Sample records for flowable fill applications

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan E. Bland

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in themore » Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.« less

  2. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  3. Controlled low strength materials (CLSM), reported by ACI Committee 229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.

    1997-07-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less

  4. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    PubMed

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (p<0.05). All of the tested bulk-fill flowable composites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (p<0.05). Venus Bulk Fill (Heraeus Kulzer) provided the highest radiopacity value, whereas Arabesk Flow (Voco) showed the lowest. The order of the radiopacity values for the bulk-fill flowable composites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  5. Seventeen Years of Using Flowable Resin Restoratives--A Dental Practitioner's Personal Clinical Review.

    PubMed

    Firla, Markus Th

    2015-04-01

    Seen through the author's eyes on the basis of his practising dentistry for almost three decades, light-activated flowable resin restoratives (FRCs) or, in common clinical dental terminology, flowable composites have gradually gained major importance in restorative dentistry. Inputs to this ongoing trend are coming from continuous improvements in material properties and the favourable handling characteristics experienced with this particular group of restoratives. Intended to be used in direct adhesive filling procedures, the number and variety of recent generations of flowable composites for lining, restoration of all cavity classes (I-V), core build-ups and, more recently, 'bulk-fill-restorations', however, necessitates a profound clinical understanding of the selective use of flowable composites to ensure clinical success and guarantee long-term high quality results. Clinical relevance: Today's flowable composites allow for reliable restoration of all kinds of defects. However, both the handling characteristics and the material properties of FRCs must be fully understood before taking advantage of their potentially excellent clinical performance.

  6. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite

    PubMed Central

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    Summary Aim To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Methods Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). Results No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. Conclusions No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations. PMID:27486505

  7. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite.

    PubMed

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations.

  8. Depth of cure of bulk-fill flowable composite resins.

    PubMed

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  9. TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    2011-11-01

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identifymore » a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.« less

  10. Effect of Layering Methods, Composite Type, and Flowable Liner on the Polymerization Shrinkage Stress of Light Cured Dental Composites

    DTIC Science & Technology

    2011-08-01

    composite (Z350 flowable: 3M ESPE), and a silorane-based composite (P90: 3M ESPE). Scotchbond multipurpose adhesive ( 3M ESPE) was applied prior to...syringe. Composites used for filling the cavities were a methacrylate-based universal hybrid composite (Z250: 3M ESPE, St. Paul, MN, USA), a flowable... adhesive was light cured for 10 s using a LED light curing unit (S10: 3M ESPE), and the light intensity was 1200 mW/cm 2 . An acrylic case with

  11. Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Stefanko, D. B.

    2013-04-23

    Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify amore » single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.« less

  12. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    PubMed

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microleakage and penetration depth of different fissure sealant materials after cyclic thermo-mechanic and brushing simulation.

    PubMed

    Hatirli, Hüseyin; Yasa, Bilal; Yasa, Elif

    2018-01-30

    The aim of the study was to evaluate microleakage and the penetration-depths of different fissure-sealant materials applied with/without enameloplasty after cyclic aging. One-hundred-sixty mandibular molars were divided into non-invasive and enameloplasty preparation groups and eight material subgroups, including: flowable composites (microhyrid, nanohybrid, and nanofilled), three resin-based (unfilled, filled, and highly-filled), a giomer-based, and a glass-ionomer-based fissure sealant. Specimens were subjected to two-year cyclic chewing and brushing simulation. After 5% basic-fuchsin dye penetration, specimens were sectioned and scored under stereomicroscope. Kruskal-Wallis statistical data showed that preparation type significantly affected the penetration of all tested materials (p<0.05), but not significantly affected microleakage (p>0.05). Flowable composites showed the best and the glass-ionomer-based sealant showed the worst penetration and microleakage. Slight preparation of fissures is not important in microleakage. However, enameloplasty significantly enhanced the depth of penetration of the sealants. Flowable composites offer promising results at the fissure sealing.

  14. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    PubMed

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  15. Polymerization stress evolution of a bulk-fill flowable composite under different compliances.

    PubMed

    Guo, Yongwen; Landis, Forrest A; Wang, Zhengzhi; Bai, Ding; Jiang, Li; Chiang, Martin Y M

    2016-04-01

    To use a compliance-variable instrument to simultaneously measure and compare the polymerization stress (PS) evolution, degree of conversion (DC), and exotherm of a bulk-fill flowable composite to a packable composite. A bulk-fill flowable composite (Filtek Bulk-fill, FBF) and a conventional packable composite (Filtek Z250, Z250) purchased from 3M ESPE were investigated. The composites were studied using a cantilever-beam based instrument equipped with an in situ near infrared (NIR) spectrometer and a microprobe thermocouple. The measurements were carried out under various instrumental compliances (ranging from 0.3327μm/N to 12.3215μm/N) that are comparable to the compliances of clinically prepared tooth cavities. Correlations between the PS and temperature change as well as the DC were interpreted. The maximum PS of both composites at 10min after irradiation decreased with the increase in the compliance of the cantilever beam. The FBF composite generated a lower final stress than the Z250 sample under instrumental compliances less than ca. 4μm/N; however, both materials generated statistically similar PS values at higher compliances. The reaction exotherm and the DC of both materials were found to be independent of compliance. The DC of the FBF sample was slightly higher than that of the packable Z250 composite while the peak exotherm of FBF was almost double that of the Z250 composite. For FBF, a characteristic drop in the PS was observed during the early stage of polymerization for all compliances studied which was not observed in the Z250 sample. This drop was shown to relate to the greater exotherm of the less-filled FBF sample relative to the Z250 composite. While the composites with lower filler content (low viscosity) are generally considered to have lower PS than the conventional packable composites, a bulk-fill flowable composite was shown to produce lower PS under a lower compliance of constraint as would be experienced if the composite was used as the base material in clinical procedures. Published by Elsevier Ltd.

  16. Protecting tree roots and subterranean infrastructure in urban areas by developing self-compacting flowable fills with root growth impeding properties

    NASA Astrophysics Data System (ADS)

    Felde, Vincent; Simon, Jana; Kimm-Friedenberg, Stefan; Peth, Stephan; Middendorf, Bernhard

    2015-04-01

    In urban areas, the installation of cables and disposal lines is still done by open building method. Here, a ditch is being excavated, pipes and lines are laid and subsequently it is filled with and covered by bulk material (e.g. sand or gravel), which is then compacted. Due to the often times limited space that the roots have in the ground and the better supply of water and oxygen in the poorly compacted bulk material, these refilled ditches are areas of preferential root growth of urban trees. The entangling of the pipes and supply lines by these roots leads to severe damage of the tree when maintenance work on the lines is carried out and roots have to be cut. In order to reduce this competition between urban trees and urban subterranean infrastructure, the development of a self-compacting flowable fill with root growth resistance is mandatory. Physico-chemical properties, such as a very high pH-value and a low cation-exchange-capacity, a low root-penetrability, a high packing density and a low porosity, with a poorly connected pore system that impedes gas and water exchange are the characteristic aspects of this flowable fills that could help avoid undesired root penetration into supply lines. The flowable fills are supposed to sheath pipes and lines void-free and without any tension, in order to restrain the root growth in these areas. Trees are of crucial importance for urban ecosystems and are comprising 3% of the total stock of trees in the Federal Republic of Germany, which is why it is fundamental to conserve them. This work therefore targets not only at enabling a balanced coexistence of urban trees and subterranean infrastructure, but also at avoiding costly re-opening of ditches, tree harming cutting of roots and time consuming maintenance work. Further positive side effects are reduced costs for network providers and local municipalities, as well as reduced noise and dust emissions for passersby and local residents. To guarantee the root growth restricting properties, the self-compacting fill has to have less porosity than the adjacent soil (40 - 60%). Theoretically a porosity of 30% is possible with a homogeneous compaction of sand. In urban areas, however, because of the limited spaces and crossing pipes, a mechanical and homogenous compacting is often impossible. Porosities of 60 to 70% are the result. Self-compacting flowable fills have a porosity of about 40% while the first optimized materials can even have a porosity of 28%. We present the first results of the hydro-mechanical properties of the different materials under development that highlight the influence of the mixture of the fills (i.e. maximal grain size) on the root growth impeding properties, while still ensuring mechanical workability of the material (in spite of the low porosity, strengths less than 0.8 N mm-² must be ensured at all times).

  17. Demonstration and Validation of Controlled Low-Strength Materials for Corrosion Mitigation of Buried Steel Pipes: Final Report on Project F09-A17

    DTIC Science & Technology

    2015-12-01

    steel surfaces. Two different CLSM blends were tested. Both used cement and a flowability admixture, but one used native soil instead of standard...by about 63% in the soil cement . Therefore, CLSMs can reduce the cost of applying CP to buried steel structures. The return-on-investment ratio for...was exposed in the native-soil backfill to deter- mine the corrosion rate in the absence of any flowable fill or soil cement . The removable steel

  18. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  19. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration.

    PubMed

    Hirata-Tsuchiya, Shizu; Yoshii, Shinji; Ichimaru-Suematsu, Miki; Washio, Ayako; Saito, Noriko; Urata, Mariko; Hanada, Kaori; Morotomi, Takahiko; Kitamura, Chiaki

    2017-08-01

    The purpose of the present study was to compare the clinical efficacy between a flowable-type nano-hybrid composite and a paste-type composite for posterior restoration. Of 62 posterior teeth in 33 patients (mean age: 34.1 years), 31 were filled with a paste-type composite (Heliomolar [HM] group), and another 31 with a flowable nano-hybrid composite (MI FIL [MI] group). Clinical efficacy was evaluated at 2 years after the restoration. There were no differences for retention, surface texture deterioration, anatomical form change, deterioration of marginal adaptation, and secondary caries, while a statistical difference was found for marginal discoloration, which was significantly greater in the HM group (P < 0.05). Furthermore, color matching in the MI group was superior to that in the HM group immediately after the restoration throughout the study period. The present 2-year clinical evaluation of different composites showed that the flowable nano-hybrid composite could be an effective esthetic material for posterior restoration. © 2016 John Wiley & Sons Australia, Ltd.

  20. Engineering and functional properties of biodegradable pellets developed from various agro-industrial wastes using extrusion technology.

    PubMed

    Jan, Kulsum; Riar, C S; Saxena, D C

    2015-12-01

    Different agro-industrial wastes were mixed with different plasticizers and extruded to form the pellets to be used further for development of biodegradable molded pots. Bulk density and macro-porosity are the important engineering properties used to determine the functional characteristics of the biodegradable pellets viz., expansion volume, water solubility, product colour, flowability and compactness. Significant differences in the functional properties of pellets with varying bulk densities (loose and tapped) and macro-porosities (loose, tapped) were observed. The observed mean bulk density of biodegradable pellets made from different formulations ranged between 0.213 and 0.560 g/ml for loose fill conditions and 0.248 to 0.604 g/ml for tapped fill conditions. Biodegradable pellets bear a good compaction for both loose and tapped fill methods. The mean macro-porosity of biodegradable pellets ranged between 1.19 and 54.48 % for loose fill condition and 0.29 to 53.35 % for tapped fill condition. Hausner ratio (HR) for biodegradable pellets varied from 1.026 to 1.328, indicating a good flowability of biodegradable pellets. Pearson's correlation between engineering properties and functional properties of biodegradable pellets revealed that from engineering properties functional properties can be predicted.

  1. Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: A systematic review and meta-analysis.

    PubMed

    Boruziniat, Alireza; Gharaee, Samineh; Sarraf Shirazi, Alireza; Majidinia, Sara; Vatanpour, Mehdi

    2016-02-01

    The efficacy of flowable composite in improving marginal adaptation or reducing microleakage is not fully understood. The purpose of this study was to systematically evaluate existing evidence to verify whether an application of flowable composite as a liner provided less microleakage in Class 2 composite restorations. PubMed, ISI (Web of Science), and Scopus databases were searched according to the selected keywords, up to 15 Feb 2015, without any restriction on date or language. Full texts of published articles that seemed to meet primary criteria for inclusion in this research were obtained. Data of studies were extracted if they were assessed as high or moderate level of evidence. Due to the variation of methods used in different studies, they were divided into five groups: groups 1 and 2, studies that evaluated the effect of flowable composite as a liner on dentinal or enamel margins and applied flowable composite on all of the cavity wall margins; groups 3 and 4, studies that evaluated the effect of flowable composite as a liner on dentinal and enamel margins and applied flowable composite only on gingival margin; and group 5, clinical studies. The initial search yielded 1,370 publications. After hand searching, six extra studies were included in the review. The abstracts of all were read independently by AB and SG. After methodologic assessment and evaluation of the level of evidence, 18 studies were selected for this study. The results of this study indicate that flowable composite liners have no significant effect on microleakage of composite restorations in all of five groups. Application of flowable composite as a liner in composite restorations cannot reduce microleakage or improve clinical performance.

  2. The force required to fracture endodontically roots restored with various materials as intra-orifice barriers.

    PubMed

    Yasa, E; Arslan, H; Yasa, B; Akcay, M; Alsancak, M; Hatirli, H

    2017-10-01

    To evaluate the effect of various materials as intra-orifice barriers on the force required fracture roots. One hundred-thirty five mandibular premolars were decoronated and prepared up to size #40. The root canals were filled and randomly divided into two control and seven experimental groups (n = 15), as follows: Positive control group (the intra-orifice barrier cavity was not prepared), negative control group (the intra-orifice barrier cavity was prepared, but not filled), filling using glass ionomer cement, nano-hybrid composite resin, short fiber-reinforced composite, bulk-fill flowable composite, MTA Angelus, Micro Mega MTA or Biodentine. A fracture strength test was performed, and the data were analyzed using one-way ANOVA and Tukey's post hoc tests. Nano-hybrid composite, short fiber-reinforced composite, bulk-fill flow able composite, and glass ionomer cement increased the force required fracture the roots compared to the positive and negative control groups (P < 0.05). While MTA groups did not increase the force required fracture the roots compared to the control groups, Biodentine increased significantly. Within the limitations of the present study, the use of nano-hybrid composite, short fiber-reinforced composite, bulk-fill flowable composite, and glass ionomer cement as an intra-orifice barrier may be useful in reinforcing roots. MTA placement (MTA Angelus or Micro Mega MTA) did not significantly increase the fracture resistance of endodontically treated roots compared to the control groups, however Biodentine did.

