restoration with Premise Flowable or Vertise Flow ( p value > 0.05). The percentage of restorations scored alpha decreased significantly over time with Premise Flowable and Vertise Flow for marginal adaptation and surface texture as well as marginal discoloration while it did not vary significantly for color matching. After 2 years, Vertise Flow showed a similar behaviour to the Premise Flowable used with a self-adhesive resin system.

  7. The Effect of Energy Densities on the Shear Bond Strength of Self-Adhering Flowable Composite to Er:YAG Pretreated Dentin.

    PubMed

    Nahas, Paul; Zeinoun, Toni; Majzoub, Zeina; Corbani, Karim; Nammour, Samir

    2016-01-01

    Objective . To investigate the shear bond strength of self-adhering flowable resin composite, to dentin, after exposing it to Er:YAG laser radiation, at different energy densities. Materials and Methods . Sixty freshly extracted human third molars were randomly divided into five groups ( n = 12). In the control group, dentin was left unirradiated, whereas, in the other four groups, dentin was irradiated with Er:YAG laser in noncontact mode (MSP mode = 100  µ s; 10 Hz; beam diameter: 1.3 mm; speed of 1 mm/second; air 6 mL/min; and water 4 mL/min), and respectively, with the following level of energy (50 mJ, 60 mJ, 80 mJ, and 100 mJ). Then, self-adhering flowable resin composite was bonded to all prepared dentin surfaces. Shear bond strength (SBS) was applied and fractured surfaces were examined using scanning electron microscopy. Results . SBS values showed significant differences in 60 mJ ( P < 0.05) compared to other groups. Morphological evaluation revealed tags or plugs in dentinal tubules, especially when 60 mJ and 80 mJ were used. All four groups tended to leave more residues on the dentin surface, than the control group. Conclusion . Er:YAG dentin irradiation may enhance SBS of the self-adhering flowable resin composite when it is used at the appropriate low level of energy density.

  8. The Effect of Energy Densities on the Shear Bond Strength of Self-Adhering Flowable Composite to Er:YAG Pretreated Dentin

    PubMed Central

    Corbani, Karim

    2016-01-01

    Objective. To investigate the shear bond strength of self-adhering flowable resin composite, to dentin, after exposing it to Er:YAG laser radiation, at different energy densities. Materials and Methods. Sixty freshly extracted human third molars were randomly divided into five groups (n = 12). In the control group, dentin was left unirradiated, whereas, in the other four groups, dentin was irradiated with Er:YAG laser in noncontact mode (MSP mode = 100 µs; 10 Hz; beam diameter: 1.3 mm; speed of 1 mm/second; air 6 mL/min; and water 4 mL/min), and respectively, with the following level of energy (50 mJ, 60 mJ, 80 mJ, and 100 mJ). Then, self-adhering flowable resin composite was bonded to all prepared dentin surfaces. Shear bond strength (SBS) was applied and fractured surfaces were examined using scanning electron microscopy. Results. SBS values showed significant differences in 60 mJ (P < 0.05) compared to other groups. Morphological evaluation revealed tags or plugs in dentinal tubules, especially when 60 mJ and 80 mJ were used. All four groups tended to leave more residues on the dentin surface, than the control group. Conclusion. Er:YAG dentin irradiation may enhance SBS of the self-adhering flowable resin composite when it is used at the appropriate low level of energy density. PMID:27830151

  9. Flowable composites for bonding orthodontic retainers.

    PubMed

    Tabrizi, Sama; Salemis, Elio; Usumez, Serdar

    2010-01-01

    To test the null hypothesis that there are no statistically significant differences between flowables and an orthodontic adhesive tested in terms of shear bond strength (SBS) and pullout resistance. To test the SBS of Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were applied to the enamel surfaces of 15 teeth. Using matrices for application, each composite material was cured for 40 seconds and subjected to SBS testing. To test pullout resistance, 15 samples were prepared for each composite in which a wire was embedded; then the composite was cured for 40 seconds. Later, the ends of the wire were drawn up and tensile stress was applied until the resin failed. Findings were analyzed using an ANOVA and a Tukey HSD test. The SBS values for Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were 19.0 +/- 10.9, 14.7 +/- 9.3, 22.4 +/- 16.3, and 16.8 +/- 11.8 MPa, respectively, and mean pullout values were 42.2 +/- 13.0, 24.0 +/- 6.9, 26.3 +/- 9.4, and 33.8 +/- 18.0 N, respectively. No statistically significant differences were found among the groups in terms of SBS (P > .05). On the other hand, Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and Flow-Tain (P < .01). However, there were no significant differences among the pullout values of flowables, nor between Light Bond and Tetric Flow (P > .05). The hypothesis is rejected. Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and FlowTain. However, flowable composites provided satisfactory SBS and wire pullout values, comparable to a standard orthodontic resin, and therefore can be used as an alternative for direct bonding of lingual retainers.

  10. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis.

    PubMed

    Boruziniat, Alireza; Gharaee, Samineh; Sarraf Shirazi, Alireza; Majidinia, Sara; Vatanpour, Mehdi

    2016-02-01

    The efficacy of flowable composite in improving marginal adaptation or reducing microleakage is not fully understood. The purpose of this study was to systematically evaluate existing evidence to verify whether an application of flowable composite as a liner provided less microleakage in Class 2 composite restorations. PubMed, ISI (Web of Science), and Scopus databases were searched according to the selected keywords, up to 15 Feb 2015, without any restriction on date or language. Full texts of published articles that seemed to meet primary criteria for inclusion in this research were obtained. Data of studies were extracted if they were assessed as high or moderate level of evidence. Due to the variation of methods used in different studies, they were divided into five groups: groups 1 and 2, studies that evaluated the effect of flowable composite as a liner on dentinal or enamel margins and applied flowable composite on all of the cavity wall margins; groups 3 and 4, studies that evaluated the effect of flowable composite as a liner on dentinal and enamel margins and applied flowable composite only on gingival margin; and group 5, clinical studies. The initial search yielded 1,370 publications. After hand searching, six extra studies were included in the review. The abstracts of all were read independently by AB and SG. After methodologic assessment and evaluation of the level of evidence, 18 studies were selected for this study. The results of this study indicate that flowable composite liners have no significant effect on microleakage of composite restorations in all of five groups. Application of flowable composite as a liner in composite restorations cannot reduce microleakage or improve clinical performance.

  11. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles.

    PubMed

    Tavassoli Hojati, Sara; Alaghemand, Homayoon; Hamze, Faeze; Ahmadian Babaki, Fateme; Rajab-Nia, Ramazan; Rezvani, Mohammad Bagher; Kaviani, Mehrnoosh; Atai, Mohammad

    2013-05-01

    The aim of this study is evaluating the antibacterial activity of resin composites containing ZnO nanoparticles against Streptococcus mutans and examining their physical and mechanical properties. The properties of flowable resin composites containing 0-5wt.% nano-ZnO are investigated using different tests: Although the agar diffusion test reveals no significant difference between the groups, the direct contact test demonstrates that by increasing the nanoparticle content, the bacterial growth is significantly diminished (p<0.05). In the aging test, however, the antibacterial properties reduce significantly (p<0.05). The flexural strength and compressive modulus remains unchanged by incorporation of nanoparticles (p>0.05) while the compressive strength and flexural modulus significantly increase (p<0.05). The ZnO containing resins show significantly lower depth of cure (p<0.05), and higher bond strength (p<0.05). There is no significant difference between the degrees of conversion, measured by FTIR technique, of the groups (p>0.05). Production of a dental resin composite with antibacterial activity without significant sacrificing effect on the mechanical properties is desirable in dental material science. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Effect of Ingested Liquids on Color Change of Composite Resins.

    PubMed

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (P< 0.05). There was no significant difference in ΔE* values between the two types of composite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  13. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811

  14. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    PubMed

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nanomechanical properties of dental resin-composites.

    PubMed

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic moduli and nanohardnesses for bulk-fill and flowable materials were lower than those for conventional nano-hybrid composites. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. [Research on bond durability among different core materials and zirconia ceramic cemented by self-adhesive resin cements].

    PubMed

    Xinyu, Luo; Xiangfeng, Meng

    2017-02-01

    This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P<0.00 1). After 10 000 thermal cycles, significant decrease was not observed in shear bond strength of cobalt-chromium alloy luted with Clearfil SA Luting (P>0.05); observed shear bond strength was significantly higher than those of other substrates (P<0.05). Significantly higher shear bond strength was noted in Clearfil SA Luting luted with cobalt-chromium alloy, flowable composite resin core material, and packable composite resin than that of RelyX U100 (P<0.05). However, significant difference was not observed in shear bond strength of dentin luted with Clearfil SA Luting and RelyX U100 (P>0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. 
.

  17. Effect of Salivary pH on Color Stability of Different Flowable Composites - A Prospective In-vitro Study.

    PubMed

    Batra, Renu; Kataria, Pratik; Kapoor, Sonali

    2016-10-01

    Scientifically and clinically there has been lot of development in the field of aesthetic dentistry. However, there is limited or restricted information regarding the color stability of flowable composite materials. The aim of this study was to evaluate the spectrophotometric color stability of three different flowable composite materials with respect to three different pH of saliva. The study included 90 different samples. Thirty samples in each composite group; (Group A: G-aenial universal flo; Group B: Z 350 XT flowable; Group C: Esthet x flow). All samples from each group were immersed in distilled water for 24 hours. Total color difference (ΔE) was recorded for each sample. After this 10 samples from each group were respectively immersed in 6.5, 7 and 7.5 pH of artificial saliva. All samples were kept in dark room for seven days and then ΔE for each sample was recorded and was compared to previous recorded ΔE for the same sample. Maximum color change was seen irrespective of material in 6.5 pH of saliva. G-aenial universal flo showed least change irrespective of pH of saliva. Thus, the present study reveals that acidic pH level affects the coloration of composite resins by affecting the surface integrity and as reported in previous studies, various coloring agents in beverages and other dietary components assists the process due to absorption of these coloring substances into the resin matrix.

  18. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    PubMed

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  19. Marginal Gap Formation in Approximal "Bulk Fill" Resin Composite Restorations After Artificial Ageing.

    PubMed

    Peutzfeldt, A; Mühlebach, S; Lussi, A; Flury, S

    The aim of this in vitro study was to investigate the marginal gap formation of a packable "regular" resin composite (Filtek Supreme XTE [3M ESPE]) and two flowable "bulk fill" resin composites (Filtek Bulk Fill [3M ESPE] and SDR [DENTSPLY DeTrey]) along the approximal margins of Class II restorations. In each of 39 extracted human molars (n=13 per resin composite), mesial and distal Class II cavities were prepared, placing the gingival margins below the cemento-enamel junction. The cavities were restored with the adhesive system OptiBond FL (Kerr) and one of the three resin composites. After restoration, each molar was cut in half in the oro-vestibular direction between the two restorations, resulting in two specimens per molar. Polyvinylsiloxane impressions were taken and "baseline" replicas were produced. The specimens were then divided into two groups: At the beginning of each month over the course of six months' tap water storage (37°C), one specimen per molar was subjected to mechanical toothbrushing, whereas the other was subjected to thermocycling. After artificial ageing, "final" replicas were produced. Baseline and final replicas were examined under the scanning electron microscope (SEM), and the SEM micrographs were used to determine the percentage of marginal gap formation in enamel or dentin. Paramarginal gaps were registered. The percentages of marginal gap formation were statistically analyzed with a nonparametric analysis of variance followed by Wilcoxon-Mann-Whitney tests and Wilcoxon signed rank tests, and all p-values were corrected with the Bonferroni-Holm adjustment for multiple testing (significance level: α=0.05). Paramarginal gaps were analyzed descriptively. In enamel, significantly lower marginal gap formation was found for Filtek Supreme XTE compared to Filtek Bulk Fill ( p=0.0052) and SDR ( p=0.0289), with no significant difference between Filtek Bulk Fill and SDR ( p=0.4072). In dentin, significantly lower marginal gap formation was found for SDR compared to Filtek Supreme XTE ( p<0.0001) and Filtek Bulk Fill ( p=0.0015), with no significant difference between Filtek Supreme XTE and Filtek Bulk Fill ( p=0.4919). Marginal gap formation in dentin was significantly lower than in enamel ( p<0.0001). The percentage of restorations with paramarginal gaps varied between 0% and 85%, and for all three resin composites the percentages were markedly higher after artificial ageing. The results from this study suggest that in terms of marginal gap formation in enamel, packable resin composites may be superior to flowable "bulk fill" resin composites, while in dentin some flowable "bulk fill" resin composites may be superior to packable ones.

  20. [Comparative study of polymerization shrinkage and related properties of flowable composites and an unfilled resin].

    PubMed

    Bukovinszky, Katalin; Molnár, Lilla; Bakó, József; Szalóki, Melinda; Hegedus, Csaba

    2014-03-01

    The polymerization shrinkage and shrinkage stress of dental composites are in the center of the interest of researchers and manufacturers. It is a great challenge to minimize this important property as low as possible. Many factors are related and are in complicated correlation with each other affecting the polymerization shrinkage. Polymerization shrinkage stress degree of conversion and elasticity has high importance from this aspect. Our aim was to study the polymerization shrinkage and related properties (modulus of elasticity, degree of conversion, shrinkage stress) of three flowable composite (Charisma Opal Flow, SDR, Filtek Ultimate) and an unfilled composite resin. Modulus of elasticity was measured using three point flexure tests on universal testing machine. The polymerization shrinkage stress was determined using bonded-disc technique. The degree of conversion measurements were performed by FT-IR spectroscopy. And the volumetric shrinkage was investigated using Archimedes principle and was measured on analytical balance with special additional equipment. The unfilled resin generally showed higher shrinkage (8,26%), shrinkage stress (0,8 MPa) and degree of conversion (38%), and presented the lowest modulus of elasticity (3047,02MPa). Highest values of unfilled resin correspond to the literature. The lack of fillers enlarges the shrinkage, and the shrinkage stress, but gives the higher flexibility and higher degree of conversion. Further investigations needs to be done to understand and reveal the differences between the composites.

  1. Evaluation of Microtensile Bond Strength and Microleakage of a Self-adhering Flowable Composite.

    PubMed

    Yuan, He; Li, Mingyang; Guo, Bin; Gao, Yuan; Liu, HongLing; Li, Jiyao

    2015-12-01

    To evaluate the microtensile bond strength (μTBS) and marginal sealing ability of a self-adhering flowable composite between dentin and composite interfaces, as well as the microleakage of Class V restorations. The occlusal thirds of 40 third molars were removed and randomly divided into 4 groups according to the applied adhesive: Adper Easy One (AEO, 3M ESPE), Clearfil SE Bond (CSEB, Kuraray), Prime & Bond NT (PBNT, Dentsply) and a self-adhering flowable composite (Dyad Flow, DF, Kerr). Filtek Flowable (3M ESPE) resin composite crowns were then built up in the first three groups; in group DF, composite crowns were built up without the application of an adhesive. Thirty stick-shaped microspecimens were prepared per group, 10 of which were used for morphological observation of bonded interfaces by scanning electron microscopy (SEM) after decalcification. The remaining microspecimens underwent microtensile bond strength testing and the failure mode was analyzed. Microleakage evaluation was performed on 10 premolars per group in which standardized box-shaped Class V cavities were prepared. After 500 thermocycles, the premolars were immersed in 1% methylene blue for 24 h, and three slices from each tooth were observed under a stereomicroscope and scored. Statistical analysis was performed using one-way ANOVA, Student-Newman-Keuls and chi-square tests. The PBNT group presented the highest μTBS values, followed by the CSEB and AEO groups, which did not differ significantly from each other. The DF group showed the lowest μTBS values. No significant differences in microleakage were observed among these four groups. Although individual usage of the self-adhering flowable composite showed the lowest bond strength, the same marginal sealing ability was observed as that of combining self-etching and etch-and-rinse adhesives with flowable composite.

  2. Physico-mechanical and thermal characteristics of commercially available and newly developed dental flowable composites

    NASA Astrophysics Data System (ADS)

    Kamalak, Hakan; Canbay, C. Aksu; Yiğit, Oktay; Altin, Serdar

    2018-03-01

    In this study, we investigated the structural stability, thermal conductivity, thermal analysis, materials' homogeneity of newly developed flowable composites. 6 different dental flowable composite resins; Grandio Flow (GF), Charisma Flow (CF), Tetric N Flow (TNF), Clearfil Majesty Flow (CMF),3M Filtek Ultimate Flow (3MFU), Voco Amaris Flow (VFA) were used. Restorations were made in standard teflon molds and the materials were light-cured for 20s in a 6 mm × 2 mm teflon mould. After polymerization, samples were kept in distilled water at 37 °C/24 h .It was found that the composites have multiphase component such as metallic dopant and organic binder. The XRD investigation showed that there was a broad halo in the pattern which indicates the organic section in the composites. The FTIR results indicate the bond structure of the composites. The temperature dependence of the thermal conductivity of the composites were found below to 5 mW/K value depending on the type of the composites, which are low enough for dental application. The micro-hardness of the samples was analyzed and the result was compared.

  3. The effect of different drinks on the color stability of different restorative materials after one month.

    PubMed

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Serim, Merve Efe; Baydemir, Canan

    2015-11-01

    The aim of this study was to evaluate the effect of three different drinks on the color parameters of four different restorative materials. Three different composites (Filtek Ultimate Universal Restorative, Filtek Ultimate Flowable, and Filtek Silorane, 3M ESPE) and a polyacid-modified composite resin material (Dyract XP, Dentsply DeTrey GmbH) were evaluated. Eighty-four disc-shaped specimens of 8 mm in diameter and 2 mm in thickness were prepared (n = 21 each). Color coordinates (L*a*b*, ΔL*, Δa*, Δb*, and ΔE*) were measured using a VİTA Easyshade Compact (VİTA Zahnfabrik) after 24 hr of storage (baseline) and after 30 day of storage in three different beverages of black tea, Coca cola, or water (control) (n = 7). In each beverage, the specimens were stored three times a day, one hr each, for 30 day. The color changes (ΔE) were calculated and were analyzed by Kruskal-Wallis and Dunn multiple comparison test. The color difference (ΔE*) of the resin materials ranged between 1.31 and 15.28 after 30 day of immersion in the staining solutions. Dyract XP in Coca cola (15.28 ± 2.61) and black tea (12.22 ± 2.73) showed the highest mean ΔE* value after 30 day, followed by Filtek Ultimate Universal Restorative (5.99 ± 1.25) and Filtek Ultimate Flowable (4.71 ± 1.40) in black tea (p < 0.05). The compomers displayed unacceptable color changes at the end of 30 day in all beverages. Among resin composites, the silorane based composite exhibited relatively good color stability than the others. Filtek Ultimate Universal Restorative and Filtek Flowable showed similar color changes in all beverages.

  4. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    PubMed

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  5. Effect of resin coating and occlusal loading on microleakage of Class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study.

    PubMed

    Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2011-05-01

    To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.

  6. Comparative Study of the Shear Bond Strength of Flowable Composite in Permanent Teeth Treated with Conventional Bur and Contact or Non-Contact Er:YAG Laser

    PubMed Central

    Parhami, Parisa; Pourhashemi, Seyed Jalal; Ghandehari, Mehdi; Mighani, Ghasem; Chiniforush, Nasim

    2014-01-01

    Introduction: The aim of this study was to evaluate and compare the in vitro effect of the Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser with different radiation distances and high-speed rotary treatment on the shear bond strength of flowable composite to enamel of human permanent posterior teeth. Methods: freshly extracted human molar teeth with no caries or other surface defects were used in this study (n=45). The teeth were randomly divided into 3 groups. Group 1: treated with non-contact Er:YAG Laser and etched with Er:YAG laser, Group 2: treated with contact Er:YAG Laser and etched with Er:YAG laser, Group 3 (control): treated with diamond fissure bur and etched with acid phosphoric 37%. Then the adhesive was applied on the surafces of the teeth and polymerized using a curing light appliance. Resin cylinders were fabricated from flowable composite. Shear bond strength was tested at a crosshead speed of 0.5 mm/min. Results: The amount of Shear Bond Strength (SBS) in the 3 treatment groups was not the same (P<0.05).The group in which enamel surfaces were treated with diamond fissure bur and etched with acid (conrtol group) had the highest mean shear bond strength (19.92±4.76) and the group in which the enamel surfaces were treated with contact Er:YAG laser and etched with Er:YAG laser had the lowest mean shear bond strength (10.89±2.89). Mann-whitney test with adjusted P-value detected significant difference in shear bond strength between the control group and the other 2 groups (P < 0.05). Conclusion: It was concluded that both contact and non-contact Er:YAG laser treatment reduced shear bond strength of flowable resin composite to enamel in comparison with conventional treatment with high speed rotary. Different Er:YAG laser distance irradiations did not influence the shear bond strength of flowable composite to enamel. PMID:25653813

  7. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites.

    PubMed

    Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick

    2015-02-01

    To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microleakage and penetration depth of different fissure sealant materials after cyclic thermo-mechanic and brushing simulation.

    PubMed

    Hatirli, Hüseyin; Yasa, Bilal; Yasa, Elif

    2018-01-30

    The aim of the study was to evaluate microleakage and the penetration-depths of different fissure-sealant materials applied with/without enameloplasty after cyclic aging. One-hundred-sixty mandibular molars were divided into non-invasive and enameloplasty preparation groups and eight material subgroups, including: flowable composites (microhyrid, nanohybrid, and nanofilled), three resin-based (unfilled, filled, and highly-filled), a giomer-based, and a glass-ionomer-based fissure sealant. Specimens were subjected to two-year cyclic chewing and brushing simulation. After 5% basic-fuchsin dye penetration, specimens were sectioned and scored under stereomicroscope. Kruskal-Wallis statistical data showed that preparation type significantly affected the penetration of all tested materials (p<0.05), but not significantly affected microleakage (p>0.05). Flowable composites showed the best and the glass-ionomer-based sealant showed the worst penetration and microleakage. Slight preparation of fissures is not important in microleakage. However, enameloplasty significantly enhanced the depth of penetration of the sealants. Flowable composites offer promising results at the fissure sealing.

  9. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    PubMed

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  11. In vitro evaluation of five core materials.

    PubMed

    Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L

    2007-01-01

    This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.

  12. Concept and clinical application of the resin-coating technique for indirect restorations.

    PubMed

    Nikaido, Toru; Tagami, Junji; Yatani, Hirofumi; Ohkubo, Chikahiro; Nihei, Tomotaro; Koizumi, Hiroyasu; Maseki, Toshio; Nishiyama, Yuichiro; Takigawa, Tomoyoshi; Tsubota, Yuji

    2018-03-30

    The resin-coating technique is one of the successful bonding techniques used for the indirect restorations. The dentin surfaces exposed after cavity preparation are coated with a thin film of a coating material or a dentin bonding system combined with a flowable composite resin. Resin coating can minimize pulp irritation and improve the bond strength between a resin cement and tooth structures. The technique can also be applied to endodontically treated teeth, resulting in prevention of coronal leakage of the restorations. Application of a resin coating to root surface provides the additional benefit of preventing root caries in elderly patients. Therefore, the coating materials have the potential to reinforce sound tooth ("Super Tooth" formation), leading to preservation of maximum tooth structures.

  13. The management of defective resin composite restorations: current trends in dental school teaching in Japan.

    PubMed

    Lynch, C D; Hayashi, M; Seow, L L; Blum, I R; Wilson, N H F

    2013-01-01

    The aim of this article is to investigate the contemporary teaching of the management of defective direct resin composite restorations in dental schools in Japan. A questionnaire relating to the teaching of the management of defective resin composite restorations was developed and e-mailed to 29 dental schools in Japan in 2010. Completed responses were received from 19 of the 29 invited schools (response rate = 66%). Eighteen schools (95%) report that they included the teaching of repair of direct defective resin composite restorations in their dental school programs. Thirteen schools reported that they included both clinical and didactic instruction on the repair of direct resin composite restorations. Fourteen schools did not teach any mechanical roughening of the exposed resin composite restoration surface before undertaking a repair. The most commonly reported treatment was acid etching with phosphoric acid (12 schools). The most commonly taught material for completing repairs was a flowable resin composite (16 schools). The teaching of repair of defective resin composite restorations is well established within many Japanese dental schools, to a greater extent than in some other regions of the world. The impact of this teaching on subsequent clinical practices in Japan should be investigated. Furthermore, it is concluded that there is a need for much stronger leadership in operative and conservative dentistry, ideally at the global level, to resolve differences in key aspects of operative procedures such as repairs.

  14. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  15. Flowable resin and marginal gap on tooth third medial cavity involving enamel and radicular cementum: a SEM evaluation of two restoration techniques.

    PubMed

    Lo Giudice, G; Cicciù, M; Cervino, G; Lizio, A; Visco, A M

    2012-01-01

    The aim of this study is to investigate the presence and the extent of a possible marginal gap after the interposition of a flowable composite between the composite restoration and the dental structures (enamel and cementum). This technique is also used to eliminate the infiltration in a zone of the cavity preparation that is frequently at a risk of secondary decay. Fifteen human premolars extracted for orthodontic reasons were used for the study. A cavity with mesial and distal margin in enamel and cementum was realized in every tooth. The cavities were then restored with an adhesive system (ScotchBond 3MÔ) and composite (Filtek Supreme 3MÔ); and, a fine layer of flowable composite was applied in the distal margin of each cavity. Scanning electron microscopy (SEM) in secondary electron imaging (S.E.I.) modality was used for the study and identifying the marginal gaps in the composite restorations. Data was investigated on the mesial and distal margin of each cavity at the restoration-enamel interface, and at the restoration-cementum interface. The interfaces were divided in four groups: Group A (enamel/composite); Group B (enamel/flow/composite); Group C (cementum/composite); and, Group D (cementum/flow/composite). By the comparison of the gap's average width found in each group, it is evidenced that the average width of the gap increases when the interface moves from the coronal to the radicular end (Group A 0,1 ± 0,4 μm Vs Group C 12,3 ± 11,6 μm; Group B 0,2 ± 0,8 μm Vs Group D 2,8 ± 6,6 μm). Correlating the measurements of the marginal gap's average width among the Group A and Group B, no significant variations were obtained; and instead, on comparing Group C with Group D, the gap's average width decreases. The interposition of a low elastic modulus composite between the adhesive layer and the composite resin allows an improvement of the cementum-restoration interface by the means of a lower shrinkage stress during polymerization.

  16. Influence of etching time and bonding strategies on the microshear bond strength of self- and light-cured pit-and-fissure sealants.

    PubMed

    Souza-Junior, Eduardo José; Borges, Boniek Castillo Dutra; Montes, Marcos Antônio Japiassú Resende; Alonso, Roberta Caroline Bruschi; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mário Alexandre Coelho

    2012-01-01

    This study evaluated the impact of extended etching and bonding strategies on the microshear bond strength of three sealant materials. Two pit-and-fissure sealants [FluroShield, Dentsply (light-cured) and AlphaSeal, DFL (self-cured)] and one light-cured flowable composite resin (Permaflo, Ultradent) were evaluated according to different enamel etching times (15 s or 30 s) and bonding procedures (no adhesive application, application of primer/hydrophobic resin or hydrophobic resin only). Intact enamel blocks were obtained from bovine teeth and sealed via the tested protocols. After 24 h, the microshear bond strength test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were classified by stereomicroscopy. Data were submitted to a three-way ANOVA and to Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) among the materials. Permaflo showed higher bond strength when etched for 30 s alone. Enamel overetching decreased the bond strength of the light-cured sealant. Primer/bond previous treatment improved bond performance for AlphaSeal. In conclusion, from the tested conditions, all sealant materials presented similar bond strength values in relation to bonding protocol and etching time. The flowable composite can be used as a pit-and-fissure sealant. The use of a three-step adhesive system was essential for the self-cured sealant application.

  17. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners.

    PubMed

    Arora, Rajesh; Kapur, Ravi; Sibal, Nikhil; Juneja, Sumit

    2012-09-01

    The advent of the esthetic era and advances in adhesive technology saw the emergence of resin composite materials. But the problem of polymerization shrinkage remained. This was due to the contraction of the resin during curing inducing internal and interfacial stresses at the tooth restoration interface, leading to gap formation and subsequent micro-leakage. A number of techniques and modifications in the material have been proposed to minimize polymerization shrinkage and microleakage. In this study, the hypothesis that the placement of resin-modified glass ionomer cement (RMGIC) or flowable composite, as liner, beneath the packable composite, on the gingival surface of the tooth [coronal or apical to cementoenamel junction (CEJ)], could reduce the microleakage in class II composite restorations, was tested. Sixty recently extracted noncarious human mandibular molars were used. The teeth were randomly divided into three groups (20 specimens each): Group I (Filtek P60 with RMGIC liner), group II (Filtek P60 with Filtek Z350 liner) and Group III (Filtek P60 without liner). The teeth of each group were further subdivided into two subgroups (equal number of cavities). Subgroup A gingival seat 1 mm occlusal to CEJ on mesial side. Subgroup B gingival seat 1 mm apical to CEJ on distal side. It was concluded that in class II composite restorations gingival microleakage is more at the dentinal surface than on enamel. The use of a flowable composite and RMGIC, as liners, beneath the packable composite, in class II composite restorations, significantly reduces the microleakage when margins are in dentin, but the reverse is true, when the margins are in enamel. How to cite this article: Arora R, Kapur R, Sibal N, Juneja S. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners. Int J Clin Pediatr Dent 2012;5(3):178-184.

  18. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno(®) V [self-etching adhesive system]) and BOND-1(®) SF (solvent-free self-etching adhesive system) in conjunction with Artiste(®) Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey's post hoc tests (P≤0.05). The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage.

  19. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  20. Retention and penetration of a conventional resin-based sealant and a photochromatic flowable composite resin placed on occlusal pits and fissures.

    PubMed

    Aguilar, F G; Drubi-Filho, B; Casemiro, L A; Watanabe, M G C; Pires-de-Souza, F C P

    2007-01-01

    This study compares the retention and penetration of a conventional resin-based sealant (Fluroshield) and a photochromatic flowable composite resin (Tetric Flow Chroma) placed on occlusal pits and fissures and submitted to thermal or chemical cycling regimens. Penetration assessment--ten premolars were sealed with each material, isolated (except for the sealed surface) and immersed in 0.2% Rhodamine B. The teeth were serially sectioned in a mesiodistal direction. The images of the sections were digitized and analyzed (ImageLab). The distance between the most superficial and the deepest points on the occlusal central groove was calculated to determine the groove's total depth. The length of the central groove filled with the sealant was divided by its total depth to obtain the percentage of sealing of the occlusal groove. Retention assessment--30 premolars were sealed, their occlusal surfaces were photographed and the area occupied by the sealing materials was demarcated (ImageLab). The teeth were submitted to different treatments: thermocycled, stored in artificial saliva and immersed in acetic acid and saliva (10 cycles/day protocol for 30 days). New photographs were taken to assess the final area occupied by the materials. The difference between the final and initial area was calculated to obtain the material loss. The data was analyzed (two-way ANOVA and Tukey's test P<0.05). Both materials presented similar penetration of the occlusal central groove. After thermal and chemical cycling, the materials did not differ with respect to retention, except for immersion in acetic acid. In this case, Tetric Flow Chroma presented greater retention than Fluoroshield.

  1. The effect of different beverages on the color and translucency of flowable composites.

    PubMed

    Karadas, Muhammet

    2016-11-01

    This study examined the changes in color and translucency of flowable composites after immersion in different beverages. Thirty composite samples were prepared from four flowable composites (G-aenial Universal Flo, Filtek Ultimate, Esthelite Flow Quick, and Clearfil Majesty ES Flow) and a microhybrid composite (Filtek Z-250) and stored in distilled water at 37°C for 24 h. The samples were randomly divided into seven groups and then immersed in different beverages (Red Bull, coffee, black tea, Pepsi Cola, orange juice, and distilled water) for 7 days. The CIE L*a*b* values of each sample were measured against white and black backgrounds using a spectrophotometer before and after immersion. Data were analyzed using two-way analysis of variance and Tukey's post-hoc test (p < 0.05). The color changes were significantly different among the composite materials after immersion in beverages (p < 0.05). Filtek Ultimate and Esthelite Flow Quick exhibited less discoloration than did G-aenial Universal Flo and Clearfil Majesty ES Flow. No significant difference was found between Filtek Z-250 and either Filtek Ultimate or Esthelite Flow Quick (p > 0.05). Among the beverages, black tea and coffee caused the highest discoloration of all the materials. Immersion in coffee and black tea resulted in the highest negative changes in the translucency of the materials. The degree of discoloration for the composite resins depended on the material used and drinking beverage. SCANNING 38:701-709, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Reinforcement of flowable dental composites with titanium dioxide nanotubes.

    PubMed

    Dafar, Manal O; Grol, Matthew W; Canham, Peter B; Dixon, S Jeffrey; Rizkalla, Amin S

    2016-06-01

    Flowable dental composites are used as restorative materials due to their excellent esthetics and rheology. However, they suffer from inferior mechanical properties compared to conventional composites. The aim of this study was to reinforce a flowable dental composite with TiO2 nanotubes (n-TiO2) and to assess the effect of n-TiO2 surface modifications on the mechanical properties of the reinforced composite. n-TiO2 were synthesized using an alkaline hydrothermal process and then functionalized with silane or methacrylic acid (MA). Nanotubes were characterized by scanning and transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Commercially available flowable composite (Filtek™ Supreme Ultra Flowable Restorative, 3M ESPE) was reinforced with varying amounts of nanotubes (0-5wt%). Flowability of the resulting composites was evaluated using a Gillmore needle method. Dynamic Young's modulus (E) was measured using an ultrasonic technique. Fracture toughness (KIc) was assessed using a notchless triangular prism and radiopacity was quantified. Viability of NIH/3T3 fibroblasts was evaluated following incubation on composite specimens for 24h. Electron microscopy revealed a tubular morphology of n-TiO2. All reinforced composites exhibited significantly greater values of E than unreinforced composite. Composites reinforced with 3wt% n-TiO2 functionalized with MA exhibited the greatest values of E and KIc. Cytotoxicity assays revealed that reinforced composites were biocompatible. Taken together, flowable composites reinforced with n-TiO2 exhibited mechanical properties superior to those of unreinforced composite, with minimal effects on flowability and radiopacity. n-TiO2-reinforced flowable composites are promising materials for use in dental restorations. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Glass fiber reinforced composite resin as an intracanal post--a clinical study.

    PubMed

    Subramaniam, Priya; Babu, K L Girish; Sunny, Raju

    2008-01-01

    Restoration of primary incisors, which have been severely damaged by early childhood caries or trauma, is a difficult task for the pediatric dentist. With the introduction of new adhesive systems and restorative materials, alternative approaches for treating these teeth have been proposed. Ten healthy children aged between 3-4 years who had 28 grossly destructed primary maxillary incisors requiring intra canal retention were selected for the study. Following root canal treatment, either a Glass Fiber Reinforced Composite Resin (GFRCR everStick,, Finland) or an omega shaped stainless steel wire were placed as intracanal posts in these teeth. Flowable composite was used for cementation of posts and also to build up the coronal structure using celluloid strip crowns. Both types of intracanal posts were evaluated for retention and marginal adaptation at 1, 6 and 12 months. The data obtained was subjected to statistical analysis. GFRCR intracanal posts showed better retention and marginal adaptation than omega shaped stainless steel wire posts.

  4. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    PubMed

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (p<0.05). All of the tested bulk-fill flowable composites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (p<0.05). Venus Bulk Fill (Heraeus Kulzer) provided the highest radiopacity value, whereas Arabesk Flow (Voco) showed the lowest. The order of the radiopacity values for the bulk-fill flowable composites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  5. High performance dental resin composites with hydrolytically stable monomers.

    PubMed

    Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun

    2018-02-01

    The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in the experimental series (0.458GPa) were still above the clinically required threshold of approx. 0.4GPa. Hydrolytic stability, composition-controlled polymerization and the overall enhancement in clinically-relevant properties of the new resin composites make them viable candidates to replace traditional resin composites as a new generation of strong and durable dental restoratives. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  6. Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials

    PubMed Central

    Sawani, Shefali; Arora, Vipin; Jaiswal, Shikha; Nikhil, Vineeta

    2014-01-01

    Background: Evaluation of microleakage is important for assessing the success of new restorative materials and methods. Aim and Objectives: Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials. Materials and Methods: Standardized mesi-occlusal (MO) and distoocclusal (DO) Class II tooth preparations were preparedon 53 molars and samples were randomly divided into six experimental groups and one control group for restorations. Group 1: Open-Sandwich technique (OST) with flowable composite at the gingival seat. Group 2: OST with resin-modified glass ionomer cement (RMGIC) at the gingival seat. Group 3: Closed-Sandwich technique (CST) with flowable composite at the pulpal floor and axial wall. Group 4: CST with RMGIC at the pulpal floor and axial wall. Group 5: OST with flowable composite at the pulpal floor, axial wall, and gingival seat. Group 6: OST with RMGIC at the pulpal floor, axial wall, and gingival seat. Group 7: Control — no lining material, centripetal technique only. After restorations and thermocycling, apices were sealed and samples were immersed in 0.5% basic fuchsin dye. Sectioning was followed by stereomicroscopic evaluation. Results: Results were analyzed using Post Hoc Bonferroni test (statistics is not a form of tabulation). Cervical scores of control were more than the exprimental groups (P < 0.05). Less microleakage was observed in CST than OST in all experimental groups (P < 0.05). However, insignificant differences were observed among occlusal scores of different groups (P > 0.05). Conclusion: Class II composite restorations with centripetal build-up alone or when placed with CST reduces the cervical microleakage when compared to OST. PMID:25125847

  7. Clinical evaluation of flowable resins in non-carious cervical lesions: two-year results.

    PubMed

    Celik, Cigdem; Ozgünaltay, Gül; Attar, Nuray

    2007-01-01

    This study evaluated the two-year clinical performance of one microhybrid composite and three different types of flowable resin materials in non-carious cervical lesions. A total of 252 noncarious cervical lesions were restored in 37 patients (12 male, 25 female) with Admira Flow, Dyract Flow, Filtek Flow and Filtek Z250, according to manufacturers' instructions. All the restorations were placed by one operator, and two other examiners evaluated the restorations clinically within one week after placement and after 6, 12, 18 and 24 months, using modified USPHS criteria. At the end of 24 months, 172 restorations were evaluated in 26 patients, with a recall rate of 68%. Statistical analysis was completed using the Pearson Chi-square and Fisher-Freeman-Halton tests (p < 0.05). Additionally, survival rates were analyzed with the Kaplan-Meier estimator and the Log-Rank test (p < 0.05). The Log-Rank test indicated statistically significant differences between the survival rates of Dyract Flow/Admira Flow and Dyract Flow/Filtek Z250 (p < 0.05). While there was a statistically significant difference between Dyract Flow and the other materials for color match at 12 and 18 months, no significant difference was observed among all of the materials tested at 24 months. Significant differences were revealed between Filtek Z250 and the other materials for marginal adaptation at 18 and 24 months (p < 0.05). With respect to marginal discoloration, secondary caries, surface texture and anatomic form, no significant differences were found between the resin materials (p > 0.05). It was concluded that different types of resin materials demonstrated acceptable clinical performance in non-carious cervical lesions, except for the retention rates of the Dyract Flow restorations.

  8. The force required to fracture endodontically roots restored with various materials as intra-orifice barriers.

    PubMed

    Yasa, E; Arslan, H; Yasa, B; Akcay, M; Alsancak, M; Hatirli, H

    2017-10-01

    To evaluate the effect of various materials as intra-orifice barriers on the force required fracture roots. One hundred-thirty five mandibular premolars were decoronated and prepared up to size #40. The root canals were filled and randomly divided into two control and seven experimental groups (n = 15), as follows: Positive control group (the intra-orifice barrier cavity was not prepared), negative control group (the intra-orifice barrier cavity was prepared, but not filled), filling using glass ionomer cement, nano-hybrid composite resin, short fiber-reinforced composite, bulk-fill flowable composite, MTA Angelus, Micro Mega MTA or Biodentine. A fracture strength test was performed, and the data were analyzed using one-way ANOVA and Tukey's post hoc tests. Nano-hybrid composite, short fiber-reinforced composite, bulk-fill flow able composite, and glass ionomer cement increased the force required fracture the roots compared to the positive and negative control groups (P < 0.05). While MTA groups did not increase the force required fracture the roots compared to the control groups, Biodentine increased significantly. Within the limitations of the present study, the use of nano-hybrid composite, short fiber-reinforced composite, bulk-fill flowable composite, and glass ionomer cement as an intra-orifice barrier may be useful in reinforcing roots. MTA placement (MTA Angelus or Micro Mega MTA) did not significantly increase the fracture resistance of endodontically treated roots compared to the control groups, however Biodentine did.