  3. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer.

    PubMed

    Kuga, Milton Carlos; Duarte, Marco Antonio Hungaro; Sant'anna-Júnior, Arnaldo; Keine, Kátia Cristina; Faria, Gisele; Dantas, Andrea Abi Rached; Guiotti, Flávia Angélica

    2014-06-01

    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%). In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

  4. [Surface roughness and gloss of novel flowable composites after polishing and simulated brushing wear].

    PubMed

    Wang, R L; Yuan, C Y; Pan, Y X; Tian, F C; Wang, Z H; Wang, X Y

    2017-04-09

    Objective: To investigate surface properties of novel flowable composites after polishing and simulated brushing wear, compared to their pasty counterpart. Methods: Composites employed in this study were: three flowable composites (A1: Clearfil Majesty ES Flow; B1: Beautifil Flow Plus F00; C1: Filtek Bulk Fill) and three paste composites (A2: Clearfil Majesty; B2: Beautifil; C2: Filtek Z350. Eleven disk-shaped specimens were made for each material. The specimens were cured, then subjected to sandpaper finishing for 20 s, one-step polishing for 30 s, finally subjected to simulated brushing for 10 000 cycles. Surface roughness and glossiness were measured before finishing, after finishing, after polishing, after 5 000 brushing cycles and after 10 000 brushing cycles, respectively. Data obtained were analyzed using two-way ANOVA method. Scanning electron microscope was employed to examine the microscopic appearance of each material. Results: Surface roughness (0.11~0.22 μm) and glossiness (74.25~86.48 GU) of each material were similar after one-step polishing. After brushing simulation, roughness increased significantly and glossiness decreased significantly for each material ( P< 0.05). Group A1 presented the best gloss ([50.68±1.58] GU) after final wear ( P< 0.05). Flowable composites of group A1 and B1 tested in the present setup showed better surface properties compared to their pasty counterpart (group A2 and B2). Conclusions: Within the limit of this study, flowable composites tested in the present research can obtain similar surface polish or even better than the paste composite counterpart.

  5. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer

    PubMed Central

    KUGA, Milton Carlos; DUARTE, Marco Antonio Hungaro; SANT'ANNA-JÚNIOR, Arnaldo; KEINE, Kátia Cristina; FARIA, Gisele; DANTAS, Andrea Abi Rached; GUIOTTI, Flávia Angélica

    2014-01-01

    Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF) or containing 5% (MTAF5) or 10% (MTAF10) calcium hydroxide (CH), in weight, in comparison with AH Plus sealer. Material and Methods The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10) in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%). Results In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions The addition of 5% CH to the MTA Fillapex (in weight) is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential. PMID:25025558

  6. Marginal Gap Formation in Approximal "Bulk Fill" Resin Composite Restorations After Artificial Ageing.

    PubMed

    Peutzfeldt, A; Mühlebach, S; Lussi, A; Flury, S

    The aim of this in vitro study was to investigate the marginal gap formation of a packable "regular" resin composite (Filtek Supreme XTE [3M ESPE]) and two flowable "bulk fill" resin composites (Filtek Bulk Fill [3M ESPE] and SDR [DENTSPLY DeTrey]) along the approximal margins of Class II restorations. In each of 39 extracted human molars (n=13 per resin composite), mesial and distal Class II cavities were prepared, placing the gingival margins below the cemento-enamel junction. The cavities were restored with the adhesive system OptiBond FL (Kerr) and one of the three resin composites. After restoration, each molar was cut in half in the oro-vestibular direction between the two restorations, resulting in two specimens per molar. Polyvinylsiloxane impressions were taken and "baseline" replicas were produced. The specimens were then divided into two groups: At the beginning of each month over the course of six months' tap water storage (37°C), one specimen per molar was subjected to mechanical toothbrushing, whereas the other was subjected to thermocycling. After artificial ageing, "final" replicas were produced. Baseline and final replicas were examined under the scanning electron microscope (SEM), and the SEM micrographs were used to determine the percentage of marginal gap formation in enamel or dentin. Paramarginal gaps were registered. The percentages of marginal gap formation were statistically analyzed with a nonparametric analysis of variance followed by Wilcoxon-Mann-Whitney tests and Wilcoxon signed rank tests, and all p-values were corrected with the Bonferroni-Holm adjustment for multiple testing (significance level: α=0.05). Paramarginal gaps were analyzed descriptively. In enamel, significantly lower marginal gap formation was found for Filtek Supreme XTE compared to Filtek Bulk Fill ( p=0.0052) and SDR ( p=0.0289), with no significant difference between Filtek Bulk Fill and SDR ( p=0.4072). In dentin, significantly lower marginal gap formation was found for SDR compared to Filtek Supreme XTE ( p<0.0001) and Filtek Bulk Fill ( p=0.0015), with no significant difference between Filtek Supreme XTE and Filtek Bulk Fill ( p=0.4919). Marginal gap formation in dentin was significantly lower than in enamel ( p<0.0001). The percentage of restorations with paramarginal gaps varied between 0% and 85%, and for all three resin composites the percentages were markedly higher after artificial ageing. The results from this study suggest that in terms of marginal gap formation in enamel, packable resin composites may be superior to flowable "bulk fill" resin composites, while in dentin some flowable "bulk fill" resin composites may be superior to packable ones.

  7. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites.

    PubMed

    Alshali, Ruwaida Z; Salim, Nesreen A; Satterthwaite, Julian D; Silikas, Nick

    2015-02-01

    To measure bottom/top hardness ratio of bulk-fill and conventional resin-composite materials, and to assess hardness changes after dry and ethanol storage. Filler content and kinetics of thermal decomposition were also tested using thermogravimetric analysis (TGA). Six bulk-fill (SureFil SDR, Venus bulk fill, X-tra base, Filtek bulk fill flowable, Sonic fill, and Tetric EvoCeram bulk-fill) and eight conventional resin-composite materials (Grandioso flow, Venus Diamond flow, X-flow, Filtek Supreme Ultra Flowable, Grandioso, Venus Diamond, TPH Spectrum, and Filtek Z250) were tested (n=5). Initial and 24h (post-cure dry storage) top and bottom microhardness values were measured. Microhardness was re-measured after the samples were stored in 75% ethanol/water solution. Thermal decomposition and filler content were assessed by TGA. Results were analysed using one-way ANOVA and paired sample t-test (α=0.05). All materials showed significant increase of microhardness after 24h of dry storage which ranged from 100.1% to 9.1%. Bottom/top microhardness ratio >0.9 was exhibited by all materials. All materials showed significant decrease of microhardness after 24h of storage in 75% ethanol/water which ranged from 14.5% to 74.2%. The extent of post-irradiation hardness development was positively correlated to the extent of ethanol softening (R(2)=0.89, p<0.001). Initial thermal decomposition temperature assessed by TGA was variable and was correlated to ethanol softening. Bulk-fill resin-composites exhibit comparable bottom/top hardness ratio to conventional materials at recommended manufacturer thickness. Hardness was affected to a variable extent by storage with variable inorganic filler content and initial thermal decomposition shown by TGA. The manufacturer recommended depth of cure of bulk-fill resin-composites can be reached based on the microhardness method. Characterization of the primary polymer network of a resin-composite material should be considered when evaluating its stability in the aqueous oral environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Acellular Flowable Matrix in the Treatment of Tunneled or Cavity Ulcers in Diabetic Feet: A Preliminary Report.

    PubMed

    Campitiello, Ferdinando; Mancone, Manfredi; Della Corte, Angela; Guerniero, Raffaella; Canonico, Silvestro

    2018-06-01

    The authors aimed to explore the feasibility and safety of an advanced, acellular, flowable wound matrix (FWM) in patients with diabetes-related cavity or tunnel lesions involving deep structures. Patients with diabetic foot ulcers were hospitalized at the General and Geriatric Surgery Unit of the University of Campania in Naples, Italy, between March 2015 and December 2015. Twenty-three patients with tunneled or cavity ulcers were treated. The lesions were filled with the FWM. Surgical wound edges were either approximated with stitches or left to heal by secondary intention. After 6 weeks, 78.26% of patients completely healed after a single application of the FWM. The healing time for all healed wounds was 30.85 ± 12.62 days, or 26.11 ± 5.43 days in patients for whom wound edges were approximated by stitches, and 57.66 ± 3.05 days in the patients who healed by secondary intention (P = .01). Permanent tissue regeneration was observed in a high percentage of patients, and shorter healing time was achieved. Study authors observed a low rate of complications such as major amputation and increased hospitalization. The FWM seems ideal for tunneled and cavity ulcers with irregular geometry. This new porous matrix allows closure of the lesion while reducing healing time and demolition surgery.

  9. A novel process route for the production of spherical SLS polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particlemore » size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.« less

  10. Evaluation of Flowable Fill Surface Performance

    DTIC Science & Technology

    2016-11-01

    Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR...33 viii Preface This study was conducted for the U.S. Air Force’s (USAF) pavement evaluation teams, contingency readiness groups, base civil...engineers, major command pavement engineers, Rapid Engineer Deployable Heavy Operational Repair Squadron Engineer (RED HORSE) squadrons, and Prime Base

  11. Physico-mechanical characteristics of commercially available bulk-fill composites.

    PubMed

    Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane

    2014-08-01

    Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.090.8). Softening in ethanol revealed differences in polymer network density between material types. The reduction of time and improvement of convenience associated with bulk-fill materials is a clear advantage of this particular material class. However, a compromise with mechanical properties compared with more conventional commercially-available nano-hybrid materials was demonstrated by the present work. Given the lower mechanical properties of most bulk-fill materials compared to a highly filled nano-hybrid composite, their use for restorations under high occlusal load is subject to caution. Further, the swelling behaviour of some of the bulk-fill materials may be a reason for concern, which highlights the critical requirement for a veneering material, not only to improve aesthetic quality of the translucent material, but to reduce the impact of degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mechanical properties and three-body wear of dental restoratives and their comparative flowable materials.

    PubMed

    Schultz, Sabine; Rosentritt, Martin; Behr, Michael; Handel, Gerhard

    2010-01-01

    To compare wear performance and resistance to crack propagation (K1C) of commercial restorative materials and their flowable variations. A potential correlation between three-body wear and fracture toughness, modulus of elasticity, fracture work, Vickers hardness, and filler content was investigated. Seven restoratives (five composites, one ormocer, and one compomer) and their corresponding flowable materials were used to determine and compare the three-body wear with a bolus of millet-seed shells and rice food (Willytec). The wear characteristics were measured by profilometry after 50,000, 100,000, 150,000, and 200,000 loading cycles. The fracture toughness value, K1C (MPam1/2), for each single-edged notched specimen was measured in a three-point bending test (universal testing machine 1446, Zwick). Fracture work and modulus of elasticity were calculated from the load curves. Vickers hardness was measured (HV hardness tester, Zwick) according to DIN 50133. The veneering composite Sinfony (3M ESPE) was used as a reference material. Heavily filled composites experienced less wear than their flowable variations. The nanofiller composites revealed better wear results than hybrid composites, compomers, and ormocers. After 200,000 load cycles, the lowest wear rates were detected for Grandio (14 microm; Voco), and the highest mean values were found for Dyract AP (104 microm; Dentsply DeTrey). The values for fracture toughness (K1C) ranged from 0.82 to 3.64 MPam1/2. Highest K1C data was exhibited by the nanocomposite Nanopaq (Schutz Dental). All tested restorative materials exhibited higher fracture toughness than their low-viscosity variations. The wear resistance of the newer generation composites with incorporated nanofiller or microfiller particles increased to a high extent. Flowables show less resistance against wear and crack propagation because of their lower filler content. The reduced mechanical properties limit their use as a restorative to small noncontact, low-stress clinical situations.

  13. Fissure sealant materials: Wear resistance of flowable composite resins.

    PubMed

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  14. Fissure sealant materials: Wear resistance of flowable composite resins

    PubMed Central

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  15. Flowable Resin Composites: A Systematic Review and Clinical Considerations

    PubMed Central

    Rodrigues, Jean C.

    2015-01-01

    Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238

  16. Nanomechanical properties of dental resin-composites.

    PubMed

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic moduli and nanohardnesses for bulk-fill and flowable materials were lower than those for conventional nano-hybrid composites. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of Flash Fill{reg_sign} as a thermal backfill material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, P.H.; Charlton, C.B.; Frishette, C.W.

    1995-09-01

    Flash Fill{reg_sign} was created as a fast-setting, flowable backfill material made entirely from coal combustion by-products and water. Its quick-setting, self-leveling, self-compacting characteristics makes trench road repairs faster, easier, and more economical. Other uses include building foundations, fill around pipes, gas lines, and manholes, and replacement of weak subgrade beneath rooters. Flash Fill can be hand-excavated without the use of power assisted tools or machinery. To enhance thermal resistivity, the original Flash Fill mix was modified to include concrete sand. This resulted in a new Flash Fill, designated FSAND, with all of the aforementioned desirable characteristics of Flash Fill andmore » a thermal resistivity of approximately 50{degree} C-cm/watt. Thermal resistivity tests using conventional laboratory thermal probes, high-current thermal tests, and moisture migration tests have been performed to determine the properties of FSAND. As a result of these tests, FSAND has been approved for use as power cable thermal backfill on all AEP System distribution projects.« less

  18. Tailoring of physical properties in highly filled experimental nanohybrid resin composites.

    PubMed

    Pick, Bárbara; Pelka, Matthias; Belli, Renan; Braga, Roberto R; Lohbauer, Ulrich

    2011-07-01

    To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer®-based). The experimental composites varied in filler size and density. EM values were obtained from the "three-point bending" load-displacement curve. VS was calculated with Archimedes' buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly)methyl methacrylate rods (Ø=6mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey's test (α=0.05), and linear regression analyses. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Flowability of granular materials with industrial applications - An experimental approach

    NASA Astrophysics Data System (ADS)

    Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo

    2017-06-01

    Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.

  20. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    PubMed

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C

    2012-01-01

    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P < 0.05). Among the high viscosity composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  1. Intraorifice sealing ability of different materials in endodontically treated teeth: An in vitro study.