  9. Radiopacity of flowable composite by a digital technique.

    PubMed

    Dukić, W; Delija, B; Lešić, S; Dubravica, I; Derossi, D

    2013-01-01

    The aim of this in vitro study was to evaluate the radiopacity of 19 current dental flowable composite materials by a digital technique. Digital radiographs were obtained with a CCD sensor using an aluminum step wedge, a 1-mm-thick tooth slice, and a 1-mm-thick flowable composite specimen using five different combinations of exposure and voltage. The radiopacity in pixels was determined using Digora 2.6. software. The equivalent thickness of aluminum for each material was then calculated based on the calibration curve. All of the tested flowable composite materials had higher radiopacities than that of dentin, but in almost every combination of exposure and voltage, there were some composite materials that exhibited radiopacities equal to or slightly greater than enamel p>α; α=0.01). Of the flowable composite materials tested, 37% showed lower radiopacities than enamel, and 21% of the tested materials had higher radiopacities than the 3-mm aluminum equivalent. The highest radiopacity at all exposure values was produced by the Majesty Flow and Charisma Opal Flow materials, which had radiopacities almost twice that of enamel. Flowable composite materials should have radiopacities greater than that of enamel (ISO 4049), an important consideration for the introduction of new materials to the market. The digital radiopacity analysis techniques used in this study provide an easy, reliable, rapid, and precise method to characterize radiopacity of dental flowable composite materials.

  10. Tailoring of physical properties in highly filled experimental nanohybrid resin composites.

    PubMed

    Pick, Bárbara; Pelka, Matthias; Belli, Renan; Braga, Roberto R; Lohbauer, Ulrich

    2011-07-01

    To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer®-based). The experimental composites varied in filler size and density. EM values were obtained from the "three-point bending" load-displacement curve. VS was calculated with Archimedes' buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly)methyl methacrylate rods (Ø=6mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey's test (α=0.05), and linear regression analyses. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effect of Layering Methods, Composite Type, and Flowable Liner on the Polymerization Shrinkage Stress of Light Cured Dental Composites

    DTIC Science & Technology

    2011-08-01

    composite (Z350 flowable: 3M ESPE), and a silorane-based composite (P90: 3M ESPE). Scotchbond multipurpose adhesive ( 3M ESPE) was applied prior to...syringe. Composites used for filling the cavities were a methacrylate-based universal hybrid composite (Z250: 3M ESPE, St. Paul, MN, USA), a flowable... adhesive was light cured for 10 s using a LED light curing unit (S10: 3M ESPE), and the light intensity was 1200 mW/cm 2 . An acrylic case with

  12. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.

    PubMed

    Al Sunbul, Hanan; Silikas, Nick; Watts, David C

    2016-08-01

    To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Process for disposing of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less

  14. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration.

    PubMed

    Hirata-Tsuchiya, Shizu; Yoshii, Shinji; Ichimaru-Suematsu, Miki; Washio, Ayako; Saito, Noriko; Urata, Mariko; Hanada, Kaori; Morotomi, Takahiko; Kitamura, Chiaki

    2017-08-01

    The purpose of the present study was to compare the clinical efficacy between a flowable-type nano-hybrid composite and a paste-type composite for posterior restoration. Of 62 posterior teeth in 33 patients (mean age: 34.1 years), 31 were filled with a paste-type composite (Heliomolar [HM] group), and another 31 with a flowable nano-hybrid composite (MI FIL [MI] group). Clinical efficacy was evaluated at 2 years after the restoration. There were no differences for retention, surface texture deterioration, anatomical form change, deterioration of marginal adaptation, and secondary caries, while a statistical difference was found for marginal discoloration, which was significantly greater in the HM group (P < 0.05). Furthermore, color matching in the MI group was superior to that in the HM group immediately after the restoration throughout the study period. The present 2-year clinical evaluation of different composites showed that the flowable nano-hybrid composite could be an effective esthetic material for posterior restoration. © 2016 John Wiley & Sons Australia, Ltd.

  15. Evaluation of the pH of a Self-Adhesive Flowable Composite Over 3 Months

    DTIC Science & Technology

    2016-04-01

    Flowable Materials. Dental Research Journal 2012; 9(4): 460-465. 12. Goracci C, Margvelashvili M, Giovannetti A, Vichi A, Ferrari M: Shear Bond...responsible for the vast field of current products on the dental market today. These developments have led researchers to focus on combining the...reduces internal voids. Some studies even show better marginal adaptation when a flowable composite is used, though some research shows it doesn’t

  16. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  17. [Surface roughness and gloss of novel flowable composites after polishing and simulated brushing wear].

    PubMed

    Wang, R L; Yuan, C Y; Pan, Y X; Tian, F C; Wang, Z H; Wang, X Y

    2017-04-09

    Objective: To investigate surface properties of novel flowable composites after polishing and simulated brushing wear, compared to their pasty counterpart. Methods: Composites employed in this study were: three flowable composites (A1: Clearfil Majesty ES Flow; B1: Beautifil Flow Plus F00; C1: Filtek Bulk Fill) and three paste composites (A2: Clearfil Majesty; B2: Beautifil; C2: Filtek Z350. Eleven disk-shaped specimens were made for each material. The specimens were cured, then subjected to sandpaper finishing for 20 s, one-step polishing for 30 s, finally subjected to simulated brushing for 10 000 cycles. Surface roughness and glossiness were measured before finishing, after finishing, after polishing, after 5 000 brushing cycles and after 10 000 brushing cycles, respectively. Data obtained were analyzed using two-way ANOVA method. Scanning electron microscope was employed to examine the microscopic appearance of each material. Results: Surface roughness (0.11~0.22 μm) and glossiness (74.25~86.48 GU) of each material were similar after one-step polishing. After brushing simulation, roughness increased significantly and glossiness decreased significantly for each material ( P< 0.05). Group A1 presented the best gloss ([50.68±1.58] GU) after final wear ( P< 0.05). Flowable composites of group A1 and B1 tested in the present setup showed better surface properties compared to their pasty counterpart (group A2 and B2). Conclusions: Within the limit of this study, flowable composites tested in the present research can obtain similar surface polish or even better than the paste composite counterpart.

  18. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry.

  19. Effects of delayed finishing/polishing on surface roughness, hardness and gloss of tooth-coloured restorative materials.

    PubMed

    Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren

    2010-01-01

    The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.

  20. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina).

    PubMed

    Milhem, Manar M; Al-Hiyasat, Ahmad S; Darmani, Homa

    2008-01-01

    This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001). Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (alpha =0.05) showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001). Follow-up comparison between the groups by Tukey's test (alpha = 0.05) showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.

  1. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials.

    PubMed

    Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard

    2010-01-01

    To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact, low-stress clinical situations.

  2. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    NASA Astrophysics Data System (ADS)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  3. Predictable repair of provisional restorations.

    PubMed

    Hammond, Barry D; Cooper, Jeril R; Lazarchik, David A

    2009-01-01

    The importance of provisional restorations is often downplayed, as they are thought of by some as only "temporaries." As a result, a less-than-ideal provisional is sometimes fabricated, in part because of the additional chair time required to make provisional modifications when using traditional techniques. Additionally, in many dental practices, these provisional restorations are often fabricated by auxillary personnel who may not be as well trained in the fabrication process. Because provisionals play an important role in achieving the desired final functional and esthetic result, a high-quality provisional restoration is essential to fabricating a successful definitive restoration. This article describes a method for efficiently and predictably repairing both methacrylate and bis-acryl provisional restorations using flowable composite resin. By use of this relatively simple technique, provisional restorations can now be modified or repaired in a timely and productive manner to yield an exceptional result. Successful execution of esthetic and restorative dentistry requires attention to detail in every aspect of the case. Fabrication of high-quality provisional restorations can, at times, be challenging and time consuming. The techniques for optimizing resin provisional restorations as described in this paper are pragmatic and will enhance the delivery of dental treatment.

  4. TOXICITY TESTING OF RESTORATIVE DENTAL MATERIALS USING BRINE SHRIMP LARVAE (ARTEMIA SALINA)

    PubMed Central

    Milhem, Manar M.; Al-Hiyasat, Ahmad S.; Darmani, Homa

    2008-01-01

    This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001). Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (α =0.05) showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001). Follow-up comparison between the groups by Tukey's test (α = 0.05) showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites. PMID:19089264

  5. Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model.

    PubMed

    Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Janev, Marko B; Premovic, Milica T; Atanackovic, Teodor M

    2015-08-01

    In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Polymerization stress evolution of a bulk-fill flowable composite under different compliances.

    PubMed

    Guo, Yongwen; Landis, Forrest A; Wang, Zhengzhi; Bai, Ding; Jiang, Li; Chiang, Martin Y M

    2016-04-01

    To use a compliance-variable instrument to simultaneously measure and compare the polymerization stress (PS) evolution, degree of conversion (DC), and exotherm of a bulk-fill flowable composite to a packable composite. A bulk-fill flowable composite (Filtek Bulk-fill, FBF) and a conventional packable composite (Filtek Z250, Z250) purchased from 3M ESPE were investigated. The composites were studied using a cantilever-beam based instrument equipped with an in situ near infrared (NIR) spectrometer and a microprobe thermocouple. The measurements were carried out under various instrumental compliances (ranging from 0.3327μm/N to 12.3215μm/N) that are comparable to the compliances of clinically prepared tooth cavities. Correlations between the PS and temperature change as well as the DC were interpreted. The maximum PS of both composites at 10min after irradiation decreased with the increase in the compliance of the cantilever beam. The FBF composite generated a lower final stress than the Z250 sample under instrumental compliances less than ca. 4μm/N; however, both materials generated statistically similar PS values at higher compliances. The reaction exotherm and the DC of both materials were found to be independent of compliance. The DC of the FBF sample was slightly higher than that of the packable Z250 composite while the peak exotherm of FBF was almost double that of the Z250 composite. For FBF, a characteristic drop in the PS was observed during the early stage of polymerization for all compliances studied which was not observed in the Z250 sample. This drop was shown to relate to the greater exotherm of the less-filled FBF sample relative to the Z250 composite. While the composites with lower filler content (low viscosity) are generally considered to have lower PS than the conventional packable composites, a bulk-fill flowable composite was shown to produce lower PS under a lower compliance of constraint as would be experienced if the composite was used as the base material in clinical procedures. Published by Elsevier Ltd.

  7. Physico-mechanical characteristics of commercially available bulk-fill composites.

    PubMed

    Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane

    2014-08-01

    Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.090.8). Softening in ethanol revealed differences in polymer network density between material types. The reduction of time and improvement of convenience associated with bulk-fill materials is a clear advantage of this particular material class. However, a compromise with mechanical properties compared with more conventional commercially-available nano-hybrid materials was demonstrated by the present work. Given the lower mechanical properties of most bulk-fill materials compared to a highly filled nano-hybrid composite, their use for restorations under high occlusal load is subject to caution. Further, the swelling behaviour of some of the bulk-fill materials may be a reason for concern, which highlights the critical requirement for a veneering material, not only to improve aesthetic quality of the translucent material, but to reduce the impact of degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values.

    PubMed

    Selig, Daniela; Haenel, Thomas; Hausnerová, Berenika; Moeginger, Bernhard; Labrie, Daniel; Sullivan, Braden; Price, Richard B T

    2015-05-01

    Exposure reciprocity suggests that, as long as the same radiant exposure is delivered, different combinations of irradiance and exposure time will achieve the same degree of resin polymerization. This study examined the validity of exposure reciprocity using real time degree of conversion results from one commercial flowable dental resin. Additionally a new fitting function to describe the polymerization kinetics is proposed. A Plasma Arc Light Curing Unit (LCU) was used to deliver 0.75, 1.2, 1.5, 3.7 or 7.5 W/cm(2) to 2mm thick samples of Tetric EvoFlow (Ivoclar Vivadent). The irradiances and radiant exposures received by the resin were determined using an integrating sphere connected to a fiber-optic spectrometer. The degree of conversion (DC) was recorded at a rate of 8.5 measurements a second at the bottom of the resin using attenuated total reflectance Fourier Transform mid-infrared spectroscopy (FT-MIR). Five specimens were exposed at each irradiance level. The DC reached after 170s and after 5, 10 and 15 J/cm(2) had been delivered was compared using analysis of variance and Fisher's PLSD post hoc multiple comparison tests (alpha=0.05). The same DC values were not reached after the same radiant exposures of 5, 10 and 15 J/cm(2) had been delivered at an irradiance of 3.7 and 7.5 W/cm(2). Thus exposure reciprocity was not supported for Tetric EvoFlow (p<0.05). For Tetric EvoFlow, there was no significant difference in the DC when 5, 10 and 15J/cm(2) were delivered at irradiance levels of 0.75, 1.2 and 1.5 W/cm(2). The optimum combination of irradiance and exposure time for this commercial dental resin may be close to 1.5 W/cm(2) for 12s. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Effect of two fluoride varnishes on the color stability of three resin-based restorative materials: an in vitro study.

    PubMed

    Tafaroji, Raha; Biria, Mina; Ameri, Farhad; Torabzadeh, Hassan; Qahari, Pasha; Akbarzadeh Baghban, Alireza

    2016-11-01

    The aim of the present study was to evaluate the effect of two fluoride varnishes on color stability of three resin-based restorative materials. Fifty-four discs (14.5 × 1.7 mm) were fabricated from A2 and A3 shades of a compomer (F2000), a flowable composite (Z350), and a hybrid composite (Z250), and incubated at 37°C for 48 h. Dura Shield (colored) and Fluor Protector (colorless) fluoride varnishes were applied onto the discs. The coating was cleaned using a low-speed handpiece and nylon bristle brush after 24 h of storage in distilled water. A second coating was then applied. A control group with no coating was immersed in distilled water and used. The CIE L*a*b* color scale was measured before the treatments and following each cleaning utilizing a spectrophotometer. The colored fluoride varnish exhibited the highest overall color change (∆E) after the first and the second cleaning procedures in all the materials. Among these, the greatest color change was observed in the A3 shade of F2000, followed by the A3 shade of Z-250. The ∆E was less than 3.3 in all groups, and was therefore clinically acceptable. Color changes following the application of fluoride varnishes were found to be clinically acceptable in all groups. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites

    PubMed Central

    Monterubbianesi, Riccardo; Orsini, Giovanna; Tosi, Giorgio; Conti, Carla; Librando, Vito; Procaccini, Maurizio; Putignano, Angelo

    2016-01-01

    Objectives: The aims of this study were to in vitro evaluate the degree of conversion and the microhardness properties of five bulk fill resin composites; in addition, the performance of two curing lamps, used for composites polymerization, was also analyzed. Materials and Methods: The following five resin-based bulk fill composites were tested: SureFil SDR®, Fill Up!™, Filtek™, SonicFill™, and SonicFill2™. Samples of 4 mm in thickness were prepared using Teflon molds filled in one increment and light-polymerized using two LED power units. Ten samples for each composite were cured using Elipar S10 and 10 using Demi Ultra. Additional samples of SonicFill2, (3 and 5 mm-thick) were also tested. The degree of conversion (DC) was determined by Raman spectroscopy, while the Vickers microhardness (VMH) was evaluated using a microhardness tester. The experimental evaluation was carried out on top and bottom sides, immediately after curing (t0), and, on bottom, after 24 h (t24). Two-ways analysis of variance was applied to evaluate DC and VMH-values. In all analyses, the level of significance was set at p < 0.05. Results: All bulk fill resin composites recorded satisfactory DCs on top and bottom sides. At t0, the top of SDR and SonicFill2 showed the highest DCs-values (85.56 ± 9.52 and 85.47 ± 1.90, respectively), when cured using Elipar S10; using Demi Ultra, SonicFill2 showed the highest DCs-values (90.53 ± 2.18). At t0, the highest DCs-values of bottom sides were recorded by SDR (84.64 ± 11.68), when cured using Elipar S10, and Filtek (81.52 ± 4.14), using Demi Ultra. On top sides, Demi Ultra lamp showed significant higher DCs compared to the Elipar S10 (p < 0.05). SonicFill2 reached suitable DCs also on bottom of 5 mm-thick samples. At t0, VMH-values ranged between 24.4 and 69.18 for Elipar S10, and between 26.5 and 67.3 for Demi Ultra. Using both lamps, the lowest VMH-values were shown by SDR, while the highest values by SonicFill2. At t24, all DC and VMH values significantly increased. Conclusions: Differences in DC and VMH among materials are suggested to be material and curing lamp dependent. Even at t0, the three high viscosity bulk composites showed higher VMH than the flowable or dual curing composites. PMID:28082918

  11. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites.

    PubMed

    Monterubbianesi, Riccardo; Orsini, Giovanna; Tosi, Giorgio; Conti, Carla; Librando, Vito; Procaccini, Maurizio; Putignano, Angelo

    2016-01-01

    Objectives: The aims of this study were to in vitro evaluate the degree of conversion and the microhardness properties of five bulk fill resin composites; in addition, the performance of two curing lamps, used for composites polymerization, was also analyzed. Materials and Methods: The following five resin-based bulk fill composites were tested: SureFil SDR®, Fill Up!™, Filtek™, SonicFill™, and SonicFill2™. Samples of 4 mm in thickness were prepared using Teflon molds filled in one increment and light-polymerized using two LED power units. Ten samples for each composite were cured using Elipar S10 and 10 using Demi Ultra. Additional samples of SonicFill2, (3 and 5 mm-thick) were also tested. The degree of conversion (DC) was determined by Raman spectroscopy, while the Vickers microhardness (VMH) was evaluated using a microhardness tester. The experimental evaluation was carried out on top and bottom sides, immediately after curing (t0), and, on bottom, after 24 h (t24). Two-ways analysis of variance was applied to evaluate DC and VMH-values. In all analyses, the level of significance was set at p < 0.05. Results: All bulk fill resin composites recorded satisfactory DCs on top and bottom sides. At t0, the top of SDR and SonicFill2 showed the highest DCs-values (85.56 ± 9.52 and 85.47 ± 1.90, respectively), when cured using Elipar S10; using Demi Ultra, SonicFill2 showed the highest DCs-values (90.53 ± 2.18). At t0, the highest DCs-values of bottom sides were recorded by SDR (84.64 ± 11.68), when cured using Elipar S10, and Filtek (81.52 ± 4.14), using Demi Ultra. On top sides, Demi Ultra lamp showed significant higher DCs compared to the Elipar S10 ( p < 0.05). SonicFill2 reached suitable DCs also on bottom of 5 mm-thick samples. At t0, VMH-values ranged between 24.4 and 69.18 for Elipar S10, and between 26.5 and 67.3 for Demi Ultra. Using both lamps, the lowest VMH-values were shown by SDR, while the highest values by SonicFill2. At t24, all DC and VMH values significantly increased. Conclusions: Differences in DC and VMH among materials are suggested to be material and curing lamp dependent. Even at t0, the three high viscosity bulk composites showed higher VMH than the flowable or dual curing composites.

  12. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives

    PubMed Central

    Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; Huang, C.; Pashley, D.H.; Tay, F.R.

    2015-01-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer’s instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in specimens prepared from the commercialized adhesives. The sparsity of nanolayering in resin-dentin interfaces created by commercialized adhesives challenges its clinical effectiveness as a mechanism for improving bond longevity in dentin bonding. PMID:26701351

  13. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives.

    PubMed

    Tian, F; Zhou, L; Zhang, Z; Niu, L; Zhang, L; Chen, C; Zhou, J; Yang, H; Wang, X; Fu, B; Huang, C; Pashley, D H; Tay, F R

    2016-04-01

    Self-assembled nanolayering structures have been reported in resin-dentin interfaces created by adhesives that contain 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). These structures have been hypothesized to contribute to bond durability. The objective of the present study was to determine the extent of nanolayering in resin-dentin interfaces after application of commercialized 10-MDP-containing self-etch and universal adhesives to human dentin. Seven commercialized adhesives were examined: Adhese Universal (Ivoclar-Vivadent), All-Bond Universal (Bisco, Inc.), Clearfil SE Bond 2, Clearfil S3 Bond Plus, Clearfil Universal Bond (all from Kuraray Noritake Dental Inc.), G-Premio Bond (GC Corp.), and Scotchbond Universal (3M ESPE). Each adhesive was applied in the self-etch mode on midcoronal dentin according to the respective manufacturer's instructions. Bonded specimens (n = 6) were covered with flowable resin composite, processed for transmission electron microscopy, and examined at 30 random sites without staining. Thin-film glancing angle X-ray diffraction (XRD) was used to detect the characteristic peaks exhibited by nanolayering (n = 4). The control consisted of 15%wt, 10%wt, and 5%wt 10-MDP (DM Healthcare Products, Inc.) dissolved in a mixed solvent (ethanol and water weight ratio 9:8, with photoinitiators). Experimental primers were applied to dentin for 20 s, covered with hydrophobic resin layer, and examined in the same manner. Profuse nanolayering with highly ordered periodicity (~3.7 nm wide) was observed adjacent to partially dissolved apatite crystallites in dentin treated with the 15% 10-MDP primer. Three peaks in the 2θ range of 2.40° (3.68 nm), 4.78° (1.85 nm), and 7.18° (1.23 nm) were identified from thin-film XRD. Reduction in the extent of nanolayering was observed in the 10% and 5% 10-MDP experimental primer-dentin interface along with lower intensity XRD peaks. Nanolayering and characteristic XRD peaks were rarely observed in specimens prepared from the commercialized adhesives. The sparsity of nanolayering in resin-dentin interfaces created by commercialized adhesives challenges its clinical effectiveness as a mechanism for improving bond longevity in dentin bonding. © International & American Associations for Dental Research 2015.

  14. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.

    PubMed

    Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin

    2017-08-01

    The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Polymerization kinetics and impact of post polymerization on the Degree of Conversion of bulk-fill resin-composite at clinically relevant depth.

    PubMed

    Al-Ahdal, Khold; Ilie, Nicoleta; Silikas, Nick; Watts, David C

    2015-10-01

    Since bulk-fill (BF) resin composites should cure efficiently to a depth up to 4mm, the aim of the study was to determine the time-dependence of degree of conversion (DC) at that depth during 24h post-irradiation. Eight representative BF resin composites were studied [x-tra base (XTB), Venus Bulk Fill (VBF), Tetric EvoCeram Bulk Fill (TECBF), Sonic Fill (SF), Filtek Bulk Fill (FBF), everX Posterior (eXP), Beautifil-Bulk Flowable (BBF), Beautifil-Bulk Restorative (BBR)]. Specimens were fabricated in white Delrin moulds of 4mm height and 5mm internal diameter directly on an attenuated total reflectance (ATR) accessory attachment of an (FTIR) spectrometer (Nicolet iS50, Thermo Fisher, Madison, USA). Upper specimen surfaces were irradiated in situ for 20 s with an LED curing unit (Elipar S10 with average tip irradiance of 1200 mW/cm(2)). Spectra from the lower surface were recorded continuously in real-time for 5 min and then at 30 and 60 min and 24h post irradiation. Mean ranges of DC4mm (%) of the materials at 4mm depth were 39-67; 48-75; 45-74; and 50-72 at 5, 30 and 60 min and 24h respectively. DCs for XTB, VBF, TECBF, FBF, BBR increased significantly 30 min after irradiation (p<0.05) and were not affected by subsequent time up to 24h (p>0.05). DC for SF was not affected by subsequent time after 5 min (p>0.05). For eXP and BBF, DC increased 24h after irradiation (p<0.05). The data were described by the superposition of two exponential functions characterising the gel phase (described by parameters a, b) and the glass phase (described by parameters c and d). Post polymerization impact of bulk-fill composites is material dependent. Five materials exhibited their maximum DC4mm already 30 min after starting the irradiation while DC4mm for two materials optimized after 24h. BF materials were found to exhibit after 24h a DC between 50 and 72% at 4mm depth under the stated irradiation conditions. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites.

    PubMed

    Bucuta, Stefan; Ilie, Nicoleta

    2014-11-01

    The aim of this study was to quantify the blue light that passes through different incremental thicknesses of bulk fill in comparison to conventional resin-based composites (RBCs) and to relate it to the induced mechanical properties. Seven bulk fill, five nanohybrid and two flowable RBCs were analysed. Specimens (n = 5) of three incremental thicknesses (2, 4 and 6 mm) were cured from the top for 20 s, while at the bottom, a spectrometer monitored in real time the transmitted irradiance. Micro-mechanical properties (Vickers hardness, HV, and indentation modulus, E) were measured at the top and bottom after 24 h of storage in distilled water at 37 °C. Electron microscope images were taken for assessing the filler distribution and size. Bulk fill RBCs (except SonicFill) were more translucent than conventional RBCs. Low-viscosity bulk fill materials showed the lowest mechanical properties. HV depends highly on the following parameters: material (ηp (2) = 0.952), incremental thickness (0.826), filler volume (0.747), filler weight (0.746) and transmitted irradiance (0.491). The bottom-to-top HV ratio (HVbt) was higher than 80 % in all materials in 2- and 4-mm increments (except for Premise), whereas in 6-mm increments, this is valid only in four bulk fill materials (Venus Bulk Fill, SDR, x-tra fil, Tetric EvoCeram Bulk Fill). The depth of cure is dependent on the RBC's translucency. Low-viscosity bulk fill RBCs have lower mechanical properties than all other types of analysed materials. All bulk fill RBCs (except SonicFill) are more translucent for blue light than conventional RBCs. Although bulk fill RBCs are generally more translucent, the practitioner has to follow the manufacturer's recommendations on curing technique and maximum incremental thickness.

  17. One-year clinical evaluation of two resin composites, two polymerization methods, and a resin-modified glass ionomer in non-carious cervical lesions.

    PubMed

    Koubi, Stephen; Raskin, Anne; Bukiet, Frédéric; Pignoly, Christian; Toca, Edwige; Tassery, Hervé

    2006-11-01

    The aim of this study was to examine clinically relevant data on four restorative procedures for non-carious cervical lesions using United States Public Health Service (USPHS)-compatible clinical and photographic criteria and to compare different methods of analyzing clinical data. Fourteen patients with at least one or two pairs of non-carious lesions under occlusion and a mean age of 50 were enrolled in this study. A total of 56 restorations (14 with each material) were placed by three experienced, calibrated dental practitioners. Two other experienced and calibrated practitioners, under single-blind conditions, followed up on all restorations for a period of one year. Three materials were randomly placed: a micro-hybrid composite with two polymerization methods (G1 and G2), a flowable micro-hydrid composite (G3), and a resin-modified glass ionomer (G4). Statistical analysis was performed using the Kruskall-Wallis test (p<0.05) and a Mann-Whitney U modified test with a corrected significance level. At the one year evaluation time, there were no restorations with secondary caries and the retention rates in G1 (IntenS with a hard polymerization), G2 (IntenS with a soft polymerization), G3 (Filtek flow), and G4 (Fuji II LC) were 85.7% (two losses), 92.8% (one loss), 100%, and 100%, respectively. The total visual comparison of the results at baseline (15 days later) showed significant differences only with the clinical acceptance criterion: G1 was different from G2, with a soft polymerization device (p<0.05). In terms of surface quality at one year, G1, G2, and G3 exhibited a statistically significant difference from G4, p<0.05. The digital analysis at baseline showed significant differences only with the clinical acceptance criterion: G1=G2 was different from G3=G4, p<0.05. At one year, only the microporosity criterion showed any statistical differences: G1=G2=G3 was different from G4, p<0.05. The resin-modified glass ionomer was easier to use and had a high retention rate, but it failed in terms of surface quality (visual mode) and porosity (digital mode) criteria compared to the others groups. Overall results showed no difference between groups G1 (hard-polymerized) and G2 (soft-polymerized), and only G1 was affected by the marginal edge (p<0.03) and integrity criteria (p<0.02) at one year.

  18. Fatigue stipulation of bulk-fill composites: An in vitro appraisal.

    PubMed

    Vidhawan, Shruti A; Yap, Adrian U; Ornaghi, Barbara P; Banas, Agnieszka; Banas, Krzysztof; Neo, Jennifer C; Pfeifer, Carmem S; Rosa, Vinicius

    2015-09-01

    The aim of this study was to determine the Weibull and slow crack growth (SCG) parameters of bulk-fill resin based composites. The strength degradation over time of the materials was also assessed by strength-probability-time (SPT) analysis. Three bulk-fill [Tetric EvoCeram Bulk Fill (TBF); X-tra fil (XTR); Filtek Bulk-fill flowable (BFL)] and a conventional one [Filtek Z250 (Z250)] were studied. Seventy five disk-shaped specimens (12mm in diameter and 1mm thick) were prepared by inserting the uncured composites in a stainless steel split mold followed by photoactivation (1200mW/cm(2)/20s) and storage in distilled water (37°C/24h). Degree of conversion was evaluated in five specimens by analysis of FT-IR spectra obtained in the mid-IR region. The SCG parameters n (stress corrosion susceptibility coefficient) and σf0 (scaling parameter) were obtained by testing ten specimens in each of the five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s using a piston-on-three-balls device. Weibull parameter m (Weibull modulus) and σf0 (characteristic strength) were obtained by testing additional 20 specimens at 1MPa/s. Strength-probability-time (SPT) diagrams were constructed by merging SCG and Weibull parameters. BFL and TBF presented higher n values, respectively (40.1 and 25.5). Z250 showed the highest (157.02MPa) and TBF the lowest (110.90MPa) σf0 value. Weibull analysis showed m (Weibull modulus) of 9.7, 8.6, 9.7 and 8.9 for TBF, BFL, XTR and Z250, respectively. SPT diagram for 5% probability of failure showed strength decrease of 18% for BFL, 25% for TBF, 32% for XTR and 36% for Z250, respectively, after 5 years as compared to 1 year. The reliability and decadence of strength over time for bulk-fill resin composites studied are, at least, comparable to conventional composites. BFL shows the highest fatigue resistance under all simulations followed by TBF, while XTR was at par with Z250. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Food powders flowability characterization: theory, methods, and applications.

    PubMed

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  20. Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?

    PubMed

    Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2012-10-01

    This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm(3)). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey's HSD test (P<.05). There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo.

  1. Detailed studies of aviation fuel flowability

    NASA Technical Reports Server (NTRS)

    Mehta, H. K.; Armstrong, R. S.

    1985-01-01

    Six Jet A fuels, with varying compositions, were tested for low temperature flowability in a 190-liter simulator tank that modeled a section of a wing tank of a wide-body commercial airplane. The insulated tank was chilled by circulating coolant through the upper and lower surfaces. Flow-ability was determined as a function of fuel temperature by holdup, the fraction of unflowable fuel remaining in the tank after otherwise complete withdrawal. In static tests with subfreezing tank conditions, hold up varied with temperature and fuel composition. However, a general correlation of two or three classes of fuel type was obtained by plotting holdup as a function of the difference between freezing point and boundary-layer temperature, measured 0.6 cm above the bottom tank surface. Dynamic conditions of vibrations and slosh or rate of fuel withdrawal had very minor effects on holdup. Tests with cooling schedules to represent extreme, cold-day flights showed, at most, slight holdup for any combination of fuel type or dynamic conditions. Tests that superimposed external fuel heating and recirculation during the cooldown period indicates reduced hold up by modification of the low-temperature boundary layer. Fuel heating was just as effective when initiated during the later times of the tests as when applied continuously.

  2. Evaluation Physical Characteristics and Comparison Antimicrobial and Anti-Inflammation Potentials of Dental Root Canal Sealers Containing Hinokitiol In Vitro

    PubMed Central

    Shih, Yin-Hua; Lin, Dan-Jae; Chang, Kuo-Wei; Hsia, Shih-Min; Ko, Shun-Yao; Lee, Shyh-Yuan; Hsue, Shui-Sang; Wang, Tong-Hong; Chen, Yi-Ling; Shieh, Tzong-Ming

    2014-01-01

    Hinokitiol displays potent antimicrobial activity. It has been used in toothpaste and oral-care gel to improve the oral lichen planus and reduce halitosis. The aim of this study was to evaluate the antimicrobial activity of 3 different dental root canal sealers with hinokitiol (sealers+H) and their physical and biological effects. AH Plus (epoxy amine resin-based, AH), Apexit Plus (calcium-hydroxide-based, AP), and Canals (zinc-oxide-eugenol-based, CA), were used in this study. The original AH and CA exhibited strong anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity, but AP did not. The setting time, working time, flowability, film thickness, and solubility of each sealer+0.2%H complied with ISO 6876:2001. CA+0.2%H exhibited high cytotoxicity, but the others sealers+0.2%H did not. Because hinokitiol combined with Zn2+ in CA creates a synergistic effect. The physical tests of AP+0.5%–1%H complied with ISO 6876:2001, improved antimicrobial activity, inhibited inflammation genes cyclooxygenase-2 (COX-2) and hypoxia-inducible factor-1α (HIF-1α) mRNA in MG-63 cells and human gingival fibroblasts (HGF), and down-regulated lysyl oxidase (LOX) mRNA of HGF. In summary, AH and CA demonstrated strong antimicrobial activity, but AP did not. Application of hinokitiol increases AH anti-MRSA activity should less than 0.2% for keep well flowability. AP+0.5%–1% hinokitiol exhibited strong physical, antibacterial, and anti-inflammation potentials, and inhibited S. aureus abscess formation. Applying an appreciable proportion of hinokitiol to epoxy-amine-resin-based and calcium-hydroxide-based root canal sealers is warranted, but the enhanced cytotoxicity and synergistic effect must be considered. PMID:24915566

  3. Adhesion of resin materials to S2-glass unidirectional and E-glass multidirectional fiber reinforced composites: effect of polymerization sequence protocols.

    PubMed

    Polacek, Petr; Pavelka, Vladimir; Ozcan, Mutlu

    2013-12-01

    To evaluate the effect of different polymerization sequences employed during application of bis-GMAbased particulate filler composites (PFC) or a flowable resin (FR) on fiber-reinforced composite (FRC). Unidirectional, pre-impregnated S2-glass fibers (Dentapreg) and multidirectional preimpregnated E-glass fibers (Dentapreg) (length: 40 mm; thickness: 0.5 mm) were obtained (N = 144, n = 12 per group) and embedded in translucent silicone material with the adhesion surface exposed. The resulting specimens were randomly divided into 12 groups for the following application sequences: a) FRC+PFC (photopolymerized in one step), b) FRC+FR (photopolymerized in one step), c) FRC+PFC (photopolymerized individually), d) FRC+FR (photopolymerized individually), e) FRC (photopolymerized)+intermediate adhesive resin and PFC (photopolymerized in one step), f) FRC (photopolymerized)+intermediate adhesive resin and FR (photopolymerized in one step). The sequences of unidirectional (groups a to f) were repeated for multidirectional (groups g to l) FRCs. PFCs were debonded from the FRC surfaces using the shear bond test in a universal testing machine (1 mm/min). On additional specimens from each FRC type, thermogravimetric analysis (TGA) was performed to characterize the fiber weight content (Wf) (N = 6, n = 3 per group). After debonding, all specimens were analyzed using SEM to categorize the failure modes. The data were statistically analyzed using 3-way ANOVA and Tukey's tests (α = 0.05). Significant effects of the FRC type (S2 or E-glass) (p < 0.01), resin type (PFC or FR) (p < 0.01) and polymerization protocol (p < 0.05) were observed on the bond strength (MPa). Interaction terms were also significant (p < 0.05). The multidirectional FRC groups (g to l) showed significantly lower bond strengths (2.3 ± 0.2 to 7.3 ± 0.3 MPa) than did the unidirectional FRC groups (a to f) (10.7 ± 0.6 to 24.4 ± 0.8 MPa). Among the unidirectional FRC groups, the highest values were obtained with protocol f (24.4 ± 0.8), followed by protocol e (18.6 ± 0.4). PFC adhesion to unidirectional FRC was lower when FRC and PFC were polymerized in one step (protocol a: 11.3 ± 0.5) than individual polymerization (protocol c: 14.1 ± 0.5). The opposite situation was true for FR (protocol b: 17.5 ± 0.4; protocol d: 10.7 ± 0.6). Groups a to f presented exclusively mixed failures (a combination of partial cohesive failure in the PFC and adhesive failure between the FRC and PFC) and groups g to l demonstrated only adhesive failure (intact FRC no cohesive failure of PFC). TGA revealed 55 ± 3 wt% fiber content for multidirectional and 60 ± 3 wt% for unidirectional FRCs tested. Multidirectional pre-impregnated E-glass fibers cannot be recommended in combination with the PFC and FR materials tested in this study. Application of an intermediate adhesive resin layer increases the adhesion of both PFC and FR to unidirectional FRC. FRC and FR can be polymerized in one step, but FRC and PFC combinations should be polymerized individually.

  4. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    MacArthur, Doug E. (Inventor); Cranston, John A. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  5. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  6. Development of a composite resin disclosing agent based on the understanding of tooth staining mechanisms.

    PubMed

    Abdallah, Mohamed-Nur; Light, Nathan; Amin, Wala M; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2014-06-01

    To characterize the surface composition of dental enamel and composite resin, assess the ability of dyes with different affinities to stain these surfaces, and use this information to develop a disclosing agent that stains composite resin more than dental enamel. One hundred and ten sound extracted teeth were collected and 60 discs of composite resin, 9 mm diameter and 3 mm thick, were prepared. X-ray photoelectron spectroscopy (XPS) was employed to determine the elemental composition on the different surfaces. A tooth shade spectrophotometer was used to assess the change in shade after staining the surfaces with different dyes. XPS analysis revealed that surfaces of both outer dental enamel and composite resin contained relatively high amounts of carbon, specifically hydrocarbons. Both dental enamel and composite surfaces were stainable with the hydrophobic dye (p<0.05); however, the composite resin was stained more than the dental enamel (p<0.05). The hydrophobic surface of dental enamel and composite resin might explain their high affinity to be stained by food and beverages containing hydrophobic molecules. The composite resin is more stainable by hydrophobic dyes than dental enamel. We used this information to develop an agent for disclosing composite resins that could be used to visualize composite resins that need to be removed. Removal of composite resin can be problematic, time consuming and stressful to the dental practitioner. A composite disclosing agent would help the dental practitioner identify the composite resin and facilitate its removal without damaging the adjacent healthy tooth tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluating the Marginal Integrity of Bulk Fill Fibre Reinforced Composites in Bio-mimetically Restored Tooth.

    PubMed

    Patnana, Arun Kumar; Vanga, V Narsimha Rao; Chandrabhatla, Srinivas Kumar

    2017-06-01

    Over the past years, composites in aesthetic dentistry are showing a considerable progress, but mechanical strength and polymerization shrinkage are the two main drawbacks, which limit their use in high stress bearing areas. To evaluate the marginal integrity of short glass fibre reinforced composite restorations, fibre reinforced composites with composite superficial layer, and fibre reinforced composites with underlying flowable composite layer. This study was done on twenty eight sound premolar teeth with standardized class V cavities restored under four groups as Group I: Particulate filler composite (Filtek Z 250 XT, 3M ESPE); Group II: Short glass fibre reinforced composite (everX Posterior, GC); Group III: Short glass fibre reinforced composite with an overlying layer of particulate filler composite; Group IV: Short glass fibre reinforced composite with an underlying layer of flowable composite (Filtek Z 250 XT, 3M ESPE). Test samples were immersed in a 2% methylene blue dye for 24 hours at 37°C and each tooth was sectioned bucco-lingually. Staining along the tooth restoration interface was recorded and results were analysed statistically using Independent sample t-test and Tukey's post-hoc one-way ANOVA. The results showed significant difference in the dye penetration between the restorative materials in the occlusal and gingival margins (p=0.02). Short fibre reinforced composites showed a statistically significant difference in the microleakage scores when compared with the particulate filler composites (p=0.01). Short glass fibre reinforced composite restorations showed an improved marginal integrity when compared to the traditional particulate filler composite restorations.

  8. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    PubMed

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (P<.001). No significant differences were observed within the direct composite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (P<.01). A partial correlation was observed between composite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. [Disintegration of visible light-cured composite resins caused by long-term water immersion].

    PubMed

    Hino, T; Arai, K

    1989-05-01

    The purpose of this study is to clarify a cause of disintegration of composite resins by long-term immersion in distilled water. Three kinds of visible light-cured composite resins (Heliosit, Plurafil Super and Visio Dispers) and one conventional composite resin (Clearfil F II) were prepared as the specimens with a 20 mm diameter and 1 mm thickness. These specimens were immersed in distilled water at 37 +/- 1 degree C for 3 years. These specimens were analysed and observed by a comprehensive multi analyzer and scanning electron microscope. The other hand residues in distilled water were analysed by infrared (IR) and nuclear magnetic resonance (NMR) spectrometers. The surface layer of all four composite resins showed signs of disintegration. The composite resins with abundant dissolved substances had disintegrated markedly, and such disintegration occurred deep inside the specimens. In IR and 1H-NMR spectra of dissolved substances, two visible light-cured composite resins (Heliosit and Plurafil Super) could be detected unreacted monomers, but one visible light-cured composite resin (Visio Dispers) and one conventional composite resin (Clearfil F II) could not be detected them. In 1H-NMR spectra of dissolved substances of all four composite resins, new signals not composed originally were observed. The progress of disintegration were demonstrated clearly. The dissolved substances were shown as the disintegrated substance between resin matrixs and silane coupling agents. It is suggested that the disintegration of composite resins by long-term water immersion is derived from hydrolysis.

  10. Influence of irradiation by a novel CO2 9.3-μm short-pulsed laser on sealant bond strength.

    PubMed

    Rechmann, P; Sherathiya, K; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-04-01

    The objective of this in vitro study was to evaluate whether irradiation of enamel with a novel CO 2 9.3-μm short-pulsed laser using energies that enhance caries resistance influences the shear bond strength of composite resin sealants to the irradiated enamel. Seventy bovine and 240 human enamel samples were irradiated with a 9.3-μm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with four different laser energies known to enhance caries resistance or ablate enamel (pulse duration from 3 μs at 1.6 mJ/pulse to 43 μs at 14.9 mJ/pulse with fluences between 3.3 and 30.4 J/cm 2 , pulse repetition rate between 4.1 and 41.3 Hz, beam diameter of 0.25 mm and 1-mm spiral pattern, and focus distance of 4-15 mm). Irradiation was performed "freehand" or using a computerized, motor-driven stage. Enamel etching was achieved with 37% phosphoric acid (Scotchbond Universal etchant, 3M ESPE, St. Paul, MN). As bonding agent, Adper Single Bond Plus was used followed by placing Z250 Filtek Supreme flowable composite resin (both 3M ESPE). After 24 h water storage, a single-plane shear bond test was performed (UltraTester, Ultradent Products, Inc., South Jordan, UT). All laser-irradiated samples showed equal or higher bond strength than non-laser-treated controls. The highest shear bond strength values were observed with the 3-μs pulse duration/0.25-mm laser pattern (mean ± SD = 31.90 ± 2.50 MPa), representing a significant 27.4% bond strength increase over the controls (25.04 ± 2.80 MPa, P ≤ 0.0001). Two other caries-preventive irradiation (3 μs/1 mm and 7 μs/0.25 mm) and one ablative pattern (23 μs/0.25 mm) achieved significantly increased bond strength compared to the controls. Bovine enamel also showed in all test groups increased shear bond strength over the controls. Computerized motor-driven stage irradiation did not show superior bond strength values over the clinically more relevant freehand irradiation. Enamel that is made caries-resistant with CO 2 9.3-μm short-pulsed laser irradiation showed at least equal or significantly higher shear bond strength to pit and fissure sealants than non-laser-irradiated enamel. The risk of a sealant failure due to CO 2 9.3-μm short-pulsed laser irradiation appears reduced. If additional laser ablation is required before placing a sealant, the CO 2 9.3-μm enamel laser-cut showed equivalent or superior bond strength to a flowable sealant.

  11. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins.

    PubMed

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples.

  12. Effect of preheat repetition on color stability of methacrylate- and silorane-based composite resins

    PubMed Central

    Abed Kahnamouei, Mehdi; Gholizadeh, Sarah; Rikhtegaran, Sahand; Daneshpooy, Mehdi; Kimyai, Soodabeh; Alizadeh Oskoee, Parnian; Rezaei, Yashar

    2017-01-01

    Background. The aim of this study was to investigate the effect of preheating methacrylate- and silorane-based composite resins on their color stability up to 40 times at 55‒60°C. Methods. Seventy-six methacrylate and silorane-based composite resin samples, with a diameter of 10 mm and a height of 2 mm, were divided into 4 groups (n=19). After the samples were prepared, their color parameters were determined using a reflective spectrophotometer. The composite resin samples were separately stored in a solution of tea for 40 consecutive days. Then the samples underwent a color determination procedure again using a spectrophotometer and color changes were recorded. Finally two-way ANOVA was used to study the effect of composite temperature on its staining (P<0.05). Independent-samples t-test was used to evaluate changes in conversion rates of preheated composite resin samples compared to non-heated samples at P=0.005 and P=0.029 for silorane-based and Z250 composite resin samples, respectively. Results. Both composite resin type (P=0.014) and preheating (P<0.001) had significant effects on ΔE. Conclusion. Repeated preheating of methacrylate- and silorane-based composite resin samples, up to 55‒60°C for 40 rounds, resulted in more color changes compared with unheated composite resin samples. After storage in a solution of tea the color change rate in the composite resin samples of silorane-based was higher than the Z250 composite resin samples. PMID:29354248

  13. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    PubMed

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  14. Fractography of interface after microtensile bond strength test using swept-source optical coherence tomography.

    PubMed

    Dao Luong, Minh Nguyet; Shimada, Yasushi; Turkistani, Alaa; Tagami, Junji; Sumi, Yasunori; Sadr, Alireza

    2016-07-01

    To determine the effect of crosshead speed and placement technique on interfacial crack formation in microtensile bond strength (MTBS) test using swept-source optical coherence tomography (SS-OCT). MTBS test beams (0.9×0.9mm(2)) were prepared from flat human dentin disks bonded with self-etch adhesive (Clearfil SE Bond, Kuraray) and universal composite (Clearfil AP-X, Kuraray) with or without flowable composite lining (Estelite Flow Quick, Tokuyama). Each beam was scanned under SS-OCT (Santec, Japan) at 1319nm center wavelength before MTBS test was performed at crosshead speed of either 1 or 10mm/min (n=10). The beams were scanned by SS-OCT again to detect and measure cracks at the debonded interface using digital image analysis software. Representative beams were observed under confocal laser scanning microscope to confirm the fractography findings. Two-way ANOVA showed that for MTBS the crosshead speed was not a significant factor (p>0.05), while there was a difference between placement techniques (p<0.001), with flowable lining yielding higher mean values. On the other hand, for crack formation, there was a significant difference between crosshead speeds (p<0.01), while the placement technique did not show up as a statistically significant factor (p>0.05). The interaction of factors were not significant (p>0.05). Testing MTBS samples at higher crosshead speeds induced more cracks in dentin. Lining with a flowable composite improved the bonding quality and increased the bond strength. SS-OCT can visualize interfacial cracks after restoration debonding. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. [Studies on the dynamic durability of dental restorative materials. Part 4. Materials evaluation of initial and fatigue specimen for composite resins by acoustic emission method].

    PubMed

    Kondo, S; Okawa, S; Hanawa, T; Sugawara, T; Ota, M

    1981-10-01

    Present study is directed towards development for a method of materials evaluation of the static and dynamic properties for dental restorative materials and nondestructive inspection of the dental restorations in oral cavity by acoustic emission (AE) method. AE characteristics and deformation-fracture behavior of hour commercial composite resins under three points bending test are examined in order to evaluate initial and fatigue specimen for conventional and microfilled composite resins. Experimental results obtained are as follows: (1) Deformation-fracture behavior of conventional and microfilled composite resins exhibits different mode, corresponding to relatively brittle and ductile fracture behavior, respectively. Therefore, the primary sources of AE for conventional and microfilled composite resins under bending test are related mainly to the nucleation and propagation of cracks and plastic deformation, respectively. (2) In conventional composite resins under bending test, the burst type AE signal of higher amplitude and shorter decay time and more many AE total counts tend to be observed. In microfilled composite resins under bending test, the burst type AE signal of lower amplitude and longer decay time and more a few total counts tend to be observed. (3) Composite resins, particularly conventional composite resins under unload and repeated bending load are indicative of different AE characteristics. Accordingly, application of AE method for composite resins offers a method to evaluate the static and dynamic strength of composite resins. (4) In conventional composite resins under bending test, as characteristic AE are observed in a few stress regions before fracture, it may be possible to monitor nondestructively the restorations in oral cavity by using AE method.

  16. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  17. Color change of composite resins subjected to accelerated artificial aging.

    PubMed

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α <0.05). After statistical analysis, the color difference among composite resins with the same shades was analyzed. All composite resins showed unacceptable color changes after AAA (ΔE > 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P < 0.05) and in shade B2 for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.01). After this process, a statistically significant difference was observed only for shade B2 between microhybrid composite resins (P < 0.01) and for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.05). Regarding the color difference within a same composite resin group, before aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  18. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites.

    PubMed

    Shibasaki, S; Takamizawa, T; Nojiri, K; Imai, A; Tsujimoto, A; Endo, H; Suzuki, S; Suda, S; Barkmeier, W W; Latta, M A; Miyazaki, M

    The present study determined the mechanical properties and volumetric polymerization shrinkage of different categories of resin composite. Three high viscosity bulk fill resin composites were tested: Tetric EvoCeram Bulk Fill (TB, Ivoclar Vivadent), Filtek Bulk Fill posterior restorative (FB, 3M ESPE), and Sonic Fill (SF, Kerr Corp). Two low-shrinkage resin composites, Kalore (KL, GC Corp) and Filtek LS Posterior (LS, 3M ESPE), were used. Three conventional resin composites, Herculite Ultra (HU, Kerr Corp), Estelite ∑ Quick (EQ, Tokuyama Dental), and Filtek Supreme Ultra (SU, 3M ESPE), were used as comparison materials. Following ISO Specification 4049, six specimens for each resin composite were used to determine flexural strength, elastic modulus, and resilience. Volumetric polymerization shrinkage was determined using a water-filled dilatometer. Data were evaluated using analysis of variance followed by Tukey's honestly significant difference test (α=0.05). The flexural strength of the resin composites ranged from 115.4 to 148.1 MPa, the elastic modulus ranged from 5.6 to 13.4 GPa, and the resilience ranged from 0.70 to 1.0 MJ/m 3 . There were significant differences in flexural properties between the materials but no clear outliers. Volumetric changes as a function of time over a duration of 180 seconds depended on the type of resin composite. However, for all the resin composites, apart from LS, volumetric shrinkage began soon after the start of light irradiation, and a rapid decrease in volume during light irradiation followed by a slower decrease was observed. The low shrinkage resin composites KL and LS showed significantly lower volumetric shrinkage than the other tested materials at the measuring point of 180 seconds. In contrast, the three bulk fill resin composites showed higher volumetric change than the other resin composites. The findings from this study provide clinicians with valuable information regarding the mechanical properties and polymerization kinetics of these categories of current resin composite.

  19. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study.

    PubMed

    Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr

    2013-06-01

    This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.

  20. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study

    PubMed Central

    Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR

    2013-01-01

    Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Materials & Methods: Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Results: Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. Conclusion: The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19. PMID:24155597

  1. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  2. Comparison of the retention of 5 core materials supported by a dental post.

    PubMed

    Gu, Steven; Isidro, Mario; Deutsch, Allan S; Musikant, Barry L

    2006-01-01

    This study evaluated the retention of dental post heads (No. 2 Flexi-Post) embedded in 5 core materials (1 automix resin composite, 2 hand-mixed resin composites, and 2 glass ionomers). Samples were prepared by embedding post heads in 4.5-mm-thick disks of core material. The resin composite materials provided significantly more retention than the glass-ionomer-based materials. The post head retention of the automix resin composite was comparable to that of the hand-mixed resin composites. Unlike the resin composite samples, all the glass-ionomer samples fractured during testing. This is an unacceptable condition for a clinically successful restoration.

  3. Effect of various teas on color stability of resin composites.

    PubMed

    Dinç Ata, Gül; Gokay, Osman; Müjdeci, Arzu; Kivrak, Tugba Congara; Mokhtari Tavana, Armin

    2017-12-01

    To investigate the effect of various teas on color stability of resin composites. Two methacrylate-based (Arabesk Top, Grandio) and a silorane-based (Filtek Silorane) resin composites were used. 110 cylindrical samples of each resin composite were prepared (2 mm thickness and 8 mm diameter), polished and stored in distilled water (37°C for 24 hours). They were randomly divided into 11 groups (n= 10) and color measurements were taken. Then the samples were immersed in tap water (control), a black tea, a green tea or one of the eight herbal-fruit teas (37°C for 1 week) and subsequently subjected to the final color measurements. The color change of samples (ΔE*) was calculated, data were subjected to two-way ANOVA and Tukey's HSD tests. Teas, resin composites and their interactions were significant (P= 0.000). All the teas and control caused color changes in all three resin composites. Rosehip tea caused the most color changes, while tap water showed the least in all resin composites. Arabesk Top had the most staining potential in all the teas and control, whereas Filtek Silorane was the most stain resistant except Grandio immersed in sage tea. Color stability of all resin composites used were affected from both structure of resin materials and constituents of teas used. All resin composites were susceptible to staining by all teas especially rosehip tea. Arabesk Top composite showed the greatest color susceptibility in all teas and Filtek Silorane the least with one exception. Color of resin composites can be negatively affected from teas consumed. Clinicians should advise patients that drinking different kind of teas could intensify surface staining of resin based restorations.

  4. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  5. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    NASA Technical Reports Server (NTRS)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  6. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    PubMed

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.

    PubMed

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2016-07-01

    The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p < 0.01). Belle-Glass® had the highest mean shear bond strength when bonded to StickNet substrate using both Prime & Bond NT and OptiBond Solo Plus. Sinfony® composite resin exhibited the lowest shear bond strength values when used with the same adhesive resins. The adhesive mode of failure was higher than cohesive with all laboratory composite resins bonded to the StickNet substructure at both storage times. Water storage had a tendency to lower the bond strengths of all laboratory composites, although the statistical differences were not significant. Within the limitations of this study, it was found that bonding of the veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.

  8. Characterization of PMR-15 polyimide composition in thermo-oxidatively exposed graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1980-01-01

    The contributions of individual resin components to total resin weight loss in 600 F air aged Celion 6000/PMR-15 polyimide composites were determined from the overall resin weight loss in the composite by chemically separating the PMR-15 matrix resin into its monomeric components. The individual resin components were also analyzed by spectroscopic techniques in order to elucidate curing and degradation mechanisms of the PMR-15 matrix resin. The isothermal weight loss of the individual resin components during prolonged 600 F thermo-oxidative aging of the composite was correlated to the changes observed in the Fourier Transform infrared spectra and Fourier Transform nuclear magnetic resonance spectra of the individual resin components. The correlation was used to identify the molecular site of the thermo-oxidative changes in PMR-15 polyimide matrix resin during 600 F curing the prolonged 600 F thermo-oxidative aging.

  9. Fracture resistance of premolar teeth restored with silorane-based or dimethacrylate-based composite resins.

    PubMed

    Akbarian, Golsa; Ameri, Hamideh; Chasteen, Joseph E; Ghavamnasiri, Marjaneh

    2014-01-01

    To restore posterior teeth using low-shrinkage composite to minimize microleakage. To compare the fracture resistance of mesio-occlusal-distal (MOD) cavity preparations restored with either low-shrinkage composite or with dimethacrylate-based composite in conjunction with cavity liners and without them. The null hypothesis of the study is that there are no differences in either fracture resistance or fracture mode between the silorane group and dimethacrylate groups with and without the use of cavity liners. Sixty maxillary premolars were divided into six groups of 10. MOD cavities were prepared in four groups: F: posterior composite (Filtek P60); GF: 0.5-mm Glass Ionomer (Fuji LC) + posterior composite; FF: 0.5-mm flowable composite (Filtek Supreme XT) + posterior composite; and S: low-shrinkage composite (Filtek P90). Negative (N) and positive (P) control groups consisted of unrestored and sound teeth, respectively. The specimens were thermocycled and loaded. Data were analyzed using analysis of variance, Tukey, and chi-square tests (α = 0.05). Groups FF (1643.09 ± 187/80 N) and GF (1596.80 ± 163/93 N) (p = 0.06 > 0.05) were statistically identical, although less than group P (1742/33 ± 110/08 N), but still demonstrated greater fracture resistance than the other groups. The fracture resistance of group S (1434/69 ± 107/62 N) was identical to GF and FF (p = 0.06 > 0.05). The fracture resistance of F (1353/19 ± 233/90 N) was less than GF and FF, and statistically identical to S (p = 0.87 > 0.05). Silorane-based composite showed a resistance to fracture similar to methacrylate-based composite restorations regardless of whether cavity liners were used. The findings of this study support the selection of silorane-based composite for the restoration of maxillary premolars with standardized Class II cavity preparations in order to strengthen the resistance to fracture to the same extent as do dimethacrylate composites using cavity liners or without them. © 2013 Wiley Periodicals, Inc.

  10. Composite resins in the 21st century.

    PubMed

    Willems, G; Lambrechts, P; Braem, M; Vanherle, G

    1993-09-01

    Human enamel and dentin should be used as the physiologic standards with which to compare composite resins, especially in the posterior region. The intrinsic surface roughness of composite resins must be equal to or lower than the surface roughness of human enamel on enamel-to-enamel occlusal contact areas (Ra = 0.64 microns). Roughness determines the biologic strength of composite resins. The nanoindentation hardness value of the filler particles (2.91 to 8.84 GPa) must not be higher than that of the hydroxyapatite crystals of human enamel (3.39 GPa). Composite resins intended for posterior use should have a Young's modulus at least equal to, and preferably higher than, that of dentin (18.500 MPa). The compressive strength of enamel (384 MPa) and dentin (297 MPa) and the fracture strength of a natural tooth (molar = 305 MPa; premolar = 248 MPa) offer excellent mechanical standards to select the optimal strength for posterior composite resins. The in vivo occlusal contact area wear rate of composite resins must be comparable to the attritional enamel wear rate (about 39 microns/y) in molars. Differential wear between enamel and composite resin on the same tooth is a new criterion for visualizing and quantifying the wear resistance of composite resins in a biologic way. Posterior resins must have a radiographic opacity that is slightly in excess of that of human enamel (198% Al). Based on these standard criteria, it can be concluded that in the 21st century the ultrafine compact-filled composite resins may be the materials of choice for restoring posterior cavities.

  11. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dental sealants and flowable composite restorations and psychosocial, neuropsychological, and physical development in children.

    PubMed

    Maserejian, Nancy N; Shrader, Peter; Trachtenberg, Felicia L; Hauser, Russ; Bellinger, David C; Tavares, Mary

    2014-01-01

    Dental sealant materials may intraorally release their components, including bisphenol-A (BPA), but long-term health effects are uncertain. The New England Children's Amalgam Trial (NECAT) found that composite restorations were associated with psychosocial, but not neuropsychological or physical, outcomes. The previous analysis did not consider sealants and preventive resin restorations (PRRs), which were routinely placed. The purpose of this analysis was to examine sealant/PRR exposure in association with psychosocial and other health outcomes. NECAT recruited 534 six- to 10-year-olds and provided dental care during a five-year follow-up. Annually, examiners conducted psychosocial and neuropsychological tests and measured body mass index (BMI) and fat percentage (BF%). Associations between surface years (SY) of sealants/PRRs and outcomes were tested using multivariable models. Cumulative exposure level to sealants and/or PRRs was not associated with psychosocial assessments (eg, total problems: Child Behavior Checklist, 10-SY β=-0.2 ± 0.3, P=.60) or neuropsychological tests (eg, full-scale IQ, 10-SY β=0.1 ± 0.2, P=.60). There were no associations for changes in BMI-for-age z-score (P=.40), BF% (girls 10-SY β=-0.2 ± 0.3; boys 10-SY β=-0.1 ± 0.3), or menarche (10-SY hazard ratio=0.91, 95% confidence interval=0.83-1.01, P=.08). This study showed no associations between exposure level of dental sealants or PRRs and behavioral, neuropsychological, or physical development in children over 5-years.

  13. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    PubMed

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  14. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins.

    PubMed

    Dede, Doğu Ömür; Şahin, Onur; Koroglu, Aysegül; Yilmaz, Burak

    2016-07-01

    The effect of sealant agents on the surface roughness and color stability of nanohybrid composite resins is unknown. The purpose of this in vitro study was to evaluate the effect of sealant agents on the surface roughness and color stability of 4 nanohybrid composite resin materials. Forty disks (10×2 mm) were fabricated for each nanohybrid composite resin material (Z-550, Tetric EvoCeram, Clearfill Majesty, Ice) (N=160) and divided into 4 surface treatment groups: 1 conventional polishing (control) and 3 different sealant agent (Palaseal, Optiglaze, BisCover) coupling groups (n=10). The specimens were thermocycled, and surface roughness (Ra) values were obtained with a profilometer. Scanning electron microscope images were also recorded. CIELab color parameters of each specimen were measured with a spectrophotometer before and after 7 days of storage in a coffee solution. Color differences were calculated by the CIEDE 2000 (ΔE00) formula. The data were statistically analyzed by 2-way ANOVA and by the Tukey HSD test (α=.05). The surface treatment technique significantly affected the Ra values of the composite resins tested (P<.001). The interaction between the surface treatment technique and composite resin material was also significant for ΔE00 values (P<.05). Within the composite resin groups, significant decreases in Ra were observed only for the Palaseal agent coupled composite resin groups (except Ice) compared with the control groups (P<.05). Scanning electron microscope images revealed rougher surfaces with conventionally polished groups compared with test groups. Conventionally polished groups had the highest ΔE00 (3.09 to 3.49) values for each composite resin group, except for BisCover applied Clearfill Majesty (P<.05). Within the composite resin groups, significant differences were observed between the color change seen with BisCover and other sealants for Clearfill Majesty composite resin (P<.05). Using Palaseal agent on all tested composite resins except for Ice produced smoother surfaces. All surface sealant agents provided less discoloration of nanohybrid composite resins after coffee staining compared with conventional polishing except for BisCover applied Clearfill Majesty composite resin. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Smith, Joseph G. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  16. Failure Rates of Orthodontic Fixed Lingual Retainers bonded with Two Flowable Light-cured Adhesives: A Comparative Prospective Clinical Trial.

    PubMed

    Talic, Nabeel F

    2016-08-01

    This comparative prospective randomized clinical trial examined the in vivo failure rates of fixed mandibular and maxillary lingual retainers bonded with two light-cured flowable composites over 6 months. Consecutive patients were divided into two groups on a 1:1 basis. Two hundred fixed lingual retainers were included, and their failures were followed for 6 months. One group (n = 50) received retainers bonded with a nano-hybrid composite based on nano-optimized technology (Tetric-N-Flow, Ivoclar Vivadent). Another group (n = 50) received retainers bonded with a low viscosity (LV) composite (Transbond Supreme LV, 3M Unitek). There was no significant difference between the overall failure rates of mandibular retainers bonded with Transbond (8%) and those bonded with Tetric-N-Flow (18%). However, the odds ratio for failure using Tetric-N-flow was 2.52-fold greater than that of Transbond. The failure rate of maxillary retainers bonded with Transbond was higher (14%), but not significantly different, than that of maxillary retainers bonded with Tetric-N-flow (10%). There was no significant difference in the estimated mean survival times of the maxillary and mandibular retainers bonded with the two composites. Both types of composites tested in the current study can be used to bond fixed maxillary and mandibular lingual retainers, with low failure rates.

  17. Synthesis and toughness properties of resins and composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.

    1984-01-01

    Tensile and shear moduli of four ACEE (Aircraft Energy Efficiency Program) resins are presented along with ACEE composite material modulus predictions based on micromechanics. Compressive strength and fracture toughness of the resins and composites were discussed. In addition, several resin synthesis techniques are reviewed.

  18. Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac.

    PubMed

    Jana, Sougata; Laha, Bibek; Maiti, Sabyasachi

    2015-01-01

    This study was undertaken to evaluate the effect of Boswellia gum resin on the properties of glutaraldehyde (GA) crosslinked chitosan polymer composites and their potential as oral delivery vehicles for a non-steroidal anti-inflammatory drug, aceclofenac. The incorporation of resinous material caused a significant improvement in drug entrapment efficiency (∼40%) of the polymer composites. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the formation of chitosan-gum resin composites and did not show any evidence of drug-polymer chemical interaction. Field emission scanning electron microscopy (FE-SEM) suggested the formation of particulate polymer composites up to chitosan:gum resin mass ratio of 1:3. Only 8-17% drug was released into HCl solution (pH 1.2) in 2h. The drug release rate of polymer composites was faster in phosphate buffer solution (pH 6.8). The composites released ∼60-68% drug load in 7h. In same duration, the drug release rate suddenly boosted up to 92% as the concentration of gum resin in the composites was raised to 80%. The drug release mechanism deviated from non-Fickian to case-II type with increasing resin concentration in the composites. Hence, GA-treated Boswellia resin-chitosan composites could be considered as alternative vehicles for oral delivery of aceclofenac. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    PubMed

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S(3) Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  20. Development of new and improved polymer matrix resin systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  1. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  2. [Effect of Radii barrier sleeves on cure depth of composite resin].

    PubMed

    Wang, Binping; DU, Yongxiu

    2009-01-01

    To explore the effect of Radii barrier sleeves on the cure depth of composite resin. Cylinder mold was prepared, and the resin was filled strictly into the mold. The surface was flattened and then cured with plastic engraver's knife.The depth of composite resin which was cured by QHL75TM with or without Radii barrier sleeves was compared. The cure depth of composite resin which were cured by QHL75TM with or without Radii barrier sleeves of photo-curing machine was 4.38 mm and 4.27 mm respectively,with no statistical difference. The cure depth of composite resin is not influenced by Radii barrier sleeves under the same light condition.

  3. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  4. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins

    PubMed Central

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507

  5. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins.

    PubMed

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively.

  6. Polishing and toothbrushing alters the surface roughness and gloss of composite resins.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu; Kanehira, Masafumi; Finger, Werner J

    2014-01-01

    This study aimed to investigate the surface roughness and gloss of composite resins after using two polishing systems and toothbrushing. Six composite resins (Durafill VS, Filtek Z250, Filtek Z350 XT, Kalore, Venus Diamond, and Venus Pearl) were evaluated after polishing with two polishing systems (Sof-Lex, Venus Supra) and after toothbrushing up to 40,000 cycles. Surface roughness (Ra) and gloss were determined for each composite resin group (n=6) after silicon carbide paper grinding, polishing, and toothbrushing. Two-way ANOVA indicated significant differences in both Ra and gloss between measuring stages for the composite resins tested, except Venus Pearl, which showed significant differences only in gloss. After polishing, the Filtek Z350 XT, Kalore, and Venus Diamond showed significant increases in Ra, while all composite resin groups except the Filtek Z350 XT and Durafill VS with Sof-Lex showed increases in gloss. After toothbrushing, all composite resin demonstrated increases in Ra and decreases in gloss.

  7. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials.

    PubMed

    Gladys, S; Van Meerbeek, B; Braem, M; Lambrechts, P; Vanherle, G

    1997-04-01

    The recently developed hybrid restorative materials contain the essential components of conventional glass ionomers and light-cured resins. The objective of this study was to determine several physical and mechanical properties of eight such materials in comparison with two conventional glass ionomers, one micro-filled, and one ultrafine compact-filled resin composite. The two resin composites and two of the three polyacid-modified resin composites could be polished to a higher gloss than the conventional as well as the resin-modified glass ionomers. After abrasion, surface roughness increased for all materials, but not at the same extent, being the least for the conventional resin composites and one polyacid-modified resin composite, Dyract. In contrast to the later resin composites, of which the surface roughness is principally determined by the presence of protruding filler particles above the resin matrix, roughness of conventional and resin-modified glass ionomers results from both protruding filler particles and intruding porosities. The mean particle size of the hybrid restorative materials fell between the smaller mean particle size of the resin composites and the larger one of the conventional glass ionomers. The micro-hardness and Young's modulus values varied substantially among all eight hybrid restorative materials. For all the resin-modified glass-ionomer restorative materials, the Young's modulus reached a maximum value one month after mixing and remained relatively stable thereafter. The Young's modulus of the conventional and the polyacid-modified resin composites decreased slightly after one month. The conventional glass-ionomer materials undoubtedly set the slowest, since their Young's modulus took six months to reach its maximum. The flexural fatigue limit of the hybrid restorative materials is comparable with that of the micro-filled composite. From this investigation, it can be concluded that the physico-mechanical properties vary widely among the eight hybrid restorative materials, indicating that these materials probably have yet to achieve their optimum properties. Their mechanical strength is inadequate for use in stress-bearing areas, and their appearance keeps them from use where esthetics is a primary concern.

  8. Bisphenol A Release: Survey of the Composition of Dental Composite Resins

    PubMed Central

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Background: Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. Objective: The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. Methods: A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate “not disclosed”. Results: 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. Conclusion: This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete. PMID:27708726

  9. Bisphenol A Release: Survey of the Composition of Dental Composite Resins.

    PubMed

    Dursun, Elisabeth; Fron-Chabouis, Hélène; Attal, Jean-Pierre; Raskin, Anne

    2016-01-01

    Bisphenol A (BPA) is an endocrine disruptor with potential toxicity. Composite resins may not contain pure BPA, but its derivatives are widely used. Several studies found doses of BPA or its derivatives in saliva or urine of patients after composite resin placement. The aims of this study were to establish an exhaustive list of composite resins marketed in Europe and their composition, and to assess the extent of BPA derivatives used. A research on manufacturers' websites was performed to reference all composite resins marketed in Europe, then their composition was determined from both material safety data sheets and a standardized questionnaire sent to manufacturers. Manufacturers had to indicate whether their product contained the monomers listed, add other monomers if necessary, or indicate "not disclosed". 160 composite resins were identified from 31 manufacturers and 23 manufacturers (74.2%) responded to the survey. From the survey and websites, the composition of 130 composite resins (81.2%) was: 112 (86.2%) based on BPA derivatives, 97 (74.7%) on bis-GMA, 17 (13.1%) without monomer derived from BPA (UDMA, sometimes with TEGDMA) and 6 (4.6%) with UDMA (only); 1 (0.8%) did not contain a BPA derivative or UDMA or TEGDMA. Pure BPA was never reported. This work has established a list of 18 composite resins that contain no BPA derivative. Manufacturers should be required to report the exact composition of their products as it often remains unclear or incomplete.

  10. Measurement of composite resin filler particles by using scanning electron microscopy and digital imaging.

    PubMed

    Jaarda, M J; Lang, B R; Wang, R F; Edwards, C A

    1993-04-01

    Composite resins are routinely classified on the basis of filler particle size for purposes of research, clinical applications, and communications. The size and characterizations of filler particles have also been considered a significant factor in the rate of wear of composites. Making valid correlations between the filler particles within a composite and wear requires accuracy of filler particle size and characterization. This study was initiated to examine two methods that would (1) qualify the filler particle content of a composite resin and (2) quantify the number, size, and the area occupied by the filler particles in composite resins. Three composite resins, BIS-FIL I, Visio-Fil, and Ful-Fil, were selected as the materials to be examined, on the basis of their published composite classification type as fine particle. The findings demonstrated that scientific methods are available to examine qualitatively and measure quantitatively the composite resin filler particles in terms of their numbers, sizes, and area occupied by use of a scanning electron microscope and digital imaging. Significant differences in the filler particle numbers, sizes, and the area occupied were found for the three composite resins in this study that were classified as fine particle.

  11. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations.

    PubMed

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P < 0.05. Results. The maximum and minimum gaps were detected in groups 1-A and 2-B, respectively. The effects of composite resin type, preheating and interactive effect of these variables on gap formation were significant (P<0.001). Post-hoc Tukey tests showed greater gap in dimethacrylate compared to silorane composite resins (P< 0.001). In each group, gap values were greater in composite resins at room temperature compared to composite resins after 40 preheating cycles (P<0.001). Conclusion. Gap formation at the gingival margins of Class V cavities decreased due to preheating of both composite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation.

  12. The effect of repeated preheating of dimethacrylate and silorane-based composite resins on marginal gap of class V restorations

    PubMed Central

    Alizadeh Oskoee, Parnian; Pournaghi Azar, Fatemeh; Jafari Navimipour, Elmira; Ebrahimi chaharom, Mohammad Esmaeel; Naser Alavi, Fereshteh; Salari, Ashkan

    2017-01-01

    Background. One of the problems with composite resin restorations is gap formation at resin‒tooth interface. The present study evaluated the effect of preheating cycles of silorane- and dimethacrylate-based composite resins on gap formation at the gingival margins of Class V restorations. Methods. In this in vitro study, standard Class V cavities were prepared on the buccal surfaces of 48 bovine incisors. For restorative procedure, the samples were randomly divided into 2 groups based on the type of composite resin (group 1: di-methacrylate composite [Filtek Z250]; group 2: silorane composite [Filtek P90]) and each group was randomly divided into 2 subgroups based on the composite temperature (A: room temperature; B: after 40 preheating cycles up to 55°C). Marginal gaps were measured using a stereomicroscope at ×40 and analyzed with two-way ANOVA. Inter- and intra-group comparisons were analyzed with post-hoc Tukey tests. Significance level was defined at P < 0.05. Results. The maximum and minimum gaps were detected in groups 1-A and 2-B, respectively. The effects of composite resin type, preheating and interactive effect of these variables on gap formation were significant (P<0.001). Post-hoc Tukey tests showed greater gap in dimethacrylate compared to silorane composite resins (P< 0.001). In each group, gap values were greater in composite resins at room temperature compared to composite resins after 40 preheating cycles (P<0.001). Conclusion. Gap formation at the gingival margins of Class V cavities decreased due to preheating of both composite re-sins. Preheating of silorane-based composites can result in the best marginal adaptation. PMID:28413594

  13. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    PubMed

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments.

    PubMed

    Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis

    2014-02-01

    Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  15. Salivary bisphenol A levels and their association with composite resin restoration.

    PubMed

    Lee, Jung-Ha; Yi, Seung-Kyoo; Kim, Se-Yeon; Kim, Ji-Soo; Son, Sung-Ae; Jeong, Seung-Hwa; Kim, Jin-Bom

    2017-04-01

    Composite resin has been increasingly used in an effort to remove minimal amount of tooth structure and are used for restoring not just carious cavities but also cervical abrasion. To synthesize composite resin, bisphenol A (BPA) is used. The aim of the study was to measure the changes in salivary BPA level related with composite resin restoration. ELISA was used to examine the BPA levels in the saliva collected from 30 volunteers whose teeth were filled with composite resin. Salivary samples were collected immediately before filling and 5 min and 7 d after filling. Wilcoxon signed-ranks test and linear regression were performed to test the significant differences of the changes in BPA levels in saliva. Before a new composite resin filling, there was no significant difference between with and without existing filling of composite resin and BPA level in the saliva was not correlated to the number of filled surfaces with composite resin. However, BPA level in the saliva increased to average 3.64 μg/L from average 0.15 μg/L after filling 5 min. BPA level increased in proportion with the number of filled surfaces. BPA level decreased to average 0.59 after filling 7 d. However it was higher than the BPA level before a new composite resin filling. Considering 50 μg/kg/day as the Tolerable Daily Intake of BPA suggested by European Food Safety Authority, the amount of BPA eluted in saliva after the composite resin filling is considered a safe level that is not a hazard to health at all. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    PubMed

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  17. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  18. Effect of water storage on the translucency of silorane-based and dimethacrylate-based composite resins with fibres.

    PubMed

    Ozakar Ilday, Nurcan; Celik, Neslihan; Bayindir, Yusuf Ziya; Seven, Nilgün

    2014-06-01

    The purposes of this study were (1) to determine the translucency of silorane and dimethacrylate-based composite resins and (2) to evaluate the effect of water storage and reinforcement with fibre on the translucency of composite resins. Two light-cured composite resins (A2 shade), Filtek Silorane (silorane-based composite) and Valux Plus (dimethacrylate-based composite), were used in this study. The first group was used as the control with no reinforcements, the second was reinforced with polyethylene (Ribbond THM) and the third was reinforced with a glass fibre (Everstick Net) for each composite resin. Colour measurements were measured against white and black backgrounds with a Shadepilot (Degu Dent Gmbh, Hanau, Germany) spectrophotometer and recorded under a D65 light source, which reflects daylight. CIELAB parameters of each specimen were recorded at baseline and at 24 h, 168 h and 504 h. Translucency of materials was calculated using the translucency parameter (TP) formula. Data were analyzed using repeated measures ANOVA and LSD post hoc tests (α=0.05). The highest baseline TP value was in the Valux Plus/non-fibre reinforced group (14.06±1) and the lowest in the Filtek Silorane/Ribond THM group (8.98±1.11). Repeated measures ANOVA revealed significant effects from the factors storage time, composite resin, composite resin×storage time and fibre×time (p=0.047; p=0.001; p=0.013; p=0.022, respectively). Within the limitations of the study, we concluded that inclusion of polyethylene and glass fibres did not alter the translucency of the different-based composite resins. The longest storage time resulted in the greatest change in translucency values of Filtek Silorane composite resins. Considering the translucencies of composites with different formulations in the selection of composite resins for aesthetic restorations is important in terms of obtaining optimal aesthetic outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Structure-to-property relationships in addition cured polymers. 4: Correlations between thermo-oxidative weight losses of norbornenyl cured polyimide resins and their composites

    NASA Technical Reports Server (NTRS)

    Alston, William B.

    1992-01-01

    Relationships are identified between the thermo-oxidative stability (TOS) at 316 C of a wide variety of PMR (polymerization of monomeric reactants) addition cured polyimide resins and their corresponding graphite fiber composites. Weight loss results at 316 C confirmed the expected relationship of increasing aliphatic endcap content with decreasing TOS. Moreover, the resin TOS study also showed an unexpected linear correlation of decreasing weight loss to increasing ratio of benzylic diamine to aliphatic endcap in the range of the stoichiometries studied. Only after long term 316 C aging does the dianhydride used with the benzylic diamines become an additional factor in influencing the amount of PMR resin and composite weight losses. Also, the benzylic systems consistently showed much lower resin and composite weight losses at 316 C than the corresponding nonbenzylic norbornenyl resins and composites, except when the nonbenzylic diamine monomer does not contain a connecting group. Instead, this diamine resulted in a 316 C resin and composite weight loss that was only competitive with benzylic type diamines. Results show excellent correlation between TOS of all graphite fiber PMR composites and resins.

  20. [Effect of bleaching agents on the color of indirect and direct composite resins].

    PubMed

    Xing, Wenzhong; Jiang, Tao; Chen, Xiaodong; Wang, Yining

    2014-09-01

    To evaluate the effect of bleaching agents on the color of indirect and direct composite resins. Five resin composite materials were tested in this in vitro study. The five composites were as follow: two indirect composite resins (Adoro SR, Ceramage) and three direct composite resins (Filtek Z350, Clearfil Majesty Esthetic, and Gradia Direct Anterior). For each material, twenty disk-shaped specimens were prepared and randomly divided into five groups according to the color parameters of specimens before bleaching treatment. The composite resin specimens were treated by one of five sample solutions which were at-home bleaching agents (10% and 15% carbarmide peroxide), in- office bleaching agents (38% H(2)O(2) and 35%H(2)O(2)) and deionized water (control group). The color parameters of specimens were measured by spectrophotometer at baseline and after bleaching treatments. The color differences (ΔE values) between baseline and post-treatments were calculated. The data of color differences were evaluated statistically using two-way analysis with a significance level of 0.05. The color changes of the resin composites were less than 2.0 after bleaching agent treatment, therefore were not perceptible. Slight increase of L(*) values and decrease of C(*)ab values in color parameters of specimens were observed. There were statistically significant differences in ΔE values for different bleaching treatments and resin materials (P = 0.001). The bleaching agents did not affect the color of indirect and direct composite resins tested.