    PubMed

    Parekh, Bandish; Irani, Rukshin S; Sathe, Sucheta; Hegde, Vivek

    2014-05-01

    Microbial contamination of the pulp space is one of the major factors associated with endodontic failure. Thus, in addition to a three dimentional apical filling a coronal seal for root canal fillings has been recommended. The present study was conducted to evaluate and compare the intra-orifice sealing ability of three experimental materials after obturation of the root canal system. Fourty single rooted mandibular premolars were decoronated, cleaned, shaped and obturated. Gutta-percha was removed to the depth of 3.5 mm from the orifice with a heated plugger. Ten specimens each were sealed with Light Cure Glass Ionomer Cement (LCGIC), Flowable Composite (Tetric N-Flow), and Light Cure Glass Ionomer Cement with Flowable Composite in Sandwich Technique along with a positive control respectively and roots submerged in Rhodamine-B dye in vacuum for one week. Specimens were longitudinally sectioned and leakage measured using a 10X stereomicroscope and graded for depth of leakage. According to the results of the present study LC GIC + Tetric N Flow demonstrated significantly better seal (P < 0.01) than LC GIC. However there was no statistically significant difference in leakage (P > 0.01) between Tetric N-Flow and LCGIC+Tetric N-Flow groups. In the current study LCGIC+Tetric N-Flow was found to be superior over other experimental materials as intra-orifice barriers.

  2. Flowable composites for bonding orthodontic retainers.

    PubMed

    Tabrizi, Sama; Salemis, Elio; Usumez, Serdar

    2010-01-01

    To test the null hypothesis that there are no statistically significant differences between flowables and an orthodontic adhesive tested in terms of shear bond strength (SBS) and pullout resistance. To test the SBS of Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were applied to the enamel surfaces of 15 teeth. Using matrices for application, each composite material was cured for 40 seconds and subjected to SBS testing. To test pullout resistance, 15 samples were prepared for each composite in which a wire was embedded; then the composite was cured for 40 seconds. Later, the ends of the wire were drawn up and tensile stress was applied until the resin failed. Findings were analyzed using an ANOVA and a Tukey HSD test. The SBS values for Light Bond, FlowTain, Filtek Supreme, and Tetric Flow were 19.0 +/- 10.9, 14.7 +/- 9.3, 22.4 +/- 16.3, and 16.8 +/- 11.8 MPa, respectively, and mean pullout values were 42.2 +/- 13.0, 24.0 +/- 6.9, 26.3 +/- 9.4, and 33.8 +/- 18.0 N, respectively. No statistically significant differences were found among the groups in terms of SBS (P > .05). On the other hand, Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and Flow-Tain (P < .01). However, there were no significant differences among the pullout values of flowables, nor between Light Bond and Tetric Flow (P > .05). The hypothesis is rejected. Light Bond yielded significantly higher pullout values compared with the flowables Filtek Supreme and FlowTain. However, flowable composites provided satisfactory SBS and wire pullout values, comparable to a standard orthodontic resin, and therefore can be used as an alternative for direct bonding of lingual retainers.

  3. Evaluation of Microtensile Bond Strength and Microleakage of a Self-adhering Flowable Composite.

    PubMed

    Yuan, He; Li, Mingyang; Guo, Bin; Gao, Yuan; Liu, HongLing; Li, Jiyao

    2015-12-01

    To evaluate the microtensile bond strength (μTBS) and marginal sealing ability of a self-adhering flowable composite between dentin and composite interfaces, as well as the microleakage of Class V restorations. The occlusal thirds of 40 third molars were removed and randomly divided into 4 groups according to the applied adhesive: Adper Easy One (AEO, 3M ESPE), Clearfil SE Bond (CSEB, Kuraray), Prime & Bond NT (PBNT, Dentsply) and a self-adhering flowable composite (Dyad Flow, DF, Kerr). Filtek Flowable (3M ESPE) resin composite crowns were then built up in the first three groups; in group DF, composite crowns were built up without the application of an adhesive. Thirty stick-shaped microspecimens were prepared per group, 10 of which were used for morphological observation of bonded interfaces by scanning electron microscopy (SEM) after decalcification. The remaining microspecimens underwent microtensile bond strength testing and the failure mode was analyzed. Microleakage evaluation was performed on 10 premolars per group in which standardized box-shaped Class V cavities were prepared. After 500 thermocycles, the premolars were immersed in 1% methylene blue for 24 h, and three slices from each tooth were observed under a stereomicroscope and scored. Statistical analysis was performed using one-way ANOVA, Student-Newman-Keuls and chi-square tests. The PBNT group presented the highest μTBS values, followed by the CSEB and AEO groups, which did not differ significantly from each other. The DF group showed the lowest μTBS values. No significant differences in microleakage were observed among these four groups. Although individual usage of the self-adhering flowable composite showed the lowest bond strength, the same marginal sealing ability was observed as that of combining self-etching and etch-and-rinse adhesives with flowable composite.

  4. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin

    PubMed Central

    Kattan, Hiba; Chatzistavrou, Xanthippi; Boynton, James; Dennison, Joseph; Yaman, Peter; Papagerakis, Petros

    2015-01-01

    The aim of this work was to study the physical and antibacterial properties of a flowable resin composite incorporating a sol-gel derived silver doped bioactive glass (Ag-BGCOMP). The depth of the cure was calculated by measuring the surface micro-hardness for the top and bottom surfaces. The volumetric polymerization shrinkage was measured by recording the linear shrinkage as change in length, while the biaxial flexural strength was studied measuring the load at failure. The antibacterial properties of the samples were tested against Streptococcus mutans (S. mutans) and Lactobacillus casei (L. casei). The measured values were slightly decreased for all tested physical properties compared to those of control group (flowable resin composite without Ag-BG), however enhanced bacteria inhibition was observed for Ag-BGCOMP. Ag-BGCOMP could find an application in low stress-bearing areas as well as in small cavity preparations to decrease secondary caries. This work provides a good foundation for future studies on evaluating the effects of Ag-BG addition into packable composites for applications in larger cavity preparations where enhanced mechanical properties are needed. PMID:28793463

  5. Food powders flowability characterization: theory, methods, and applications.

    PubMed

    Juliano, Pablo; Barbosa-Cánovas, Gustavo V

    2010-01-01

    Characterization of food powders flowability is required for predicting powder flow from hoppers in small-scale systems such as vending machines or at the industrial scale from storage silos or bins dispensing into powder mixing systems or packaging machines. This review covers conventional and new methods used to measure flowability in food powders. The method developed by Jenike (1964) for determining hopper outlet diameter and hopper angle has become a standard for the design of bins and is regarded as a standard method to characterize flowability. Moreover, there are a number of shear cells that can be used to determine failure properties defined by Jenike's theory. Other classic methods (compression, angle of repose) and nonconventional methods (Hall flowmeter, Johanson Indicizer, Hosokawa powder tester, tensile strength tester, powder rheometer), used mainly for the characterization of food powder cohesiveness, are described. The effect of some factors preventing flow, such as water content, temperature, time consolidation, particle composition and size distribution, is summarized for the characterization of specific food powders with conventional and other methods. Whereas time-consuming standard methods established for hopper design provide flow properties, there is yet little comparative evidence demonstrating that other rapid methods may provide similar flow prediction.

  6. Physical properties and biological effects of mineral trioxide aggregate mixed with methylcellulose and calcium chloride.

    PubMed

    Lee, Bin-Na; Chun, Soo-Ji; Chang, Hoon-Sang; Hwang, Yun-Chan; Hwang, In-Nam; Oh, Won-Mann

    2017-01-01

    Methylcellulose (MC) is a chemical compound derived from cellulose. MTA mixed with MC reduces setting time and increases plasticity. This study assessed the influence of MC as an anti-washout ingredient and CaCl2 as a setting time accelerator on the physical and biological properties of MTA. Test materials were divided into 3 groups; Group 1(control): distilled water; Group 2: 1% MC/CaCl2; Group 3: 2% MC/CaCl2. Compressive strength, pH, flowability and cell viability were tested. The gene expression of bone sialoprotein (BSP) was detected by RT-PCR and real- time PCR. The expression of alkaline phosphatase (ALP) and mineralization behavior were evaluated using an ALP staining and an alizarin red staining. Compressive strength, pH, and cell viability of MTA mixed with MC/CaCl2 were not significantly different compared to the control group. The flowability of MTA with MC/CaCI2 has decreased significantly when compared to the control (p<.05). The mRNA level of BSP has increased significantly in MTA with MC/CaCl2 compared to the control (p<.05). This study revealed higher expression of ALP and mineralization in cells exposed to MTA mixed with water and MTA mixed with MC/CaCl2 compared to the control (p<.05). MC decreased the flowability of MTA and did not interrupt the physical and biological effect of MTA. It suggests that these cements may be useful as a root-end filling material.

  7. Evaluating the Microshear Bond Strength and Microleakage of Flowable Composites Containing Zinc Oxide Nano-particles.

    PubMed

    Teymoornezhad, Koorosh; Alaghehmand, Homayoun; Daryakenari, Ghazaleh; Khafri, Soraya; Tabari, Mitra

    2016-11-01

    Preventive resin restorations (PRR) are the conservative choice for the most common carious lesions in children. Thus, new age flowable resin composites with higher filler content are readily used. The aim of this study was to evaluate the microshear bond strength and microleakage of two flowable resin composites containing different percentages of nano zinc oxide (NZnO) particles, which have proven to have antimicrobial properties. This experimental in-vitro study was carried out in the Dental Material Research Center of Babol University of Medical Sciences in 2015. One nanohybrid and one nanofill flowable resin composite were chosen and modified with the incorporation of 1% and 3% Wt NZnO particles. Six groups (n=10, 0%, 1%, and 3%) of resin composite sticks on dental enamel (2×2mm) were prepared to be placed in the microtensile tester. The microshear bond strength magnitude (MPa) was recorded at the point of failure. A class I box (3×0.8×1 mm) was prepared on 60 premolars and filled using the resin composites (6 groups, n=10). The specimens were immersed in a 5% basic fuschin solution and sectioned bucco-lingually to view the microleakage using a stereomicroscope. One-way ANOVA and Tukey tests for microshear and Wilcoxon and Kruskal-Wallis tests for microleakage were used to analyze the data in the IBM SPSS Statistics version 22 software. The bond strength of the 3% clearfill group significantly decreased while no significant change occurred in the bond strength in other groups. The Z-350 group had significantly lower microleakage as nanoparticles increased. No significant difference was observed in the clearfill group. Up to 3% Wt incorporation of NZnO particles will not diversely alter the bond strength, but it will be beneficial in providing antimicrobial effects with lower microleakage rates.

  8. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks

    PubMed Central

    Poggio, Claudio; Dagna, Alberto; Chiesa, Marco; Colombo, Marco; Scribante, Andrea

    2012-01-01

    Aim: The aim of this study is to evaluate the surface roughness of four flowable resin composites following exposure to acidic and alcoholic drinks. Materials and Methods: SureFil SDR flow, TetricEvoFlow, Esthet-X Flow and Amaris Flow HT samples were immersed in artificial saliva, Coca Cola and Chivas Regal Whisky. Each specimen was examined using a Leica DCM 3D microscope: Arithmetical mean height of the surface profiles was measured (Sa). Results: Kruskal-Wallis test showed significant differences among various groups (P<0,001). Mann Whitney test was applied and control groups showed significantly lower Sa values than other groups (P=0,008). Coca Cola groups showed highest Sa values (P<0,021). No significant differences (P=0,14) in surface texture were found among the specimens of the different materials. No significant differences were found among TetricEvoFlow, Esthet-X Flow and Amaris Flow under control conditions nor after Coca Cola application. Under control condition and after Coca Cola application SureFil SDR flow showed significantly higher Sa values. Moreover, after whisky application Amaris Flow showed significantly lower Sa values then the other three groups that showed no significant differences among them. Conclusions: Acidic and alcoholic drinks eroded the surface roughness of all evaluated flowable resin composites. PMID:22557811

  9. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  10. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.C.; Reiss, R.J.; Rica, A.F.

    There is disclosed an aseptic flexible walled container having a rigid fitment member cooperative with an aseptic filling apparatus and including a neck, outer flanges surrounding the neck, a frangible membrane and an outer end rim receptive of an hermetically sealed lid. The neck is formed with an internal chamferred seating shoulder for fluid-tight engagement with a fill tube. One outer flange cooperates with clamping jaws of the aseptic filling apparatus for detachably sealing the fitment to a sterilizing chamber and placing it in position for insertion of the filling tube which ruptures the membrane and permits the aseptic introductionmore » of product to the container's interior. The other outer flange is secured to an opening in a wall of the flexible container. The joined fitment and container are presterilized prior to filling. Selected materials for the multi-ply container walls and the fitment permit the container to withstand gamma ray and other sterilization treatment, heat and pressure while maintaining required strength. After the container is aseptically filled, such as with flowable food product, the fill tube is withdrawn and a lid is hermetically sealed onto the rim of the fitment. A heat shield adjacent a container wall surrounds the fitment to protect the container from excessive heat generated by the associated filling apparatus during filling.« less

  12. Effects of mild processing pressures on the performance of dry powder inhaler formulations for inhalation therapy. 1: Budesonide and lactose.

    PubMed

    Marek, Steve R; Donovan, Martin J; Smyth, Hugh D C

    2011-05-01

    Batch-to-batch variability, whereby distinct batches of dry powder inhaler formulations, though manufactured with identical components and specifications, may exhibit significant variations in aerosol performance, is a major obstacle to consistent and reproducible drug delivery for inhalation therapy. This variability may arise from processing or manufacturing effects that have yet to be investigated. This study focused on the potential effects of mild compression forces experienced during powder manufacture and transport (such as during the filling of, or storage in, a hopper) on the flowability and aerosol performance of a lactose-based dry powder inhaler formulation. Different grades of inhalation lactose were subjected to typical compression forces by either placing a weight of known mass on the sample or by using a Texture Analyzer to apply a constant force while measuring the distance of compaction. Powder flowability was evaluated with a rotating drum apparatus by imaging the avalanching of the powder over time. The average avalanche angle and avalanche time were used to determine the flowability of each sample, both before and after compression treatment. Aerosol performance of treated and untreated lactose/budesonide blends (2% (w/w)) was assessed in dispersion studies using a next generation impactor. At compression forces in excess of 5 kPa, the flowability of milled lactose was decreased relative to the untreated sample. Compression of lactose prior to blending caused a decrease in in vitro aerosol dispersion performance. However, dispersion performance was unchanged when compression occurred subsequent to drug blending. In contrast, inhalation grade sieved lactose, differing from the milled grade with a lower concentration of lactose fines (<10 μm) and larger overall particle sizes, exhibited no statistical differences in either flowability or dispersion performance across all experimental treatments. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to mild processing pressures is hypothesized to be the cause of these observed performance variations. It was shown that simulations of storage and transport in an industrial scale hopper can induce significant variations in formulation performance, and it is speculated that this could be a source of batch-to-batch variations. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less

  14. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio.

    PubMed

    Beun, Sébastien; Bailly, Christian; Dabin, Anne; Vreven, José; Devaux, Jacques; Leloup, Gaëtane

    2009-02-01

    The purpose of this study was to investigate the rheological behavior of resin composites and to evaluate the influence of each component, organic as well as inorganic, on their viscoelastic properties by testing model experimental formulations. Several unfilled mixtures of 2,2-bis-[4-(methacryloxy-2-hydroxy-propoxy)-phenyl]-propane (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) were prepared as well as experimental flowable resin composites using a Bis-GMA/TEGDMA 50/50 wt% mixture as organic fraction filled at 60% in weight with varying ratios of silanated barium glass (1 microm) and partially hydrophobic fumed silica (0.1 microm). Their rheological properties were investigated using dynamic oscillatory rheometers. Transmission electron microscopy (TEM) was also performed to investigate the spatial organization of the filler particles. Unfilled Bis-GMA/TEGDMA mixtures all showed a Newtonian behavior. The experimental flowable resin composites were non-Newtonian, shear-thinning fluids. As the quantity of microfiller increased, the viscosity increased and the shear-thinning behavior increased as well. In addition, the experimental composites showed thixotropy, i.e. their viscosity is a function of time after deformation. All these properties were not specifically linked to the creation and destruction of a visible network between inorganic particles, as no difference could be seen between particles' spatial organization at the equilibrium rest state or immediately after deformation. The complex viscoelastic properties of resin composites are due to interactions between microfiller and monomer molecules. Modifying the chemical and physical properties of the particles' surface could possibly improve their flow properties and thus their clinical handling performances.

  15. Depth of Cure of New Flowable Composite Resins

    DTIC Science & Technology

    2012-03-30

    Flowable composites were introduced to the dental community in the late 1990’s (Ikeda, 2009; Bayne, 1998). The advantage of flowable composite-based...Depth of Cure of New Flowable Composite Resins A THESIS Presented to the Faculty of The Air Force Postgraduate Dental School...SCIENCE In Oral Biology By Inaam A. Pedalino, BS, DDS Dunn Dental Clinic Lackland AFB, TX 30 March 2012 Depth of Cure of New

  16. Microshear bond strength of composite resins to enamel and porcelain substrates utilizing unfilled versus filled resins.

    PubMed

    Najafi-Abrandabadi, Ahmad; Najafi-Abrandabadi, Siamak; Ghasemi, Amir; Kotick, Philip G

    2014-11-01

    Failures such as marginal discoloration and composite chipping are still the problems of tooth-colored restorations on the substrate of enamel and porcelain, which some of these problems are consequently as a result of failures in the bonding layer. Using filled resin has been recently introduced to increase the bond strength of this layer. The aim of this study was to compare the microshear bond strength (μ-SBS) of composite resins to enamel incubated in periods of 24 h and 9 months and porcelain with unfilled resin and flowable composites (filled resin). In this in vitro study, two groups of 75 enamel samples with different storage times (24 h and 9 months) and a group of 75 porcelain samples were used. They were divided into 5 experimental groups of 15 samples in each. Composite cylinders in tygon tubes were bonded on the surface of acid-etched enamel and pretreated porcelain. Wave, Wave MV, Wave HV, Grandioflow and Margin Bond were used as bonding agents. The μ-SBS was measured at the speed of 1.0 mm/min. The bond strengths were analyzed with one-way analysis of variance (ANOVA) test followed by Tukey test. P < 0.05 was selected as the level of statistical significance in this study. The results showed that for enamel (24 h), the μ-SBS of the Wave MV and Wave HV groups were significantly lower than the Margin Bond group. Tukey test indicated the absence of a significant difference between the μ-SBS of the Wave group and the Margin Bond group. However, the μ-SBS of the Grandioflow group was significantly higher than the one for the Margin Bond as a bonding agent. In enamel (9 months), there was a significant difference between the Grandioflow and Margin Bond groups. Regarding bonding to the porcelain the one-way ANOVA test did not show a significant difference among the groups. This study revealed that flowable composites (filled resins) can be used instead of unfilled resins in bonding composite resins to enamel and porcelain substrates.

  17. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.« less

  18. 78 FR 69666 - Notice of Receipt of Requests To Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... stakeholders including environmental, human health, and agricultural advocates; the chemical industry... Liquid Pentachloronitrobenz Flowable. ene. 005481-00442 PCNB Flowable RTU Pentachloronitrobenz Seed... Liquid Pentachloronitrobenz Flowable Seed ene. Treatment Fungicide. 005481-00450 PCNB 20% WDG Soil...

  19. Reinforcement of flowable dental composites with titanium dioxide nanotubes.

    PubMed

    Dafar, Manal O; Grol, Matthew W; Canham, Peter B; Dixon, S Jeffrey; Rizkalla, Amin S

    2016-06-01

    Flowable dental composites are used as restorative materials due to their excellent esthetics and rheology. However, they suffer from inferior mechanical properties compared to conventional composites. The aim of this study was to reinforce a flowable dental composite with TiO2 nanotubes (n-TiO2) and to assess the effect of n-TiO2 surface modifications on the mechanical properties of the reinforced composite. n-TiO2 were synthesized using an alkaline hydrothermal process and then functionalized with silane or methacrylic acid (MA). Nanotubes were characterized by scanning and transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Commercially available flowable composite (Filtek™ Supreme Ultra Flowable Restorative, 3M ESPE) was reinforced with varying amounts of nanotubes (0-5wt%). Flowability of the resulting composites was evaluated using a Gillmore needle method. Dynamic Young's modulus (E) was measured using an ultrasonic technique. Fracture toughness (KIc) was assessed using a notchless triangular prism and radiopacity was quantified. Viability of NIH/3T3 fibroblasts was evaluated following incubation on composite specimens for 24h. Electron microscopy revealed a tubular morphology of n-TiO2. All reinforced composites exhibited significantly greater values of E than unreinforced composite. Composites reinforced with 3wt% n-TiO2 functionalized with MA exhibited the greatest values of E and KIc. Cytotoxicity assays revealed that reinforced composites were biocompatible. Taken together, flowable composites reinforced with n-TiO2 exhibited mechanical properties superior to those of unreinforced composite, with minimal effects on flowability and radiopacity. n-TiO2-reinforced flowable composites are promising materials for use in dental restorations. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.

    PubMed

    Baroudi, Kusai; Silikas, Nick; Watts, David C

    2009-01-01

    The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.

  1. Physico-mechanical and thermal characteristics of commercially available and newly developed dental flowable composites

    NASA Astrophysics Data System (ADS)

    Kamalak, Hakan; Canbay, C. Aksu; Yiğit, Oktay; Altin, Serdar

    2018-03-01

    In this study, we investigated the structural stability, thermal conductivity, thermal analysis, materials' homogeneity of newly developed flowable composites. 6 different dental flowable composite resins; Grandio Flow (GF), Charisma Flow (CF), Tetric N Flow (TNF), Clearfil Majesty Flow (CMF),3M Filtek Ultimate Flow (3MFU), Voco Amaris Flow (VFA) were used. Restorations were made in standard teflon molds and the materials were light-cured for 20s in a 6 mm × 2 mm teflon mould. After polymerization, samples were kept in distilled water at 37 °C/24 h .It was found that the composites have multiphase component such as metallic dopant and organic binder. The XRD investigation showed that there was a broad halo in the pattern which indicates the organic section in the composites. The FTIR results indicate the bond structure of the composites. The temperature dependence of the thermal conductivity of the composites were found below to 5 mW/K value depending on the type of the composites, which are low enough for dental application. The micro-hardness of the samples was analyzed and the result was compared.

  2. Surface and microstructural properties of photocatalytic cements for pavement applications.

    DOT National Transportation Integrated Search

    2016-10-01

    Thin concrete inlays incorporating flowable fibrous concrete (FFC) mix designs as well as titanium dioxide (TiO2)- containing photocatalytic cements are a promising pavement preservation solution. These multi-functional inlays offer enhanced construc...

  3. Morphological diversity of nitroguanidine crystals with enhanced mechanical performance and thermodynamic stability

    NASA Astrophysics Data System (ADS)

    Luo, Zhilong; Cui, Yingdan; Dong, Weibing; Xu, Qipeng; Zou, Gaoxing; Kang, Chao; Hou, Baohong; Chen, Song; Gong, Junbo

    2017-12-01

    Nitroguanidine (NQ) is a commonly used explosive, which has been widely used for both civilian and military explosive applications. However, the weak flowability and mechanical performance limit its application. In this work, mechanical performance and thermodynamic stability of NQ crystals were improved by controlling crystal morphologies in the crystallization process. Typical NQ crystals with multiple morphologies and single crystal form were obtained in the presence of additives during the cooling crystallization. The morphology controlled NQ crystals showed higher density, unimodal crystal size distribution and enhanced flowability. The additives showed the inhibitory effect on the nucleation of NQ crystals by in-situ FBRM and PVM determination, and the mechanism was analyzed by means of morphological prediction and molecular simulation. Furthermore, the morphology controlled NQ crystals suggested higher thermodynamic stability according to the calculation of entropy, enthalpy, Gibbs free energy and apparent activation energy on the basis of DSC results.

  4. Radiopacity of flowable composite by a digital technique.

    PubMed

    Dukić, W; Delija, B; Lešić, S; Dubravica, I; Derossi, D

    2013-01-01

    The aim of this in vitro study was to evaluate the radiopacity of 19 current dental flowable composite materials by a digital technique. Digital radiographs were obtained with a CCD sensor using an aluminum step wedge, a 1-mm-thick tooth slice, and a 1-mm-thick flowable composite specimen using five different combinations of exposure and voltage. The radiopacity in pixels was determined using Digora 2.6. software. The equivalent thickness of aluminum for each material was then calculated based on the calibration curve. All of the tested flowable composite materials had higher radiopacities than that of dentin, but in almost every combination of exposure and voltage, there were some composite materials that exhibited radiopacities equal to or slightly greater than enamel p>α; α=0.01). Of the flowable composite materials tested, 37% showed lower radiopacities than enamel, and 21% of the tested materials had higher radiopacities than the 3-mm aluminum equivalent. The highest radiopacity at all exposure values was produced by the Majesty Flow and Charisma Opal Flow materials, which had radiopacities almost twice that of enamel. Flowable composite materials should have radiopacities greater than that of enamel (ISO 4049), an important consideration for the introduction of new materials to the market. The digital radiopacity analysis techniques used in this study provide an easy, reliable, rapid, and precise method to characterize radiopacity of dental flowable composite materials.

  5. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites.

    PubMed

    Bucuta, Stefan; Ilie, Nicoleta

    2014-11-01

    The aim of this study was to quantify the blue light that passes through different incremental thicknesses of bulk fill in comparison to conventional resin-based composites (RBCs) and to relate it to the induced mechanical properties. Seven bulk fill, five nanohybrid and two flowable RBCs were analysed. Specimens (n = 5) of three incremental thicknesses (2, 4 and 6 mm) were cured from the top for 20 s, while at the bottom, a spectrometer monitored in real time the transmitted irradiance. Micro-mechanical properties (Vickers hardness, HV, and indentation modulus, E) were measured at the top and bottom after 24 h of storage in distilled water at 37 °C. Electron microscope images were taken for assessing the filler distribution and size. Bulk fill RBCs (except SonicFill) were more translucent than conventional RBCs. Low-viscosity bulk fill materials showed the lowest mechanical properties. HV depends highly on the following parameters: material (ηp (2) = 0.952), incremental thickness (0.826), filler volume (0.747), filler weight (0.746) and transmitted irradiance (0.491). The bottom-to-top HV ratio (HVbt) was higher than 80 % in all materials in 2- and 4-mm increments (except for Premise), whereas in 6-mm increments, this is valid only in four bulk fill materials (Venus Bulk Fill, SDR, x-tra fil, Tetric EvoCeram Bulk Fill). The depth of cure is dependent on the RBC's translucency. Low-viscosity bulk fill RBCs have lower mechanical properties than all other types of analysed materials. All bulk fill RBCs (except SonicFill) are more translucent for blue light than conventional RBCs. Although bulk fill RBCs are generally more translucent, the practitioner has to follow the manufacturer's recommendations on curing technique and maximum incremental thickness.

  6. Study of flowability effect on self-planarization performance at SOC materials

    NASA Astrophysics Data System (ADS)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  7. Superconducting cable connections and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less

  8. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.

    PubMed

    Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin

    2017-08-01

    The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Towards High-Energy-Density Pseudocapacitive Flowable Electrodes by the Incorporation of Hydroquinone

    DOE PAGES

    Boota, M.; Hatzell, K. B.; Kumbur, E. C.; ...

    2015-01-29

    Our study reports an investigation of hydroquinone (HQ) as a multielectron organic redox molecule to enhance the performance of flowable electrodes. Moreover, two different methods to produce high-performance pseudocapacitive flowable electrodes were investigated for electrochemical flow capacitors. First, HQ molecules were deposited on carbon spheres (CSs) by a self-assembly approach using various HQ loadings. In the second approach, HQ was used as a redox-mediating agent in the electrolyte. Flowable electrodes composed of HQ showed a capacitance of 342 Fg 1, which is >200% higher than that of flowable electrodes based on nontreated CSs (160 Fg 1), and outperformed (in gravimetricmore » performance) many reported film electrodes. A similar trend in capacitance was observed if HQ was used as a redox agent in the electrolyte; however, its poor cycle life restricted further consideration. Additionally, a twofold increase in capacitance was observed under flow conditions compared to that of previous studies.« less

  10. The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations.

    PubMed

    Belli, S; Inokoshi, S; Ozer, F; Pereira, P N; Ogata, M; Tagami, J

    2001-01-01

    This in vitro study evaluated the interfacial integrity of Class II resin composite restorations. The influence of a flowable composite and additional enamel etching was also evaluated. Deep, saucer-shaped Class II cavities were prepared in the mesial and distal proximal surfaces of 25 extracted human molars and assigned to five treatment groups. The gingival margins were extended to approximately 1 mm above the CEJ in 40 cavities and below the CEJ in 10 cavities. The prepared cavities were then restored with a self-etching primer system (Clearfil Liner Bond II) and a hybrid resin composite (Clearfil AP-X), with and without a flowable composite (Protect Liner F) and additional enamel etching with 37% phosphoric acid gel (K-etchant). After finishing, polishing and thermocycling (4 and 60 degrees C, x300), the samples were longitudinally sectioned through the restorations and resin-tooth interfaces were observed directly under a laser scanning microscope. Statistical analysis indicated that the use of a flowable composite produced significantly more (p = 0.04) gap-free resin-dentin interfaces than teeth restored without the flowable composite. However, both flowable composite and enamel etching could not prevent gap formation at enamel-resin interfaces and crack formation on enamel walls.