  1. Effect of Shade and Light Curing Mode on the Degree of Conversion of Silorane-Based and Methacrylate-Based Resin Composites.

    PubMed

    Sm, Mousavinasab; M, Atai; N, Salehi; A, Salehi

    2016-12-01

    The degree of conversion depends on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency. In the present study, we evaluated the effects of different light-curing modes and shades of methacrylate and silorane-based resin composites on the degree of conversion of resin composites (DC). The methacrylate-based (Filtek Z250, 3M, ESPE) and low-shrinkage silorane-based (Filtek P90, 3M, ESPE) resin composites were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). We used a light-emitting diode (LED) curing unit for photopolymerization. 10 samples were prepared in each group to evaluate the degree of conversion; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode. The DC of the resin composites was measured using Fourier Transform Infrared Spectroscopy (FTIR). The data were analyzed using Kruskal Wallis and one-way ANOVA statistical tests. The degree of conversion of silorane-based resin composite was 70 - 75.8% and that of methacrylate-based resin composites was 60.2 - 68.2% (p = 0.009). The degree of conversion of the composite with brighter colour (B2) was statistically more than the darker composite (A3). Higher degree of conversion was achieved applying the standard curing mode. The results of the study showed that the colour and type of the resin composite and also the curing mode influence the degree of conversion of resin composites.

  2. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    PubMed Central

    Cui, Yong; Chang, Jianmin; Wang, Wenliang

    2016-01-01

    In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF) resins, which were used to fabricate glass fiber (GF) reinforced BPF resin (GF/BPF) composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR) spectra and dynamic thermomechanical analysis (DMA). Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF) resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW) and scanning electron microscopy (SEM). It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%. PMID:28774009

  3. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  4. Mesoporous silica fillers and resin composition effect on dental composites cytocompatibility.

    PubMed

    Attik, Nina; Hallay, Franck; Bois, Laurence; Brioude, Arnaud; Grosgogeat, Brigitte; Colon, Pierre

    2017-02-01

    Many new dental composites containing mesoporous silica fillers have been developed to improve rheological properties and enhance the resin-filler interface. To investigate the correlation between the cytocompatibility of several dental composites and their composition; two aspects have been considered: presence of bisphenol A (BPA)-glycidyl methacrylate (Bis-GMA) or triethyleneglycol-dimethacrylate (TEGDMA) among the resin monomers and presence of porous particles among the filler blends. Five commercial composites with different resin matrices and mineral fillers were compared to four experimental composites designed without any BPA-based monomers or TEGDMA. Porous fillers, with or without silanation, were added in some of the experimental composites. Two reference resin matrices were also selected. Cytocompatibility with cultured primary human gingival fibroblasts was assessed by confocal laser scanning microscopy with time-lapse imaging. Fourier transform infrared spectroscopy was used to control monomer conversion rate. Conversion rates of the experimental composites ranged from 57% to 71%, a comparable ratio for dental composites. Experimental samples were better tolerated than tested commercial samples not containing TEGDMA and significantly better than those containing TEGDMA. Experimental composites with porous fillers exhibited good cytocompatibility, especially when surfaces were silanated. Cytotoxicity was associated with resin amount and especially resin nature. Composites containing porous fillers might behave as if the resin trapped into pores has no effect on toxicity. The cytotoxicity of composites with and without BPA derivatives was mainly attributed to the release of residual TEGDMA rather than the BPA derivatives. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Study of flowability effect on self-planarization performance at SOC materials

    NASA Astrophysics Data System (ADS)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  6. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  7. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    PubMed

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (P<.005). Both FS and CC performed best with SU but had acceptable results with all of the bonding agents. CP only performed acceptably with MP (P=.023) and had poor results with both other agents. Dual-polymerizing composite resins can obtain equally good bond strengths as light-polymerizing alternatives. However, not all dual-polymerizing composite resins perform well with all bonding systems; some incompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond strength, self-adhesive cement, silane, dentin, indirect composite. PMID:26855700

  9. Fabrication and Evaluation of Bis-GMA/TEGDMA Dental Resins/Composites Containing Nano Fibrillar Silicate

    PubMed Central

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E.; Fong, Hao

    2008-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Methods Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work of fracture) of the nano FS reinforced resins/composites were tested, and Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Results Impregnation of small mass fractions (1 % and 2.5 %) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5 %), however, did not further improve the mechanical properties (one way ANOVA, P > 0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Significance Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites. PMID:17572485

  10. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.

    PubMed

    Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Hedin, Nyle E; Fong, Hao

    2008-02-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and composites (with conventional glass filler) with various mass fractions of nano fibrillar silicate (FS). Three dispersion methods were studied to separate the silanized FS as nano-scaled single crystals and uniformly distribute them into dental matrices. The photo-curing behaviors of the Bis-GMA/TEGDMA/FS resins were monitored in situ by RT-NIR to study the photopolymerization rate and the vinyl double bond conversion. Mechanical properties (flexural strength, elastic modulus and work-of-fracture) of the nano FS reinforced resins/composites were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. The morphology of nano FS and the representative fracture surfaces of its reinforced resins/composites were examined by SEM/TEM. Impregnation of small mass fractions (1% and 2.5%) of nano FS into Bis-GMA/TEGDMA (50/50 mass ratio) dental resins/composites improved the mechanical properties substantially. Larger mass fraction of impregnation (7.5%), however, did not further improve the mechanical properties (one way ANOVA, P>0.05) and may even reduce the mechanical properties. The high degree of separation and uniform distribution of nano FS into dental resins/composites was a challenge. Impregnation of nano FS into dental resins/composites could result in two opposite effects: a reinforcing effect due to the highly separated and uniformly distributed nano FS single crystals, or a weakening effect due to the formation of FS agglomerates/particles. Uniform distribution of highly separated nano FS single crystals into dental resins/composites could significantly improve the mechanical properties of the resins/composites.

  11. Difference in the color stability of direct and indirect resin composites

    PubMed Central

    LEE, Yong-Keun; YU, Bin; LIM, Ho-Nam; LIM, Jin Ik

    2011-01-01

    Indirect resin composites are generally regarded to have better color stability than direct resin composites since they possess higher conversion degree Objective The present study aimed at comparing the changes in color (∆E) and color coordinates (∆L, ∆a and ∆b) of one direct (Estelite Sigma: 16 shades) and 2 indirect resin composites (BelleGlass NG: 16 shades; Sinfony: 26 shades) after thermocycling. Material and Methods Resins were packed into a mold and light cured; post-curing was performed on indirect resins. Changes in color and color coordinates of 1-mm-thick specimens were determined after 5,000 cycles of thermocycling on a spectrophotometer. Results ∆E values were in the range of 0.3 to 1.2 units for direct resins, and 0.3 to 1.5 units for indirect resins, which were clinically acceptable (∆E<3.3). Based on t-test, ∆E values were not significantly different by the type of resins (p>0.05), while ∆L, ∆a and ∆b values were significantly different by the type of resins (p<0.05). For indirect resins, ∆E values were influenced by the brand, shade group and shade designation based on three-way ANOVA (p<0.05). Conclusion Direct and indirect resin composites showed similar color stability after 5,000 cycles of thermocycling; however, their changes in the color coordinates were different. PMID:21552717

  12. High performance mixed bisimide resins and composites based thereon

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; ations.

    1986-01-01

    Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.

  13. Influence of Bleaching Agents on Color and Translucency of Aged Resin Composites.

    PubMed

    Lago, Maristela; Mozzaquatro, Lisandra R; Rodrigues, Camila; Kaizer, Marina R; Mallmann, André; Jacques, Letícia B

    2017-09-01

    Evaluate the influence of two bleaching agents (16% carbamide peroxide-CP and 35% hydrogen peroxide-HP) on color and translucency of one resin composite (Filtek Z350 XT) in two opacities (enamel and dentin) previously aged in deionized water or red wine. Sixty specimens of each material were divided in two groups (n = 30): aged in water or red wine for 14 days. Then the specimens were divided in three subgroups (n = 10): control/no treatment, treated with 16% carbamide peroxide (Mix Night), treated with 35% hydrogen peroxide (Mix One). Color readings were performed 24 hours after polishing (baseline); after the 14 days of aging; and after bleaching treatment. Color coordinates CIE L*a*b* were measured using a spectrophotometer (SP60 X-Rite). Color change (CIEDE2000) and translucency parameter were calculated. Data were analyzed with repeated measures two-way ANOVA, and Student-Newman-Keuls tests (5%). Bleaching decreased color change in stained resin composites (aged in red wine), whereas increased it in non-stained enamel resin composites (aged in water). CP had better bleaching results with stained resin composites than HP. Translucency of non-stained dentin resin composite decreased with aging, but did not change with bleaching. For stained resin composites, aging caused reduced translucency, whereas bleaching increased it. Effective bleaching of discolored resin composites aged in an acidic and alcoholic media rich in staining agents was achieved, improving color and translucency. Carbamide peroxide showed better performance than hydrogen peroxide for the bleaching of stained resin composites. (J Esthet Restor Dent 29:368-377, 2017). © 2016 Wiley Periodicals, Inc.

  14. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin.

    PubMed

    Türkmen, Cafer; Durkan, Meral; Cimilli, Hale; Öksüz, Mustafa

    2011-08-01

    The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  15. A comparative evaluation of the staining capacity of microhybrid and nanohybrid resin-based composite to indian spices and food colorants: An In vitro study.

    PubMed

    Usha, Carounanidy; Rao, Sathyanarayanan Rama; George, Geena Mary

    2018-01-01

    Resin composite restorative materials can mimic the natural color and shade of the tooth. However, exogenous colorants from food and drinks can stain them due to adsorption. The influence of Indian food colorants and spices on resin composite restorations has not been evaluated extensively. This study aims to evaluate the staining capacity of microhybrid and nanohybrid resin-based composites, to saffron extract, tandoori powder, and turmeric powder. Forty samples of microhybrid (Kulzer Charisma) and nanohybrid (3M Filtek Z350) resin composites were prepared using an acrylic template of dimension 5 mm × 3 mm. They were randomly divided into four groups and immersed into solutions of saffron extract, tandoori powder, and turmeric powder. Distilled water was used as the control group. Color values (LFNx01, aFNx01, bFNx01) were measured by colorimeter using the CIE LFNx01aFNx01bFNx01 system before and after 72 h of immersion. Color differences ΔEFNx01ab were statistically analyzed. Two-way ANOVA and post-hoc Tukey (honest significant difference) test were done using IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp. : All the immersion media changed the color of the resin composites to varying degrees. However, turmeric solution showed the maximum mean color variation ΔEFNx01ab of 14.8 ± 2.57 in microhybrid resin composites and 16.8 ± 3.50 in nanohybrid resin composites. Microhybrid and nanohybrid resin composites tend to stain to Indian food colorants, especially to turmeric powder.

  16. Surface discoloration of composite resins: Effects of staining and bleaching.

    PubMed

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  17. Surface discoloration of composite resins: Effects of staining and bleaching

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-01-01

    Background: The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. Materials and Methods: The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L*a*b* system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab*) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). Results: All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Conclusions: Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested. PMID:23559921

  18. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  19. Development of Refined Natural Resin based Cashew Nut Shell Oil Liquid (CNSL) for Brake Pads Composite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Rahmawati, P.; Tamtama, B. P. N.; Sari, P. P.; Sari, P. L.; Ichsan, S.; Kristiawan, Y. R.; Aini, F. N.

    2017-02-01

    Brake is one of the most important components in the vehicle. One type of brake that widely used is brake-based composites. One of the manufacture of composite material is resin. Cashew Nut Shell Liquid (CNSL) is a natural material which has chemical structure similar to synthetic phenol so it can be an alternative as a resin. Brake pads manufacture using CNSL as resin composites made to obtain the brake which is strong, wear-resistant, and environmentally friendly. The composite made using powder metallurgy techniques by mixing ingredients such as rubber, fibre glass, carbon, mineral sands and phenolic resin. Two formulas were composed by varying the resin and iron mineral sands in 5 grams. Composites were tested using Universal Testing Machine (UTM). The tensile strength result of those formulas are 600 N and 900 N and the elongations are 1.98 mm and 2.59 mm respectively. Formula 2 has a better tensile strength due to the addition of more resin is 15%. Since the better properties, formula 2 was derivated to 4 extended formulas and showed excellent pressure strength reached 20.000 N. It indicates that the addition of the resin can improve the mechanical properties of a composite.

  20. Versatile composite resins simplifying the practice of restorative dentistry.

    PubMed

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  1. Composite resins in 2013: an update on their progress.

    PubMed

    Radz, Gary M

    2013-01-01

    Having steadily evolved and improved over the past several decades, composite resins are providing clinicians with an increased array of options for successfully restoring teeth in a minimally invasive manner. Numerous advances compared to early composite resin systems, such as increased shade availability, reduced polymerization shrinkage, and the development of nanoparticles, have enabled composite resins to offer long-term esthetic solutions for patients. This article summarizes the changes that have occurred, discusses popular applications for the use of composite materials, and presents brief case studies demonstrating their capabilities.

  2. Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected by Honey Bees

    PubMed Central

    Wilson, Michael B.; Spivak, Marla; Hegeman, Adrian D.; Rendahl, Aaron; Cohen, Jerry D.

    2013-01-01

    The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees. PMID:24204850

  3. 78 FR 69666 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... stakeholders including environmental, human health, and agricultural advocates; the chemical industry... Liquid Pentachloronitrobenz Flowable. ene. 005481-00442 PCNB Flowable RTU Pentachloronitrobenz Seed... Liquid Pentachloronitrobenz Flowable Seed ene. Treatment Fungicide. 005481-00450 PCNB 20% WDG Soil...

  4. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  5. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent.

    PubMed

    Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T

    2004-09-01

    Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.

  6. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    PubMed

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  7. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer.

    PubMed

    Liu, Xue; Wang, Zengyao; Zhao, Chengji; Bu, Wenhuan; Na, Hui

    2018-04-01

    A series of fluorinated dental resin composites were prepared with two kinds of SiO 2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO 2 nanopartices (30nm) and SiO 2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO 2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO 2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (W p ), water solubility (W y ), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO 2 microparticles, SiO 2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower W p under the same filler content. Especially, 50% SiO 2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of in-office bleaching agents on the color changes of stained ceromers and direct composite resins.

    PubMed

    Xing, Wenzhong; Jiang, Tao; Liang, Shanshan; Sa, Yue; Wang, Zhejun; Chen, Xiaodong; Wang, Yining

    2014-11-01

    To evaluate the effect of two in-office bleaching agents on the color changes of two ceromers (Ceramage and Adoro SR) and one direct composite resin (Gradia Direct Anterior) after staining by tea and coffee. Twenty-four disk-shaped specimens were fabricated for each resin material and randomly divided into three groups (n = 8). The specimens were immersed in tea, coffee or deionized water, respectively, for 7 days. Each group was then equally divided into two sub-groups (n = 4), which were subjected to two in-office bleaching agents (BEYOND and Opalescence Boost), respectively. The color of the specimens was measured by a spectrophotometer at baseline, after staining and after bleaching. The color differences (ΔE values) between baseline and after treatments were calculated. Statistical analysis indicated that the staining solution had significant influence on the color change of resin composites tested (p < 0.001). The discolorations of resin composites were perceptible after immersing in tea or coffee solutions (ΔE>2.0). There was no statistically significant difference between BEYOND and Opalescence Boost in stains removal from discolored resins (p = 0.550). The color changes in ΔE value between baseline and after bleaching were less than 2.0 for all resin composite groups. Tea solution produces severe discoloration of three resin composites tested. The two in-office bleaching agents can effectively remove the stains from two ceromers and one direct composite resin tested in this study.

  9. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Composite resin reinforcement of flared canals using light-transmitting plastic posts.

    PubMed

    Lui, J L

    1994-05-01

    Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium.

  11. Effect of incremental filling technique on adhesion of light-cured resin composite to cavity floor.

    PubMed

    Chikawa, Hirokazu; Inai, Norimichi; Cho, Eitetsu; Kishikawa, Ryuzo; Otsuki, Masayuki; Foxton, Richard M; Tagami, Junji

    2006-09-01

    The purpose of this study was to evaluate the effect of various incremental filling techniques on adhesion between composite and cavity floor using light-cured resin composite. Black ABS resin and hybrid resin composite were used as mold materials--instead of dentin--for the preparation of cavities, and standardized to 5x5x5 mm. Each cavity was then treated with a bonding system (Clearfil SE bond). Resin composite (Clearfil Photo Core) was placed on the bonding resin using different incremental filling techniques or in bulk and irradiated for a total of 80 seconds using a halogen light unit. Specimens were subjected to the micro-tensile bond test at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA. The results indicated that an incremental filling technique was more effective in improving adhesion to the cavity floor than a bulk filling technique.

  12. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thunga, Mahendra; Bauer, Amy; Obusek, Kristine

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-sectionmore » analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.« less

  13. Tough composite materials: Recent developments

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Editor); Johnston, N. J. (Editor); Teichman, L. A. (Editor); Blankenship, C. P. (Editor)

    1985-01-01

    The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.

  14. Second generation PMR polyimide/fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1979-01-01

    A second generation polymerization monomeric reactants (PMR) polyimdes matrix system (PMR 2) was characterized in both neat resin and composite form with two different graphite fiber reinforcements. Three different formulated molecular weight levels of laboratory prepared PMR 2 were examined, in addition to a purchased experimental fully formulated PMR 2 precurser solution. Isothermal aging of graphite fibers, neat resin samples and composite specimens in air at 316 C were investigated. Humidity exposures at 65 C and 97 percent relative humidity were conducted for both neat resin and composites for eight day periods. Anaerobic char of neat resin and fire testing of composites were conducted with PMR 15, PMR 2, and an epoxy system. Composites were fire tested on a burner rig developed for this program. Results indicate that neat PMR 2 resins exhibit excellent isothermal resistance and that PMR 2 composite properties appear to be influenced by the thermo-oxidative stability of the reinforcing fiber.

  15. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; ...

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  16. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-03-31

    The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.

  17. Fatigue of the Resin-Enamel Bonded Interface and the Mechanisms of Failure

    PubMed Central

    Yahyazadehfar, Mobin; Mutluay, Mustafa Murat; Majd, Hessam; Ryou, Heonjune; Arola, Dwayne

    2013-01-01

    The durability of adhesive bonds to enamel and dentin and the mechanisms of degradation caused by cyclic loading are important to the survival of composite restorations. In this study a novel method of evaluation was used to determine the strength of resin-enamel bonded interfaces under both static and cyclic loading, and to identify the mechanisms of failure. Specimens with twin interfaces of enamel bonded to commercial resin composite were loaded in monotonic and cyclic 4-point flexure to failure within a hydrated environment. Results for the resin-enamel interface were compared with those for the resin composite (control) and values reported for resin-dentin adhesive bonds. Under both modes of loading the strength of the resin-enamel interface was significantly (p≤0.0001) lower than that of the resin composite and the resin-dentin bonded interface. Fatigue failure of the interface occurred predominately by fracture of enamel, adjacent to the interface, and not due to adhesive failures. In the absence of water aging or acid production of biofilms, the durability of adhesive bonds to enamel is lower than that achieved in dentin bonding. PMID:23571321

  18. Microtensile bond strength of indirect resin composite to resin-coated dentin: interaction between diamond bur roughness and coating material.

    PubMed

    Kameyama, Atsushi; Oishi, Takumi; Sugawara, Toyotarou; Hirai, Yoshito

    2009-02-01

    This aim of this study was to determine the effect of type of bur and resin-coating material on microtensile bond strength (microTBS) of indirect composite to dentin. Dentin surfaces were first ground with two types of diamond bur and resin-coated using UniFil Bond (UB) or Adper Single Bond (SB), and then bonded to a resin composite disc for indirect restoration with adhesive resin cement. After storage for 24 hr in distilled water at 37 degrees C, microTBS was measured (crosshead speed 1 mm/min). When UB was applied to dentin prepared using the regular-grit diamond bur, microTBS was significantly lower than that in dentin prepared using the superfine-grit bur. In contrast, no significant difference was found between regular-grit and superfine-grit bur with SB. However, more than half of the superfine-grit specimens failed before microTBS testing. These results indicate that selection of bur type is important in improving the bond strength of adhesive resin cement between indirect resin composite and resin-coated dentin.

  19. Effects of air-polishing powders on color stability of composite resins.

    PubMed

    Güler, Ahmet Umut; Duran, Ibrahim; Yücel, Ali Çağin; Ozkan, Pelin

    2011-10-01

    The purpose of this study was to investigate the effect of different air-polishing powders on the color stability of different types of composite resin restorative materials. Thirty cylindrical specimens (15×2 mm) were prepared for each of 7 composite resin restorative materials. All specimens were polished with a series of aluminum oxide polishing discs (Sof-Lex). The prepared specimens of each composite resin were randomly divided into 3 groups of 10 specimens each, for control (Group-C) and two air-powder applications (Group-CP: Cavitron Prophy-Jet; Group-PS: Sirona ProSmile prophylaxis powder). A standard air-polishing unit (ProSmile Handly) was used. All specimens were air-powdered for 10 s at 4-bar pressure. The distance of the spray nosel from the specimens was approximately 10 mm and angulation of the nosel was 90°. Specimens were stored in 100 mL of coffee (Nescafe Classic) for 24 h at 37°C. Color measurement of all specimens was recorded before and after exposure to staining agent with a colorimeter (Minolta CR-300). Color differences (∆E*) between the 2 color measurements (baseline and after 24 h storage) were calculated. The data were analyzed with a 2-way ANOVA test, and mean values were compared by the Tukey HSD test (p<0.05). According to the 2-way ANOVA results, composite resin restorative materials, air-polishing powders, and their interaction were statistically significant (p<0.05) For Aelite Aesthetic Enemal, Filtek Z250, Grandio, CeramX Mono, and Quixfil composite resin restorative materials, no significant difference was observed between Group-PS and Group-CP (p>.05) and these groups demonstrated the highest ∆E* values. For Filtek Silorane and IntenS, the highest ∆E* values were observed in Group-PS. The lowest ∆E* values for all composite resin groups were observed in Group-C. When comparing the 7 composite resin restorative materials, Aelite Aesthetic Enemal demonstrated significantly less ∆E* values than the other composite resins tested. The highest ∆E* values were observed in Quixfil. Except for Quixfil, all control groups of composite resins that were polished Sof-Lex exhibited clinically acceptable ∆E values (<3.7). Air-polishing applications increased the color change for all composite resin restorative materials tested. Composite restorations may require re-polishing after air-polishing.

  20. Effects of air-polishing powders on color stability of composite resins

    PubMed Central

    GÜLER, Ahmet Umut; DURAN, Ibrahim; YÜCEL, Ali Çagin; ÖZKAN, Pelin

    2011-01-01

    Objectives The purpose of this study was to investigate the effect of different air-polishing powders on the color stability of different types of composite resin restorative materials. Material and methods Thirty cylindrical specimens (15×2 mm) were prepared for each of 7 composite resin restorative materials. All specimens were polished with a series of aluminum oxide polishing discs (Sof-Lex). The prepared specimens of each composite resin were randomly divided into 3 groups of 10 specimens each, for control (Group-C) and two air-powder applications (Group-CP: Cavitron Prophy-Jet; Group-PS: Sirona ProSmile prophylaxis powder). A standard air-polishing unit (ProSmile Handly) was used. All specimens were air-powdered for 10 s at 4-bar pressure. The distance of the spray nosel from the specimens was approximately 10 mm and angulation of the nosel was 90º. Specimens were stored in 100 mL of coffee (Nescafe Classic) for 24 h at 37ºC. Color measurement of all specimens was recorded before and after exposure to staining agent with a colorimeter (Minolta CR-300). Color differences (∆E*) between the 2 color measurements (baseline and after 24 h storage) were calculated. The data were analyzed with a 2-way ANOVA test, and mean values were compared by the Tukey HSD test (p≤0.05). Results According to the 2-way ANOVA results, composite resin restorative materials, air-polishing powders, and their interaction were statistically significant (p<0.05) For Aelite Aesthetic Enemal, Filtek Z250, Grandio, CeramX Mono, and Quixfil composite resin restorative materials, no significant difference was observed between Group-PS and Group-CP (p>.05) and these groups demonstrated the highest ∆E* values. For Filtek Silorane and IntenS, the highest ∆E* values were observed in Group-PS. The lowest ∆E* values for all composite resin groups were observed in Group-C. When comparing the 7 composite resin restorative materials, Aelite Aesthetic Enemal demonstrated significantly less ∆E* values than the other composite resins tested. The highest ∆E* values were observed in Quixfil. Conclusion Except for Quixfil, all control groups of composite resins that were polished Sof-Lex exhibited clinically acceptable ∆E values (<3.7). Air-polishing applications increased the color change for all composite resin restorative materials tested. Composite restorations may require re-polishing after air-polishing. PMID:21922122

  1. The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.

    Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.

  2. The correlation of low-velocity impact resistance of graphite-fiber-reinforced composites with matrix properties

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1986-01-01

    Summarized are basic studies that were conducted to correlate the impact resistance of graphite-fiber-reinforced composites with polymer matrix properties. Three crosslinked epoxy resins and a linear polysulfone were selected as composite matrices. As a group, these resins possess a significantly large range of mechanical properties. The mechanical properties of the resins and their respective composites were measured. Neat resin specimens and unidirectional and crossply composite specimens were impact tested with an instrumented dropweight tester. Impact resistances of the specimens were assessed on the basis of loading capability, energy absorption, and extent of damage.

  3. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05), post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001). The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  4. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  5. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the attenuation of mobility of polymer chains. Complementary studies indicate that our resin composites are promising for the proposed applications as a stiff support to all-ceramic crowns.

  6. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    PubMed

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P < 0.05. Results . The average grade of inflammation for the nano-hybrid on the 2nd day of implantation was 3.3. The micro-hybrid resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  7. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins

    PubMed Central

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson’s chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P < 0.05. Results. The average grade of inflammation for the nano-hybrid on the 2nd day of implantation was 3.3. The micro-hybrid resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation. PMID:28413588

  8. Microhardness of light- and dual-polymerizable luting resins polymerized through 7.5-mm-thick endocrowns.

    PubMed

    Gregor, Ladislav; Bouillaguet, Serge; Onisor, Ioana; Ardu, Stefano; Krejci, Ivo; Rocca, Giovanni Tommaso

    2014-10-01

    The complete polymerization of luting resins through thick indirect restorations is still questioned. The purpose of this study was to evaluate the degree of polymerization of light- and dual-polymerizable luting resins under thick indirect composite resin and ceramic endocrowns by means of Vickers microhardness measurements. The Vickers microhardness measurements of a light-polymerizable microhybrid composite resin and a dual-polymerizable luting cement directly polymerized in a natural tooth mold for 40 seconds with a high-power light-emitting diode lamp (control) were compared with measurements after indirect irradiation through 7.5-mm-thick composite resin and ceramic endocrowns for 3 × 90 seconds. A test-to-control microhardness values ratio of 0.80 at a depth of 0.5 mm below the surface was assumed as the criterion for adequate conversion. For the Vickers microhardness measurements of a dual-polymerizable luting cement, no differences (P>.05) were found between Vickers microhardness control values and values reported after polymerization through composite resin and ceramic endocrowns. For The Vickers microhardness measurements (±SD) of a light-polymerizable microhybrid composite resin, control values were significantly (P<.05) higher (111 ±3.3) than those reported after polymerization through composite resin (100.5 ±3.8) and ceramic (99.7 ±2.3) endocrowns. However, the hardness values of The Vickers microhardness measurements of a light-polymerizable microhybrid composite resin polymerized through the endocrowns were approximately 10% to 12% lower than those of the control values. Two-way ANOVA showed the influence of the luting material on the Vickers microhardness values (P<.05). The effect of endocrown material was not significant (P>.05). Under the conditions of this in vitro study, Vickers microhardness values of the dual-polymerizable resin cement and the light-polymerizable restorative composite resin irradiated for 3 × 90 seconds with a high irradiance light-emitting diode lamp through 7.5-mm-thick endocrowns reached at least 80% of the control Vickers microhardness values, which means that both materials can be adequately polymerized when they are used for luting thick indirect restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  10. Structure-to-property relationships in addition cured polymers. II - Resin Tg and composite initial mechanical properties of norbornenyl cured polyimide resins

    NASA Technical Reports Server (NTRS)

    Alston, William B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  11. Structure-to-property Relationships in Addition Cured Polymers 2: Resin Tg Composite Initial Mechanical Properties of Norbornenyl Cured Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  12. Color and translucency in silorane-based resin composite compared to universal and nanofilled composites.

    PubMed

    Pérez, María M; Ghinea, Razvan; Ugarte-Alván, Laura I; Pulgar, Rosa; Paravina, Rade D

    2010-01-01

    The purpose of this study was to determine the optical properties, color and translucency, of the new silorane-based resin composite and to compare it to universal dimethacrylate-based composites. Six dimethacrylate-based resin composites and one silorane-based resin composite (all A2 shade) were studied. Color of non-polymerized and polymerized composites was measured against white and black backgrounds using a spectroradiometer. Changes in color (ΔE*(ab)), translucency (ΔTP) and color coordinates (ΔL*, Δa* and Δb*) were calculated for each resin composite. Results were evaluated using a one-way ANOVA, a Tukey's test and a t-test. The polymerization-dependent ΔE*(ab) ranged from 4.7 to 9.1, with the smallest difference for the silorane-based resin composite. The color changes of silorane-based composite were due to the changes of coordinates Δa* and Δb*. However, for the dimethacrylate-based composites, the color changes mainly originated by ΔL*and Δb*. The silorane composite exhibited the smallest TP values. Tukey's test confirmed significant statistical differences (p<0.05) between mean TP values of Filtek Silorane and each brand of dimethacrylate-based composites before and after polymerization. The new silorane-based restorative system showed different optical properties compared to clinically successful dimethacrylate composites. The silorane composite exhibited better polymerization-dependent chromatic stability, and a lower translucency compared to other tested products. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Diametral and compressive strength of dental core materials.

    PubMed

    Cho, G C; Kaneko, L M; Donovan, T E; White, S N

    1999-09-01

    Strength greatly influences the selection of core materials. Many disparate material types are now recommended for use as cores. Cores must withstand forces due to mastication and parafunction for many years. This study compared the compressive and diametral tensile strengths of 8 core materials of various material classes and formulations (light-cured hybrid composite, autocured titanium containing composite, amalgam, glass ionomer, glass ionomer cermet, resin-modified glass ionomer, and polyurethane). Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive and diametral strengths with associated standard errors were calculated for each material (n = 10). Analyses of variance were computed (P <.0001) and multiple comparisons tests discerned many differences among materials. Compressive strengths varied widely from 61.1 MPa for a polyurethane to 250 MPa for a resin composite. Diametral tensile strengths ranged widely from 18.3 MPa for a glass ionomer cermet to 55.1 MPa for a resin composite. Some resin composites had compressive and tensile strengths equal to those of amalgam. Light-cured hybrid resin composites were stronger than autocured titanium containing composites. The strengths of glass ionomer-based materials and of a polyurethane material were considerably lower than for resin composites or amalgam.

  14. Modeling of process-induced residual stresses and resin flow behavior in resin transfer molded composites with woven fiber mats

    NASA Astrophysics Data System (ADS)

    Golestanian, Hossein

    This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.

  15. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  16. Matrix resin effects in composite delamination - Mode I fracture aspects

    NASA Technical Reports Server (NTRS)

    Hunston, Donald L.; Moulton, Richard J.; Johnston, Norman J.; Bascom, Willard D.

    1987-01-01

    A number of thermoset, toughened thermoset, and thermoplastic resin matrix systems were characterized for Mode I critical strain energy release rates, and their composites were tested for interlaminar critical strain energy release rates using the double cantilever beam method. A clear correlation is found between the two sets of data. With brittle resins, the interlaminar critical strain energy release rates are somewhat larger than the neat resin values due to a full transfer of the neat resin toughness to the composite and toughening mechanisms associated with crack growth. With tougher matrices, the higher critical strain energy release rates are only partially transferred to the composites, presumably because the fibers restrict the crack-tip deformation zones.

  17. Clinical assessment of class II resin-based composites versus preformed metal crowns performed on primary molars in patients at high risk of caries.

    PubMed

    Alyahya, A; Khanum, A; Qudeimat, M

    2018-02-01

    To compare class II resin composite with preformed metal crowns (PMC) in the treatment of proximal dentinal caries in high caries-risk patients. The charts (270) of paediatric patients with proximal caries of their primary molars were reviewed. Success or failure of a procedure was assessed using the dental notes. Survival analysis was used to calculate the mean survival time (MST) for both procedures. The influence of variables on the mean survival time was investigated. A total of 593 class II resin composites and 243 PMCs were placed in patients ranging between 4-13 years of age. The failure percentage of class II resin composites was 22.6% with the majority having been due to recurrent caries, while the failure percentage of PMCs was 15.2% with the majority due to loss of the crown. There was no significant difference between the MST of class II resin composites and PMCs, 41.3 and 45.6 months respectively (p value = 0.06). In class II resin composites, mesial restorations were associated with lower MST compared to distal restorations (p-value < 0.001). The MST of resin composites and PMCs were comparable when performed on high caries-risk patients.

  18. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    PubMed

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  20. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

    PubMed

    Reymus, Marcel; Roos, Malgorzata; Eichberger, Marlis; Edelhoff, Daniel; Hickel, Reinhard; Stawarczyk, Bogna

    2018-04-27

    Because of their industrially standardized process of manufacturing, CAD/CAM resin composites show a high degree of conversion, making a reliable bond difficult to achieve. The purpose of this experiment was to investigate the tensile bond strength (TBS) of luting composite to CAD/CAM resin composite materials as influenced by air abrasion and pretreatment strategies. The treatment factors of the present study were (1) brand of the CAD/CAM resin composite (Brilliant Crios [Coltene/Whaledent], Cerasmart [GC Europe], Shofu Block HC [Shofu], and Lava Ultimate [3M]); (2) air abrasion vs. no air abrasion; and (3) pretreatment using a silane primer (Clearfil Ceramic Primer, Kuraray) vs. a resin primer (One Coat 7 Universal, Coltene/Whaledent). Subsequently, luting composite (DuoCem, Coltene/Whaledent) was polymerized onto the substrate surface using a mold. For each combination of the levels of the three treatment factors (4 (materials) × 2 (air abrasion vs. no air abrasion; resin) × 2 (primer vs. silane primer)), n = 15, specimens were prepared. After 24 h of water storage at 37 °C and 5000 thermo-cycles (5/55 °C), TBS was measured and failure types were examined. The resulting data was analyzed using Kaplan-Meier estimates of the cumulative failure distribution function with Breslow-Gehan tests and non-parametric ANOVA (Kruskal-Wallis test) followed by the multiple pairwise Mann-Whitney U test with α-error adjustment using the Benjamini-Hochberg procedure and chi-square test (p < 0.05). The additional air abrasion step increased TBS values and lowered failure rates. Specimens pretreated using a resin primer showed significantly higher TBS and lower failure rates than those pretreated using a silane primer. The highest failure rates were observed for groups pretreated with a silane primer. Within the Shofu Block HC group, all specimens without air abrasion and pretreatment with a silane primer debonded during the aging procedure. Before fixation of CAD/CAM resin composites, the restorations should be air abraded and pretreated using a resin primer containing methyl-methacrylate to successfully bond to the luting composite. The pretreatment of the CAD/CAM resin composite using merely a silane primer results in deficient adhesion. For a reliable bond of CAD/CAM resin composites to the luting composite, air abrasion and a special pretreatment strategy are necessary in order to achieve promising long-term results.

  1. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  2. Standard tests for toughened resin composites, revised edition

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several toughened resin systems are evaluated to achieve commonality for certain kinds of tests used to characterize toughened resin composites. Specifications for five tests were standardized; these test standards are described.

  3. Immediate versus one-month wet storage fatigue of restorative materials.

    PubMed

    Gladys, S; Braem, M; Van Meerbeek, B; Lambrechts, P; Vanherle, G

    1998-03-01

    Immediate finishing is a highly desirable property of restorative materials. In general, the resin composites, the polyacid-modified resin composites and resin-modified glass-ionomers are finished immediately after light-curing. For the conventional glass-ionomers a waiting period of 24 h is recommended. Therefore, the objective of this study was to investigate whether immediate finishing and application of cyclic loading under water spray on resin-modified glass-ionomers, a conventional glass-ionomer, a polyacid-modified resin composite and a resin composite are reflected in their Young's modulus and fatigue resistance after 1-month wet storage compared with a control group that could mature untroubled for 1 month. From this study, it could be concluded that there is a material-dependent response on immediate finishing. For the conventional glass-ionomer, the waiting period of 24 h is highly advisable. The resin composite suffered more than the other test materials. A second statement is that one must be cautious by the extrapolation of findings obtained on quasi static tests (Young's modulus) towards dynamic properties (flexural fatigue limit).

  4. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    NASA Astrophysics Data System (ADS)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  5. Masking of Enamel Fluorosis Discolorations and Tooth Misalignment With a Combination of At-Home Whitening, Resin Infiltration, and Direct Composite Restorations.

    PubMed

    Perdigão, J; Lam, V Q; Burseth, B G; Real, C

    This clinical report illustrates a conservative technique to mask enamel discolorations in maxillary anterior teeth caused by hypomineralization associated with enamel fluorosis and subsequent direct resin composite to improve the anterior esthetics. The treatment consisted of at-home whitening with 10% carbamide peroxide gel with potassium nitrate and sodium fluoride in a custom-fitted tray to mask the brown-stained areas, followed by resin infiltration to mask the white spot areas. An existing resin composite restoration in the maxillary right central incisor was subsequently replaced after completion of the whitening and resin infiltration procedures, whereas the two misaligned and rotated maxillary lateral incisors were built up with direct resin composite restorations to provide the illusion of adequate arch alignment, as the patient was unable to use orthodontic therapy.

  6. Interlaminar shear properties of graphite fiber, high-performance resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.; Kourtides, D. A.; Fish, R. H.; Varma, D. S.

    1983-01-01

    Short beam testing was used to determine the shear properties of laminates consisting of T-300 and Celion 3000 and 6000 graphite fibers, in epoxy, hot melt and solvent bismaleimide, polyimide and polystyrylpyridine (PSP). Epoxy, composites showed the highest interlaminar shear strength, with values for all other resins being substantially lower. The dependence of interlaminar shear properties on the fiber-resin interfacial bond and on resin wetting characteristics and mechanical properties is investigated, and it is determined that the lower shear strength of the tested composites, by comparison with epoxy resin matrix composites, is due to their correspondingly lower interfacial bond strengths. An investigation of the effect of the wettability of carbon fiber tow on shear strength shows wetting variations among resins that are too small to account for the large shear strength property differences observed.

  7. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2017-02-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  8. Theoretical modeling and experimental study of dielectric loss of the multi-push-pull mode magnetoelectric laminate composites

    NASA Astrophysics Data System (ADS)

    Xu, Bingbing; Ma, Jiashuai; Fang, Cong; Yao, Meng; Di, Wenning; Li, Xiaobing; Luo, Haosu

    2018-02-01

    In this work, we establish a dielectric loss model for multi-push-pull mode ME laminate composites. It deduces that the total dielectric loss of the ME composites equals the linear average of the dielectric loss of piezoelectric plate and epoxy resin. But further analysis of this model has indicated that we can ignore the dielectric loss of epoxy resin. To verify this model, we use three kinds of epoxy resin with different dielectric loss to fabricate multi-push-pull mode PMNT/Metglas ME laminate composites respectively. It turns out that the different kinds of epoxy resin have little influence on the total dielectric loss, capacitance and piezoelectricity of the composites, which demonstrates that our model conforms to the practical case. Therefore, we can pay more attention to the mechanical properties of epoxy resin rather than its dielectric loss on fabricating the ME laminate composites.