  11. Design and application of low compaction energy concrete for use in slip-form concrete paving.

    DOT National Transportation Integrated Search

    2009-01-01

    Slipform self-consolidating concrete (SFSCC) requires sufficient flowability in order to consolidate without the use of internal vibration. However, this concrete must also gain sufficient green strength in order to keep its shape immediately after s...

  12. Evaluation of the pH of a Self-Adhesive Flowable Composite Over 3 Months

    DTIC Science & Technology

    2016-04-01

    Flowable Materials. Dental Research Journal 2012; 9(4): 460-465. 12. Goracci C, Margvelashvili M, Giovannetti A, Vichi A, Ferrari M: Shear Bond...responsible for the vast field of current products on the dental market today. These developments have led researchers to focus on combining the...reduces internal voids. Some studies even show better marginal adaptation when a flowable composite is used, though some research shows it doesn’t

  13. Metal sulfide electrodes and energy storage devices thereof

    DOEpatents

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  14. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  15. Multi-species mating disruption in cranberries (Ericales: Ericaceae): Early evidence using a flowable emulsion

    USDA-ARS?s Scientific Manuscript database

    Pheromone-based mating disruption has proven to be a powerful pest management tool in many cropping systems, helping to reduce reliance on insecticide applications. However, a sustainable mating disruption program has not yet been developed for cranberries. In the cranberry system, two of the major ...

  16. Flowability of JSC-1a

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Wilkinson, Allen; Elliot, Alan; Young, Carolyn

    2009-01-01

    We have done a complete flowability characterization of the lunar soil simulant, JSC-1a, following closely the ASTM-6773 standard for the Schulze ring shear test. The measurements, which involve pre-shearing the material before each yield point, show JSC-1a to be cohesionless, with an angle of internal friction near 40 deg. We also measured yield loci after consolidating the material in a vibration table which show it to have significant cohesion (approximately equal to 1 kPa) and an angle of internal friction of about 60 deg. Hopper designs based on each type of flowability test differ significantly. These differences highlight the need to discern the condition of the lunar soil in the specific process where flowability is an issue. We close with a list not necessarily comprehensive of engineering rules of thumb that apply to powder flow in hoppers.

  17. Self-Healing Technologies for Wiring and Surfaces in Aerospace and Deep Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Williams, Martha Kay; Gibson, Tracy L.; Jolley, Scott T.; Caraccio-Meier, Anne Joan

    2017-01-01

    Self-healing technologies have been identified as critical technology gaps for future exploration. NASA and KSC have been working in this area for multiple years with established intellectual property; however, there are many challenges that remain in this area of research. How do we mimic what the body does so naturally when we as NASA have unique requirements? We have been investigating several mechanisms for self-healing: microencapsulation with a healant core to fill in voids in the case of mechanical puncture and flowable (or sealable)systems that have inherent chemical properties that allow the materials to flow back together when cut or damaged. The microcapsules containing healant have to be durable and robust, must be able to take high temperatures to meet NASA unique requirements, provide good capillary flow of the healant, and be small in diameters to fill in damage voids in thin films or surfaces. Sealable systems have to flow in a range of temperatures and yet be lightweight and chemically resistant. The systems currently being developed are based on polyimide and polyurethane matrices and have been studied for use in high performance wiring systems, inflatable systems, and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements and increase the safety and reliability performance of critical systems. Advances in these self-healing technologies and some of the unique challenges needed to be overcome in order to incorporate a self-healing mechanism into wiring or thin films systems will be addressed.

  18. Mechanical properties of dust collected by dust separators in iron ore sinter plants.

    PubMed

    Lanzerstorfer, Christof

    2015-01-01

    The flow-related mechanical properties of dusts from the de-dusting systems of several sinter plants were investigated. The mass median diameters of the dusts were in the range from approximately 3 to 100 µm. Also, the bulk density of the dusts varied in a wide range (approximately 400 to 2300 kg/m³). A good correlation between the bulk density and the mass median diameter for most of the dusts was found. In contrast, the angles of repose did not vary very much, only for the coarsest dust a significantly lower value was measured. The angles of internal friction as well as the wall friction angles were lower for coarse dust and higher for fine dust. The shear tests showed that both angles depend considerably on the stress level. At low stress, the angles decreased significantly with increasing values of stress, whereas at higher stress, the dependence was small or even disappeared. The only exception to this behaviour was shown by the finest dust. The flowability decreased with the particle size. The flowability categories suggested by the three flowability indicators were passable only for the coarser dusts. For the finer dusts, the flowability was overestimated by all flowability indicators.

  19. Experiments on fuel heating for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1982-01-01

    An experimental jet fuel with a -33 C freezing point was chilled in a wing tank simulator with superimposed fuel heating to improve low temperature flowability. Heating consisted of circulating a portion of the fuel to an external heat exchanger and returning the heated fuel to the tank. Flowability was determined by the mass percent of unpumpable fuel (holdup) left in the simulator upon withdrawal of fuel at the conclusion of testing. The study demonstrated that fuel heating is feasible and improves flowability as compared to that of baseline, unheated tests. Delayed heating with initiation when the fuel reaches a prescribed low temperature limit, showed promise of being more efficient than continuous heating. Regardless of the mode or rate of heating, complete flowability (zero holdup) could not be restored by fuel heating. The severe, extreme-day environment imposed by the test caused a very small amount of subfreezing fuel to be retained near the tank surfaces even at high rates of heating. Correlations of flowability established for unheated fuel tests also could be applied to the heated test results if based on boundary-layer temperature or a solid index (subfreezing point) characteristic of the fuel.

  20. Development and testing of novel bisphenol A-free adhesives for lingual fixed retainer bonding.

    PubMed

    Iliadi, Anna; Eliades, Theodore; Silikas, Nick; Eliades, George

    2017-02-01

    To comparatively evaluate the properties of two BPA-free experimental adhesives (EXA, EXB) for lingual fixed retainer bonding versus a commercially available reference material (Transbond LR-TLR) based on BPA-compound. The experimental materials were a flowable 60 per cent glass filler-filled UEDMA/TEGDMA flowable composite (EXB) and a 70 per cent glass filler-filled paste composite with PCDMA/UEDMA/TEGDMA co-monomers. The properties tested were degree of conversion (DC%), mechanical properties (Martens hardness-MH, elastic modulus-E IT , elastic index-n IT ), effect of prolonged (6 months) water storage (changes in Vickers microhardness-VHN) and pull-out strength employing a multi-stranded wire. EXB showed the highest DC% (63.6 per cent), followed by EXA (50.5 per cent) and TRL (44.1 per cent), with all means differences being statistically significant (P < 0.05). The statistical rankings of MH (MPa) and E IT (GPa) means were TLR (76.1MPa; 17.3GPa) > EXA (53MPa; 12.9GPa) > EXB (12.9MPa; 6.7GPa), whereas for n IT, EXB (40 per cent) > EXA (34.9 per cent), TLR (33.6 per cent). All materials were affected by prolonged water storage with significant differences among them in VHN. TLR was the most affected material (ΔVHN = -11 per cent), followed by EXA (ΔVHN = -6.8 per cent) and EXB (ΔVHN = -4.2 per cent). No statistically significant differences were found in the pull-out strength testing (24-24.2 N range) and failure mode (70-77 per cent mixed). Considering the differences between the two experimental materials, it may be concluded that the material containing the PCDMA/UEDMA/TEGDMA co-monomers may be used as an alternative to the control. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Setting Ideal Lubricant Mixing Time for Manufacturing Tablets by Evaluating Powder Flowability.

    PubMed

    Nakamura, Shohei; Yamaguchi, Saori; Hiraide, Rikiha; Iga, Kumi; Sakamoto, Takatoshi; Yuasa, Hiroshi

    2017-10-01

    We investigated the effectiveness of using Carr's flowability index (FI) and practical angle of internal friction (Φ) as indexes for setting the target Mg-St mixing time needed for preparing tablets with the target physical properties. We used FI as a measure of flowability under non-loaded conditions, and Φ as a measure of flowability under loaded conditions for pharmaceutical powders undergoing direct compression with varying concentrations of Mg-St and mixing times. We evaluated the relationship between Mg-St mixing conditions and pharmaceutical powder flowability, analyzed the correlation between the physical properties of the tablets (i.e., tablet weight variation, drug content uniformity, hardness, friability, and disintegration time of tablets prepared using the pharmaceutical powder), and studied the effect of Mg-St mixing conditions and pharmaceutical powder flowability on tablet properties. Mg-St mixing time highly correlated with pharmaceutical powder FI (R 2  = 0.883) while Mg-St concentration has low correlation with FI, and FI highly correlated with the physical properties of the tablet (R 2 values: weight variation 0.509, drug content variation 0.314, hardness 0.525, friability 0.477, and disintegration time 0.346). Therefore, using pharmaceutical powder FI as an index could enable prediction of the physical properties of a tablet without the need for tableting, and setting the Mg-St mixing time by using pharmaceutical powder FI could enable preparation of tablets with the target physical properties. Thus, the FI of the intermediate product (i.e., pharmaceutical powder) is an effective index for controlling the physical properties of the finished tablet.

  2. Effects of rheology and viscosity of biobased adhesives on bonding performance

    USDA-ARS?s Scientific Manuscript database

    Rheology is the science of deformation and flow of the matter due to the application of a force. Most rheological tests involve applying a force to a material and measuring its flow or change in shape. Rheological characterization is useful to study the flowability and viscoelastic properties of adh...

  3. Randomized Clinical Trial of a Self-Adhering Flowable Composite for Class I Restorations: 2-Year Results.

    PubMed

    Sabbagh, J; Dagher, S; El Osta, N; Souhaid, P

    2017-01-01

    Objectives. To compare the clinical performances of a self-adhering resin composite and a conventional flowable composite with a self-etch bonding system on permanent molars. The influence of using rubber dam versus cotton roll isolation was also investigated. Materials and Methods. Patients aged between 6 and 12 years and presenting at least two permanent molars in need of small class I restorations were selected. Thirty-four pairs of restorations were randomly placed by the same operator. Fifteen patients were treated under rubber dam and nineteen using cotton rolls isolation and saliva ejector. They were evaluated according to the modified USPHS criteria at baseline, 6 months, and 1 and 2 years by two independent evaluators. Results. All patients attended the two-year recall. For all measured variables, there was no significant difference between rubber dam and cotton after 2 years of restoration with Premise Flowable or Vertise Flow ( p value > 0.05). The percentage of restorations scored alpha decreased significantly over time with Premise Flowable and Vertise Flow for marginal adaptation and surface texture as well as marginal discoloration while it did not vary significantly for color matching. After 2 years, Vertise Flow showed a similar behaviour to the Premise Flowable used with a self-adhesive resin system.

  4. Refined avian risk assessment for chlorpyrifos in the United States.

    PubMed

    Moore, Dwayne R J; Teed, R Scott; Greer, Colleen D; Solomon, Keith R; Giesy, John P

    2014-01-01

    Refined risk assessments for birds exposed to flowable and granular formulations ofCPY were conducted for a range of current use patterns in the United States. Overall,the collective evidence from the modeling and field study lines of evidence indicate that flowable and granular CPY do not pose significant risks to the bird communities foraging in agro-ecosystems in the United States. The available information indicates that avian incidents resulting from the legal, registered uses of CPY have been very infrequent since 2002 (see SI Appendix 3). The small number of recent incidents suggests that the current labels for CPY are generally protective of birds.However, incident data are uncertain because of the difficulties associated with finding dead birds in the field and linking any mortality observed to CPY.Plowable CPY is registered for a variety of crops in the United States including alfalfa, brassica vegetables, citrus, corn, cotton, grape, mint, onion, peanut, pome and stone fruits, soybean, sugar beet, sunflower, sweet potato, tree nuts, and wheat under the trade name Lorsban Advanced. The major routes of exposure for birds to flowable CPY were consumption of treated dietary items and drinking water. The Liquid Pesticide Avian Risk Assessment Model (Liquid PARAM) was used to simulate avian ingestion of CPY by these routes of exposure. For acute exposure,Liquid PARAM estimated the maximum retained dose in each of 20 birds on each of1,000 fields that were treated with CPY over the 60-d period following initial application.The model used a 1-h time step. For species lacking acceptable acute oral toxicity data (all focal species except northern bobwhite (C. virginianus) and redwinged blackbird (A. phoeniceus)), a species sensitivity distribution (SSD) approach was used to generate hypothetical dose-response curves assuming high, median and low sensitivity to CPY. For acute risk, risk curves were generated for each use pattern and exposure scenario. The risk curves show the relationship between exceedence probability and percent mortality. The results of the Liquid PARAM modeling exercise indicate that flow able CPY poses an acute risk to some bird species, particularly those species that are highly sensitive and that forage extensively in crops with high maximum application rates (e.g., grapefruit, orange). Overall, most bird species would not experience significant mortality as a result of exposure to flowable CPY.The results of a number of field studies conducted at application rates comparable to those on the Lorsban Advanced label indicate that flowable CPY rarely causes avian mortality. The results of the field studies suggest that Liquid PARAM is likely over-estimating acute risk to birds for flowable CPY.For chronic exposure, Liquid PARAM estimated the maximum total daily intake (TDI) over a user-specified exposure duration (28-d in the case of CPY).The maximum average TDI was compared to the chronic NOEL and LOEL from the most sensitive species tested for CPY, the mallard. This comparison was done for each of the 20 birds in each of the 1000 fields simulated in Liquid PARAM.The outpu· ~ are estimates of the probabilities of exceeding the NOEL and LOEL.Liquid PAkAM did not predict significant adverse effects resulting from chronic exposure to flowable CPY. The small number of incidents (2) involving CPY reported since 2002 suggests that the current labels for CPY are generally protective of birds.Granular CPY is registered for a wide variety of crops including brassica vegetables, corn, onion, peanut, sugar beet, sunflower, and tobacco under the trade name Lorsban 15G. Consumption of grit is required by many birds to aid in digestion of hard dietary items such as seeds and insects. Because CPY granules are in the same size range as natural grit particles consumed by birds, there is a potential for birds to mistakenly ingest granular CPY instead of natural grit. We developed the Granular Pesticide Avian Risk Model (GranPARAM) to simulate grit ingestion behavior by birds. The model accounts for proportion of time that birds forage for grit in treated fields, relative proportions of natural grit versus pesticide granules onthe surface of treated fields, rates of ingestion of grit, attractiveness of pesticide granules relative to natural grit and so on. For CPY, each model simulation included20 birds on each of 1,000 fields to capture variability in rates of ingestion of grit and for aging behavior between birds within a focal species, and variability in soil composition between fields for the selected use pattern. The estimated dose for each birdwas compared with randomly chosen doses from relevant dose-response curves forCPY. Our analysis for a wide variety of use patterns on the Lorsban 15G label found that granular CPY poses little risk of causing mortality to bird species that frequent treated fields immediately after application. The predictions of the model have been confirmed in several avian field studies conducted with Lorsban 15G at application rates similar to or exceeding maximum application rates on the Lorsban 15G label.