  9. Metal-composite adhesion based on diazonium chemistry.

    PubMed

    Oweis, Yara; Alageel, Omar; Kozak, Paige; Abdallah, Mohamed-Nur; Retrouvey, Jean-Marc; Cerruti, Marta; Tamimi, Faleh

    2017-11-01

    Composite resins do not adhere well to dental alloys. This weak bond can result in failure at the composite-metal interface in fixed dental prostheses and orthodontic brackets. The aim of this study was to develop a new adhesive, based on diazonium chemistry, to facilitate chemical bonding between dental alloys and composite resin. Samples of two types of dental alloys, stainless steel and cobalt chromium were primed with a diazonium layer in order to create a surface coating favorable for composite adhesion. Untreated metal samples served as controls. The surface chemical composition of the treated and untreated samples was analyzed by X-ray photoelectron spectroscopy (XPS) and the tensile strength of the bond with composite resin was measured. The diazonium adhesive was also tested for shear bond strength between stainless steel orthodontic brackets and teeth. XPS confirmed the presence of a diazonium coating on the treated metals. The coating significantly increased the tensile and shear bond strengths by three and four folds respectively between the treated alloys and composite resin. diazonium chemistry can be used to develop composite adhesives for dental alloys. Diazonium adhesion can effectively achieve a strong chemical bond between dental alloys and composite resin. This technology can be used for composite repair of fractured crowns, for crown cementation with resin based cements, and for bracket bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    PubMed Central

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001) with more adhesive remaining on the teeth bonded with composite resin. Conclusion: RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  11. Prosthetic limb sockets from plant-based composite materials.

    PubMed

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  12. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. In vitro enamel remineralization capacity of composite resins containing sodium trimetaphosphate and fluoride.

    PubMed

    Tiveron, Adelisa Rodolfo Ferreira; Delbem, Alberto Carlos Botazzo; Gaban, Gabriel; Sassaki, Kikue Takebayashi; Pedrini, Denise

    2015-11-01

    This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control—no sodium fluoride (NaF) or TMP), resin F (with 1.6% NaF), resin TMP (with 14.1% TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.

  14. Comparison of Microleakage of Composite Resin Veneering Systems at the Alloy Interface

    DTIC Science & Technology

    1988-09-01

    of oral fluids at the metal- resin interface and breakdown of the acrylic resin were factors that have limited the acceptance and widespread use of...percolation of oral fluids at the resin -metal interface, and low resistance to toothbrush abrasion. If chemical means could be used to achieve resin -metal...bonding, 1) esthetics could be improved because of a more uniform layer of the opaque and composite resin , and 2) percolation of fluids at the metal

  15. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  16. Modified Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.

    1984-01-01

    The properties of a rubber-modified experimental epoxy resin and a standard epoxy as composite matrices were studied. In addition, a brominated epoxy resin was used in varying quantities to improve the fire resistance of the composite. The experimental resin was tris-(hydroxyphenyl)methane triglycidyl ether, known as tris epoxy novolac (TEN). The standard epoxy resin used was tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM). The above resins were modified with carboxyl-terminated butadiene acrylonitrile (CTBN) rubber. It is concluded that: (1) modification of TEN resin with bromine gives better impact resistance than rubber modification alone; (2) 25% rubber addition is necessary to obtain significant improvement in impact resistance; (3) impact resistance increases with bromine content; (4) impact velocity does not significantly affect the energy absorbed by the test sample; (5) Tg did not decline with rubber modification; and (6) TEN resin had better hot/wet properties than TGDDM resin.

  17. Effect of in-office bleaching agents on physical properties of dental composite resins.

    PubMed

    Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria

    2013-04-01

    The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P < .05. The measurements showed that hue and chroma of silorane-based composite resin altered after the bleaching procedure (P < .05). No statistically significant differences were found when testing the microhardness and surface roughness of composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.

  18. Polyimide Composites Based on Asymmetric Dianhydrides (a-ODPA vs a-BPDA)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.

    2009-01-01

    Two series of low-melt viscosity imide resins (2-15 poise at 260-280 C) were formulated from either asymmetric oxydiphthalic anhydride (a-ODPA) or asymmetric biphenyl dianhydride (a- BPDA) with 4-phenylethynyl endcap (PEPA), along with 3,4'-oxydianiline, 3,4 - methylenedianiline, 3,3 -methylenedianiline or 3,3 -diaminobenzophenone, using a solvent-free melt process. These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fabric composites by resin transfer molding (RTM). Composites from a-ODPA based resins display better open-hole compression strength and short beam shear strength from room temperature to 288 C than that of the corresponding a-BPDA based resins. However, due to the lower Tg s of a-ODPA based resins (265-330 C), their corresponding composites do not possess 315 C use capability while the a-BPDA based composites do. In essence, RTM 370 (T g = 370 C), derived from a-BPDA and 3,4 -ODA and PEPA, exhibits the best overall property performance at 315 C (600 F).

  19. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  20. Screening programme to select a resin for Gravity Probe-B composites

    NASA Technical Reports Server (NTRS)

    Will, E. T.

    1992-01-01

    The Gravity Probe-B (GP-B) program undertook a screening program to select a possible replacement resin for the E-787 resin currently used in composite neck tubes and support struts. The goal was to find a resin with good cryogenic and structural properties, low-helium permeation and an easily repeatable fabrication process. Cycom 92, SCI REZ 081 and RS-3 were selected for comparison with E-787. Identical composite tubes made from each resin and gamma-alumina fiber (85 percent Al2O3, 15 percent SiO2) were evaluated for cryogenic and structural performance and for processability. Cryogenic performance was evaluated by measuring low-temperature permeation and leaks to determine cryogenic strain behavior. Structural performance was evaluated by comparing the resin-dominated shear strength of the composites. Processability was evaluated from fabrication comments and GP-B's own experience. SCI REZ 081 was selected as the best overall resin with superior strength and cryogenic performance and consistent processability.

  1. Color-Matching and Blending-Effect of Universal Shade Bulk-Fill-Resin-Composite in Resin-Composite-Models and Natural Teeth.

    PubMed

    Abdelraouf, Rasha M; Habib, Nour A

    2016-01-01

    Objectives . To assess visually color-matching and blending-effect (BE) of a universal shade bulk-fill-resin-composite placed in resin-composite-models with different shades and cavity sizes and in natural teeth (extracted and patients' teeth). Materials and Methods . Resin-composite-discs (10 mm × 1 mm) were prepared of universal shade composite and resin-composite of shades: A1, A2, A3, A3.5, and A4. Spectrophotometric-color-measurement was performed to calculate color-difference (Δ E ) between the universal shade and shaded-resin-composites discs and determine their translucency-parameter (TP). Visual assessment was performed by seven normal-color-vision-observers to determine the color-matching between the universal shade and each shade, under Illuminant D65. Color-matching visual scoring (VS) values were expressed numerically (1-5): 1: mismatch/totally unacceptable, 2: Poor-Match/hardly acceptable, 3: Good-Match/acceptable, 4: Close-Match/small-difference, and 5: Exact-Match/no-color-difference. Occlusal cavities of different sizes were prepared in teeth-like resin-composite-models with shades A1, A2, A3, A3.5, and A4. The cavities were filled by the universal shade composite. The same scale was used to score color-matching between the fillings and composite-models. BE was calculated as difference in mean-visual-scores in models and that of discs. Extracted teeth with two different class I-cavity sizes as well as ten patients' lower posterior molars with occlusal caries were prepared, filled by universal shade composite, and assessed similarly. Results . In models, the universal shade composite showed close matching in the different cavity sizes and surrounding shades (4 ≤ VS < 5) (BE = 0.6-2.9 in small cavities and 0.5-2.8 in large cavities). In extracted teeth, there was good-to-close color-matching (VS = 3.7-4.4 in small cavities, BE = 2.5-3.2) (VS = 3-3.5, BE = 1.8-2.3 in large cavities). In patients' molars, the universal shade composite showed good-matching (VS = 3-3.3, BE = -0.9-2.1). Conclusions . Color-matching of universal shade resin-composite was satisfactory rather than perfect in patients' teeth.

  2. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    NASA Astrophysics Data System (ADS)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  3. Effect of saliva and blood contamination after etching upon the shear bond strength between composite resin and enamel

    NASA Astrophysics Data System (ADS)

    Armadi, A. S.; Usman, M.; Suprastiwi, E.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  4. [Bonding of visible light cured composite resins to glass ionomer and Cermet cements].

    PubMed

    Kakaboura, A; Vougiouklakis, G

    1990-04-01

    The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.

  5. [Comparison of surface roughness of nanofilled and microhybrid composite resins after curing and polishing].

    PubMed

    Jiang, Hong; Lv, Da; Liu, Kailei; Zhang, Weisheng; Yao, Yao; Liao, Chuhong

    2014-05-01

    To compare the surface roughness of nanofilled dental composite resin and microhybrid composite resins after curing and polishing. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from the lateral to the medial layers to prepare 8 mm×8 mm×5 mm cubical specimens. The 4 lateral surfaces of each specimens were polished with abrasive disks (Super-Snap). Profilometer was used to test the mean surface roughness (Ra) after polishing. P60 had the lowest Ra (0.125∓0.030 µm) followed by Z250 and Spectrum. The Ra of Z350 (0.205∓0.052 µm) was greater than that of the other 3 resins, and AP-X had the roughest surfaces. Under scanning electron microscope, the polished faces of P60 resin were characterized by minor, evenly distributed particles with fewer scratches; the polished faces of Z350 presented with scratches where defects of the filling material could be seen. The nanofilled composite Z350 has smooth surface after polishing by abrasive disks, but its smoothness remains inferior to that of other micro-hybrid composite resins.

  6. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  7. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  8. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    PubMed Central

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  9. Effect of bench time polymerization on depth of cure of dental composite resin

    NASA Astrophysics Data System (ADS)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  10. The effect of processing on autohesive strength development in thermoplastic resins and composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.

    1989-01-01

    In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.

  11. Creep and creep-recovery of a thermoplastic resin and composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  12. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.

    PubMed

    Wang, Ruili; Habib, Eric; Zhu, X X

    2017-10-01

    The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Efficacy of polishing kits on the surface roughness and color stability of different composite resins.

    PubMed

    Kocaagaoglu, H; Aslan, T; Gürbulak, A; Albayrak, H; Taşdemir, Z; Gumus, H

    2017-05-01

    Different polishing kits may have different effects on the composite resin surfaces. The aim of this study was to evaluate the surface roughness and color stability of four different composites which was applied different polishing technique. Thirty specimens were made for each composite resin group (nanohybrid, GrandioSo-GS; nanohybrid, Clearfil Majesty Esthetic-CME; hybrid, Valux Plus-VP; micro-hybrid, Ruby Comp-RC; [15 mm in diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three subgroups (n = 10). The first subgroup of the each composite subgroups served as control (C) and had no surface treatment. The second subgroup of the each composite resin groups was polished with finishing discs (Bisco Finishing Discs; Bisco Inc., Schaumburg, IL, USA). The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal-Wallis test, and regression analysis was used in order to examine the correlation between surface roughness and color differences of the specimens (α = 0.05). The Kruskal-Wallis test indicated significant difference among the composite resins in terms of ΔE (P < 0.05), and there was no statistically significant difference among composite resins in terms of surface roughness (P > 0.05). Result of the regression analysis indicated statistically significant correlation between Ra and ΔE values (P < 0.05, r2 = 0.74). The findings of the present study have clinical relevance in the choice of polishing kits used.

  14. The effect of tooth age on colour adjustment potential of resin composite restorations.

    PubMed

    Tanaka, A; Nakajima, M; Seki, N; Foxton, R M; Tagami, J

    2015-02-01

    The purpose of this study was to investigate the effect of tooth age on colour adjustment potential of resin composite restorations in human teeth. Twenty extracted human premolars with an A2 shade, extracted for orthodontic reasons from younger patients (20-28yrs) (younger teeth) and periodontal reasons from older patients (45-69yrs) (older teeth), were used in this study. Cylindrical shaped cavities (3.0mm depth; 2.0mm diameter) were prepared in the centre of the crowns on the buccal surface. One of four resin composites of A2 shade (Kalore, KA; Solare, SO; Clearfil Majesty, MJ; Beautifil II, BF) was placed in the cavity, and the colour was measured at four areas (0.4mm×0.4mm) on the restored teeth (area 1; tooth area 1.0mm away from the border of resin composite restoration: area 2; tooth border area 0.3mm away from margin of resin composite restoration: area 3; resin composite border area 0.3mm away from margin of resin composite restoration: area 4; resin composite area at the centre of resin composite restoration) using a spectrophotometer (Crystaleye). The colour of each area was determined according to the CIELAB colour scale. Colour differences (ΔE*) between the areas of 1 and 2, 2 and 3, 3 and 4 and 1 and 4 were calculated, and also the ratio of ΔE*area2-3 to ΔE*area1-4 (ΔE*area2-3/1-4), ΔE*area3-4 to ΔE*area1-4 (ΔE*area3-4/1-4) and ΔE*area1-2 to ΔE*area1-4 (ΔE*area1-2/1-4) as a parameter of the colour shift in resin composite restoration, were determined. Moreover, the light transmission characteristics of the resin materials and dentine discs from the younger and older teeth were measured using a goniophotometer. The data were statistically analyzed using two-way ANOVA, and Dunnett's T3 and t-test for the post hoc test. ΔE*area2-3 (colour difference between resin composite and tooth at the border) and ΔE*area1-4 (colour difference between resin composite and tooth) of the older teeth groups were significantly larger than those of younger teeth groups (p<0.05). The ΔE*area2-3/1-4 (mis-match rate in colour shifting at the border) of the older teeth groups was larger than that of the younger teeth groups (p<0.05). ΔE*area3-4/1-4 (colour shifting rate of resin composite side) was significantly larger in older teeth than younger teeth (p<0.05), while ΔE*area1-2/1-4 (colour shifting rate of tooth side), was significantly smaller in older teeth than younger teeth (p<0.05). In each tooth group, there were no significant differences in ΔE*area2-3, ΔE*area1-4, ΔE*area2-3/1-4, ΔE*area3-4/1-4 and ΔE*area1-2/1-4 between the materials (p>0.05). Analysis of the light transmission properties indicated that older dentine transmitted more light, while younger dentine exhibited greater light diffusion and transmitted less light. The colour shifting effects at the border of the resin composite restorations were influenced by the age of the tooth. This behaviour might be influenced by the light transmission characteristics of dentine in restored teeth. The potential for colour adjustment of resin composite restorations may be less in older teeth than younger teeth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Changes in fats and resins of Pinus radiata associated with heartwood formation

    Treesearch

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    In an analysis of Australian grown P. radiata marked changes were found in the relative proportions and compositions of the resin acids, fatty acids, and fatty acid esters associated with heartwood formation. While the proportion of resin acids increased substantially in the heartwood, there was little change in resin acid composition from outer...

  16. Characterization of water sorption, solubility, and roughness of silorane- and methacrylate-based composite resins.

    PubMed

    Giannini, M; Di Francescantonio, M; Pacheco, R R; Cidreira Boaro, L C; Braga, R R

    2014-01-01

    The objective of this study was to evaluate the surface roughness (SR), water sorption (WS), and solubility (SO) of four composite resins after finishing/polishing and after one year of water storage. Two low-shrinkage composites (Filtek Silorane [3M ESPE] and Aelite LS [Bisco Inc]) and two composites of conventional formulations (Heliomolar and Tetric N-Ceram [Ivoclar Vivadent]) were tested. Their respective finishing and polishing systems (Sof-Lex Discs, 3M ESPE; Finishing Discs Kit, Bisco Inc; and Astropol F, P, HP, Ivoclar Vivadent) were used according to the manufacturers' instructions. Ten disc-shaped specimens of each composite resin were made for each evaluation. Polished surfaces were analyzed using a profilometer after 24 hours and one year. For the WS and SO, the discs were stored in desiccators until constant mass was achieved. Specimens were then stored in water for seven days or one year, at which time the mass of each specimen was measured. The specimens were dried again and dried specimen mass determined. The WS and SO were calculated from these measurements. Data were analyzed by two-way analysis of variance and Tukey post hoc test (α=0.05). Filtek Silorane showed the lowest SR, WS, and SO means. Water storage for one year increased the WS means for all composite resins tested. The silorane-based composite resin results were better than those obtained for methacrylate-based resins. One-year water storage did not change the SR and SO properties in any of the composite resins.

  17. Color Stability Assessment of Two Different Composite Resins with Variable Immersion Time Using Various Beverages: An In vitro Study

    PubMed Central

    Kumar, M. Senthil; Ajay, R.; Miskeen Sahib, S. A.; Chittrarasu, M.; Navarasu, M.; Ragavendran, N.; Burhanuddin Mohammed, Omar Farooq

    2017-01-01

    Purpose of the Study: The aim of the study was to evaluate the difference in the color of microhybrid (MH) and nanofilled (NF) composite resins after 24 and 48 h in beverages such as red wine (RW), Coca-Cola, and distilled water. The specific objective of this study was to investigate the cumulative effect of the colorant solutions on the dental composites. Materials and Methods: MH and NF composite resins (A2 shade) were used in this current study. Sixty disk-shaped material specimens (10 mm in diameter × 2 mm in thickness) were prepared using a fiber mold (ring), with the desired dimensions. The specimen surfaces were polished using super-snap polishing system. Sixty specimens were divided into two groups of 30 each (Group I: MH resin composite; Group II: NF resin composite). Both the groups divided into six subgroups (Subgroup I: RW for 24 h [RW-24]; Subgroup II: RW for 48 h; Subgroup III: Coca-Cola for 24 h [CC-24]; Subgroup IV: Coca-Cola for 48 h [CC-48]; Subgroup V: Distilled water for 24 h [DW-24]; Subgroup VI: Distilled water for 48 h [DW-48]). All the samples were immersed in respective drinks for a period of 24 h, and color differences were measured using ultraviolet spectrophotometer. Once again, all the samples were immersed for another 24 h in the same drinks. After 48 h, the color change of the samples was measured. Measurements were made according to the CIE L × a × b × color space relative to the CIE standard illuminant D65. The color changes of the specimens were evaluated using the following formula: Statistical analysis was performed. The data were analyzed using the one-way ANOVA and t-test at a significance level of 0.05. Conclusion: Color stability of MH composite resin was found to be inferior than the NF resin composite irrespective of immersion medium and time. In RW, the color change observed was maximum for both composite resins followed by Coca-Cola. Immersing the resin composites in distilled water for 24 and 48 h had negligible color change. A 48-h immersion of both composite resins in all three immersion mediums showed greater color change than 24 h immersion. PMID:29284957

  18. Color Stability Assessment of Two Different Composite Resins with Variable Immersion Time Using Various Beverages: An In vitro Study.

    PubMed

    Kumar, M Senthil; Ajay, R; Miskeen Sahib, S A; Chittrarasu, M; Navarasu, M; Ragavendran, N; Burhanuddin Mohammed, Omar Farooq

    2017-11-01

    The aim of the study was to evaluate the difference in the color of microhybrid (MH) and nanofilled (NF) composite resins after 24 and 48 h in beverages such as red wine (RW), Coca-Cola, and distilled water. The specific objective of this study was to investigate the cumulative effect of the colorant solutions on the dental composites. MH and NF composite resins (A2 shade) were used in this current study. Sixty disk-shaped material specimens (10 mm in diameter × 2 mm in thickness) were prepared using a fiber mold (ring), with the desired dimensions. The specimen surfaces were polished using super-snap polishing system. Sixty specimens were divided into two groups of 30 each (Group I: MH resin composite; Group II: NF resin composite). Both the groups divided into six subgroups (Subgroup I: RW for 24 h [RW-24]; Subgroup II: RW for 48 h; Subgroup III: Coca-Cola for 24 h [CC-24]; Subgroup IV: Coca-Cola for 48 h [CC-48]; Subgroup V: Distilled water for 24 h [DW-24]; Subgroup VI: Distilled water for 48 h [DW-48]). All the samples were immersed in respective drinks for a period of 24 h, and color differences were measured using ultraviolet spectrophotometer. Once again, all the samples were immersed for another 24 h in the same drinks. After 48 h, the color change of the samples was measured. Measurements were made according to the CIE L × a × b × color space relative to the CIE standard illuminant D65. The color changes of the specimens were evaluated using the following formula: Statistical analysis was performed. The data were analyzed using the one-way ANOVA and t -test at a significance level of 0.05. Color stability of MH composite resin was found to be inferior than the NF resin composite irrespective of immersion medium and time. In RW, the color change observed was maximum for both composite resins followed by Coca-Cola. Immersing the resin composites in distilled water for 24 and 48 h had negligible color change. A 48-h immersion of both composite resins in all three immersion mediums showed greater color change than 24 h immersion.

  19. Glass Fiber Resin Composites and Components at Arctic Temperatures

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GLASS FIBER RESIN...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Glass fiber reinforced composites (GFRC

  20. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  1. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  2. Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.

    PubMed

    Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang

    2018-06-13

    This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.

  3. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  4. Effect of esthetic core shades on the final color of IPS Empress all-ceramic crowns.

    PubMed

    Azer, Shereen S; Ayash, Ghada M; Johnston, William M; Khalil, Moustafa F; Rosenstiel, Stephen F

    2006-12-01

    Clinically relevant assessment of all-ceramic crowns supported by esthetic composite resin foundations has not been evaluated with regard to color reproducibility. This in vitro study quantitatively evaluated the influence of different shades of composite resin foundations and resin cement on the final color of a leucite-reinforced all-ceramic material. A total of 128 disks were fabricated; 64 (20 x 1 mm) were made of all-ceramic material (IPS Empress) and 64 (20 x 4 mm) of 4 different shades composite resin (Tetric Ceram). The ceramic and composite resin disks were luted using 2 shades (A3 and Transparent) of resin cement (Variolink II). Color was measured using a colorimeter configured with a diffuse illumination/0-degree viewing geometry, and Commission Internationale de l'Eclairage (CIE) L( *)a( *)b( *) values were directly calculated. Descriptive statistical analysis was performed, and color differences (DeltaE) for the average L( *), a( *) and b( *) color parameters were calculated. Repeated measures analysis of variance (ANOVA) was used to compare mean values and SDs between the different color combinations (alpha=.05). The CIE L( *)a( *)b( *) color coordinate values showed no significant differences for variation in color parameters due to the effect of the different composite resin shades (P=.24) or cement shades (P=.12). The mean color difference (DeltaE) value between the groups was 0.8. Within the limitations of this study, the use of different shades for composite resin cores and resin cements presented no statistically significant effect on the final color of IPS Empress all-ceramic material.

  5. Effect of an Extra Hydrophobic Resin Layer on Repair Shear Bond Strength of a Silorane-Based Composite Resin

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam

    2015-01-01

    Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348

  6. Fracture strength testing of crowns made of CAD/CAM composite resins.

    PubMed

    Okada, Ryota; Asakura, Masaki; Ando, Akihiro; Kumano, Hirokazu; Ban, Seiji; Kawai, Tatsushi; Takebe, Jun

    2018-03-28

    The purpose of this study was to ascertain whether computer aided design/computer aided manufacturing (CAD/CAM) composite resin crowns have sufficient strength to withstand the bite force of the molar teeth. The null hypothesis was that the fracture strength of CAD/CAM composite resin crowns is lower than the average maximum bite force of the molar tooth. The crowns, which shape is the right maxillary first molar, were fabricated using four CAD/CAM blanks made of composite resins (Block HC: HC, KZR-CAD HR: HR, KZR-CAD HR2: HR2, Avencia Block: AVE) and one CAD/CAM blank made of lithium disilicate glass-ceramic (IPS e.max CAD: IPS), which was used as a control. Fracture strength of fabricated crowns bonded to metal abutment and biaxial flexural strength of the materials were evaluated. The results of fracture strength test and biaxial flexural strength test showed different tendencies. The fracture strength of CAD/CAM composite resin crowns except HC ranged from 3.3kN to 3.9kN, and was similar to that of IPS (3.3kN). In contrast, biaxial flexural strength of CAD/CAM composite resins ranged from 175MPa to 247MPa, and was significantly lower than that of IPS (360MPa). All CAD/CAM composite resin crowns studied presented about 3-4 times higher fracture strength than the average maximum bite force of the molar tooth (700-900N), which result leads to the conclusion that CAD/CAM composite resin crowns would have sufficient strength to withstand the bite force of the molar teeth. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites.

    PubMed

    André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio

    2018-04-01

    This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.

  8. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  9. Endodontic management of supernumerary tooth fused with maxillary first molar by using cone-beam computed tomography.

    PubMed

    Song, Chang-Kyu; Chang, Hoon-Sang; Min, Kyung-San

    2010-11-01

    Fusion is a rare occurrence, and its definitive diagnosis is of prime importance for successful root canal treatment. This case report discusses the endodontic management of a supernumerary tooth fused with a right maxillary first molar by using cone-beam computed tomography (CBCT). Nonsurgical endodontic retreatment was performed on the supernumerary tooth. A communication between the maxillary first molar and the supernumerary tooth was repaired by using flowable resin. After 1 year of follow-up, there were no clinical symptoms, and the maxillary first molar remained vital. Recall radiographs and CBCT showed satisfactory healing of the periapical pathosis. Proper diagnosis and treatment planning for endodontic management of fused teeth by using CBCT can ensure predictable and successful results. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  11. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arman, B.; An, Q.; Luo, S. N.

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  13. Composite impact strength improvement through a fiber/matrix interphase

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1975-01-01

    Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan E. Bland

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in themore » Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.« less

  15. Color change of CAD-CAM materials and composite resin cements after thermocycling.

    PubMed

    Gürdal, Isil; Atay, Ayse; Eichberger, Marlis; Cal, Ebru; Üsümez, Aslihan; Stawarczyk, Bogna

    2018-04-24

    The color of resin cements and computer-aided-design and computer-aided-manufacturing (CAD-CAM) restorations may change with aging. The purpose of this in vitro study was to analyze the influence of thermocycling on the color of CAD-CAM materials with underlying resin cement. Seven different CAD-CAM materials, composite resins and glass-ceramics were cut into 0.7-mm and 1.2-mm thicknesses (n=10) and cemented with a dual-polymerizing resin cement, a light-polymerizing resin cement, and a preheated composite resin (N=420). Color values were measured by using spectrophotometry. Specimens were subjected to thermocycling (5°C and 55°C; 5000 cycles). The measured color difference (ΔE) data were analyzed by using descriptive statistics. Normality of data distribution was tested by using the Kolmogorov-Smirnov test. Three-way and 1-way ANOVA followed by the Scheffé post-hoc test and unpaired 2-sample Student t test were computed to determine the significant differences among the tested parameters (α=.05). ΔE values were significantly influenced by the CAD-CAM material (η p 2 =0.85, P<.001) and the resin composite cement (η P 2 =0.03, P=.003) but were not influenced by thickness (P=.179). Significant interactions were present among thickness, cement, and CAD-CAM materials (P<.001). Vita Suprinity and GC Cerasmart showed significantly the lowest ΔE values (P<.001). The highest ΔE values were observed for IPS Empress CAD. The dual-polymerizing resin cement showed significantly lower ΔE values than the preheated composite resin (P=.003). Restoration materials and composite resin cement types used for cementation influence the amount of color change due to aging. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  17. Bisimide amine cured epoxy /IME/ resins and composites. II - Ten-degree off-axis tensile and shear properties of Celion 6000/IME composites

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.

  18. Resin selection criteria for tough composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  19. Evaluation of esthetic parameters of resin-modified glass-ionomer materials and a polyacid-modified resin composite in Class V cervical lesions.

    PubMed

    Gladys, S; Van Meerbeek, B; Lambrechts, P; Vanherle, G

    1999-09-01

    The purpose of this study was to compare the esthetics of 3 resin-modified glass-ionomer materials and 1 polyacid-modified resin composite to the esthetics of a conventional glass-ionomer control material. One hundred eighty-seven Class V cervical restorations were observed clinically over 18 months. The esthetic index system that was used evaluated color match, translucency or opacity, and surface roughness. The tested materials behaved very dissimilarly and inconsistently. In general, the esthetic results of the resin-modified glass-ionomer materials and the polyacid-modified resin composite were far from optimal. The esthetic appearance of restorations seriously deteriorated during clinical service, mainly because of discoloration of margins, changes in translucency and opacity, and rapidly appearing roughness or dullness on the surface. Both the resin-modified glass-ionomer materials and the polyacid-modified resin composite evaluated in this study performed better esthetically than did the conventional glass-ionomer material. Indications for these combination materials are limited to areas where esthetics is not a primary concern but where their ease of application may guarantee a more durable functional result.

  20. The in vivo wear resistance of 12 composite resins.

    PubMed

    Lang, B R; Bloem, T J; Powers, J M; Wang, R F

    1992-09-01

    The in vivo wear resistance of 12 composite resins were compared with an amalgam control using the Latin Square experimental design. Sixteen edentulous patients wearing specially designed complete dentures formed the experimental population. The Michigan Computer Graphics Measurement System was used to digitize the surface of the control and composite resin samples before and after 3-month test periods to obtain wear data. The 12 composite resins selected for this investigation based on their published composite classification types were seven fine particle composites, three blends, and two microfilled composite resins. The Latin Square experimental design was found to be valid with the factor of material being statistically different at the 5% level of significance. Wear was computed as volume loss (mm3/mm2), and all of the composites studied had more wear than the amalgam control (P = .001). After 3 months, the mean (error) of wear of the amalgam was 0.028 (0.006). Means (error) of wear for the 12 composites were ranked from most to least wear by mean wear volume loss. The absence of any relationship between mean wear volume loss and the volume percentage filler was confirmed by the correlation coefficient r = -0.158.

  1. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  2. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a modified heat release rate calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested. The composites were exposed to a thermal radiation of 5.3 Btu/sq ft-sec in air. Samples of each of the unfilled composite were decomposed anaerobically in the calorimeter. Weight loss data were recorded for burning and decomposition times up to thirty-five minutes. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burned in air. Boron powder additions to both the polyimide and the epoxy resins stabilized the chars and effectively controlled the fiber release.

  3. Mechanical properties of silorane-based and methacrylate-based composite resins after artificial aging.

    PubMed

    de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido

    2016-01-01

    The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).

  4. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.

    PubMed

    Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou

    2018-01-01

    Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.

  5. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin

    NASA Astrophysics Data System (ADS)

    Zhang, K. S.; Xue, J. N.; Wang, Y. X.; Sun, H.; Long, Y.

    2018-04-01

    La(Fe, Si)13-based composite plates were successfully fabricated using different amount of phenolic resin. The introduction of phenolic resin as binder increased the corrosion resistance and maintained giant magnetocaloric effect for La(Fe, Si)13-based composite plates. It was found that corroded spots were firstly observed on the boundaries between resin and La(Fe, Si)13 particles, rather than in La(Fe, Si)13-based particles, after being immersed in static distilled water. The corrosion rate decreased significantly with the increase of resin content. And the increase of the content of phenolic resin leads to the reduction of corrosion current density. Meanwhile, the volumetric magnetic entropy change ΔSM decreases slightly as the content of phenolic resin increases. The ΔSM of the plates with 3 wt.%, 5 wt.% and 8 wt.% resin are 63.1, 61.2 and 59.8 mJ/cm3 K under a low magnetic field change of 1 T, respectively.

  6. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    PubMed

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  7. Fingerprint test data report: FM 5064J (Kaiser) lots No. 1 (K) - No. 4 (K). [resin matrix composites

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Quality control tests are presented for resin matrix and carbon-carbon composites. Tests performed are filler test, resin test, prepregs test, and fabric test. The test results are presented in chart form.

  8. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.

    PubMed

    Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2014-10-01

    To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p < 0.05). Non-etched PEEK demonstrated no bond strength to resin composite cements. The optimal etching duration varied with the type of resin composite: 60 s for RelyX ARC (15.3 ± 7.2 MPa), 90 s for Variolink II (15.2 ± 7.2 MPa), and 120 s for Clearfil SA Cement (6.4 ± 5.9 MPa). Regardless of etching duration, however, the self-etching resin composite cement showed significantly lower shear bond strength values when compared to groups luted with the conventional resin composites. Although sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.

  9. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  10. Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2010-01-01

    A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.

  11. The effects of aircraft fuel and fluids on the strength properties of Resin Transfer Molded (RTM) composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dow, Marvin B.

    1993-01-01

    The resin transfer molding (RTM) process offers important advantages for cost-effective composites manufacturing, and consequently has become the subject of intense research and development efforts. Several new matrix resins have been formulated specifically for RTM applications in aircraft and aerospace vehicles. For successful use on aircraft, composite materials must withstand exposure to the fluids in common use. The present study was conducted to obtain comparative screening data on several state-ofthe-art RTM resins after environmental exposures were performed on RTM composite specimens. Four graphite/epoxy composites and one graphite/bismaleimide composite were tested; testing of two additional graphite epoxy composites is in progress. Zero-deg tension tests were conducted on specimens machined from eight-ply (+45-deg, -45-deg) laminates, and interlaminar shear tests were conducted on 32-ply 0-deg laminate specimens. In these tests, the various RTM resins demonstrated widely different strengths, with 3501-6 epoxy being the strongest. As expected, all of the matrix resins suffered severe strength degradation from exposure to methylene chloride (paint stripper). The 3501-6 epoxy composites exhibited about a 30 percent drop in tensile strength in hot, wet tests. The E905-L epoxy exhibited little loss of tensile strength (less than 8 percent) after exposure to water. The CET-2 and 862 epoxies as well as the bismaleimide exhibited reduced strengths at elevated temperature after exposure to oils and fuel. In terms of the percentage strength reductions, all of the RTM matrix resins compared favorably with 3501-6 epoxy.

  12. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    NASA Technical Reports Server (NTRS)

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  13. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  14. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    PubMed

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p < 0.05). However, 3D surface topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  15. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives.

    PubMed

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  16. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  17. Rubber dam isolation--key to success in diastema closure technique with direct composite resin.

    PubMed

    Barros de Campos, Paulo Ricardo; Maia, Rodrigo Rocha; Rodrigues de Menezes, Livia; Barbosa, Isabel Ferreira; Carneiro da Cunha, Amanda; da Silveira Pereira, Gisele Damiana

    2015-01-01

    The use of direct composite resin for diastema closure has technique advantages, including that the restorative procedure can be carried out in one appointment at a reasonable cost and without the removal of sound tooth structure. The use of a rubber dam for closing diastemas with composite resin is of paramount importance as it prevents moisture contamination and ensures increased gingival retraction compared to other techniques. This provides better access to the cervical area of the tooth, facilitating proper placement of resin to recreate the natural anatomical contours and contact point. Thus, there is a more natural adaptation of the restoration to the gingival tissue, avoiding a space between the papilla and the restored tooth. To illustrate the advantages of this technique, two diastema closure cases are presented using direct composite resin with rubber dam isolation.

  18. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.

  19. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  20. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    PubMed

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  1. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  2. Composite panels made with biofiber or office wastepaper bonded with thermoplastic and/or thermosetting resin

    Treesearch

    James H. Muehl; Andrzej M. Krzysik; Poo Chow

    2004-01-01

    The purpose of this study was to evaluate two groups of composite panels made from two types of underutilized natural fiber sources, kenaf bast fiber and office wastepaper, for their suitability in composite panels. All panels were made with 5% thermosetting phenol-formaldehyde (PF) resin and 1.5% wax. Also, an additional 10% polypropylene (PP) thermoplastic resin was...

  3. Integrating dental anatomy and biomaterials: an innovative use of composite resin.

    PubMed

    Allen, Kenneth L; McAndrew, Maureen

    2004-01-01

    As part of the new integrated curriculum at the New York University College of Dentistry, a pilot program uses composite resins to teach dental anatomy. The Department of Biomaterials and Biomimetics, in conjunction with the Department of Cariology and Operative Dentistry, has created a teaching module to replicate the morphology of a central incisor through the manipulation and placement of a composite resin.

  4. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  5. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  6. Effect of a surface sealant on the color stability of composite resins after immersion in staining solution.

    PubMed

    Pedroso, Lauana Borges; Barreto, Luma Franciélle Cabreira; Miotti, Leonardo Lamberti; Nicoloso, Gabriel Ferreira; Durand, Leticia Brandão

    2016-01-01

    This study evaluated the influence of surface sealants on the color stability of 2 different composite resins after immersion in coffee. Four groups were created (n = 10): microhybrid composite, microhybrid with surface sealant, nanofilled composite, and nanofilled composite with surface sealant. Half of the specimens of each group were immersed in distilled water and half were immersed in coffee for 48 hours. Color was measured before and after immersion. Groups with surface sealants presented less color variation when compared with the groups without surface sealants. The nanofilled resin specimens presented the greatest color variation within the groups without sealant. The surface sealant positively influenced the color stability of composite resin specimens immersed in coffee. When surface sealant was not applied, the microhybrid specimens had better color stability than the nanofilled.

  7. Effect of Endocrown Pulp Chamber Extension Depth on Molar Fracture Resistance.

    PubMed

    Hayes, A; Duvall, N; Wajdowicz, M; Roberts, H

    The purpose of this study was to evaluate the effect of endocrown pulp chamber extension on mandibular molar fracture resistance. A total of 36 recently extracted mandibular third molars of approximate equal size were sectioned at the facial lingual height of contour followed by endodontic access into the pulp chamber. The specimens were then randomly divided into three groups (n=12) and pulpal and root canal contents removed. Pulp chamber floors were established at 2, 3, and 4 mm from the occlusal table using a three-step etch-and-rinse adhesive and a flowable resin composite. The prepared specimens were then embedded in auto-polymerizing denture base resin with surface area available for adhesive bonding determined using a digital recording microscope. Specimens were restored using a standardized template with a chairside computer-aided design/computer-aided manufacturing unit with the endocrown milled from a lithium disilicate glass-ceramic material. Restoration parameters of occlusal table anatomy and thickness were standardized with the only parameter difference being the pulp chamber extension depth. The endocrown restorations were luted with a self-adhesive resin luting agent and tested to failure after 24 hours on a universal testing machine, with force applied to the facial cusps at a 45° angle to the long axis of the tooth. The failure load was converted into stress for each specimen using the available surface area for bonding. Mean failure load and stress among the three groups was first subjected to the Shapiro-Wilk and Bartlett tests and then analyzed with an analysis of variance with the Tukey post hoc test at a 95% confidence level (p=0.05). The 2- and 4-mm chamber extension groups demonstrated the highest fracture resistance stress, with the 3-mm group similar to the 2-mm group. The 3- and 4-mm chamber extension group specimens demonstrated nearly universal catastrophic tooth fracture, whereas half the 2-mm chamber extension group displayed nonrestorable root fractures. Under the conditions of this study, mandibular molars restored with the endocrown technique with 2- and 4-mm pulp chamber extensions displayed greater tooth fracture resistance force as well as stress. All groups demonstrated a high number of catastrophic fractures, but these results may not be clinically significant because the fracture force results are higher than normal reported values of masticatory function.

  8. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism.

    PubMed

    Kitagawa, Haruaki; Miki-Oka, Saeki; Mayanagi, Gen; Abiko, Yuki; Takahashi, Nobuhiro; Imazato, Satoshi

    2018-03-01

    Resin composites containing surface pre-reacted glass-ionomer (S-PRG) fillers have been reported to inhibit Streptococcus mutans growth on their surfaces, and their inhibitory effects were attributed to BO 3 3- and F - ions. The aim of this study was to evaluate S. mutans acid production through glucose metabolism on resin composite containing S-PRG fillers and assess inhibitory effects of BO 3 3- and F - on S. mutans metabolic activities. The pH change through S. mutans acid production on experimental resin composite was periodically measured after the addition of glucose. Inhibitory effects of BO 3 3- or F - solutions on S. mutans metabolism were evaluated by XTT assays and measurement of the acid production rate. The pH of experimental resin containing S-PRG fillers was significantly higher than that of control resin containing silica fillers (p < 0.05). OD 450 values by XTT assays and S. mutans acid production rates significantly decreased in the presence of BO 3 3- and F - compared with the absence of these ions (p < 0.05). pH reduction by S. mutans acid production was inhibited on resin composite containing S-PRG fillers. Moreover, S. mutans glucose metabolism and acid production were inhibited in the presence of low concentrations of BO 3 3- or F - . BO 3 3- or F - released from resin composite containing S-PRG fillers exhibits inhibitory effects on S. mutans metabolism at concentrations lower than those which inhibit bacterial growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Direct spectrometry: a new alternative for measuring the fluorescence of composite resins and dental tissues.