  5. Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel.

    PubMed

    Shilo, Shani; Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-07-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds.

  6. Cutaneous Wound Healing After Treatment with Plant-Derived Human Recombinant Collagen Flowable Gel

    PubMed Central

    Roth, Sigal; Amzel, Tal; Harel-Adar, Tamar; Tamir, Eran; Grynspan, Frida; Shoseyov, Oded

    2013-01-01

    Chronic wounds, particularly diabetic ulcers, represent a main public health concern with significant costs. Ulcers often harbor an additional obstacle in the form of tunneled or undermined wounds, requiring treatments that can reach the entire wound tunnel, because bioengineered grafts are typically available only in a sheet form. While collagen is considered a suitable biodegradable scaffold material, it is usually extracted from animal and human cadaveric sources, and accompanied by potential allergic and infectious risks. The purpose of this study was to test the performance of a flowable gel made of human recombinant type I collagen (rhCollagen) produced in transgenic tobacco plants, indicated for the treatment of acute, chronic, and tunneled wounds. The performance of the rhCollagen flowable gel was tested in an acute full-thickness cutaneous wound-healing rat model and compared to saline treatment and two commercial flowable gel control products made of bovine collagen and cadaver human skin collagen. When compared to the three control groups, the rhCollagen-based gel accelerated wound closure and triggered a significant jumpstart to the healing process, accompanied by enhanced re-epithelialization. In a cutaneous full-thickness wound pig model, the rhCollagen-based flowable gel induced accelerated wound healing compared to a commercial product made of bovine tendon collagen. By day 21 post-treatment, 95% wound closure was observed with the rhCollagen product compared to 68% closure in wounds treated with the reference product. Moreover, rhCollagen treatment induced an early angiogenic response and induced a significantly lower inflammatory response than in the control group. In summary, rhCollagen flowable gel proved to be efficacious in animal wound models and is expected to be capable of reducing the healing time of human wounds. PMID:23259631

  7. Method to study the effect of blend flowability on the homogeneity of acetaminophen.

    PubMed

    Llusá, Marcos; Pingali, Kalyana; Muzzio, Fernando J

    2013-02-01

    Excipient selection is key to product development because it affects their processability and physical properties, which ultimately affect the quality attributes of the pharmaceutical product. To study how the flowability of lubricated formulations affects acetaminophen (APAP) homogeneity. The formulations studied here contain one of two types of cellulose (Avicel 102 or Ceollus KG-802), one of three grades of Mallinckrodt APAP (fine, semi-fine, or micronized), lactose (Fast-Flo) and magnesium stearate. These components are mixed in a 300-liter bin blender. Blend flowability is assessed with the Gravitational Displacement Rheometer. APAP homogeneity is assessed with off-line NIR. Excluding blends dominated by segregation, there is a trend between APAP homogeneity and blend flow index. Blend flowability is affected by the type of microcrystalline cellulose and by the APAP grade. The preliminary results suggest that the methodology used in this paper is adequate to study of the effect of blend flow index on APAP homogeneity.

  8. Jacketed lamp bulb envelope

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Gitsevich, Aleksandr; Bass, Gary K.; Dolan, James T.; Kipling, Kent; Kirkpatrick, Douglas A.; Leng, Yongzhang; Levin, Izrail; Roy, Robert J.; Shanks, Bruce; Smith, Malcolm; Trimble, William C.; Tsai, Peter

    2001-01-01

    A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

  9. The effects of physical and chemical preprocessing on the flowability of corn stover

    DOE PAGES

    Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; ...

    2015-12-20

    Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less

  10. The effects of physical and chemical preprocessing on the flowability of corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Nathan C.; Nagle, Nick; Sievers, David A.

    Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less

  11. The green highway forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    In late 2004, as part of American Coal Ash Association's (ACAA) strategic planning process, a plan was approved by its Board of Directors implementing a 'green highways' concept which emphasized use of coal combustion products (CCPs) in highways in a variety of ways including being used alone, in combination with other forms of CCPs, and combined with non ash materials. The incentives behind the developed concept were the derived advantages from beneficial technical economic and environmental impacts. Although the primary use of fly ash is concrete, other forms of CCPs could be considered for more non-traditional highway applications. For example,more » these might include soils stabilization, binders for in-place pavement recycling, use in flowable fills, aggregates, source materials for structural fills and embankments, components in manufactured soils, and for granular base courses beneath pavements. At this same time, unknown to ACCA, EPA Region 3 in Philadelphia was working with the Wetlands and Watershed Work Group, a non-profit organization involved in wetlands policy and management along with the Federal Highway Administration (FHWA) on their own Green Highways initiative. These groups were planning a conference, the 'Green Highway Forum'. This was held in College Park, Maryland at the University of Maryland, Nov 8-10 2005. At the conference a draft 'roadmap' was presented as a guide to executive level participants bringing the diverse viewpoints of many agencies and interest groups together. Ten guiding principals were considered. The 'Green Highways' is a new effort to recognize the 'greenness' of many projects already completed and those to be initiated. 2 photos.« less

  12. 78 FR 38319 - Pesticide Maintenance Fee: Notice of Receipt of Requests to Voluntarily Cancel Certain Pesticide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... 100 Amber Herbicide Triasulfuron. 000100-00800 100 Ridomil Gold Bravo......... D-Alanine, N-(2,6- dimethylphenyl-N- (methoxyacetyl)-,methyl ester; Chlorothalonil. 000100-00848 100 Zorial Rapid 80 Herbicide...-00735 264 Sencor 4 Flowable Herbicide Metribuzin. 000264-00737 264 Bayleton 50% Dry Flowable Triadimefon...

  13. [Improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology].

    PubMed

    Zeng, Rong-Gui; Jiang, Qie-Ying; Liao, Zheng-Gen; Zhao, Guo-Wei; Luo, Yun; Luo, Juan; Lv, Dan

    2016-06-01

    To study the improvement of powder flowability and hygroscopicity of traditional Chinese medicine extract by surface coating modification technology. The 1% hydrophobic silica nanoparticles were used as surface modifier, and andrographis extract powder was taken as a model drug. Three different techniques were used for coating model drugs, with angle of repose, compressibility, flat angle and cohesion as the comprehensive evaluation indexes for the powder flowability. The powder particle size and the size distribution were measured by Mastersizer 2000. FEI scanning electron microscope was used to observe the surface morphology and structure of the powder. The percentage of Si element on the powder surface was measured by energy dispersive spectrometer. The hygroscopicity of powder was determined by Chinese pharmacopoeia method. All of the three techniques can improve the flowability of powder extract. In particular, hygroscopicity of extract powder can also be improved by dispersion and then high-speed mixing, which can produce a higher percentage of Si element on the powder surface. The improvement principle may be correlated with a modifier adhered to the powder surface. Copyright© by the Chinese Pharmaceutical Association.

  14. Sealing ability of lateral condensation, thermoplasticized gutta-percha and flowable gutta-percha obturation techniques: A comparative in vitro study.

    PubMed

    Kumar, Nallkkapalayam Somasundaram Mohan; Prabu, P S; Prabu, Neethika; Rathinasamy, Shobana

    2012-08-01

    To evaluate and compare the sealing ability between the clod lateral condensation, thermoplasticized gutta-percha, and flowable gutta-percha obturation technique, under a stereomicroscope at ×40 magnification. Sixty single rooted teeth were selected and canals were shaped with K3 NiTi files. Irrigation was performed with 5.25% NaOCl and 17% ethylenediaminetetraacetic acid (EDTA). The teeth were then separated into three groups depending on the type of obturation technique: Group A, obturated using the lateral condensation technique and AH Plus sealer; Group B, obturated with thermoplasticized gutta-percha tech (Obtura III Max) and AH Plus sealer; and Group C, obturated using flowable gutta-percha technique (GuttaFlow). After storing the teeth in 100% humidity for 7 days at 37°C, the roots of the teeth were sectioned at five levels. The sections were then observed under a stereomicroscope at ×40 magnification and the images were analyzed for area of voids (AV) and frequency of voids. The data were statistically analyzed using the SPSS version 17 software. The 95% confidence intervals (CI) were calculated. One-way analysis of variance with post hoc test and non-parametric Mann-Whitney U test were carried out to compare the means. The lowest mean of AV was recorded in the thermoplasticized gutta-percha (Obtura III Max) group [1.0% (95% CI=0.5-1.5)]. This was statistically and significantly different from flowable gutta-percha (GuttaFlow) group [3.0% (95% CI=2.1-3.9)]. There was no significant difference between the thermoplasticized gutta-percha group and lateral condensation group [1.6% (95% CI=1.0-2.2)] with regard to the AV, but there was a statistically significant difference between the lateral condensation and flowable gutta-percha groups. The flowable gutta-percha group showed the maximum number of voids [56% (95% CI=48-64)], which was significantly higher than those in the lateral condensation [26% (95% CI=19-34)] and thermoplasticized gutta-percha [15% (95% CI=10-21)] groups. The thermoplasticized gutta-percha technique (Obtura III Max) had better adaptability to the canal walls when compared to the flowable gutta-percha (GuttaFlow) obturation and lateral condensation techniques.

  15. Artificial neural network modeling of DDGS flowability with varying process and storage parameters

    USDA-ARS?s Scientific Manuscript database

    Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....

  16. Influence of etching time and bonding strategies on the microshear bond strength of self- and light-cured pit-and-fissure sealants.

    PubMed

    Souza-Junior, Eduardo José; Borges, Boniek Castillo Dutra; Montes, Marcos Antônio Japiassú Resende; Alonso, Roberta Caroline Bruschi; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mário Alexandre Coelho

    2012-01-01

    This study evaluated the impact of extended etching and bonding strategies on the microshear bond strength of three sealant materials. Two pit-and-fissure sealants [FluroShield, Dentsply (light-cured) and AlphaSeal, DFL (self-cured)] and one light-cured flowable composite resin (Permaflo, Ultradent) were evaluated according to different enamel etching times (15 s or 30 s) and bonding procedures (no adhesive application, application of primer/hydrophobic resin or hydrophobic resin only). Intact enamel blocks were obtained from bovine teeth and sealed via the tested protocols. After 24 h, the microshear bond strength test was performed in a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were classified by stereomicroscopy. Data were submitted to a three-way ANOVA and to Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) among the materials. Permaflo showed higher bond strength when etched for 30 s alone. Enamel overetching decreased the bond strength of the light-cured sealant. Primer/bond previous treatment improved bond performance for AlphaSeal. In conclusion, from the tested conditions, all sealant materials presented similar bond strength values in relation to bonding protocol and etching time. The flowable composite can be used as a pit-and-fissure sealant. The use of a three-step adhesive system was essential for the self-cured sealant application.

  17. Evaluating the Marginal Integrity of Bulk Fill Fibre Reinforced Composites in Bio-mimetically Restored Tooth.

    PubMed

    Patnana, Arun Kumar; Vanga, V Narsimha Rao; Chandrabhatla, Srinivas Kumar

    2017-06-01

    Over the past years, composites in aesthetic dentistry are showing a considerable progress, but mechanical strength and polymerization shrinkage are the two main drawbacks, which limit their use in high stress bearing areas. To evaluate the marginal integrity of short glass fibre reinforced composite restorations, fibre reinforced composites with composite superficial layer, and fibre reinforced composites with underlying flowable composite layer. This study was done on twenty eight sound premolar teeth with standardized class V cavities restored under four groups as Group I: Particulate filler composite (Filtek Z 250 XT, 3M ESPE); Group II: Short glass fibre reinforced composite (everX Posterior, GC); Group III: Short glass fibre reinforced composite with an overlying layer of particulate filler composite; Group IV: Short glass fibre reinforced composite with an underlying layer of flowable composite (Filtek Z 250 XT, 3M ESPE). Test samples were immersed in a 2% methylene blue dye for 24 hours at 37°C and each tooth was sectioned bucco-lingually. Staining along the tooth restoration interface was recorded and results were analysed statistically using Independent sample t-test and Tukey's post-hoc one-way ANOVA. The results showed significant difference in the dye penetration between the restorative materials in the occlusal and gingival margins (p=0.02). Short fibre reinforced composites showed a statistically significant difference in the microleakage scores when compared with the particulate filler composites (p=0.01). Short glass fibre reinforced composite restorations showed an improved marginal integrity when compared to the traditional particulate filler composite restorations.