    PubMed

    da Silva, Tm; de Oliveira, Hpm; Severino, D; Balducci, I; Huhtala, Mfrl; Gonçalves, Sep

    2014-01-01

    The aim of this study was to evaluate the fluorescence intensity of different composite resins and compare those values with the fluorescence intensity of dental tissues. Different composite resins were used to make 10 discs (2 mm in depth and 4 mm in diameter) of each brand, divided into groups: 1) Z (Filtek Z350, 3M ESPE), 2) ES (Esthet-X, Dentsply), 3) A (Amelogen Plus, Ultradent), 4) DVS (Durafill-VS, Heraeus Kulzer) with 2 mm composite resin for enamel (A2), 5) OES ([Esthet-X] opaque-OA [1 mm] + enamel-A2 [1 mm]); 6) ODVSI ([Charisma-Opal/Durafill-VSI], opaque-OM (1 mm) + translucent [1mm]), and 7) DVSI ([Durafill- VSI] translucent [2 mm]). Dental tissue specimens were obtained from human anterior teeth cut in a mesiodistal direction to obtain enamel, dentin, and enamel/dentin samples (2 mm). The fluorescence intensity of specimens was directly measured using an optic fiber associated with a spectrometer (Ocean Optics USB 4000) and recorded in graphic form (Origin 8.0 program). Data were submitted to statistical analysis using Dunnet, Tukey, and Kruskall-Wallis tests. Light absorption of the composite resins was obtained in a spectral range from 250 to 450 nm, and that of dental tissues was between 250 and 300 nm. All composite resins were excited at 398 nm and exhibited maximum emissions of around 485 nm. Fluorescence intensity values for all of the resins showed statistically significant differences (measured in arbitrary units [AUs]), with the exception of groups Z and DVS. Group DVSI had the highest fluorescence intensity values (13539 AU), followed by ODVS (10440 AU), DVS (10146 AU), ES (3946 AU), OES (3841 AU), A (3540 AU), and Z (1146 AU). The fluorescence intensity values for the composite resins differed statistically from those of dental tissues (E=1380 AU; D=6262 AU; E/D=3251 AU). The opacity interfered with fluorescence intensity, and group Z demonstrated fluorescence intensity values closest to that of tooth enamel. It is concluded that the fluorescence intensity values were significantly different among the composite resins and compared with dental tissues. The direct spectrofluorimetric method represents a tool for evaluating the fluorescence of composite resins.

  10. Interaction of LED light with coinitiator-containing composite resins: effect of dual peaks.

    PubMed

    Sim, Jae-Seong; Seol, Hyo-Joung; Park, Jeong-Kil; Garcia-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2012-10-01

    Recently the colour stability of composite resins has been an issue due to the emphasis on the aesthetics of restored teeth. The purpose of the present study was to investigate how dual-peak LED units affect the polymerization of coinitiator-containing composite resins. Five composite resins [coinitiator-containing: Aelite LS Posterior (AL), Tetric EvoCeram (TE), and Vit-l-escence (VI); only CQ-containing: Grandio (GD) and Filtek Z350 (Z3)] were light cured using four different light-curing units (LCUs). Among them, Bluephase G2 (BP) and G-light (GL) were dual-peak LED LCUs. Microhardness, polymerization shrinkage, flexural, and compressive properties were measured. BP and GL had no consistent effect on the microhardness of AL, TE, and VI on the top and bottom surfaces of resin specimens. Among the specimens, AL and VI showed the least (9.86-10.41 μm) and greatest (17.58-19.21 μm) polymerization shrinkage, respectively. However, the effect of BP and GL on the shrinkage of specimens was not consistent. Among the specimens, GD showed the greatest flexural properties [strength (FS) and modulus (FM)] and TE showed the lowest flexural and compressive properties [strength (CS) and modulus (CM)]. In same resin product, maximum FS and CS differences due to the different LCUs were 10.3-21.0% and 3.6-9.2%, respectively. Furthermore, the influences of BP and GL on FS and CS were not consistent. The tested dual-peak LED LCUs had no consistent synergic effect on the polymerization of coinitiator-containing composite resins as compared with QTH and single-peak LED LCUs. The dual-peak LED LCUs achieve a similar degree of polymerization in coinitiator-composite resins as QTH and single-peak LED LCUs did. Choice of LCU does not appear to be a determinant of the light curing of coinitiator-composite resins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Carbon Fiber Composites for Cryogenic Filament-Wound Vessels.

    DTIC Science & Technology

    in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in NOL Ring composites, CTBN /ERLB 4617 exhibited the...bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures, with the CTBN /ERLB 4617 composites giving somewhat

  12. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  13. Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.

    PubMed

    Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro

    2016-01-01

    Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.

  14. Towards High-Energy-Density Pseudocapacitive Flowable Electrodes by the Incorporation of Hydroquinone

    DOE PAGES

    Boota, M.; Hatzell, K. B.; Kumbur, E. C.; ...

    2015-01-29

    Our study reports an investigation of hydroquinone (HQ) as a multielectron organic redox molecule to enhance the performance of flowable electrodes. Moreover, two different methods to produce high-performance pseudocapacitive flowable electrodes were investigated for electrochemical flow capacitors. First, HQ molecules were deposited on carbon spheres (CSs) by a self-assembly approach using various HQ loadings. In the second approach, HQ was used as a redox-mediating agent in the electrolyte. Flowable electrodes composed of HQ showed a capacitance of 342 Fg 1, which is >200% higher than that of flowable electrodes based on nontreated CSs (160 Fg 1), and outperformed (in gravimetricmore » performance) many reported film electrodes. A similar trend in capacitance was observed if HQ was used as a redox agent in the electrolyte; however, its poor cycle life restricted further consideration. Additionally, a twofold increase in capacitance was observed under flow conditions compared to that of previous studies.« less

  15. 700 F properties of autoclave cured PMR-II composites

    NASA Technical Reports Server (NTRS)

    Cifani, Diane

    1988-01-01

    Studies were conducted to develop autoclave processing parameters for graphite reinforced PMR-2 resin composite materials intended for use in applications at temperatures up to 371 degrees (700 F). The effect of resin composition on autoclaveability was investigated. The effect of various graphite fibers and resin composition on 343 C (650 F) and 371 C (700 F) thermo-oxidative stability and mechanical properties was also investigated. The results of the processing studies show that PMR-2 resin composites can be easily fabricated under autoclave conditions. Autoclaved laminates exposed to 1 atm of air at 343 C (650 F) and 371 C (700 F) exhibited less than 5 percent weight loss after 750 hr exposure to 650 F air and 8 percent weight loss during exposure to 700 F air for 500 hr. After 500 hr exposure, autoclaved laminates exhibited greater than 90 percent retention of initial 650 and 700 F flexural and interlaminar shear strengths. The effect of resin formulated molecular weight and postcure conditions on laminate glass transition temperature is also discussed.

  16. The 700 F properties of autoclave cured PMR-2 composites

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Cifani, Diane

    1988-01-01

    Studies were conducted to develop autoclave processing parameters for graphite reinforced PMR-2 resin composite materials intended for use in applications at temperatures up to 371 degrees (700 F). The effect of resin composition on autoclaveability was investigated. The effect of various graphite fibers and resin composition on 343 C (650 F) and 371 C (700 F) thermo-oxidative stability and mechanical properties was also investigated. The results of the processing studies show that PMR-2 resin composites can be easily fabricated under autoclave conditions. Autoclaved laminates exposed to 1 atm of air at 343 C (650 F) and 371 C (700 F) exhibited less than 5 percent weight loss after 750 hr exposure to 650 F air and 8 percent weight loss during exposure to 700 F air for 500 hr. After 500 hr exposure, autoclaved laminates exhibited greater than 90 percent retention of initial 650 and 700 F flexural and interlaminar shear strengths. The effect of resin formulated molecular weight and postcure conditions on laminate glass transition temperature is also discussed.

  17. A review of devices used for photocuring resin-based composites.

    PubMed

    Small, B W

    2001-01-01

    Composite resin shrinks up to 5% by volume upon curing. This shrinkage and the associated contraction stress remain the two most significant clinical problems with curing resin composite restorations. Many patients continue to experience sensitivity following placement of direct composites and seating of indirect restorations utilizing resin cements. Unfortunately, some claims made by manufacturers or certain clinicians that promise to alleviate these problems are made from a marketing standpoint, with no refereed literature to support those claims. Even within the literature, contradictory results have been reported, perpetuating the confusion. It is of utmost importance that all practicing dentists be aware of the various types of curing systems available and the advantages and disadvantages of each system. It is the opinion of the author that no existing system will alleviate every problem. Until new composite systems are perfected, such as the cyclopolymerizable resins and expanding polymers, we will continue to have shrinkage and stress. Be aware of false claims, read and interpret the literature, and, most importantly, do what is best for your patients.

  18. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  19. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    PubMed

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p < 0.001) and the groups cooled to 4 °C exhibited the lowest MSBS (p < 0.001). The CSE showed higher MSBS than the other adhesives (p < 0.001). This study concludes that preheating of composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.

  20. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  1. Fiber Reinforced Polyester Resins Polymerized by Microwave Source

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.

    2007-12-01

    Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.

  2. [Three-dimensional finite element analysis of the upper cervical-defected incisor with labial access or lingual access].

    PubMed

    Su, Fan; Zhao, Ying; Su, Qin

    2013-08-01

    To evaluate the stress distribution of the cervical-defected incisor with labial or lingual endodontic access with finite element analysis (FEA), and to explore the advantage of resistance in labial endodontic access. 3-D finite element models of upper cervical-defected incisor were established using cone-beam CT (CBCT), Mimics Catia, and Ansys software. The subjects were categorized according to the two endodontic accesses and three restorative ways, which were composite resin, glass fiber-reinforced composite resin and glass fiber-reinforced post-crown. All the models were loaded.The von Mises stress values and distribution were recorded and analyzed with Ansys 10.0 software. In this study, direct composite resin restoration showed no significant difference between the labial and lingual access. In glass fiber-reinforced composite resin, labial access could transfer the stress concentration area. It could reduce the incidence of fracture of the cervical lesion but increase the incidence of root fracture. Post-crown restoration could obviously reduce the incidence of fracture of the cervical lesion. When the cervical-defected incisor is restored with composite resin, labial and lingual accesses can be considered. Labial access with glass fiber-reinforced composite resin or post-crown restoration is a good choice.

  3. Repair or replacement of defective direct resin-based composite restorations: contemporary teaching in U.S. and Canadian dental schools.

    PubMed

    Lynch, Christopher D; Blum, Igor R; Frazier, Kevin B; Haisch, Larry D; Wilson, Nairn H F

    2012-02-01

    Opportunities exist to promote minimally invasive dentistry by repairing rather than replacing defective and failing direct resin-based composite restorations. The authors conducted a study to investigate the current teaching of such techniques in U.S. and Canadian dental schools. In late 2010, the authors, with the assistance of the Consortium of Operative Dentistry Educators, invited 67 U.S. and Canadian dental schools to participate in an Internet-based survey. The response rate was 72 percent. Eighty-eight percent of the dental schools taught repair of defective direct resin-based composite restorations. Of these schools, 79 percent reported providing both didactic and clinical teaching. Although teaching repair of defective resin-based composite restorations was included in the didactic curricula of most schools, students in some schools did not gain experience in minimally invasive management of defective resin-based composite restorations by means of performing repair procedures. The American Dental Association's Code on Dental Procedures and Nomenclature does not have a procedure code for resin-based composite restoration repairs, which may limit patients' access to this dental treatment. Teaching dental students minimally invasive dentistry procedures, including restoration repair, extends the longevity of dental restorations and reduces detrimental effects on teeth induced by invasive procedures, thereby serving the interests of patients.

  4. The Effect of Irradiation Distance on Microhardness of Resin Composites Cured with Different Light Curing Units

    PubMed Central

    Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem

    2010-01-01

    Objectives: The aim of this study was to compare the microhardness of five different resin composites at different irradiation distances (2 mm and 9 mm) by using three light curing units (quartz tungsten halogen, light emitting diodes and plasma arc). Methods: A total of 210 disc-shaped samples (2 mm height and 6 mm diameter) were prepared from different resin composites (Simile, Aelite Aesthetic Enamel, Clearfil AP-X, Grandio caps and Filtek Z250). Photoactivation was performed by using quartz tungsten halogen, light emitting diode and plasma arc curing units at two irradiation distances (2 mm and 9 mm). Then the samples (n=7/per group) were stored dry in dark at 37°C for 24 h. The Vickers hardness test was performed on the resin composite layer with a microhardness tester (Shimadzu HMV). Data were statistically analyzed using nonparametric Kruskal Wallis and Mann-Whitney U tests. Results: Statistical analysis revealed that the resin composite groups, the type of the light curing units and the irradiation distances have significant effects on the microhardness values (P<.05). Conclusions: Light curing unit and irradiation distance are important factors to be considered for obtaining adequate microhardness of different resin composite groups. PMID:20922164

  5. Fingerprint test data report: FM 5834 test lots No. 1, 3, 4, and 5. [resin matrix composites

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Quality control testing is presented for various lots of resin matrix composites. The tests conducted were filler test, resin test, fabric test, and prepreg test for lots 1, 3, 4, and 5. The results of the tests are presented in chart forms.

  6. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler.

    PubMed

    Miki, Saeki; Kitagawa, Haruaki; Kitagawa, Ranna; Kiba, Wakako; Hayashi, Mikako; Imazato, Satoshi

    2016-09-01

    A surface pre-reacted glass-ionomer (S-PRG) filler is a technology of interest for providing bio-functions to restorative materials. Resin composites containing S-PRG filler have been reported to show less plaque accumulation and reduced bacterial attachment. In this study, experimental resin composites containing S-PRG filler at various concentrations were fabricated, and the inhibitory effects on bacterial growth on their surface and the association of ions released from S-PRG filler with antibacterial activity were evaluated. Five kinds of experimental resin composites containing S-PRG filler at 0, 13.9, 27.3, 41.8, or 55.9 (vol.%) were fabricated. Streptococcus mutans was cultured on the cured discs for 18h to examine the growth of bacteria in contact with the surface of the experimental resins. The concentrations of Al(3+), BO3(3-), F(-), Na(+), SiO3(2-), or Sr(2+) released from each experimental resin into water were measured. The standardized solutions of each ion were prepared at the concentrations determined to be released from the experimental resin, and their inhibitory effects of single ion species on S. mutans growth were evaluated by using each standardized solution. Resin composites containing S-PRG filler at 13.9 (vol.%) or greater inhibited S. mutans growth on their surface. When S. mutans was incubated in the presence of six kinds of ions at the concentrations released from the resin composite containing S-PRG filler at 55.9 (vol.%), a significant reduction in bacterial number was observed for BO3(3-), F(-), Al(3+), and SiO3(2-). Among these four ions, BO3(3-) and F(-) demonstrated the strongest inhibitory effect on S. mutans growth. Our findings suggest that resin composites containing S-PRG filler inhibit the growth of S. mutans on their surface. BO3(3-), F(-), Al(3+) and SiO3(2-) released from S-PRG filler have the ability to inhibit S. mutans growth, and the inhibitory effects are mainly attributed to release of BO3(3-) and F(-). Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Marginal adaptation of composite resins under two adhesive techniques.

    PubMed

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin-22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied. © 2016 Wiley Periodicals, Inc.

  8. Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite.

    PubMed

    Shinohara, Ayano; Taira, Yohsuke; Sawase, Takashi

    2017-10-01

    The present study was conducted to evaluate the effects of an experimental adhesive agent [methyl methacrylate-tributylborane liquid (MT)] and two adhesive agents containing silane on the bonding between a resin composite block of a computer-aided design and manufacturing (CAD/CAM) system and a light-curing resin composite veneering material. The surfaces of CAD/CAM resin composite specimens were ground with silicon-carbide paper, treated with phosphoric acid, and then primed with either one of the two silane agents [Scotchbond Universal Adhesive (SC) and GC Ceramic Primer II (GC)], no adhesive control (Cont), or one of three combinations (MT/SC, MT/GC, and MT/Cont). A light-curing resin composite was veneered on the primed CAD/CAM resin composite surface. The veneered specimens were subjected to thermocycling between 4 and 60 °C for 10,000 cycles, and the shear bond strengths were determined. All data were analyzed using analysis of variance and a post hoc Tukey-Kramer HSD test (α = 0.05, n = 8). MT/SC (38.7 MPa) exhibited the highest mean bond strengths, followed by MT/GC (30.4 MPa), SC (27.9 MPa), and MT/Cont (25.7 MPa), while Cont (12.9 MPa) and GC (12.3 MPa) resulted in the lowest bond strengths. The use of MT in conjunction with a silane agent significantly improved the bond strength. Surface treatment with appropriate adhesive agents was confirmed as a prerequisite for veneering CAD/CAM resin composite restorations.

  9. Tensile bond strength of an aged resin composite repaired with different protocols.

    PubMed

    Celik, Esra Uzer; Ergücü, Zeynep; Türkün, L Sebnem; Ercan, Utku Kürșat

    2011-08-01

    To evaluate the effect of different surface treatments and bonding procedures on the tensile bond strength (TBS) of resin composites repaired 6 months after polymerization. Resin composite sticks were aged in distilled water at 37°C for 6 months. They were divided into 12 groups (n = 10) according to the combination of surface treatment/bonding procedures [none, only bur treatment, XP Bond (XPB/Dentsply/DeTrey) with/without bur, AdheSE (A-SE/Ivoclar/Vivadent) with/without bur, Composite Primer (CP/GC) with/without bur, CP after bur and acid-etching, XPB after acid etching and CP with bur, A-SE after bur and CP]. The ultimate tensile bond strength (UTS) of the resin composites was tested in intact but aged specimens. Tensile bond strengths were tested with a universal testing machine (Shimadzu). Data were analyzed using one-way ANOVA and Duncan Multiple Comparisons tests (p < 0.05). All repaired groups showed significantly higher TBS than the group without any sureface treatment (p < 0.05). Four groups resulted in TBS similar to those of intact resin composite UTS: A-SE, A-SE with bur, A-SE after CP with bur, and XPB after acid etching+CP with bur. Bur treatment, silane primer or etch-and-rinse adhesive application alone were not successful in the repair process of aged resin composite, whereas self-etching adhesive alone showed similar performance to the intact specimens. Combined procedures generally showed better performance: A-SE with bur, A-SE after CP with bur, and XPB after acid etching +CP with bur showed TBS similar to those of the intact specimens. It was concluded that bur roughening of the surfaces and rebonding procedures were essential for repairing aged resin composites.

  10. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  11. Novel matrix resins for composites for aircraft primary structures, phase 1

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.

    1992-01-01

    The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.

  12. Creep of experimental short fiber-reinforced composite resin.

    PubMed

    Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J

    2012-01-01

    The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.

  13. Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.

    PubMed

    Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph

    2017-01-01

    The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.

  14. Core-shell quantum dots tailor the fluorescence of dental resin composites.

    PubMed

    Alves, Leandro P; Pilla, Viviane; Murgo, Dírian O A; Munin, Egberto

    2010-02-01

    We characterized the optical properties, such as absorbance and fluorescence, of dental resins containing quantum dots (QD). We also determined the doping level needed to obtain a broad and nearly flat emission spectrum that provides the perception of white color. The samples studied were resin composites from Charisma (Heraeus Kulzer) prepared with CdSe/ZnS core-shell QD (0.05-0.77 mass%). The results showed that the fluorescence of dental resin composites can be tailored by using CdSe/ZnS core-shell quantum dots. QD core incorporation into dental resins allows the fabrication of restorative materials with fluorescence properties that closely match those of natural human teeth. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. An infiltration/cure model for manufacture of fabric composites by the resin infusion process

    NASA Technical Reports Server (NTRS)

    Weideman, Mark H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1992-01-01

    A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.

  16. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  17. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    PubMed

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, P<0.001) and Z250 (from 0.169±0.035 µm to 0.144±0.033 µm, P<0.001), whose Ra approximated that of P60 (0.121±0.028 µm) with smoothly polished surface. SEM revealed scratches and shallower pits on the surface of all the 5 resins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  18. Influence of irradiance on Knoop hardness, degree of conversion, and polymerization shrinkage of nanofilled and microhybrid composite resins.

    PubMed

    Fugolin, Ana Paula Piovezan; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Guiraldo, Ricardo Danil; Consani, Simonides

    2016-01-01

    The purpose of this study was to investigate the influence of the irradiance emitted by a light-curing unit on microhardness, degree of conversion (DC), and gaps resulting from shrinkage of 2 dental composite resins. Cylinders of nanofilled and microhybrid composites were fabricated and light cured. After 24 hours, the tops and bottoms of the specimens were evaluated via indentation testing and Fourier transform infrared spectroscopy to determine Knoop hardness number (KHN) and DC, respectively. Gap width (representing polymerization shrinkage) was measured under a scanning electron microscope. The nanofilled composite specimens presented significantly greater KHNs than did the microhybrid specimens (P < 0.05). The microhybrid composite resin exhibited significantly greater DC and gap width than the nanofilled material (P < 0.05). Irradiance had a mostly material-dependent influence on the hardness and DC, but not the polymerization shrinkage, of composite resins.

  19. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2004-01-01

    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  20. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2003-01-01

    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  1. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs.

    PubMed

    Ribeiro, Benicia Carolina Iaskieviscz; Boaventura, Juliana Maria Capelozza; Brito-Gonçalves, Joel de; Rastelli, Alessandra Nara de Souza; Bagnato, Vanderlei Salvador; Saad, José Roberto Cury

    2012-01-01

    This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Filtek™ Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escence™ and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light™ 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey’s test showed that the nanofilled resin (Filtek™ Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek™ Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light™ 2). The nanofilled resin showed the lowest DC, and the Vit-l-escence™ microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.

  2. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs

    PubMed Central

    RIBEIRO, Benicia Carolina Iaskieviscz; BOAVENTURA, Juliana Maria Capelozza; de BRITO-GONÇALVES, Joel; RASTELLI, Alessandra Nara de Souza; BAGNATO, Vanderlei Salvador; SAAD, José Roberto Cury

    2012-01-01

    Objective This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods FiltekTM Z350 nanofilled composite resins and Amelogen® Plus, Vit-l-escenceTM and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free LightTM 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm-1) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (FiltekTM Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (FiltekTM Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free LightTM 2). Conclusions The nanofilled resin showed the lowest DC, and the Vit-l-escenceTM microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC. PMID:22666839

  3. The effect of home bleaching agents on the surface roughness of five different composite resins: A SEM evaluation.

    PubMed

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Ulusoy, Nuran; Deniz, Sule Tugba; Yuksel-Devrim, Ece

    2016-05-01

    The aim of this study was to investigate the effect of hydrogen peroxide (HP) and carbamide peroxide (CP) on the surface roughness of five different composite resins using profilometer and scanning electron microscope (SEM). Thirty-six specimens (1 mm thick, 10 mm in diameter) of five composite resins were fabricated. Each composite group was equally divided into three subgroups as control, CP and HP. In control group, specimens were stored in daily refreshed distilled water during the 14-day testing period. In other groups, 10% HP (Opalescence Treswhite) and 10% CP (Opalescence PF) were applied and surface roughness values (Ra) of each specimen were measured with a profilometer at the end of 14 days. Additionally, SEM analysis was performed to evaluate the surface deformations of composite resins. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests. Ra values of composite groups exposed to bleaching agents were statistically higher than control group (p < 0.05). There was no significant difference between Ra values after HP and CP application within each composite group while SEM micrographs showed higher surface alterations at HP group compared to CP. Among the composite resins tested, Ceram-X Mono revealed the lowest Ra values after CP and HP applications as seen at SEM images. Home bleaching agents increased the surface roughness of all composites. Except CP applied Ceram-X mono specimens, Ra values of all composite resins evaluated in this study exceeded the critical limit of 0.2 μm. Ceram-X mono was the least affected composite material after bleaching application. SCANNING 38:277-283, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  4. Comparison of stabilities in translucency, fluorescence and opalescence of direct and indirect composite resins.

    PubMed

    Yu, Bin; Lee, Young-Keun

    2013-01-01

    To evaluate translucency, fluorescence and opalescence stabilities of direct and indirect composite resins after aging. One direct (16 shades) and two indirect composite resins (16 and 26 shades) were investigated. Resins were filled in a mold (1 mm thick) and light cured; post-curings were performed for indirect resins. Color was measured before and after 5,000 cycles of thermocycling on a reflection spectrophotometer in reflectance and transmittance modes to calculate parameters for translucency (TP), fluorescence (FL) and opalescence (OP). Differences in the changes of TP, FL and OP after aging by the type of resin were determined by t test, and those were also determined by one-way ANOVA with the factor of the brand or the shade group (P < 0.05). Changes in TP, FL and OP were -1.2 to 0.7, -0.2 to 0.4 and -0.6 to 1.3, respectively, for direct resins; and were -2.0 to 1.8, -0.9 to 0.4 and -2.9 to 3.7, respectively, for indirect resins. Changes in TP were not significantly different by the type of resin, but those in FL and OP were different (P = 0.05). Changes in optical parameters were influenced by the brand or the shade group of the resins (P < 0.05). Stabilities in optical properties of resins varied depending on type, brand or shade group. Aging significantly affected fluorescence and opalescence, but not translucency, of indirect resins compared to those of direct resins.

  5. Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures

    DTIC Science & Technology

    2008-12-01

    composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and

  6. Metal sulfide electrodes and energy storage devices thereof

    DOEpatents

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  7. Shrinkage Stresses Generated during Resin-Composite Applications: A Review

    PubMed Central

    Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573

  8. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.

    2000-01-01

    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  9. Adhesive strength of paint-on resins to crown and bridge composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-12-01

    This paper examined the adhesive strength of paint-on resin to crown and bridge composites after soaking in water and thermal-cycling. Three shades of paint-on resin were coated on three kinds of crown and bridge composite under four surface treatment conditions (a combination of sandblaster and pretreatment liquid). These specimens were soaked in water at 37 degrees C for 1 day, 1 month, and 1 year, and at 4 degrees C and 60 degrees C alternatively for 1-minute periods for 10,000 cycles by thermal-cycling machine. The adhesive strengths were obtained by shear test. There were no significant differences among the adhesive strengths of three shades of paint-on resin to three composites after storage (p > 0.05). The adhesive strengths to composites with sandblasting showed higher values than those without it (p < 0.01).

  10. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades |

    Science.gov Websites

    Turbine Blades Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites Arkema's Elium liquid thermoplastic resin. Photo of men working on turbine blades in a dome-shaped building composite structures of wind turbine blades. Capabilities Learn more about NREL's IACMI projects and its

  11. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  12. Polymerization shrinkage stress of composite resins and resin cements - What do we need to know?

    PubMed

    Soares, Carlos José; Faria-E-Silva, André Luis; Rodrigues, Monise de Paula; Vilela, Andomar Bruno Fernandes; Pfeifer, Carmem Silvia; Tantbirojn, Daranee; Versluis, Antheunis

    2017-08-28

    Polymerization shrinkage stress of resin-based materials have been related to several unwanted clinical consequences, such as enamel crack propagation, cusp deflection, marginal and internal gaps, and decreased bond strength. Despite the absence of strong evidence relating polymerization shrinkage to secondary caries or fracture of posterior teeth, shrinkage stress has been associated with post-operative sensitivity and marginal stain. The latter is often erroneously used as a criterion for replacement of composite restorations. Therefore, an indirect correlation can emerge between shrinkage stress and the longevity of composite restorations or resin-bonded ceramic restorations. The relationship between shrinkage and stress can be best studied in laboratory experiments and a combination of various methodologies. The objective of this review article is to discuss the concept and consequences of polymerization shrinkage and shrinkage stress of composite resins and resin cements. Literature relating to polymerization shrinkage and shrinkage stress generation, research methodologies, and contributing factors are selected and reviewed. Clinical techniques that could reduce shrinkage stress and new developments on low-shrink dental materials are also discussed.

  13. Three-body wear of resin denture teeth with and without nanofillers.

    PubMed

    Stober, Thomas; Henninger, Moritz; Schmitter, Marc; Pritsch, Maria; Rammelsberg, Peter

    2010-02-01

    The wear behavior of newly developed denture teeth with nanofillers may be different from teeth with other chemical formulations. The purpose of this study was to examine the 3-body wear resistance of 11 different commercially available resin denture teeth. The materials tested were conventional (SR Orthotyp PE, Orthognath) and cross-linked acrylic resin teeth without inorganic fillers (Premium 8, SR Postaris DCL, Trubyte Portrait, Artiplus), composite resin teeth with inorganic fillers (SR Orthosit PE, Vitapan), and composite resin teeth (experimental materials) with inorganic nanofillers (NC Veracia Posterior, e-Ha, Mondial). Human enamel and a ceramic denture tooth (Lumin Vacuum) were used as reference materials. The 3-body wear test was performed in a wear machine developed by the Academic Center for Dentistry Amsterdam (ACTA), with millet suspension acting as an abrasive medium (n=10, test load: 15 N, slip rate: 20%, number of cycles: 100,000). Wear was determined with the aid of a profilometer. Data were analyzed with the Kruskal-Wallis test and Mann-Whitney U test using the closed testing approach (significance level for familywise error rate, alpha=.05). None of the acrylic and composite resin materials tested in this study demonstrated the 3-body wear resistance of ceramic teeth or human enamel. Teeth with inorganic fillers demonstrated significantly lower wear values than conventional or cross-linked acrylic resin teeth without fillers. Composite resin teeth with traditional fillers showed significantly lower wear than composite resin teeth with nanofillers. Denture teeth with and without inorganic fillers differed significantly with regard to the degree of wear generated in the ACTA wear simulator. The incorporation of nanofillers did not improve the wear resistance compared to teeth with traditional fillers.

  14. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    NASA Astrophysics Data System (ADS)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  15. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  16. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  17. Modern high powered led curing lights and their effect on pulp chamber temperature of bulk and incrementally cured composite resin.

    PubMed

    Oberholzer, T G; Makofane, M E; du Preez, I C; George, R

    2012-06-01

    Pulpal temperature changes induced by modern high powered light emitting diodes (LEDs) are of concern when used to cure composite resins. This study showed an increase in pulp chamber temperature with an increase in power density for all light cure units (LCU) when used to bulk cure composite resin. Amongst the three LEDs tested, the Elipar Freelight-2 recorded the highest temperature changes. Bulk curing recorded a significantly larger rise in pulp chamber temperature change than incrementally cured resin for all light types except for the Smartligh PS. Both the high powered LED and the conventional curing units can generate heat. Though this temperature rise may not be sufficient to cause irreversible pulpal damage, it would be safer to incrementally cure resins.

  18. A 15-year randomized controlled study of a reduced shrinkage stress resin composite.

    PubMed

    van Dijken, Jan W V; Lindberg, Anders

    2015-09-01

    The aim of this randomized controlled study was to evaluate the long term effectiveness of a reduced shrinkage stress resin composite in Class II restorations. The material was compared intra-individually with a microhybrid resin composite. Each of 50 patients with at least one pair of two similar sized Class II cavities participated (22 female, 28 male, mean age 43 years, range 18-64). Each participant received in each pair, in a randomized way, one Class II restoration performed with a reduced shrinkage stress resin composite (InTen-S) and the other restoration with a microhybrid resin composite restoration (Point 4). Both restorations were placed with an etch-and-rinse bonding system and an oblique layering technique. A total of 106 restorations, 33 premolar and 73 molars, were placed. The restorations were evaluated blindly each year using modified USPHS criteria. The overall performance of the experimental restorations was tested after intra-individual comparison using the Friedmańs two-way analysis of variance test. The hypothesis was rejected at the 5% level. At 15 years, 91 restorations were evaluated. The drop out frequency was 15 restorations (5 male, 3 female participants; 2 premolar and 13 molar restorations). Except for 2 participants, who reported slight symptoms during a few weeks after placement, no post-operative sensitivity was observed at the recalls. The overall success rate at 15 years was 77%. Twenty-one non acceptable restorations were observed during the 15 years follow up, 10 InTen-S (21.7%) and 11 Point 4 (24.4%) restorations (p>0.05). Annual failure rates for the resin composites were 1.5% and 1.6%, respectively. The main reasons for failure were secondary caries (8) and resin composite fracture (7). The differences between premolar vs. molar restorations and between restorations in male vs. female participants were not significant. Significant differences were observed between 2-surface vs. 3-surface restorations. During the 15-year follow up, the reduced shrinkage stress resin composite showed a good clinical durability in Class II cavities, but not significantly better than the control microhybrid resin composite. Secondary caries and material fracture were the main reasons of failure. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Bismaleimides and related maleimido polymers as matrix resins

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Kourtides, D. A.; Fohlen, G. M.

    1985-01-01

    Significant processing and property improvements can be achieved by copolymerization of state-of-the-art bisimides with various vinyl stilbazole derivatives to give both fire resistance and high-temperature properties from hot-melt compositions. Significant improvement in mechanical properties is achieved through these modifications, which may make these new matrix resins ideal candidates for fireworthy secondary graphite composite structures. Phosphorous modifications of maleimido polymers through phosphonate structure and tricyclophosphazene derivatives provide families of new matrix resins for short-time applications in severe thermo-oxidative environments. With further research these may provide matrix resins for long-term thermo-oxidative stability of advanced composites at temperatures up to 400 to 500 C.

  20. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    PubMed

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  1. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    PubMed Central

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  2. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness.

    PubMed

    Lombardini, Marco; Chiesa, Marco; Scribante, Andrea; Colombo, Marco; Poggio, Claudio

    2012-11-01

    Adequate polymerization of resin composites could be considered as a crucial factor in obtaining good clinical performance, particularly in stress-bearing areas. An insufficient curing degree affects the resin composite's chemical properties The current in vitro study evaluated the influence of polymerization time and depth of cure of six commercial resin composites by Vickers microhardness (VK). SIX RESIN COMPOSITES WERE SELECTED: Three microhybrid (Esthet.X HD, Amaris, Filtek Silorane), two nanohybrid (Grandio, Ceram.X mono), and one nanofilled (Filtek Supreme XT). The VK of the surface was determined by a microhardness tester using a Vickers diamond indenter and a 200 g load applied for 15 s. The bottom to top mean VK ratio was calculated using the formula: Hardness ratio = VK of bottom surface/VK of top surface. Vickers hardness values of test materials during exposure time of 20 and 40 s and depths of cure of 2 and 3 mm were determined and compared. Data were analyzed using analysis of variance (ANOVA) test. For all the tested materials and with all the exposure time periods, hardness ratio was higher than the minimum value indicated in literature (0.8). Exposure time and depth of cure did not affect hardness ratio values for Filtek Silorane, Grandio, and Filtek Supreme XT. Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  3. Self-healing of damage in fibre-reinforced polymer-matrix composites.

    PubMed

    Hayes, S A; Zhang, W; Branthwaite, M; Jones, F R

    2007-04-22

    Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.

  4. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    PubMed

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Effect of light-curing units on microleakage under dental composite resins

    NASA Astrophysics Data System (ADS)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Saade, E. G.; Nadalin, M. R.; Andrade, M. F.; Porto-Neto, S. T.

    2009-09-01

    The aim of this study was to determine the effect of two light-curing units (QTH and LED) on microleakage of Class II composite resin restorations with dentin cavosurface margins. Twenty extracted mandibular first premolars, free of caries and fractures were prepared two vertical “slot” cavities in the occluso-mesial and -destal surfaces (2 mm buccal-lingually, 2 mm proximal-axially and cervical limit in enamel) and divided into 4 equal groups ( n = 8): GI and GII: packable posterior composite light-activated with LED and QTH, respectively; GIII and GIV: micro-hybrid composite resin light-activated with LED and QTH, respectively. The composite resins were applied following the manufacturer’s instructions. After 24 h of water storage specimens were subjected to thermocycling for a total of 500 cycles at 5 and 55°C and the teeth were then sealed with impermeable material. Teeth were immersed in 0.5% Basic fuchsin during 24 h at room temperature, and zero to three levels of penetration score were attributed. The Mann-Whitney and Kruskal-Wallis tests showed significant statistically similar ( P > 0.05) from GI to GII and GIII to GIV, which the GII (2.750) had the highest mean scores and the GIII and GIV (0.875) had lowest mean scores. The use of different light-curing units has no influence on marginal integrity of Class II composite resin restorations and the proprieties of composite resins are important to reduce the microleakage.

  6. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes

    PubMed Central

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler)containing vari ed mass fractions of halloysite nanotubes (HNTs). Methods Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Results Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Significance Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. PMID:22796038

  7. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes.

    PubMed

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-10-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler) containing varied mass fractions of halloysite nanotubes (HNTs). Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Effective Mechanical Properties of Fuzzy Fiber Composites

    DTIC Science & Technology

    2012-03-16

    fibers’’. Numerical examples of compositesmade of epoxy resin , carbonfibers and carbon nanotubes are presented and the impact of the carbon nanotubes...allows us to compute effective properties of composites with multiple types of ??fuzzy fibers??. Numerical examples of composites made of epoxy resin ...length (Fig. 1 in [42]). The CNTs have inter- nal radius 0.51 nm and external radius 0.85 nm. The ‘‘fuzzy fibers’’ are embedded in EPIKOTE 862 resin . The

  9. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    PubMed Central

    Gagani, Abedin I.; Echtermeyer, Andreas T.

    2018-01-01

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described. PMID:29641451

  10. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    PubMed

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  11. Effects of toothbrush hardness on in vitro wear and roughness of composite resins.

    PubMed

    Kyoizumi, Hideaki; Yamada, Junji; Suzuki, Toshimitsu; Kanehira, Masafumi; Finger, Werner J; Sasaki, Keiichi

    2013-11-01

    To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p < 0.05). Abrasion of the composite resins increased linearly with increasing number of brushing cycles (r² > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 µm), the lowest one on VEN (Ra < 0.3 µm). VEN specimens showed increased numbers of pinhole defects when brushed with hard toothbrushes, surfaces of VEP were uniformly abraded without level differences between the prepolymerized fillers and the glass filler-loaded matrix, VED showed large glass fillers protruding over the main filler-loaded matrix portion under each condition. Abrasion and surface roughness of composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin.

  12. Effect of beverages on color and translucency of new tooth-colored restoratives.

    PubMed

    Tan, B L; Yap, A U J; Ma, H N T; Chew, J; Tan, W J

    2015-01-01

    This investigation examined the susceptibility to staining and translucency changes of some new tooth-colored restorative materials after immersion in different beverages. The materials studied were 3M Filtek Z350XT (ZT), 3M Filtek 350XT Flowable Restorative (ZF), Shofu Beautifil Flow Plus (BF), Shofu Beautifil II (B2), 3M Ketac Nano (N100), and 3M Photac Fil (PF). Following the manufacturers' instructions, 42 samples were made from each material and placed in an incubator at 100% humidity and 37°Celsius for 24 hours. Baseline L*, a*, b* readings were taken against white and black backgrounds using a photospectrometer. The samples were then randomly assigned to be immersed in seven beverages, namely cola drink, orange juice, red wine, vodka, black coffee, green tea, and distilled water for a period of seven days. Color readings were taken again by recording the L*, a*, b* values. Data was analyzed using t-tests, one-way analysis of variance with Tukey post hoc and Pearson's correlation (p<0.05). BF generally performed as well as the conventional composite resin materials (ZT and ZF) but N100 and B2 did not. PF had the largest staining and translucency changes. Coffee, red wine, and tea resulted in the most staining and negative translucency changes. An inverse correlation between ΔE and ΔTP was observed for all materials and beverages with the exception of orange juice.