  18. Investigation of the effect of impeller speed on granules formed using a PMA-1 high shear granulator.

    PubMed

    Logan, R; Briens, L

    2012-11-01

    Impeller speed was varied from 300 to 1500 rpm during the wet high shear granulation of a placebo formulation using a new vertical shaft PharmaMATRIX-1 granulator. The resulting granules were extensively analysed for differences caused by the varying impeller speed with emphasis on flowability. Microscopy showed that initial granules were formed primarily from microcrystalline cellulose at all tested impeller speeds. At low impeller speed of 300 rpm in the "bumpy" flow regime, forces from the impeller were insufficient to incorporate all the components of the formulation into the granules and to promote granule growth to a size that significantly improved flowability. The "roping" flow regime at higher impeller speeds promoted granule growth to a median particle size of at least 100 µm that improved the flowability of the mixture. Particle size distribution measurements and advanced indicators based on avalanching behavior, however, showed that an impeller speed of 700 rpm produced the largest fraction of optimal granules with the best flowability potential. This impeller speed allowed good development of "roping" flow for sufficient mixing, collision rates and kinetic energy for collisions while minimizing excessive centrifugal forces that promote buildup around the bowl perimeter.

  19. Evaluation of the polymerization shrinkage of experimental flowable composite resins through optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Carneiro, Vanda S. M.; Mota, Cláudia C. B. O.; Souza, Alex F.; Cajazeira, Marlus R. R.; Gerbi, Marleny E. M. M.; Gomes, Anderson S. L.

    2018-02-01

    This study evaluated the polymerization shrinkage of two experimental flowable composite resins (CR) with different proportions of Urethane dimethacrylate (UDMA)/triethylene glycol dimethacrylate (TEGDMA) monomers in the organic matrix (50:50 and 60:40, respectively). A commercially available flowable CR, Tetric N-Flow (Ivoclair Vivadent, Liechtenstein, Germany), was employed as the control group. The resins were inserted in a cylindrical teflon mold (7 mm diameter, 0.6 mm height) and scanned with OCT before photoactivation, immediately after and 15 minutes after light-curing (Radii-Cal, SDI, Australia, 1,200 mW/cm2 ) exposure. A Callisto SD-OCT system (Thorlabs Inc, USA), operating at 930 nm central wavelength was employed for imaging acquisition. Cross-sectional OCT images were captured with 8 mm transverse scanning (2000x512 matrix), and processed by the ImageJ software, for comparison between the scanning times and between groups. Pearson correlation showed significant shrinkage for all groups in each time analyzed. Kruskal-Wallis test showed greater polymerization shrinkage for the 50:50 UDMA/TEGDMA group (p=0.001), followed by the control group (p=0.018). TEGDMA concentration was proportionally related to the polymerization shrinkage of the flowable composite resins.

  20. Flowability of lignocellusic biomass powders: influence of torrefaction intensity

    NASA Astrophysics Data System (ADS)

    Pachón-Morales, John; Colin, Julien; Pierre, Floran; Champavert, Thibaut; Puel, François; Perré, Patrick

    2017-06-01

    The poor flowability of powders produced from raw lignocellulosic biomass may be an economically issue for the production of second-generation biofuels. Torrefaction is a pre-treatment step of the gasification process that improves the physical characteristics of biomass by making it more coal-like. Particularly, the loss of resilience allows a reduction of the grinding energy consumption and is likely to improve the flow behaviour of woody powders. In this study, we investigated the effect of particle size and shape distribution on flow properties (unconfined yield stress and flowability factor) of powder from raw and torrefied biomass (Picea abies). Several intensities of torrefaction were tested, and its extent was quantified by the global mass loss, chosen as synthetic indicator of torrefaction intensity (its accounts for both the temperature level and the residence time). The intensity of torrefaction shifts the particle size distribution towards smaller sizes. An effect on the circularity and aspect ratio was also observed. A strong, positive correlation was obtained between the measured flowability of biomass powders at different consolidation stresses and the intensity of heat treatment. These results confirm the interest of torrefaction as a pre-treatment step and aim to provide new knowledge on rheological properties of biomass powders.

  1. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  2. Process for disposing of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less

  3. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John

    2007-01-01

    To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.

  4. Options for Hardening FinFETS with Flowable Oxide Between Fins

    DTIC Science & Technology

    2017-03-01

    thus hardening by process is needed. Using the methodology of CV measurements on inexpensive experimental blanket oxides we have determined options...NY 10598 Abstract: A methodology using radiation-induced charge measurements by CV techniques on blanket oxides is shown to aid in the choice...of process options for hardening FinFETs. Net positive charge in flowable oxides was reduced by 50 % using a simple non -intrusive process change

  5. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    PubMed

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  6. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  7. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material.

    PubMed

    Yamaga, Yoshio; Kanatani, Mitsugu; Nomura, Shuichi

    2015-01-01

    The purpose of this study was to evaluate the distribution of bubbles, degree of mixing, flowability and mechanical strength of powder-liquid reline material by manually and with a rotation-revolution (planetary) mixer, and to determine the usefulness of a rotation-revolution mixer for this application. Powder-liquid reline material (Mild Rebaron, GC, Tokyo, Japan) was mixed with a powder to liquid ratio of 1:0.62 according to the manufacturer's instruction. Two methods were used to mix it: mixed by manually ("manual-mixing") and automatically with a rotation-revolution mixer (Super Rakuneru Fine, GC, Tokyo, Japan; "automatic-mixing"). Disc-shaped specimens, 30 mm in diameter and 1.0mm in thickness, were used to observe the distribution of bubbles in at 10× magnifications. Flowability tests were carried out according to the JIS T6521 for denture base hard reline materials. A three point bending test was carried out by a universal testing machine. Elastic modulus and flexural stress at the proportional limit were calculated. A median of 4 bubbles and inhomogeneous were observed in manual-mixed specimens. However, no bubbles and homogeneous were observed in automatic-mixed specimens. Flowability was within the JIS range in all mixing conditions and did not differ significantly across conditions. The elastic modulus was the same for manual-mixed and automatic-mixed specimens. On the other hand, the flexural stress at the proportional limit differed significantly between manual-mixed and automatic-mixed specimens. The results confirm that rotation-revolution mixer is useful for mixing powder-liquid reline material. Automatic-mixing may be recommended for clinical practice. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Retention and penetration of a conventional resin-based sealant and a photochromatic flowable composite resin placed on occlusal pits and fissures.

    PubMed

    Aguilar, F G; Drubi-Filho, B; Casemiro, L A; Watanabe, M G C; Pires-de-Souza, F C P

    2007-01-01

    This study compares the retention and penetration of a conventional resin-based sealant (Fluroshield) and a photochromatic flowable composite resin (Tetric Flow Chroma) placed on occlusal pits and fissures and submitted to thermal or chemical cycling regimens. Penetration assessment--ten premolars were sealed with each material, isolated (except for the sealed surface) and immersed in 0.2% Rhodamine B. The teeth were serially sectioned in a mesiodistal direction. The images of the sections were digitized and analyzed (ImageLab). The distance between the most superficial and the deepest points on the occlusal central groove was calculated to determine the groove's total depth. The length of the central groove filled with the sealant was divided by its total depth to obtain the percentage of sealing of the occlusal groove. Retention assessment--30 premolars were sealed, their occlusal surfaces were photographed and the area occupied by the sealing materials was demarcated (ImageLab). The teeth were submitted to different treatments: thermocycled, stored in artificial saliva and immersed in acetic acid and saliva (10 cycles/day protocol for 30 days). New photographs were taken to assess the final area occupied by the materials. The difference between the final and initial area was calculated to obtain the material loss. The data was analyzed (two-way ANOVA and Tukey's test P<0.05). Both materials presented similar penetration of the occlusal central groove. After thermal and chemical cycling, the materials did not differ with respect to retention, except for immersion in acetic acid. In this case, Tetric Flow Chroma presented greater retention than Fluoroshield.

  10. Novel use of a flowable collagen-glycosaminoglycan matrix (Integra™ Flowable Wound Matrix) combined with percutaneous cannula scar tissue release in treatment of post-burn malfunction of the hand--A preliminary 6 month follow-up.

    PubMed

    Hirche, C; Senghaas, A; Fischer, S; Hollenbeck, S T; Kremer, T; Kneser, U

    2016-02-01

    Long-term function following severe burns to the hand may be poor secondary to scar adhesions to the underlying tendons, webspaces, and joints. In this pilot study, we report the feasibility of applying a pasty dermal matrix combined with percutaneous cannula teno- and adhesiolysis. In this 6 month follow-up pilot study, we included eight hands in five patients with hand burns undergoing minimal-invasive, percutaneous cannula adhesiolysis and injection of INTEGRA™ Flowable Wound Matrix for a pilot study of this new concept. The flowable collagen-glycosaminoglycan wound matrix (FCGWM) was applied with a buttoned 2mm cannula to induce formation of a neo-gliding plane. Post treatment follow-up was performed to assess active range of motion (AROM), grip strength, Disabilities of the Arm, Shoulder and Hand (DASH) score, Vancouver Scar Scale (VSS) and quality of life Short-Form (SF)-36 questionnaire. No complications were detected associated with the treatment of FCGWM injection. The mean improvement (AROM) at 6 months was 30.6° for digits 2-5. The improvement in the DASH score was a mean of 9 points out of 100. The VSS improved by a mean of 2 points out of 14. The study demonstrates the feasibility and safety of percutaneous FCGWM for dermal augmentation after burn. Results from this pilot study show improvements in AROM for digits 2-5, functional scores from the patient's perspective (DASH) and scar quality (VSS). The flowable form of established INTEGRA™ wound matrix offers the advantage of minimal-invasive injection after scar release in the post-burned hand with a reduction in the risk of postsurgical re-scarring. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  12. Efficacy of hemostatic matrix and microporous polysaccharide hemospheres.

    PubMed

    Lewis, Kevin M; Atlee, Holly; Mannone, Angela; Lin, Lawrence; Goppelt, Andreas

    2015-02-01

    Microporous Polysaccharide Hemospheres (MPH) are a new plant-derived polysaccharide powder hemostat. Previous studies investigated MPH as a replacement to nonflowable hemostatic agents of different application techniques (e.g., oxidized cellulose, collagen); therefore, the purpose of this study was to determine if MPH is a surrogate for flowable hemostatic agents of similar handling and application techniques, specifically a flowable thrombin-gelatin hemostatic matrix. Hemostatic efficacy was compared using a heparinized porcine abrasion model mimicking a capsular tear of a parenchymal organ. MPH (ARISTA, 1 g) and hemostatic matrix (Floseal, 1 mL) were applied, according to a randomized scheme, to paired hepatic abrasions (40 lesions per group). Hemostatic success, control of bleeding, and blood loss were assessed 2, 5, and 10 min after treatment. Hemostatic success and control of bleeding were analyzed using odds ratios and blood loss using mean differences. Hemostatic matrix provided superior hemostatic success relative to MPH at 5 (odds ratio: 0.035, 95% confidence interval: 0.004-0.278) and 10 min (0.032, 0.007-0.150), provided superior control of bleeding at 5 (0.006, <0.001-0.037) and 10 min (0.009, 0.001-0.051), and had significantly less blood loss at 5 (mean difference: 0.3118 mL/min, 95% confidence interval: 0.0939-0.5296) and 10 min (0.5025, 0.2489-0.7561). These findings corroborate other MPH investigations regarding its low-level efficacy and suggest that MPH is not an appropriate surrogate for hemostatic matrix despite similar application techniques. The lack of a procoagulant within MPH may likely be the reason for its lower efficacy and need for multiple applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites

    PubMed Central

    Monterubbianesi, Riccardo; Orsini, Giovanna; Tosi, Giorgio; Conti, Carla; Librando, Vito; Procaccini, Maurizio; Putignano, Angelo

    2016-01-01

    Objectives: The aims of this study were to in vitro evaluate the degree of conversion and the microhardness properties of five bulk fill resin composites; in addition, the performance of two curing lamps, used for composites polymerization, was also analyzed. Materials and Methods: The following five resin-based bulk fill composites were tested: SureFil SDR®, Fill Up!™, Filtek™, SonicFill™, and SonicFill2™. Samples of 4 mm in thickness were prepared using Teflon molds filled in one increment and light-polymerized using two LED power units. Ten samples for each composite were cured using Elipar S10 and 10 using Demi Ultra. Additional samples of SonicFill2, (3 and 5 mm-thick) were also tested. The degree of conversion (DC) was determined by Raman spectroscopy, while the Vickers microhardness (VMH) was evaluated using a microhardness tester. The experimental evaluation was carried out on top and bottom sides, immediately after curing (t0), and, on bottom, after 24 h (t24). Two-ways analysis of variance was applied to evaluate DC and VMH-values. In all analyses, the level of significance was set at p < 0.05. Results: All bulk fill resin composites recorded satisfactory DCs on top and bottom sides. At t0, the top of SDR and SonicFill2 showed the highest DCs-values (85.56 ± 9.52 and 85.47 ± 1.90, respectively), when cured using Elipar S10; using Demi Ultra, SonicFill2 showed the highest DCs-values (90.53 ± 2.18). At t0, the highest DCs-values of bottom sides were recorded by SDR (84.64 ± 11.68), when cured using Elipar S10, and Filtek (81.52 ± 4.14), using Demi Ultra. On top sides, Demi Ultra lamp showed significant higher DCs compared to the Elipar S10 (p < 0.05). SonicFill2 reached suitable DCs also on bottom of 5 mm-thick samples. At t0, VMH-values ranged between 24.4 and 69.18 for Elipar S10, and between 26.5 and 67.3 for Demi Ultra. Using both lamps, the lowest VMH-values were shown by SDR, while the highest values by SonicFill2. At t24, all DC and VMH values significantly increased. Conclusions: Differences in DC and VMH among materials are suggested to be material and curing lamp dependent. Even at t0, the three high viscosity bulk composites showed higher VMH than the flowable or dual curing composites. PMID:28082918

  14. Spectroscopic and Mechanical Properties of a New Generation of Bulk Fill Composites.

    PubMed

    Monterubbianesi, Riccardo; Orsini, Giovanna; Tosi, Giorgio; Conti, Carla; Librando, Vito; Procaccini, Maurizio; Putignano, Angelo

    2016-01-01

    Objectives: The aims of this study were to in vitro evaluate the degree of conversion and the microhardness properties of five bulk fill resin composites; in addition, the performance of two curing lamps, used for composites polymerization, was also analyzed. Materials and Methods: The following five resin-based bulk fill composites were tested: SureFil SDR®, Fill Up!™, Filtek™, SonicFill™, and SonicFill2™. Samples of 4 mm in thickness were prepared using Teflon molds filled in one increment and light-polymerized using two LED power units. Ten samples for each composite were cured using Elipar S10 and 10 using Demi Ultra. Additional samples of SonicFill2, (3 and 5 mm-thick) were also tested. The degree of conversion (DC) was determined by Raman spectroscopy, while the Vickers microhardness (VMH) was evaluated using a microhardness tester. The experimental evaluation was carried out on top and bottom sides, immediately after curing (t0), and, on bottom, after 24 h (t24). Two-ways analysis of variance was applied to evaluate DC and VMH-values. In all analyses, the level of significance was set at p < 0.05. Results: All bulk fill resin composites recorded satisfactory DCs on top and bottom sides. At t0, the top of SDR and SonicFill2 showed the highest DCs-values (85.56 ± 9.52 and 85.47 ± 1.90, respectively), when cured using Elipar S10; using Demi Ultra, SonicFill2 showed the highest DCs-values (90.53 ± 2.18). At t0, the highest DCs-values of bottom sides were recorded by SDR (84.64 ± 11.68), when cured using Elipar S10, and Filtek (81.52 ± 4.14), using Demi Ultra. On top sides, Demi Ultra lamp showed significant higher DCs compared to the Elipar S10 ( p < 0.05). SonicFill2 reached suitable DCs also on bottom of 5 mm-thick samples. At t0, VMH-values ranged between 24.4 and 69.18 for Elipar S10, and between 26.5 and 67.3 for Demi Ultra. Using both lamps, the lowest VMH-values were shown by SDR, while the highest values by SonicFill2. At t24, all DC and VMH values significantly increased. Conclusions: Differences in DC and VMH among materials are suggested to be material and curing lamp dependent. Even at t0, the three high viscosity bulk composites showed higher VMH than the flowable or dual curing composites.