  13. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  14. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  15. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  16. Tooth brush abrasion of paint-on resins for shade modification of crown and bridge resins.

    PubMed

    Fujii, Koichi; Ban, Seiji; McCabe, John F

    2003-09-01

    The purpose of this study was to evaluate the surface roughness and resistance to toothbrush abrasion of three experimental paint-on composite resins developed for the shade modification of crown and bridge resins. The paint-on resins had less filler volume fraction than restorative composites or the crown and bridge resins and consequently were of low viscosity. The maximum surface roughness (Rmax) and the maximum depth loss by abrasion for the paint-on resins following 40,000 cycles of brushing ranged from 2.45 to 4.07 microm and 8.63 to 13.67 microm, respectively. Rmax values were 37.7-67.5% lower than that for the crown and bridge resin subjected to the same test. Wear depth was 19.9-49.4% lower than for the crown and bridge resin. These results suggest that the paint-on resins are expected to have adequate resistance to toothbrush abrasion and may therefore be suitable for clinical use.

  17. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  18. Composite Design and Engineering

    NASA Astrophysics Data System (ADS)

    van der Woude, J. H. A.; Lawton, E. L.

    Fiberglass is a versatile and cost-effective reinforcement for composites. Many processes, resins, and forms of fiberglass facilitate this versatility. The design, engineering, manufacture, and properties of fiberglass-reinforced composite products from diverse thermoset and thermoplastic resins are described. The attributes of fiberglass-reinforced composites include its mechanical and chemical properties, lightweight, corrosion resistance, longevity, low total system cost, and Class A surface properties. Specific examples illustrate the importance of the form of the fiberglass reinforcement and of the interfacial bond between the glass fibers and the matrix resin in optimizing composite properties. In addition, recent advances are described with regard to the fabrication of fiberglass-reinforced wind turbine blades.

  19. Dielectric properties of CaCu3Ti4O12-silicone resin composites

    NASA Astrophysics Data System (ADS)

    Babu, Sanjesh; Singh, Kirti; Govindan, Anil

    2012-06-01

    CaCu3Ti4O12 (CCTO)-silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant ( ɛ=119) and low loss (tan δ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell-Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO-silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.

  20. Study on preparation and mechanical performance of TPU/nonwoven composites

    NASA Astrophysics Data System (ADS)

    Sun, X. C.; Xi, B. J.

    2016-07-01

    In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.

  1. "Greener" hybrid adhesives composed of urea formaldehyde resin and cottonseed meal for wood based composites

    USDA-ARS?s Scientific Manuscript database

    Urea formaldehyde (UF) resins are one of the most widely used adhesives in wood based composites. The major concerns of the resin utilization are free formaldehyde release and poor water resistance. As a renewable raw materials, water washed conttonseed meal can be used in wood bonding. To produce “...

  2. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    PubMed Central

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973

  3. Analysis of the microstructure and mechanical performance of composite resins after accelerated artificial aging.

    PubMed

    De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos

    2013-03-01

    Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.

  4. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  5. Influence of a peracetic acid-based immersion on indirect composite resin.

    PubMed

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  6. Resin-composite blocks for dental CAD/CAM applications.

    PubMed

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.

  7. Studies on biodegradable and crosslinkable poly(castor oil fumarate)/poly(propylene fumarate) composite adhesive as a potential injectable biomaterial.

    PubMed

    Mitha, M K; Jayabalan, M

    2009-12-01

    Biodegradable hydroxyl terminated-poly(castor oil fumarate) (HT-PCF) and poly(propylene fumarate) (HT-PPF) resins were synthesized as an injectable and in situ-cross linkable polyester resins for orthopedic applications. An injectable adhesive formulation containing this resin blend, N-vinyl pyrrolidone (NVP), hydroxy apatite, free radical initiator and accelerator was developed. The Composite adhesives containing the ratio of resin blend and NVP, 2.1:1.5, 2.1:1.2 and 2.1:1.0 set fast with tolerable exothermic temperature as a three dimensionally cross linked toughened material. Crosslink density and mechanical properties of the crosslinked composite increase with increase of NVP. The present crosslinked composite has hydrophilic character and cytocompatibility with L929 fibroblast cells.

  8. A novel method for imitating nacre by utilizing magnetic graphene oxide and its magnetic field alignment in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxiang; Jiao, Weicheng; Yan, Meiling; Li, Jun; Ding, Guomin; Wang, Rongguo

    2018-02-01

    The way gas molecules penetrate the resin matrix composites are generally divided into diffusion penetration and destruction penetration. Through theoretical analysis, the larger the nanoscale layers, the smaller the penetration effect in the directional nanosheets reinforced resin matrix composites. To control destruction penetration, the cracks should be reduced by toughening resin matrix composites. In order to solve these two kinds of leakage, the magnetic graphene oxide is connected to mimic nacre while L- glutamic acid is used as binder and the directional solidification is also utilized. Compared with pure resin, only 0.13 wt% monolithic magnetic graphene oxide and its interbed reinforced composites can reduce the leakage of He by 36.4% and 52.0% respectively, and the toughness of composites is validated to increase 4.0% and 20.3% respectively. This toughening mechanism is similar to that of nacre.

  9. Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.

    The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.

  10. Effect of Polymer Form and its Consolidation on Mechanical Properties and Quality of Glass/PBT Composites

    NASA Astrophysics Data System (ADS)

    Durai Prabhakaran, R. T.; Pillai, Saju; Charca, Samuel; Oshkovr, Simin Ataollahi; Knudsen, Hans; Andersen, Tom Løgstrup; Bech, Jakob Ilsted; Thomsen, Ole Thybo; Lilholt, Hans

    2014-04-01

    The aim of this study was to understand the role of the processing in determining the mechanical properties of glass fibre reinforced polybutylene terephthalate composites (Glass/PBT). Unidirectional (UD) composite laminates were manufactured by the vacuum consolidation technique using three different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final mechanical properties which were evaluated by through compression, flexural and short beam transverse bending tests. Microscopy was used to evaluate the quality of the processed laminates, and fractography was used to characterize the observed failure modes. The study provides an improved understanding of the relationships between processing methods, resin characteristics, and mechanical performance of thermoplastic resin composite materials.

  11. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    NASA Astrophysics Data System (ADS)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  12. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    PubMed

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. PMR polyimide compositions for improved performance at 371 deg C

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.

    1987-01-01

    Studies were conducted to identify matrix resins which have potential for use at 371 C (700 F). Utilizing PMR methodology, neat resin moldings were prepared with various monomer reactants and screened for thermo-oxidative stability at 371 C (700 F) under both ambient and a four-atmosphere air pressure. The results of the resin screening studies indicate that high molecular weight (HMW) formulated resins of first (PMR-15) and second (PMR-II) generation PMR materials exhibit lower levels of weight loss at 371 C (700 F) than PMR-15 and PMR-II resins. The resin systems which exhibited the best overall balance of processability, Tg and thermo-oxidative stability at 371 C were used to prepare unidirectional Celion 6000 and T-40R graphite fiber laminates. Laminates were evaluated for thermo-oxidative stability and 371 C mechanical properties. Results of the laminate evaluation studies indicate that two of the resin compositions have potential for use in 371 C applications. The most promising resin composition provided laminates which exhibited no drop in 371 C mechanical properties and only 11 percent weight loss after 200 hr exposure to 4 atmospheres of air at 371 C.

  14. Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors.

    PubMed

    Isidorov, Valery A; Bakier, Sławomir; Pirożnikow, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2016-06-01

    Honey bees harvest resins from various plant species and use them in the hive as propolis. While there have been a number of studies concerning the chemical composition of this antimicrobial product, little is known about selective behavior and bee preference when different potential plant sources of resin are available. The main objective of this paper was to investigate some aspects of behavioral patterns of honeybees in the context of resin acquisition. Samples of propolis originating from temperate zones of Europe and the supposed botanical precursors of the product were analyzed. Taxonomical markers of bud resins of two white birch species, aspen, black poplar, horse-chestnut, black alder, and Scots pine were determined through GC-MS analysis. All these trees have been reported as sources of propolis, but comparisons of the chemical composition of their bud resins with the compositions of propolis samples from seven European countries have demonstrated the presence of taxonomical markers only from black poplar, aspen, and one species of birch. This suggests selective behavior during the collection of bud resins by honeybees. To examine the causes of such selectivity, the antimicrobial properties of bud resins were determined. Horse-chestnut resins had lower antimicrobial activity than the other resins which did not differ significantly.

  15. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite.

    PubMed

    Liu, Fengwei; Sun, Bin; Jiang, Xiaoze; Aldeyab, Sultan S; Zhang, Qinghong; Zhu, Meifang

    2014-12-01

    To investigate the reinforcing effect of urchin-like hydroxyapatite (UHA) in bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin (without silica nanoparticles) and dental composites (with silica nanoparticles), and explore the effect of HA filler morphologies and loadings on the mechanical properties. UHA was synthesized by a facile method of microwave irradiation and studied by X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). Mechanical properties of the dental resin composites containing silanized UHA were tested by a universal mechanical testing machine. Analysis of variance was used for the statistical analysis of the acquired data. The fracture morphologies of tested composites were observed by SEM. Composites with silanized irregular particulate hydroxyapatite (IPHA) and hydroxyapatite whisker (HW) were prepared for comparative studies. Impregnation of lower loadings (5 wt% and 10 wt%) of silanized UHA into dental resin (without silica nanoparticles) substantially improved the mechanical properties; higher UHA loadings (20 wt% and 30 wt%) of impregnation continuously improved the flexural modulus and microhardness, while the strength would no longer be increased. Compared with silanized IPHA and HW, silanized UHA consisting of rods extending radially from center were embedded into the matrix closely and well dispersed in the composite, increasing filler-matrix interfacial contact area and combination. At higher filler loadings, UHA interlaced together tightly without affecting the mobility of monomer inside, which might bear higher loads during fracture of the composite, leading to higher strengths than those of dental resins with IPHA and HW. Besides, impregnation of silanized UHA into dental composites (with silica nanoparticles) significantly improved the strength and modulus. UHA could serve as novel reinforcing HA filler to improve the mechanical properties of dental resin and dental composite.

  16. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  17. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  18. Fabrication and characterization of amine terminated poly(arylene ether sulfone) modified epoxy-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.

    1987-01-01

    Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.

  19. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  20. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGES

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  1. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles.

  2. Insufficient cure under the condition of high irradiance and short irradiation time.

    PubMed

    Feng, Li; Carvalho, Ricardo; Suh, Byoung I

    2009-03-01

    To investigate if and why a plasma arc curing (PAC) light tends to undercure methacrylate-based resins or resin composites. Model dimethacrylate resins, commercial dental adhesives, and commercial resin composites were cured using a PAC light and a halogen light with the similar radiant exposures but different combinations of irradiance and irradiation time. The degree of double bond conversion (DC) was measured with FTIR spectroscopy and analyzed as a function of radiant exposure. The PAC light produced a lower DC than the halogen light for the model resin with the lowest viscosity and for three of the four adhesives. With a high irradiance, the PAC light could cure three of the four composites as thoroughly as its halogen counterpart. When the irradiance was reduced, however, three composites yielded a lower DC. Insufficient cure by PAC lights or any curing lights with very high irradiance is likely to happen when too short an irradiation time is used. It is because under higher irradiance, the lifetime of free radicals is shorter.

  3. Bond Strength of Composite to Dentin using Resin-Modified Glass Ionomers as Bonding Agents

    DTIC Science & Technology

    2016-03-02

    59 MDW/SGVU SUBJECT: Professional Presentation Approval 2 MAR 20 16 l. Your paper, entitl ed Bond Strength of Composite to Dentin using Resin...Modified G lass Ionomers as Bonding Agents presented at Journal of Dental Research with MDWI 41- 108, and has been assigned local fi le #16086. 2...Vandewalle /Civ/SGDTG (59th CSPG/SGVU) DECS I 5-009 PROTOCOL TITLE Bond Strength of Composite to Dentin using Resin-modified Glass lonomers as

  4. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    PubMed

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  5. Polyfunctional epoxies. I - Rubber-toughened brominated and nonbrominated formulations for graphite composites. II - Nonrubber versus rubber-toughened brominated formulations for graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1985-01-01

    A new trifunctional epoxy resin, Tris-(hydroxyphenyl) methane triglycidyl ether, is compared to a state-of-the-art tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM), in graphite composites. Rubber-toughened brominated formulations of the epoxy resin are compared to nonbrominated ones in terms of their mechanical performance, environmental stability, thermochemical behavior, and flame retardancy. It is shown that the new resin performs almost the same way as the TGDDM does, but has improved glass transition temperature and environmental properties. Brominated polymeric additives (BPA) of different molecular weights are tested as a Br source to flame retardant graphite epoxy composites. The optimal molecular weight of the BPA and its polymeric backbone length are derived and compared with a 10 percent rubber-toughened formulation of the epoxy resin. Results indicate that when the Br content in the graphite composite is increased without the use of rubber, the mechanical properties improved. The use of BPAs as tougheners for graphite composites is also considered.

  6. Low-shrink composite resins: a review of their history, strategies for managing shrinkage, and clinical significance.

    PubMed

    Pitel, Mark L

    2013-09-01

    Despite numerous advances in composite resin technology over the course of many decades, shrinkage behavior and the resultant stresses inherent to direct placed composite restorations continue to challenge clinicians. This overview of composite resins includes a review of their history and development along with a discussion of strategies for reducing polymerization shrinkage. An assessment of the clinical significance of these materials is also provided, including a discussion of the differences between polymerization shrinkage and stress, incremental layering versus bulk placement, and the emergence of lower shrinkage stress monomer chemistry.

  7. Microleakage and shear punch bond strength in class II primary molars cavities restored with low shrink silorane based versus methacrylate based composite using three different techniques.

    PubMed

    Fahmy, Amal Ezzeldin; Farrag, Nadia Moustafa

    2010-01-01

    This in vitro study aimed to evaluate the gingival microleakage in class II cavities in primary molars restored with a low shrink silorane resin composite (Filtek P90) or a nanohybride composite resin (Filtek supreme XT) using three different techniques, (total bonding, closed or open sandwich techniques) lined by nano-filled resin modified glass ionomer cement RMGIC (Ketac N100). Additionally, the shear punch bond strength between the two types of composite and KNIO0 was also examined. For microleakage test, two standardized class II slot cavities were prepared in proximal surfaces of 60 sound extracted primary molars which were divided into 2 groups of 30 each according to the type of composite. Each group was subdivided into 3 groups (n = 10) according to the restorative technique used. The restored teeth were examined for microleakage after immersion in 2% methylene blue dye using stereomicroscope at 20 X. Microleakage scores among the groups were compared using Kruskal Wallis test followed by pair wise Mann Whitney U test at P < or = 0.05. Thirty disc specimens were prepared for determining the shear punch bond strength between the two composite materials and the KN100. Specimens were divided into 5 groups (n = 6) according to the adhesive protocol. The differences in mean bond strength values in MPa between groups were statistically analyzed using ANOVA followed by pair wise Tukey Post hoc test at P < or = 0. 05. Mode of failure was also evaluated for all groups. Both the silorane resin and nano-composite resin showed superior marginal seal with the total bonding technique compared to closed and open sandwich techniques. The recorded mean shear punch bond strength values showed no statistical significant difference between the two resin composites without or with their adhesive bonding systems when bonded to the nano-ionomer. All specimens showed cohesive mode of failures except for silorane resin with Adper Easy Bond Self Etch Adhesive (AEBSEA) which showed adhesive mode of failure. The best marginal seal was obtained with the total bonding technique using both resin composites. The shear punch bond strength between KN100 and the two composite materials was not affected by either of the used adhesive bonding agent.

  8. Marginal integrity of low-shrinkage and methacrylate-based composite resins: Effect of three different hemostatic agents

    PubMed Central

    Khoroushi, Maryam; Sahraneshin-Samani, Mahsa

    2016-01-01

    Background Moisture control is very important in restorative procedures in dentistry. Use of hemostatic agents helps control moisture; however, they might result in changes on enamel and dentin surfaces, affecting composite resin bond quality. The aim of this in vitro study was to evaluate the marginal microleakage of two different composite resins with the use of three different hemostatic agents. Material and Methods Standardized Class V cavities were prepared on the buccal and lingual surfaces of 48 premolars with cervical margins 1 mm apical to the cementoenamel junction (CEJ). The samples were randomly divided into 8 groups. In groups 1 to 4, an etch-and-rinse adhesive (Adper Single Bond) was applied as the bonding system, followed by exposure to different hemostatic agent: group 1: no hemostatic agent (control); group 2: ViscoStat; group 3: ViscoStat Clear; and group 4: trichloracetic acid, as hemostatic agents. The cavities were restored with Z-250 composite resin. In group 5 to 8 Silorane System Adhesive (Filtek P90 Adhesive) was applied as a bonding agent, followed by exposure to different hemostatic agents in a manner similar to that in groups 1to 4. The cavities were restored with Filtek P90, a low-shrinkage composite resin. The samples in each group were evaluated for dye penetration under a stereomicroscope at ×36 after 24 hours and a 500-round thermocycling procedure at enamel and dentin margins. Statistical analysis was carried out using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results Z-250 composite resin exhibited significantly higher dentin microleakage scores compared to Filtek P90 (P = 0.004). Trichloracetic acid increased dentin microleakage with Filtek P90 (P=0.033). Conclusions Under the limitations of this in vitro study, application of hemostatic agents did not affect microleakage of the two tested composite resins except for trichloracetic acid that increased marginal microleakage when used with Filtek P90. Key words:Composite resin, dental leakage, hemostatics, silorane system adhesive. PMID:27034759

  9. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt.% of Single Walled CNT (SWNT). Finally, the CNT-modified epoxy resin was used to manufacture carbon fibre laminates by resin film infusion and prepreg technologies. The Mode I and Mode II delamination properties of the CNT-modified composite increased by 140% and 127%, respectively. In contrast, this improvement was not observed for the base CNT-modified polymers, used to manufacture the composite laminates. A qualitative analysis of the fractured surface using a Scanning Electron Microscope revealed a good dispersion in the composites samples, confirming the importance of processing to harness the full potential of carbon nanotubes for toughening polymer composites.

  10. Molecular composition and paleobotanical origin of Eocene resin from northeast India

    NASA Astrophysics Data System (ADS)

    Rudra, Arka; Dutta, Suryendu; Raju, Srinivasan V.

    2014-06-01

    The molecular composition of fossil resins from early to middle Eocene coal from northeast India, has been analyzed for the first time to infer their paleobotanical source. The soluble component of fossil resin was analyzed using gas chromatography-mass spectrometry (GC-MS). The resin extracts are composed of cadalene-based C15 sesquiterpenoids and diagenetically altered triterpenoids. The macromolecular composition was investigated using pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and Fourier transform infrared (FTIR) spectroscopy. The major pyrolysis products are C15 bicyclic sesquiterpenoids, alkylated naphthalenes, benzenes and a series of C17-C34 n-alkene- n-alkane pairs. Spectroscopic analysis revealed the dominance of aliphatic components. The presence of cadalene-based sequiterpenoids confirms the resin to be Class II or dammar resin, derived from angiosperms of Dipterocarpaceae family. These sesquiterpenoids are often detected in many SE Asian fluvio-deltaic oils. Dipterocarpaceae are characteristic of warm tropical climate suggesting the prevalence of such climate during early Eocene in northeast India.

  11. Effect of natural fibers and bio-resins on mechanical properties in hybrid and non-hybrid composites

    NASA Astrophysics Data System (ADS)

    Fragassa, Cristiano

    2016-05-01

    The aim of the present experimental investigation was to perform a comparative analysis concerning the influence on mechanical properties of natural fibers and/or bio-resins in reinforced thermoset composites. Flax and basalt fibers were selected as natural reinforcements, as single constituents or in hybrid combination. Glass synthetic fibers were used for comparison. Eco-friendly matrixes, both epoxy or vinylester, were considered and compared with composites based on traditional resins. Samples were fabricated by hand lay-up and resin infusion techniques. Cures were accelerated and controlled by applying heat and pressure in autoclave. Tensile, flexural and impact tests were carried out according to ASTM standards.

  12. Effects of postcuring on mechanical properties of pultruded fiber-reinforced epoxy composites and the neat resin

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Funk, Joan G.; Collins, William D.; Gray, Stephanie L.

    1989-01-01

    The effects of postcuring on mechanical properties of pultruded fiber-reinforced epoxy-resin composites have been investigated. Composites with carbon, glass, and aramid reinforcement fibers were individually studied. The epoxy was a commercially-available resin that was especially developed for pultrusion fabrication. The pultrusions were conducted at 400 F with postcures at 400, 450, 500, and 550 F. Measurements of the flexural, shear, and interlaminar fracture-toughness properties showed that significant postcuring can occur during the pultrusion process. All three mechanical properties were degraded by the higher (500 and 550 F) temperatures; photomicrographs suggest that the degradation was caused at the fiber-resin interface for all three fiber types.

  13. At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy.

    PubMed

    Meder, Roger; Stahl, Wolfgang; Warburton, Paul; Woolley, Sam; Earnshaw, Scott; Haselhofer, Klaus; van Langenberg, Ken; Ebdon, Nick; Mulder, Roger

    2017-01-01

    The reactivity of melamine-urea-formaldehyde resins is of key importance in the manufacture of engineered wood products such as medium density fibreboard (MDF) and other wood composite products. Often the MDF manufacturing plant has little available information on the resin reactivity other than details of the resin specification at the time of batch manufacture, which often occurs off-site at a third-party resin plant. Often too, fresh resin on delivery at the MDF plant is mixed with variable volume of aged resin in storage tanks, thereby rendering any specification of the fresh resin batch obsolete. It is therefore highly desirable to develop a real-time, at-line or on-line, process analytical technology to monitor the quality of the resin prior to MDF panel manufacture. Near infrared (NIR) spectroscopy has been calibrated against standard quality methods and against 13 C nuclear magnetic resonance (NMR) measures of molecular composition in order to provide at-line process analytical technology (PAT), to monitor the resin quality, particularly the formaldehyde content of the resin. At-line determination of formaldehyde content in the resin was made possible using a six-factor calibration with an R 2 (cal) value of 0.973, and R 2 (CV) value of 0.929 and a root-mean-square error of cross-validation of 0.01. This calibration was then used to generate control charts of formaldehyde content at regular four-hourly periods during MDF panel manufacture in a commercial MDF manufacturing plant.

  14. Fast Curing of Composite Wood Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Arthur J. Ragauskas

    2006-04-26

    The overall objective of this program is to develop low temperature curing technologies for UF and PF resins. This will be accomplished by: • Identifying the rate limiting UF and PF curing reactions for current market resins; • Developing new catalysts to accelerate curing reactions at reduced press temperatures and times. In summary, these new curing technologies will improve the strength properties of the composite wood products and minimize the detrimental effects of wood extractives on the final product while significantly reducing energy costs for wood composites. This study is related to the accelerated curing of resins for wood compositesmore » such as medium density fiberboard (MDF), particle board (PB) and oriented strandboard (OSB). The latter is frequently manufactured with a phenol-formaldehyde resin whereas ureaformaldehyde (UF) resins are usually used in for the former two grades of composite wood products. One of the reasons that hinder wider use of these resins in the manufacturing of wood composites is the slow curing speed as well as inferior bondability of UF resin. The fast curing of UP and PF resins has been identified as an attractive process development that would allow wood to be bonded at higher moisture contents and at lower press temperatures that currently employed. Several differing additives have been developed to enhance cure rates of PF resins including the use of organic esters, lactones and organic carbonates. A model compound study by Conner, Lorenz and Hirth (2002) employed 2- and 4-hydroxymethylphenol with organic esters to examine the chemical basis for the reported enhanced reactivity. Their studies suggested that the enhance curing in the presence of esters could be due to enhanced quinone methide formation or enhanced intermolecular SN2 reactions. In either case the esters do not function as true catalysts as they are consumed in the reaction and were not found to be incorporated in the polymerized resin product. An alternative approach to accelerated PF curing can be accomplished with the addition amines or amides. The later functionality undergoes base catalyzed hydrolysis yielding the corresponding carboxyl ate and free amine which rapidly reacts with the phenolic methylol groups facilitating polymerization and curing of the PF resin (Pizzi, 1997).« less

  15. Frequent Questions about Starting-up New Composite Wood Mills and the Use of Experimental Products and Resins

    EPA Pesticide Factsheets

    The following frequently asked questions (FAQs) address issues relating to starting-up new doestice composite wood mills and the use of experimental product and resin systems under the Formaldehyde Emission Standards for Composite Wood Products final rule

  16. Frequently Asked Questions on Starting-up New Composite Wood Mills and the Use of Experimental Products and Resins

    EPA Pesticide Factsheets

    The following frequently asked questions (FAQs) address issues relating to starting-up new doestice composite wood mills and the use of experimental product and resin systems under the Formaldehyde Emission Standards for Composite Wood Products final rule

  17. Resin transfer molding speeds composite making

    NASA Astrophysics Data System (ADS)

    Valenti, Michael

    1992-11-01

    Fabrication resin transfer molding (RTM) composite parts for different industrial applications is discussed. These applications include composite aerospace parts, sports car components, and high performance sporting equipment. It is pointed out that RTM parts are lighter than metals and can be formulated to have superior durability. But like all composite parts, they are expensive and are made in limited runs.

  18. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  19. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  20. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  1. Study of the chemical composition of the resinous exudate isolated from Heliotropium sclerocarpum and evaluation of the antioxidant properties of the phenolic compounds and the resin.

    PubMed

    Modak, Brenda; Salina, Melissa; Rodilla, Jesús; Torres, René

    2009-11-12

    Heliotropium sclerocarpum Phil. (Heliotropiaceae) is a resinous bush that grows in the Atacama of northern Chile. The chemical composition of its resinous exudate was analyzed for the first time. One aromatic geranyl derivative: filifolinol (1), one flavanone: naringenin (2) and a new type of 3-oxo-2-arylbenzofuran derivative 3 were isolated and their structures were determined. The antioxidant activity of the phenolic compounds and resin was evaluated using the bleaching of DPPH radical method and expressed as fast reacting equivalents (FRE) and total reacting equivalents (TRE).

  2. Flowability of JSC-1a

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Wilkinson, Allen; Elliot, Alan; Young, Carolyn

    2009-01-01

    We have done a complete flowability characterization of the lunar soil simulant, JSC-1a, following closely the ASTM-6773 standard for the Schulze ring shear test. The measurements, which involve pre-shearing the material before each yield point, show JSC-1a to be cohesionless, with an angle of internal friction near 40 deg. We also measured yield loci after consolidating the material in a vibration table which show it to have significant cohesion (approximately equal to 1 kPa) and an angle of internal friction of about 60 deg. Hopper designs based on each type of flowability test differ significantly. These differences highlight the need to discern the condition of the lunar soil in the specific process where flowability is an issue. We close with a list not necessarily comprehensive of engineering rules of thumb that apply to powder flow in hoppers.

  3. Vertically aligned TiO2 nanorods-woven carbon fiber for reinforcement of both mechanical and anti-wear properties in resin composite

    NASA Astrophysics Data System (ADS)

    Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng

    2018-03-01

    A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.

  4. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Xiao, Ling; Sun, Y. H.; Yu, Lie

    2011-07-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation duemore » to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.« less

  6. Color Stability of the Bulk-Fill Composite Resins with Different Thickness in Response to Coffee/Water Immersion

    PubMed Central

    Sheikh-Al-Eslamian, Seyedeh Mahsa; Hasani, Elham; Abrandabadi, Ahmad Najafi

    2016-01-01

    We aimed to evaluate the color stability of bulk-fill and conventional composite resin with respect to thickness and storage media. Twenty specimens of a conventional composite resin (6 mm diameter and 2 mm thick) and 40 specimens of the bulk-fill Tetric EvoCeram composite resin at two different thicknesses (6 mm diameter and 2 mm thick or 4 mm thick, n = 20) were prepared. The specimens were stored in distilled water during the study period (28 d). Half of the specimens were remained in distilled water and the other half were immersed in coffee solution 20 min/d and kept in distilled water between the cycles. Color changes (ΔE) were measured using the CIE L ⁎ a ⁎ b ⁎ color space and a digital imaging system at 1, 7, 14, and 28 days of storage. Data were analyzed using Two-way ANOVA and Tukey's HSD post hoc test (P < 0.05). Composite resins showed significant increase in color changes by time (bulk-fill > conventional; P < 0.001). Coffee exhibited significantly more staining susceptibility than that of distilled water (P < 0.001). There was greater color changes with increasing the increment thickness, which was significant at 14 (P < 0.001) and 28 d (P < 0.01). Color change of bulk-fill composite resin was greater than that of the conventional one after coffee staining and is also a function of increment thicknesses. PMID:27403163

  7. Polymerization shrinkage of different types of composite resins and microleakage with and without liner in class II cavities.

    PubMed

    Karaman, E; Ozgunaltay, G

    2014-01-01

    To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p>0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p<0.05). The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.

  8. Influence of Finishing and Polishing Techniques and Abrasion on Transmittance and Roughness of Composite Resins.

    PubMed

    Carneiro, Pma; Ramos, T M; de Azevedo, C S; de Lima, E; de Souza, Shj; Turbino, M L; Cesar, P F; Matos, A B

    The aim of this study was to evaluate the influence of finishing and polishing systems and toothbrush abrasion on transmittance (T) and surface roughness (Ra) of three composite resins (Filtek Z350 XT, Tetric N-Ceram, and IPS Empress Direct). Eighteen resin disks (10 mm diameter × 2 mm thick) finished by polyester strips had initial surface smoothness recorded, representing phase 1 (P1). Specimens were divided into three groups (n=6) according to the finishing/polishing instrument used (OneGloss, TopGloss, and Sof-Lex) to compose phase 2 samples (P2). Then specimens were subjected to 514 cycles of toothbrush simulation using a toothpaste slurry, with a constant load applied to soft bristles, and were then washed (phase 3=P3). After each phase, the specimens were examined by an optical profiler and spectrophotometer to measure Ra and T. Data were analyzed by analysis of variance, Tukey and Pearson tests. T values were statistically influenced by composite resin ( p=0.000) and phase of measurement ( p=0.000) factors, while the finishing/polishing system used ( p=0.741) did not affect T. On the other hand, Ra values were statistically affected by the factor finishing/polishing system ( p=0.000), but not by composite resin ( p=0.100) and phase of measurement ( p=0.451). Tetric N-Ceram and Empress Direct presented higher values of roughness when polished by OneGloss, while TopGloss and Sof-Lex showed a lower roughness. It can be concluded that composite resins transmitted more light after dental abrasion. Transmittance of composite resins was not modified by the distinct roughness created by finishing/polishing instruments.

  9. Effect of aluminum chloride hemostatic agent on microleakage of class V composite resin restorations bonded with all-in-one adhesive

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmood; Pournaghi-Azar, Fatemeh; Mozafari, Aysan

    2012-01-01

    Objectives: Since hemostatic agents can induce changes on enamel and dentin surfaces and influence composite resin adhesion, the aim of the present study was to evaluate the effect of the aluminum chloride hemostatic agent on the gingival margin microleakage of class V (Cl V) composite resin restorations bonded with all-in-one adhesive. Study design: Cl V cavities were prepared on the buccal surfaces of 60 sound bovine permanent incisors. Gingival margins of the cavities were placed 1.5 mm apical to the cemento-enamel junction (CEJ). The teeth were randomly divided into two groups of 30. In group 1, the cavities were restored without the application of a hemostatic agent; in group 2, the cavities were restored after the application of the hemostatic agent. In both groups all-in-one adhesive and Z250 composite resin were used to restore the cavities with the incremental technique. After finishing and polishing, the samples underwent a thermocycling procedure, followed by immersion in 2% basic fuschin solution for 24 hours. The samples were sectioned and gingival microleakage was evaluated under a stereomicroscope. The non-parametric Mann-Whitney U test was used to compare microleakage between the two groups. Statistical significance was defined at P<0.05. Results: A statistically significant difference was observed in microleakage between the two groups (P<0.001). Conclusions: Contamination of Cl V composite resin restorations bonded with all-in-one adhesive with aluminum chloride hemostatic agent significantly increases restoration gingival margin microleakage. Key words:All-in-one adhesive resin, composite resin restoration, hemostatic agent, microleakage. PMID:22322497

  10. Clinical Evaluation of Indirect Particle-Filled Composite Resin CAD/CAM Partial Crowns after 24 Months.

    PubMed

    Zimmermann, Moritz; Koller, Christina; Reymus, Marcel; Mehl, Albert; Hickel, Reinhard

    2017-04-19

    Resin-based CAD/CAM compound materials might be promising for single-tooth restorations. Insufficient clinical data are available for this new material class. The purpose of this study was to describe initial clinical in vivo results for indirect particle-filled composite resin CAD/CAM restorations after 24 months. Indirect particle-filled composite resin restorations were fabricated with a CAD/CAM method (CEREC Bluecam intraoral scanner, CEREC MCXL milling unit) by calibrated dental students. Forty-two partial crown restorations were seated adhesively in 30 patients with caries lesions or insufficient restorations (baseline). Strict inclusion criteria were defined for the patient collective. Follow-up evaluation comprised 40 restorations after 12 months and 33 restorations after 24 months. Evaluation criteria were modified FDI criteria with grades (1) to (5). Rating with FDI criteria (5) was defined as clinical failure. Statistical analysis was performed with Wilcoxon-Test (p < 0.05). The success rate of indirect particle-filled composite resin CAD/CAM restorations after 12 months was 95.0% with two debondings observed. The cumulative success rate for indirect particle-filled composite resin CAD/CAM restorations after 24 months was 85.7% with two tooth fractures and one debonding. Statistically significant differences were found for baseline and 24-month follow-up evaluation for anatomic form and marginal adaptation criterion examined in respect to FDI criteria guidelines (Wilcoxon-Test, p < 0.05). This study demonstrates particle-filled composite resin CAD/CAM restorations having a clinical success rate of 85.7% after 24 months. Adhesive bonding procedures need to be ensured carefully. A longer clinical evaluation period is necessary to draw further conclusions. © 2017 by the American College of Prosthodontists.

  11. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  12. Influence of staining solutions and whitening procedures on discoloration of hybrid composite resins.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo; Hatem, Marwa; Shembesh, Muneim; Baady, Lugane; Salim, Ziad; Vallittu, Pekka

    2013-01-01

    The aim was to evaluate the color stability and water uptake of two hybrid composite resins polymerized in two different conditions after exposure to commonly consumed beverages. In addition, the effect of repolishing and bleaching on the stained composite was evaluated. Eighty specimens (12 mm × 12 mm × 3 mm) were made from two hybrid composite resins of shade A2. Forty specimens of each composite were divided into two groups (n = 20 per each) according to the curing method used (hand light cure HLC or oven light cure OLC). Then each group (HLC or OLC) was sub-divided randomly into four sub-groups (n = 5), which were immersed for 60 days in different beverages (distal water, coffee, tea and pepsi) and incubated at 37°C. Water uptake was measured during this time and followed by measurement of color difference (ΔE) by using a spectrophotometer. After complete staining, repolishing (grit 4000 FEPA at 300 rpm under water) and bleaching (40% hydrogen peroxide bleaching gel) were conducted. The repolished and bleached specimens were submitted to new color measurements. Color value of the specimens immersed in tea displayed the highest statistically significant (p < 0.05) mean color difference (ΔE) compared to other beverages, whereas the ΔE value of pepsi was significantly lower than the others. After staining of the composite resins, both the bleaching and repolishing were able to reduce the ΔE value. All beverages used affected the color stability of tested composite resins. The effect of beverages on color change of composites depends on type of beverage and water uptake value of resins used. A superior whitening effect was obtained with repolishing technique compared to bleaching.

  13. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  14. Frequently Asked Questions on Starting-up New Domestic Composite Wood Mills and the Use of Experimental Products and Resins

    EPA Pesticide Factsheets

    The following frequently asked questions (FAQs) address issues relating to starting-up new doestice composite wood mills and the use of experimental product and resin systems under the Formaldehyde Emission Standards for Composite Wood Products final rule

  15. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  16. Mechanical properties of dust collected by dust separators in iron ore sinter plants.

    PubMed

    Lanzerstorfer, Christof

    2015-01-01

    The flow-related mechanical properties of dusts from the de-dusting systems of several sinter plants were investigated. The mass median diameters of the dusts were in the range from approximately 3 to 100 µm. Also, the bulk density of the dusts varied in a wide range (approximately 400 to 2300 kg/m³). A good correlation between the bulk density and the mass median diameter for most of the dusts was found. In contrast, the angles of repose did not vary very much, only for the coarsest dust a significantly lower value was measured. The angles of internal friction as well as the wall friction angles were lower for coarse dust and higher for fine dust. The shear tests showed that both angles depend considerably on the stress level. At low stress, the angles decreased significantly with increasing values of stress, whereas at higher stress, the dependence was small or even disappeared. The only exception to this behaviour was shown by the finest dust. The flowability decreased with the particle size. The flowability categories suggested by the three flowability indicators were passable only for the coarser dusts. For the finer dusts, the flowability was overestimated by all flowability indicators.

  17. Experiments on fuel heating for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1982-01-01

    An experimental jet fuel with a -33 C freezing point was chilled in a wing tank simulator with superimposed fuel heating to improve low temperature flowability. Heating consisted of circulating a portion of the fuel to an external heat exchanger and returning the heated fuel to the tank. Flowability was determined by the mass percent of unpumpable fuel (holdup) left in the simulator upon withdrawal of fuel at the conclusion of testing. The study demonstrated that fuel heating is feasible and improves flowability as compared to that of baseline, unheated tests. Delayed heating with initiation when the fuel reaches a prescribed low temperature limit, showed promise of being more efficient than continuous heating. Regardless of the mode or rate of heating, complete flowability (zero holdup) could not be restored by fuel heating. The severe, extreme-day environment imposed by the test caused a very small amount of subfreezing fuel to be retained near the tank surfaces even at high rates of heating. Correlations of flowability established for unheated fuel tests also could be applied to the heated test results if based on boundary-layer temperature or a solid index (subfreezing point) characteristic of the fuel.

  18. Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink.

    PubMed

    Bajwa, Navroop Kaur; Pathak, Anuradha

    2014-01-01

    Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials.

  19. Change in Surface Roughness of Esthetic Restorative Materials after Exposure to Different Immersion Regimes in a Cola Drink

    PubMed Central

    Bajwa, Navroop Kaur; Pathak, Anuradha

    2014-01-01

    Context. An in vitro study carried out to evaluate and compare the effect of Cola drink on surface roughness of esthetic restorative materials. Purpose. To compare the effect of different immersion regimes in a Cola drink on surface roughness of esthetic restorative materials. Method. Two hundred samples were grouped into 4 equal groups of 50 samples each: Group I: conventional glass ionomer, Group II: resin modified glass ionomer, Group III: polyacid-modified resin composite, Group IV: Composite resin. Each group was further subdivided into 5 subgroups of 10 samples each. Subgroup A (Control Subgroup). Samples were kept immersed in artificial saliva. Subgroup B. Samples were immersed in Cola drink once a day. Subgroup C. Samples were immersed in Cola drink, 3 times a day. Subgroup D. Samples were immersed in Cola drink 5 times a day. Subgroup E. Samples were immersed in Cola drink 10 times a day. Each immersion lasted 5 minutes. The immersion protocol was repeated for 7 days. Results. Maximum surface roughness was seen in Group I conventional glass ionomer cement, followed by Group II resin modified glass ionomer, Group III polyacid modified resin composite, and Group IV composite resin samples. Conclusion. Resistance to change in surface roughness is more in resin based restorative materials as compared to glass ionomer based materials. PMID:25006464

  20. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    PubMed Central

    Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom

    2017-01-01

    Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776

  1. Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.

    PubMed

    Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki

    2015-01-01

    Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.

  2. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  3. Degradation, fatigue and failure of resin dental composite materials

    PubMed Central

    Drummond, James L.

    2008-01-01

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle or fiber filler containing, indirect dental resin composite materials. The focus will be on degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed mode loading on the flexure strength and fracture toughness. Next several selected papers will be examined in detail with respect to mixed and cyclic loading and then an examination of 3D tomography using multiaxial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection) and after that time period from secondary decay. PMID:18650540

  4. Monitoring in situ in real time of resin infusion for thermoset composite structures

    NASA Astrophysics Data System (ADS)

    Faci, A.; Wang, P.; Cochrane, C.; Koncar, V.

    2017-10-01

    The presented work investigates changes in electrical resistance of embedded sensory yarns as a method to monitor the resin flow front position and curing degree of resin during manufacturing of composite structures by vacuum infusion technology. The sensor concept is based on Piezo-resistive sensors integrated to the flax fabric, having almost identical propriety and dimensions as the flax threads used for the production of reinforcements. In the first time sensors have been characterized and first measures of the resin infusion have been realized in order to demonstrate the feasibility of the proposed approach. Then, the measures in real time were realized with fibrous sensors added to the flax fabric (green composites) to monitor the flow front of resin. A large amount of data recorded, filtered, examined, analysed and processed in order to understand and to optimize the infusion and polymerization process.

  5. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, J.L.

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface betweenmore » the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.« less

  6. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  7. [A new machinability test machine and the machinability of composite resins for core built-up].

    PubMed

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  8. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    PubMed

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.

  9. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  10. Correlating cytotoxicity to elution behaviors of composite resins in term of curing kinetic.

    PubMed

    Meng, Junquan; Yang, Huichuan; Cao, Man; Li, Lei; Cai, Qing

    2017-09-01

    Cytotoxicity of photocurable composite resins is a key issue for their safe use in dental restoration. Curing kinetic and elution behaviors of the composite resin would have decisive effects on its cytotoxicity. In this study, composite resins composed of bisphenol-glycidyl dimethacrylate (Bis-GMA), triethyleneglycol dimethacrylate (TEGDMA), camphorquinone (CQ), N,N-dimethylaminoethyl methacrylate (DMAEMA) and barium glass powders were prepared by setting the photoinitiators CQ/DMAEMA at 0.5wt%, 1wt% or 3wt% of the total weight of Bis-GMA/TEGDMA. The ratio of Bis-GMA/TEGDMA was 6:4, the ratio of CQ/DMAEMA was 1:1, and the incorporated inorganic powder was 75wt%. Then, curing kinetics were studied by using real-time Fourier transform infrared spectroscopy (FTIR) and photo-DSC (differential scanning calorimeter). Elution behaviors in both ethanol solution and deionized water were monitored by using liquid chromatogram/mass spectrometry (LC/MS). Cytotoxicity was evaluated by in vitro culture of L929 fibroblasts. Finally, they were all analyzed and correlated in terms of initiator contents. It was found that the commonly used 0.5wt% of photoinitiators was somewhat insufficient in obtaining composite resin with low cytotoxicity. Copyright © 2017. Published by Elsevier B.V.

  11. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  12. Development of RTM and powder prepreg resins for subsonic aircraft primary structures

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.

    1993-01-01

    Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.

  13. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    PubMed Central

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  14. No-Oven, No-Autoclave Composite Processing

    NASA Technical Reports Server (NTRS)

    Rauscher, Michael D.

    2015-01-01

    Very large composite structures, such as those used in NASA's Space Launch System, push the boundaries imposed by current autoclaves. New technology is needed to maintain composite performance and free manufacturing engineers from the restraints of curing equipment size limitations. Recent efforts on a Phase II project by Cornerstone Research Group, Inc. (CRG), have advanced the technology and manufacturing readiness levels of a unique two-part epoxy resin system. Designed for room-temperature infusion of a dry carbon preform, the system includes a no-heat-added cure that delivers 350 F composite performance in a matter of hours. This no-oven, no-autoclave (NONA) composite processing eliminates part-size constraints imposed by infrastructure and lowers costs by increasing throughput and reducing capital-specific, process-flow bottlenecks. As a result of the Phase II activity, NONA materials and processes were used to make high-temperature composite tooling suitable for further production of carbon-epoxy laminates and honeycomb/ sandwich-structure composites with an aluminum core. The technology platform involves tooling design, resin infusion processing, composite part design, and resin chemistry. The various technology elements are combined to achieve a fully cured part. The individual elements are not unusual, but they are combined in such a way that enables proper management of the heat generated by the epoxy resin during cure. The result is a self-cured carbon/ epoxy composite part that is mechanically and chemically stable at temperatures up to 350 F. As a result of the successful SBIR effort, CRG has launched NONA Composites as a spinoff subsidiary. The company sells resin to end users, fabricates finished goods for customers, and sells composite tooling made with NONA materials and processes to composite manufacturers.

  15. Intraorifice sealing ability of different materials in endodontically treated teeth: An in vitro study.

    PubMed

    Parekh, Bandish; Irani, Rukshin S; Sathe, Sucheta; Hegde, Vivek

    2014-05-01

    Microbial contamination of the pulp space is one of the major factors associated with endodontic failure. Thus, in addition to a three dimentional apical filling a coronal seal for root canal fillings has been recommended. The present study was conducted to evaluate and compare the intra-orifice sealing ability of three experimental materials after obturation of the root canal system. Fourty single rooted mandibular premolars were decoronated, cleaned, shaped and obturated. Gutta-percha was removed to the depth of 3.5 mm from the orifice with a heated plugger. Ten specimens each were sealed with Light Cure Glass Ionomer Cement (LCGIC), Flowable Composite (Tetric N-Flow), and Light Cure Glass Ionomer Cement with Flowable Composite in Sandwich Technique along with a positive control respectively and roots submerged in Rhodamine-B dye in vacuum for one week. Specimens were longitudinally sectioned and leakage measured using a 10X stereomicroscope and graded for depth of leakage. According to the results of the present study LC GIC + Tetric N Flow demonstrated significantly better seal (P < 0.01) than LC GIC. However there was no statistically significant difference in leakage (P > 0.01) between Tetric N-Flow and LCGIC+Tetric N-Flow groups. In the current study LCGIC+Tetric N-Flow was found to be superior over other experimental materials as intra-orifice barriers.

  16. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  17. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  18. Advances in the history of composite resins.

    PubMed

    Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo

    2003-11-01

    The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.

  19. Technical assessment for quality control of resins

    NASA Technical Reports Server (NTRS)

    Gosnell, R. B.

    1977-01-01

    Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.

  20. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    PubMed

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  1. Effect of polyvinyl siloxane impression material on the polymerization of composite resin.

    PubMed

    Chen, Liang; Kleverlaan, Cornelis Johannes; Liang, Kunneng; Yang, Deqin

    2017-04-01

    Polyvinyl siloxane impression material has been widely used as a lingual matrix for rebuilding missing tooth structure with composite resin. The composite resin is light polymerized in contact with the polyvinyl siloxane impression material. However, polyvinyl siloxane impression material has been shown to interact with other dental materials. The purpose of this study was to assess the effect of polyvinyl siloxane impression materials on the polymerization of composite resins by assessing the Vickers microhardness and degree of conversion of polyvinyl siloxane. The composite resins were light polymerized in contact with 3 polyvinyl siloxane impression materials (Flexitime Easy Putty; President Light Body; Xantopren L Blue) (n=8) and in contact with a matrix strip as the control group (n=8). Vickers microhardness and degree of conversion on contact surfaces were measured to evaluate the polymerization of composite resins. The depth of the effect was assessed by Vickers microhardness on section surfaces and observed with scanning electron microscopy. The results were analyzed by 1-way analysis of variance and the post hoc Tukey honest significant differences test (α=.05). The Vickers microhardness and degree of conversion values on the contact surfaces of the experiment groups were significantly lower than those of the control group (P<.05); the Vickers microhardness values on the section surfaces indicated that there was no significant difference at the same depth of different groups (P>.05). The scanning electron microscope observation showed that an approximately 10-μm deep unpolymerized layer was found in the experimental group. Polyvinyl siloxane impression materials have an inhibitory effect on the polymerization of the composite resins, but just limited to within approximately 10 μm from the surface in contact with the impression material. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Nonequilibrium material effects on the behavior of polymeric composite matrices and their related composites

    NASA Technical Reports Server (NTRS)

    Wilkes, G. L.

    1982-01-01

    The effects of physical aging on the material properties of some linear and network macromolecular glasses are discussed. The free volume concept is used to describe this behavior. The effect of physical aging on properties of some uniaxial graphite/fiber epoxy resin composites is investigated using stress relaxation in both tensile and flexural modes. The matrix polymers used were resins both of which are based on a 4,4-methylenedianiline derivative of epichlorohydrin with diamino diphenyl sulfone (DDS) as the curing agent. The matrix resin, as used in the practical application in composites, not fully cured and the glass transition of the network was dependent on the curing schedule. The physical aging of the bulk crosslinked epoxy was found to depend on the annealing temperature, and the T sub g of the resin. The physical aging of the composite, monitored by the stress relaxation method, was found to be dependent on the testing direction.

  3. Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.

  4. Clinical Evaluation of Microhybrid Composite and Glass lonomer Restorative Material in Permanent Teeth.

    PubMed

    Kharma, Khalil; Zogheib, Tatiana; Bhandi, Shilpa; Mehanna, Carina

    2018-02-01

    The aim of this study was to clinically compare glass ionomer cement (GIC) with microhybrid composite resin used in class I cavities on permanent teeth over a period of 9 months. A total of 40 teeth with class I cavities were divided into two groups (n = 20) and restored with GIC (EQUIA; GC) and microhybrid resin composite (Amelogen Plus; Ultradent). Restorations were evaluated at ×4.5 magnification using the United States Public Health Service (USPHS) criteria every 3 months. Statistical analysis was performed using the Fisher's exact test (a < 0.05). The data obtained reported no statistical significance difference between both groups in regard to anatomical shape, color, postoperative sensitivity, secondary caries, material handling, adaptation, and marginal staining. The results of this clinical study showed that GIC (EQUIA; GC) can be used for the restoration of permanent teeth and may be more appropriate for certain clinical situations than the resin composite material. EQUIA (GIC) is a viable alternative to resin composite in restoring class I cavities in permanent teeth.

  5. Polymeric composites on the basis of Martian ground for building future mars stations

    NASA Astrophysics Data System (ADS)

    Mukbaniani, O. V.; Aneli, J. N.; Markarashvili, E. G.; Tarasashvili, M. V.; Aleksidze, N. D.

    2016-04-01

    The colonization of Mars will require obtaining building materials which can be put in place and processed into buildings via various constructive technologies. We tried to use artificial Martian ground - AMG (GEO PAT 11-234 (2015)) and special resins for the preparation of building block prototypes. The composite material has been obtained based on the AMG as filler, epoxy resin (type ED-20) and tetraethoxysilane - TEOS. We have studied strengthening - softening temperatures and water absorption of the AMG polymer composites that are determined by epoxy resin and TEOS modification. Comparison of the experimental results shows that composites containing modified filler have higher values of the maximum ultimate strength, resistance and flexibility parameters than unmodified composites with definite loading. Modified composites also have a higher softening temperature and lower water absorption.

  6. Phenylethynyl Containing Polyarylene Ethers/Polyimides Resin Infiltration of Composites

    NASA Technical Reports Server (NTRS)

    Dunn, DeRome O.

    1998-01-01

    The following tasks were performed at NCA&TSU during the second year in performance of the grant. LaRC-LV-1 13 resin was synthesized at NCA&TSU. In order to perform the synthesis, glassware and needed apparatus were purchased with grant funds along with the appropriate monomers. It was found that the LaRC-LV-1 13 resin was easily synthesized by the NMP solvent/toluene imminization/distilled water precipitation process. However, in use this resin exhibited a bubbling/foaming behavior during cure that was detrimental leading to the production of composite panels having a high void content. Composite panels were fabricated using compression molding and resin transfer molding (RTM) techniques. Initial fiber volume determinations were computed at NCA&TSU along with NASA-Langley measured c-scans on the panels produced. The initial results indicated a unsatisfactory level of approximately 20% by volume of voids. Testing of uniaxial coupons in compression to failure also agreed with these results. The uniaxial coupons delaminated as the major mode of failure indicative of an unacceptably low level of resin and to much void content in the final composites produced. In discussions with Dr. Brian Jensen, it was suggested the void fraction needs to be reduced to at least 2% by volume for a useful composite. The panels produced used both resin synthesized at NASA-Langley and NCA&TSU. In reviewing our progress over the past year, it was noted that the resin as formulated by the current synthesis process bubbled at elevated temperature. This was especially observed in neat resin slugs cured at the recommended one, four and eight hour cure temperatures. Pressurized cures where then performed with pressures up to 200 psi and simultaneously the lowest eight hour cure temperatures. Although this procedure reduced the amount of bubbles to some extent in the neat resin slugs it did not completely eliminate them. The cure reaction appears to be very energetic even at the lowest recommended cure temperature. Currently, the pressurized cure apparatus developed at NCA&TSU is limited to 200 psi.

  7. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    NASA Astrophysics Data System (ADS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-02-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  8. High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Yokota, R.; Criss, J. M.

    2002-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) processes to fabricate high performance/high temperature composite structures, phenylethynyl containing imides have been under investigation. New phenylethynyl containing imide compositions were prepared using 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA) and evaluated for cured glass transition temperature (Tg), melt flow behavior, and for processability into flat composite panels via RTM. The a-BPDA imparts a unique combination of properties that are desirable for high temperature transfer molding resins. In comparison to its symmetrical counterpart (i.e. 3,3',4,4'-biphenyltetracarboxylic dianhydride), a-BPDA affords oligomers with lower melt viscosities and when cured, higher Tgs. Several candidates exhibited the appropriate combination of properties such as a low and stable melt viscosity required for RTM processes, high cured Tg, and moderate toughness. The chemistry, physical, and composite properties of select resins will be discussed.

  9. A conservative approach for restoring anterior guidance: a case report.

    PubMed

    Pontons-Melo, Juan Carlos; Pizzatto, Eduardo; Furuse, Adilson Yoshio; Mondelli, José

    2012-06-01

    One of the most common dental problems in today's clinics is tooth wear, specifically when related to bruxism. In such cases, the esthetics of anterior teeth may be compromised when excessive wear to the incisal surfaces occurs. Anterior tooth wear resulting from parafunctional bruxism can be conservatively treated with the use of direct resin composite restorations. This restorative approach has the advantages of presenting good predictability, load resistance, acceptable longevity, preservation of healthy dental tissues, and lower cost when compared with indirect restorations. The use of resin composites to solve esthetic problems, however, requires skill and practice. Thus, the present article demonstrates a conservative approach for restoring the esthetics and function of worn anterior teeth with the aid of direct resin composite restorations and selective occlusal adjustment. A conservative approach to restore anterior teeth with excessive wear is possible with direct resin composites. © 2011 Wiley Periodicals, Inc.

  10. Curing of epoxy resins with 1-/di(2-chloroethoxyphosphinyl)methyl/-2,4- and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1984-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  11. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    NASA Technical Reports Server (NTRS)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  12. Curing of epoxy resins with 1-DI(2-chloroethoxyphosphinyl) methyl-2,4 and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1983-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  13. Quantitative analysis of enamel on debonded orthodontic brackets.

    PubMed

    Cochrane, Nathan J; Lo, Thomas W G; Adams, Geoffrey G; Schneider, Paul M

    2017-09-01

    Iatrogenic damage to the tooth surface in the form of enamel tearouts can occur during removal of fixed orthodontic appliances. The aim of this study was to assess debonded metal and ceramic brackets attached with a variety of bonding materials to determine how frequently this type of damage occurs. Eighty-one patients close to finishing fixed orthodontic treatment were recruited. They had metal brackets bonded with composite resin and a 2-step etch-and-bond technique or ceramic brackets bonded with composite resin and a 2-step etch-and- bond technique, and composite resin with a self-etching primer or resin-modified glass ionomer cement. Debonded brackets were examined by backscattered scanning electron microscopy with energy dispersive x-ray spectroscopy to determine the presence and area of enamel on the base pad. Of the 486 brackets collected, 26.1% exhibited enamel on the bonding material on the bracket base pad. The incidences of enamel tearouts for each group were metal brackets, 13.3%; ceramic brackets, 30.2%; composite resin with self-etching primer, 38.2%; and resin-modified glass ionomer cement, 21.2%. The percentage of the bracket base pad covered in enamel was highly variable, ranging from 0% to 46.1%. Enamel damage regularly occurred during the debonding process with the degree of damage being highly variable. Damage occurred more frequently when ceramic brackets were used (31.9%) compared with metal brackets (13.3%). Removal of ceramic brackets bonded with resin-modified glass ionomer cement resulted in less damage compared with the resin bonding systems. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  15. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    PubMed

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  16. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  17. Cytotoxic evaluation of hydroxyapatite-filled and silica/hydroxyapatite-filled acrylate-based restorative composite resins: An in vitro study.

    PubMed

    Chadda, Harshita; Naveen, Sangeetha Vasudevaraj; Mohan, Saktiswaren; Satapathy, Bhabani K; Ray, Alok R; Kamarul, Tunku

    2016-07-01

    Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail. The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination. Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software. Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis. The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization

    PubMed Central

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira e

    2018-01-01

    Abstract Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 – 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties. PMID:29742262

  19. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization.

    PubMed

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira E; Silva, Eduardo Moreira da

    2018-01-01

    Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 - 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties.

  20. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    PubMed Central

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  1. The resin composition of ponderosa pine (Pinus ponderosa) attacked by the roundheaded pine beetle (Dendroctonus adjunctus) (Coleoptera: Curculionidae, Scolytinae) (P-53)

    Treesearch

    Melissa J. Fischer; Kristen M. Waring; Richard W. Hofstetter; Thomas E. Kolb

    2008-01-01

    Dendroctonus adjunctus is an aggressive bark beetle species that attacks several species of pine throughout its range from southern Utah and Colorado south to Guatemala. A current outbreak of D. adjunctus provided a unique opportunity to study the relationship between this beetle and pine resin chemistry in northern Arizona. We compared the resin composition of trees...

  2. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  3. Candida albicans adherence to resin-composite restorative dental material: influence of whole human saliva.

    PubMed

    Maza, José Luis; Elguezabal, Natalia; Prado, Carlota; Ellacuría, Joseba; Soler, Iñaki; Pontón, José

    2002-11-01

    Attachment of Candida albicans to oral surfaces is believed to be a critical event in the colonization of the oral cavity and in the development of oral diseases such as Candida-associated denture stomatitis. Although there is considerable information about the adhesion of C albicans to buccal epithelial cells and prosthetic materials, there is very little information about the adhesion of C albicans to composite restorative materials. The purpose of this study was to investigate the degree of adhesion of C albicans to a resin-composite restorative material (Herculite). The adhesion of 2 strains of C albicans, a germinative and a germ tube-deficient mutant, was studied by a visual method after incubating the fungus and the resin with and without human whole saliva. In absence of saliva, the adhesion of the C albicans germinative isolate to the resin showed an increase in parallel with the germination, reaching a maximum at the end of the experiment (120 minutes). However, no significant differences were observed in the adhesion of the agerminative mutant during the period of time studied. In the presence of saliva, the adhesion of both isolates to the resin was significantly lowered. Germination and the presence of human whole saliva are important factors in the adhesion of C albicans to the resin-composite restorative material Herculite.

  4. The effect of woven roving fiberglass total layers on resin infusion time in vacuum infusion

    NASA Astrophysics Data System (ADS)

    Saputra, A. H.; Ibrahim, R. H.

    2018-04-01

    Composite material consists of reinforcement materials and resin as a matrix. Vacuum infusion isone of composite material manufacturing process. This process is to minimize the air cavity on composite material. The composite material will have good mechanical properties. There is a problem in vacuum infusion related to resin gelling time that must be considered. In this study, the area as well as the reinforcement layers are variated. Unsaturated polyester was used as resin and woven roving fiberglass was used as reinforcement. This study was obtained that resin infusion time data for woven roving, 15x20 cm of size, in two until six layers are 55 seconds to 78 seconds; whereas, the infusion times for 15x25 cm of size,in two until six layers are 119 seconds to 235 seconds; whereas the infusion time for 15x35 cm of size, in two until six layers are 181 seconds to 303 seconds. By data processing, the maximum fiber area that resin still can flow, for 6 layers, is 0,4391 m2 (or 15 cm x 2.92m). Maximum fiber total layers for the specimen with 15x20cm2, 15x25cm2 and 15x35 cm2 of areaare 147, 145 and 125 layers respectively.

  5. Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability.

    PubMed

    Nakamura, Shohei; Yamaguchi, Saori; Hiraide, Rikiha; Iga, Kumi; Sakamoto, Takatoshi; Yuasa, Hiroshi

    2017-10-01

    We investigated the effectiveness of using Carr's flowability index (FI) and practical angle of internal friction (Φ) as indexes for setting the target Mg-St mixing time needed for preparing tablets with the target physical properties. We used FI as a measure of flowability under non-loaded conditions, and Φ as a measure of flowability under loaded conditions for pharmaceutical powders undergoing direct compression with varying concentrations of Mg-St and mixing times. We evaluated the relationship between Mg-St mixing conditions and pharmaceutical powder flowability, analyzed the correlation between the physical properties of the tablets (i.e., tablet weight variation, drug content uniformity, hardness, friability, and disintegration time of tablets prepared using the pharmaceutical powder), and studied the effect of Mg-St mixing conditions and pharmaceutical powder flowability on tablet properties. Mg-St mixing time highly correlated with pharmaceutical powder FI (R 2  = 0.883) while Mg-St concentration has low correlation with FI, and FI highly correlated with the physical properties of the tablet (R 2 values: weight variation 0.509, drug content variation 0.314, hardness 0.525, friability 0.477, and disintegration time 0.346). Therefore, using pharmaceutical powder FI as an index could enable prediction of the physical properties of a tablet without the need for tableting, and setting the Mg-St mixing time by using pharmaceutical powder FI could enable preparation of tablets with the target physical properties. Thus, the FI of the intermediate product (i.e., pharmaceutical powder) is an effective index for controlling the physical properties of the finished tablet.

  6. A criterion for maximum resin flow in composite materials curing process

    NASA Astrophysics Data System (ADS)

    Lee, Woo I.; Um, Moon-Kwang

    1993-06-01

    On the basis of Springer's resin flow model, a criterion for maximum resin flow in autoclave curing is proposed. Validity of the criterion was proved for two resin systems (Fiberite 976 and Hercules 3501-6 epoxy resin). The parameter required for the criterion can be easily estimated from the measured resin viscosity data. The proposed criterion can be used in establishing the proper cure cycle to ensure maximum resin flow and, thus, the maximum compaction.

  7. Corrosion-Inhibiting Coating Composition.

    DTIC Science & Technology

    1990-03-01

    acrylic polymers were designed for compatibility with the alkyd resins and are useful therefore in preparing coatings of improved hardness...Hydrocarbon solvents 10 to 50 Componentam PatIbyWih Acrylic resin (B-67) 17.3 Silicone resin (SR-80M) 17.3 Silicone- alkyd resin 8.6 (V(ARKYD 385-50E...aichol e.6 VM&P Naphtha 17.1 Example II I ComponentPatbyWgh Acrylic resin 17.3 15 Silicone resin 17.3 Silicone- alkyd resin 8.6 Alkyl

  8. A five-year clinical evaluation of direct nanofilled and indirect composite resin restorations in posterior teeth.

    PubMed

    Cetin, A R; Unlu, N; Cobanoglu, N

    2013-01-01

    To assess the clinical efficacy of posterior composite resin restorations placed directly and indirectly in posterior teeth after five years. A total of 108 cavities in 54 patients were restored with three direct composite resins (Filtek SupremeXT [FSXT], Tetric Evo Ceram [TEC], AELITE Aesthetic [AA]) and two indirect composite resins (Estenia [E] and Tescera ATL [TATL]). All restorations were evaluated by two examiners using the United States Public Health Service criteria at baseline and five years after placement. Statistical analysis was completed with Fisher exact and McNemar χ(2) tests. At baseline, 4% (five) of the restored teeth presented postoperative sensitivity; however, only one of them (a member of the E group) required canal treatment and replacement after two years. At the five-year evaluation, all restorations were retained, with Alpha ratings at 100%. Only one tooth (in the TEC group) required replacement after three years due to secondary caries. Color match, surface texture, and marginal integrity were predominantly scored as Alpha after five years for all groups. After that time, marginal discoloration was scored as Alpha in 64% of AE restorations, 70% of TATL restorations, 73% of E restorations, and 87% of FSXT restorations. There were no Charlie scores recorded for any of the restorative systems. Under controlled clinical conditions, indirect composite resin inlays and direct composite resin restorations exhibited an annual failure rate of 2.5% and 1.6%, respectively, after five years. Therefore, the investigated materials showed acceptable clinical performance, and no significant differences were found among them.

  9. Polymerisation characteristics of resin composites polymerised with different curing units.

    PubMed

    Danesh, Gholamreza; Davids, Hendrick; Reinhardt, Klaus-Jürgen; Ott, Klaus; Schäfer, Edgar

    2004-08-01

    The aim of this study was to compare the plasma arc light source Apollo 95E and the conventional halogen lamp Elipar Visio regarding a number of polymerisation characteristics of different resin composites. Four different resin composites (Arabesk Top, Herculite XRV, Pertac II, Tetric) were irradiated using the Apollo 95E unit for one, two or three cycles of 3 s and using the Elipar Visio unit for 40 s. The investigated polymerisation characteristics were: flexural strength and modulus of elasticity, bond strength to dentine, depth of polymerisation, and quantity of remaining double bonds. The data were treated statistically by analysis of variance and by Scheffé test. The modulus of elasticity and the flexural strength resulting from curing with Apollo 95E for 1 x 3 s were equal to or less than those resulting from curing with Elipar Visio. The bond strength to dentine and the depth of polymerisation with Apollo 95E used for 1 x 3 s were equal to or less than that obtained with the conventional lamp, depending on the resin composite. Irradiation of Herculite XRV resulted in a higher quantity of remaining double bonds than did Elipar Visio. In general, two or three curing cycles of 3 s with Apollo 95E were necessary to produce mechanical properties not significantly worse than with 40 s of conventional curing. The efficiency of plasma arc curing with Apollo 95E strongly depends on the resin composite. For most resin composites tested, plasma arc curing for 3 s resulted in inferior mechanical properties as compared to conventional curing.

  10. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual-cure composite resins exhibited no significant differences in muTBS irrespective of whether polymerization was chemically or photoinitiated (P > 0.05). Both dual-cure composite resins exhibited good bonding to root canal dentin, which was not dependent upon region or mode of polymerization.

  11. Development of dental restorative materials based on visible light-cured multi-methacrylates

    NASA Astrophysics Data System (ADS)

    Tiba, Amer

    The studies described in this dissertation focus on new visible light-curing (VLC) oligomers exhibiting low shrinkage, low water sorption, and improved mechanical properties. A family of multi-methacrylates, based on poly(isopropylidenediphenol) resin (BPA), was synthesized, characterized, and evaluated. The commercial BPA resin is prepared from enzymatic polymerization (oligomerization) of bisphenol A. The BPA resin, having an average of eight phenolic hydroxyl groups per molecule, was treated with propylene carbonate, and the resultant product, i.e., propoxylated BPA (PEBPA) oligomer, was confirmed by Fourier transform infrared spectroscopy (FT-IR) and sp{13}C nuclear magnetic resonance (NMR). The propoxylated BPA was subsequently treated with methacryloyl chloride to produce the multi-methacrylates, identified by FT-IR and NMR. The PEBPA oligomer multimethacrylate: triethylene glycol dimethacrylate (TEGDMA) (50:50/wt:wt) blends were combined with 0.5 wt. % camphoroquinone (CQ) and 1.0 wt. % N,N-dimethylaminoethyl methacrylate (DMAEMA). The control polymers were 2,2-bis(4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl) propane (BisGMA): TEGDMA(50:50/wt:wt) blends having the same levels of CQ/DMAEMA. Differential photocalorimetry (DPC) and differential scanning calorimetry (DSC) showed these multimethacrylate/TEGDMA (neat resin) blends have polymerization characteristics comparable to the BisGMA/TEGDMA controls. These new multifunctional oligomers have lower polymerization shrinkage and lower uptake of water and other liquids, compared to BisGMA based materials. In addition, two experimental oligomers, PEBPA #2 and #3, have higher compressive strength than the BisGMA control. A biocompatibility test of the polymerized multi-methacrylate resins was performed and compared with the conventional BisGMA/TEGDMA resin and blank controls, using cell culture techniques. Human gingival fibroblasts were used for biocompatibility evaluation of these resins. The results revealed that the BPA oligomer (multi-methacrylate) based resin significantly favored the cell growth of the human gingival fibroblasts, compared to the control. An experimental composite was made from EPBPA oligomers (multi-methacrylates). The compressive strength of the experimental EPBPA containing composite was not significantly different than the commercial composite Herculite HXR. SEM photomicrographs revealed more voids in the experimental composites than the commercial composite on both the external surfaces of the prepared specimens and the subsequent fractured surfaces. This is due to the molding technique for specimen preparation and lack of good mechanical mixing for filler incorporation prior to placement of the resin in the mold for subsequent photopolymerization. However, the water sorption for the experimental EPBPA-based composite was significantly lower than the commercial Herculite (HXR) composite. This is most likely related to the hydrophobic nature of the experimental resin. These results suggest that the new type of polyfunctional methacrylate oligomers (PEBPA) have potential application in formulating dental composites as direct esthetic restorative materials with improved properties.

  12. Wear and microhardness of different resin composite materials.

    PubMed

    Say, Esra Can; Civelek, Arzu; Nobecourt, Alain; Ersoy, Mustafa; Guleryuz, Canan

    2003-01-01

    This study determined the three-body abrasive wear resistance of two packable composites (P-60; Solitaire 2), an ion-releasing composite (Ariston AT), a hybrid composite (Tetric Ceram) and an ormocer (Admira). The study also looked at the correlation between wear resistance and hardness of the composites. Three-body wear testing was performed using an ACTA wear machine with 15 N contact force using millet seed as the third body. Wear depth (microm) was measured by profilometry after 200,000 cycles. The hardness test was performed using a digital microhardness tester (load: 500 g; dwell time: 15 seconds). The data were analyzed by using Kruskal Wallis (p < 0.05). There were statistically significant differences among the three body abrasive wear of the composites. The ranking from least to most were as follows: Filtek P-60 < Solitaire 2 < Ariston AT < Tetric Ceram < Admira. Filtek P-60 showed the highest microhardness value. No other significant differences in hardness were observed among the different resin composites (P-60 > AristonAT = Tetric Ceram = Solitaire 2 = Admira). The results of this study indicate that there are significant differences in the wear resistance of the resin composites. The correlation between hardness and wear was significant with a correlation coefficient of r:-0.91. A significant negative correlation exists between hardness and three-body wear of resin composites.

  13. The Effect of Titanium Tetrafluoride and Sodium Hypochlorite on the Shear Bond Strength of Methacrylate and Silorane Based Composite Resins: an In-Vitro Study.

    PubMed

    Sharafeddin, Farahnaz; Koohpeima, Fatemeh; Razazan, Nader

    2017-06-01

    The bond strength of composites with different adhesive systems with dentin is an important factor in long term durability of composite restorations. The effect of titanium tetrafluoride (TiF 4 ) as anti caries agent and sodium hypochlorite (NaOCl) as disinfectant on the shear bond of nanofilled and silorane based composite resins have not been investigated in previous studies. This study was conducted to determine bond strength between dentin and two composite systems, by means of shear bond test using TiF 4 and NaOCl. Middle dentin of 60 intact extracted maxillary premolar teeth were exposed by sectioning the crowns at a depth of 2mm from central groove and parallel to the occlusal surface. Standardized smear layer was created using a 600-grit silicon carbide paper and then samples were embedded in acrylic resin blocks. Then the samples were randomly divided into 6 \\groups summarized as Group I: Z350, Group II: Z350+ NaOCl, Group III: Z350+ TiF 4 , Group IV: P90, Group V: P90+ NaOCl, Group VI: P90+ TiF 4 according to manufacturer's instruction. Then samples were subjected to shear bond strength (SBS) test using universal testing machine and data were analyzed using ANOVA and Tukey tests ( p < 0.05). Application of 5% NaOCl caused a significant decrease in SBS of nanofilled composite resin ( p = 0.004), and also silorane based composite resin ( p = 0.006). Application of 4% TiF 4 caused a significant increase in SBS of silorane based composite resin ( p = 0.001). The effect of TiF 4 on nanofilled composite was not statistically significant. Using TiF 4 has a positive effect on increasing the shear bond while NaOCl has negative effect on bond strength.

  14. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  15. Six-month color change and water sorption of 9 new-generation flowable composites in 6 staining solutions.

    PubMed

    Arregui, Maria; Giner, Luis; Ferrari, Marco; Vallés, Marta; Mercadé, Montserrat

    2016-11-28

    Color match and water sorption are two factors that affect restorative materials. Discoloration is essential in the lifespan of restorations. The aim of this study was to evaluate color change and water sorption of nine flowable composites at multiple time points over 6 months. 60 samples of each composite were divided into two groups (Color Change and Water Sorption/Solubility). Each Color Change group was divided into six subgroups, which were immersed in distilled water (DW), coffee (CF), Coca-Cola (CC), red wine (RW), tea (TE) and orange juice (OJ). The color was measured at the baseline, 1, 2, 3 and 4 weeks, and 3 and 6 months and color change values (ΔE) were calculated. Each Water Sorption [WS]/Solubility [WL] group was tested according to ISO 4049:2009. The data were evaluated using two-way ANOVA, Fisher's post-hoc test and Pearson's correlation test. The composite with the lowest ΔE differed for each solution: Filtek™ Bulk Fill in DW (∆E = 0.73 (0.17-1.759)); Vertise Flow in CF (∆E = 14.75 (7.91-27.41)), in TE (∆E = 7.27 (2.81-24.81)) and OJ (∆E = 3.17 (0.87-9.92)); Tetric EvoFlow® in CC (∆E = 1.27 (0.45-4.02)); and Filtek™ Supreme XTE in RW (∆E = 8.88 (5.23-19.59)). RW caused the most discoloration (∆E = 23.62 (4.93-51.36)). Vertise Flow showed the highest water sorption (WS = 69.10 ± 7.19). The Pearson test showed statistically significant positive correlations between water sorption and solubility and between water sorption and ∆E; the positive solubility-∆E correlation was not statistically significant. The findings suggest that water sorption is one factor associated with the ability of composites to discolor; however, discoloration is a multifactorial problem.

  16. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    PubMed

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (P<.001). The Ra of enamel specimens increased significantly after wear tests with monolithic zirconia, glass ceramic, and enamel (P<.05); however, no difference was found among these materials. Within the limitations of this in vitro study, monolithic zirconia and composite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Fluorine analysis of human dentin surrounding resin composite after fluoride application by μ-PIGE/PIXE analysis

    NASA Astrophysics Data System (ADS)

    Okuyama, Katsushi; Komatsu, Hisanori; Yamamoto, Hiroko; Pereira, Patricia N. R.; Bedran-Russo, Ana K.; Nomachi, Masaharu; Sato, Takahiro; Sano, Hidehiko

    2011-10-01

    The use of fluoride for the prevention of caries is based on the transformation of hydroxylapatite to fluoroapatite in the presence of fluoride ions, thereby strengthening tooth structure. Adhesion of dentin and resin composite (tooth-colored restoration material) requires a dentin bonding system, since resin composite is not able to adhere to dentin directly. Demineralization of dentin by acid etching is an important step in the dentin bonding system, however, demineralization also introduces weaknesses in tooth structure. If the demineralized dentin could be strengthened by the application of fluoride, then the dentin-resin composite bond strength might also improve. To test this hypothesis, the present study evaluated the influence of fluoride applications on the strength of the dentin-resin composite bond by (1) tensile strength testing analyses, (2) SEM analyses of tooth structure, and (3) detection of calcium (Ca) and fluorine (F) distribution patterns by micro proton-induced X-ray emission (μ-PIXE) and micro proton-induced gamma-ray emission (μ-PIGE) analyses conducted at the Takasaki Ion Accelerators for Advanced Radiation Application (TIARA) at the Takasaki Advanced Radiation Research Institute (TARRI). In this study, the dentin in extracted human molars was exposed by grinding and the dentin was etched with 35% phosphoric acid. Fluoride was applied at two concentrations, 0.022% (100 ppm F) and 2.21% (10,000 ppm F) NaF solution, for two time periods, 30 and 60 s, prior to bonding the resin composite with the treated dentin. Controls were prepared in the same manner, but without the fluoride application. Bond strength was measured with a micro-tensile testing unit, and the fluorine and calcium distributions at the interface between dentin and resin composite were detected by μ-PIGE and μ-PIXE analysis, respectively. Results indicate that the 10,000 ppm F applications resulted in higher bond strengths than observed in either the 100 ppm F applications or the control group. In addition, PIGE analyses showed high concentrations of fluorine in the hybrid bonding layer of the 10,000 ppm F samples, suggesting that the fluorine contributes to the strength of the dentin-resin composite bond. Detection of fluoroapatite within the hybrid bonding layer suggests that bond strength involves remineralization processes.

  18. Differences in the intensity of light-induced fluorescence emitted by resin composites.

    PubMed

    Kim, Bo-Ra; Kang, Si-Mook; Kim, Gyung-Min; Kim, Baek-Il

    2016-03-01

    The aims of this study were to compare the intensities of fluorescence emitted by different resin composites as detected using quantitative light-induced fluorescence (QLF) technology, and to compare the fluorescence intensity contrast with the color contrast between a restored composite and the adjacent region of the tooth. Six brands of light-cured resin composites (shade A2) were investigated. The composites were used to prepare composite discs, and fill holes that had been prepared in extracted human teeth. White-light and fluorescence images of all specimens were obtained using a fluorescence camera based on QLF technology (QLF-D) and converted into 8-bit grayscale images. The fluorescence intensity of the discs as well as the fluorescence intensity contrast and the color contrast between the composite restoration and adjacent tooth region were calculated as grayscale levels. The grayscale levels for the composite discs differed significantly with the brand (p<0.001): DenFil (10.84±0.35, mean±SD), Filtek Z350 (58.28±1.37), Premisa (156.94±1.58), Grandio (177.20±0.81), Charisma (207.05±0.77), and Gradia direct posterior (211.52±1.66). The difference in grayscale levels between a resin restoration and the adjacent tooth was significantly greater in fluorescence images for each brand than in white-light images, except for the Filtek Z350 (p<0.05). However, the Filtek Z350 restoration was distinguishable from the adjacent tooth in a fluorescence image. The intensities of fluorescence detected from the resin composites varied. The differences between the composite and adjacent tooth were greater for the fluorescence intensity contrast than for the colors observed in the white-light images. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of blood contamination on resin-resin bond strength.

    PubMed

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (p<0.05). Control values ranged from 45.1 MPa for Pertac II to 71.5 MPa for APX. Untreated blood contamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  20. Masking of temperature-induced color changes in a thermo-sensitive fiber post.

    PubMed

    Vichi, Alessandro; Schiavetti, Remo; Pacifici, Edoardo; Giovannetti, Agostino; Goracci, Cecilia; Ferrari, Marco

    2012-04-01

    To evaluate (1) the efficacy of the color changing technology featured by DT Light Illusion Post aimed at safely identifying the post in case of re-treatment, and (2) the efficacy of a resin composite layer to mask the post if color shift occurs due to cold food and beverages. Five "master disks" of 3 mm of thickness were prepared by embedding in a resin composite four thermo-sensitive posts and one translucent post (control) cut in bars. Disks of resin composite in 0.5/1.0/1.5 mm thickness were prepared as well. Digital images were taken of the master disks with and without the overlying of the resin composite disks, at 5 degrees C and at 35 degrees C temperature. By the use of Adobe Photoshop "layering function" and "multi-layer option", differences in color were calculated between the post-free and the post-containing areas. The differences between the resin color and post color were remarkably higher when the temperature was 5 degrees C, showing that the technology of color change of the post was effective. With resin disk overlaid, at 35 degrees C none of the differences in color were above the threshold for clinical acceptability. At 5 degrees C blue and black colored posts were visible when the overlaid resin thickness was 0.5 mm, while at 1.0 mm and 1.5 mm none of the posts were visible.

Top