  15. Effect of Salivary pH on Color Stability of Different Flowable Composites - A Prospective In-vitro Study.

    PubMed

    Batra, Renu; Kataria, Pratik; Kapoor, Sonali

    2016-10-01

    Scientifically and clinically there has been lot of development in the field of aesthetic dentistry. However, there is limited or restricted information regarding the color stability of flowable composite materials. The aim of this study was to evaluate the spectrophotometric color stability of three different flowable composite materials with respect to three different pH of saliva. The study included 90 different samples. Thirty samples in each composite group; (Group A: G-aenial universal flo; Group B: Z 350 XT flowable; Group C: Esthet x flow). All samples from each group were immersed in distilled water for 24 hours. Total color difference (ΔE) was recorded for each sample. After this 10 samples from each group were respectively immersed in 6.5, 7 and 7.5 pH of artificial saliva. All samples were kept in dark room for seven days and then ΔE for each sample was recorded and was compared to previous recorded ΔE for the same sample. Maximum color change was seen irrespective of material in 6.5 pH of saliva. G-aenial universal flo showed least change irrespective of pH of saliva. Thus, the present study reveals that acidic pH level affects the coloration of composite resins by affecting the surface integrity and as reported in previous studies, various coloring agents in beverages and other dietary components assists the process due to absorption of these coloring substances into the resin matrix.

  16. The Effect of Energy Densities on the Shear Bond Strength of Self-Adhering Flowable Composite to Er:YAG Pretreated Dentin.

    PubMed

    Nahas, Paul; Zeinoun, Toni; Majzoub, Zeina; Corbani, Karim; Nammour, Samir

    2016-01-01

    Objective . To investigate the shear bond strength of self-adhering flowable resin composite, to dentin, after exposing it to Er:YAG laser radiation, at different energy densities. Materials and Methods . Sixty freshly extracted human third molars were randomly divided into five groups ( n = 12). In the control group, dentin was left unirradiated, whereas, in the other four groups, dentin was irradiated with Er:YAG laser in noncontact mode (MSP mode = 100  µ s; 10 Hz; beam diameter: 1.3 mm; speed of 1 mm/second; air 6 mL/min; and water 4 mL/min), and respectively, with the following level of energy (50 mJ, 60 mJ, 80 mJ, and 100 mJ). Then, self-adhering flowable resin composite was bonded to all prepared dentin surfaces. Shear bond strength (SBS) was applied and fractured surfaces were examined using scanning electron microscopy. Results . SBS values showed significant differences in 60 mJ ( P < 0.05) compared to other groups. Morphological evaluation revealed tags or plugs in dentinal tubules, especially when 60 mJ and 80 mJ were used. All four groups tended to leave more residues on the dentin surface, than the control group. Conclusion . Er:YAG dentin irradiation may enhance SBS of the self-adhering flowable resin composite when it is used at the appropriate low level of energy density.

  17. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions.

    PubMed

    Sumino, Natsu; Tsubota, Keishi; Takamizawa, Toshiki; Shiratsuchi, Koji; Miyazaki, Masashi; Latta, Mark A

    2013-01-01

    To determine the localized wear and flexural properties of flowable resin composites for posterior lesions compared with universal resin composites produced by the same manufacturers. Ten specimens of each of three flowable resins, G-ænial Universal Flo, G-ænial Flo and Clearfil Majesty Flow, and the corresponding resin composite materials, Kalore and Clearfil Majesty Esthetics, were prepared in custom fixtures and subjected to 400,000 wear machine cycles to simulate localized wear. The total maximum depth and volume loss of the wear facets was calculated for each specimen using a profilometer. A three-point bending test was performed to determine the flexural strength, modulus of elasticity and resilience. Values were statistically compared using one-way analysis of variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) test. The wear depth ranged from 58.3-126.9 m and the volumetric loss ranged from 0.019-0.049 mm(3), with significant differences observed between restorative materials. The wear depth of G-ænial Universal Flo was significantly smaller than those of the other resin composites tested. The flexural strengths and elastic modulus ranged from 90.5-135.1 MPa and from 4.7-7.6 GPa, respectively. A significantly greater flexural strength and higher elastic modulus was found for G-ænial Universal Flo than the other composites. The wear and mechanical properties of the flowable resin composites tested suggested improved performance compared with universal resin composites.

  18. The Effect of Energy Densities on the Shear Bond Strength of Self-Adhering Flowable Composite to Er:YAG Pretreated Dentin

    PubMed Central

    Corbani, Karim

    2016-01-01

    Objective. To investigate the shear bond strength of self-adhering flowable resin composite, to dentin, after exposing it to Er:YAG laser radiation, at different energy densities. Materials and Methods. Sixty freshly extracted human third molars were randomly divided into five groups (n = 12). In the control group, dentin was left unirradiated, whereas, in the other four groups, dentin was irradiated with Er:YAG laser in noncontact mode (MSP mode = 100 µs; 10 Hz; beam diameter: 1.3 mm; speed of 1 mm/second; air 6 mL/min; and water 4 mL/min), and respectively, with the following level of energy (50 mJ, 60 mJ, 80 mJ, and 100 mJ). Then, self-adhering flowable resin composite was bonded to all prepared dentin surfaces. Shear bond strength (SBS) was applied and fractured surfaces were examined using scanning electron microscopy. Results. SBS values showed significant differences in 60 mJ (P < 0.05) compared to other groups. Morphological evaluation revealed tags or plugs in dentinal tubules, especially when 60 mJ and 80 mJ were used. All four groups tended to leave more residues on the dentin surface, than the control group. Conclusion. Er:YAG dentin irradiation may enhance SBS of the self-adhering flowable resin composite when it is used at the appropriate low level of energy density. PMID:27830151

  19. Effect of flowable composite liner and glass ionomer liner on class II gingival marginal adaptation of direct composite restorations with different bonding strategies.

    PubMed

    Aggarwal, Vivek; Singla, Mamta; Yadav, Suman; Yadav, Harish

    2014-05-01

    The purpose of the present study was to comparatively evaluate the effect of flowable composite resin liner and resin modified glass ionomer liner on gingival marginal adaptation of class II cavities restored using three bonding agents (Single Bond 3M ESPE, One Coat Self Etching Bond Coltene Whaledent; Adper Easy Bond Self-Etch Adhesive 3M ESPE) and respective composite resins, under cyclic loading. The marginal adaptation was evaluated in terms of 'continuous margin' (CM) at the gingival margin. Ninety class II cavities with margins extending 1mm below the cement-enamel junction were prepared in extracted mandibular third molars. The samples were divided into three groups: no liner placement; 0.5-1mm thick flowable resin liner placement (Filtek Z350 XT flowable resin) on gingival floor and; light cure glass ionomer (Ketac N100) liner. The groups were further subdivided into three sub-groups on the basis of the bonding agents used. Cavities were restored with composite resins (Z350 for Single Bond and Adper Easy Bond; and Synergy D6 Universal, for One Coat Self Etching Bond) in 2mm increments and the samples were mechanically loaded (60N, 1,50,000 cycles). Marginal adaptation was evaluated using a low vacuum scanning electron microscope. Statistical analysis was done with two way ANOVA with Holm-Sidak's correction for multiple comparisons. Placement of flowable composite liner significantly improved the CM values of Single Bond (78±11%) and One Coat Self Etching Bond (77±9%) compared with no liner group, but the values of CM of Adper Easy Bond were not improved (61±12%). Placement of glass ionomer liner significantly improved the values of CM in all the sub-groups (78±9%, 72±10% and 77±10% for Single Bond, One Coat Self Etching Bond & Adper Easy Bond respectively) compared with no liner group. Placement of liners improved the values of 'continuous margin' in the gingival floor of the proximal cavities restored with composite resins using different bonding agent. Placement of flowable composite liner or glass ionomer liner will improve the marginal integrity of composite restorations using etch-and-rinse and two bottle-two step self etch adhesives. To improve the marginal integrity of a single bottle adhesive, glass ionomer liner should be applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Repair of bis-acryl provisional restorations using flowable composite resin.

    PubMed

    Bohnenkamp, David M; Garcia, Lily T

    2004-11-01

    Provisional restorations provide interim coverage for prepared teeth while fixed definitive restorations are fabricated. Several types of autopolymerizing acrylic resins have been used for many years to fabricate provisional restorations. In recent years, bis-acryl resin composite material has gained popularity among clinicians for the direct fabrication of provisional fixed restorations. Occasionally, deficiencies may occur while fabricating a direct provisional restoration and require chairside repair. This article describes an effective procedure for the use of light-polymerized flowable composite resin for the intraoral repair of bis-acryl provisional restorations.

  1. Effect of Different Liners on Fracture Resistance of Premolars Restored with Conventional and Short Fiber-Reinforced Composite Resins.

    PubMed

    Shafiei, Fereshteh; Doozandeh, Maryam; Ghaffaripour, Dordaneh

    2018-01-11

    To see whether applying four different liners under short fiber-reinforced composite (SFRC), everX Posterior, compared to conventional composite resin, Z250, affected their strengthening property in premolar MOD cavities. Mesio-occluso-distal (MOD) cavities were prepared in 120 sound maxillary premolars divided into 10 groups (n = 12) in terms of two composite resin types and 4 liners or no liner. For each composite resin, in 5 groups no liner, resin-modified glass ionomer (RMGI), conventional flowable composite (COFL), self-adhesive flowable composite resin (SAFL), and self-adhesive resin cement (SARC) were applied prior to restoring incrementally. After water storage and thermocycling, static fracture resistance was tested. Data (in Newtons) were analyzed using two-way ANOVA (α = 0.05). Fracture resistance was significantly affected by composite resin type (p = 0.02), but not by the liner (p > 0.05). The interaction of the two factors was not statistically significant (p > 0.05). SFRC exhibited higher fracture strength (1470 ± 200 N) compared to conventional composite resin (1350 ± 290), irrespective of the application of liners. Application of SARC and SAFL liners led to a higher number of restorable fractures for both composite resins. The four liners can be used without interfering with the higher efficacy of SFRC, compared to conventional composite resins, to improve the fracture strength of premolar MOD cavities. © 2018 by the American College of Prosthodontists.

  2. Fatigue stipulation of bulk-fill composites: An in vitro appraisal.

    PubMed

    Vidhawan, Shruti A; Yap, Adrian U; Ornaghi, Barbara P; Banas, Agnieszka; Banas, Krzysztof; Neo, Jennifer C; Pfeifer, Carmem S; Rosa, Vinicius

    2015-09-01

    The aim of this study was to determine the Weibull and slow crack growth (SCG) parameters of bulk-fill resin based composites. The strength degradation over time of the materials was also assessed by strength-probability-time (SPT) analysis. Three bulk-fill [Tetric EvoCeram Bulk Fill (TBF); X-tra fil (XTR); Filtek Bulk-fill flowable (BFL)] and a conventional one [Filtek Z250 (Z250)] were studied. Seventy five disk-shaped specimens (12mm in diameter and 1mm thick) were prepared by inserting the uncured composites in a stainless steel split mold followed by photoactivation (1200mW/cm(2)/20s) and storage in distilled water (37°C/24h). Degree of conversion was evaluated in five specimens by analysis of FT-IR spectra obtained in the mid-IR region. The SCG parameters n (stress corrosion susceptibility coefficient) and σf0 (scaling parameter) were obtained by testing ten specimens in each of the five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s using a piston-on-three-balls device. Weibull parameter m (Weibull modulus) and σf0 (characteristic strength) were obtained by testing additional 20 specimens at 1MPa/s. Strength-probability-time (SPT) diagrams were constructed by merging SCG and Weibull parameters. BFL and TBF presented higher n values, respectively (40.1 and 25.5). Z250 showed the highest (157.02MPa) and TBF the lowest (110.90MPa) σf0 value. Weibull analysis showed m (Weibull modulus) of 9.7, 8.6, 9.7 and 8.9 for TBF, BFL, XTR and Z250, respectively. SPT diagram for 5% probability of failure showed strength decrease of 18% for BFL, 25% for TBF, 32% for XTR and 36% for Z250, respectively, after 5 years as compared to 1 year. The reliability and decadence of strength over time for bulk-fill resin composites studied are, at least, comparable to conventional composites. BFL shows the highest fatigue resistance under all simulations followed by TBF, while XTR was at par with Z250. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. The Electrochemical Flow Capacitor: Capacitive Energy Storage in Flowable Media

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.

    Electrical energy storage (EES) has emerged as a necessary aspect of grid infrastructure to address the increasing problem of grid instability imposed by the large scale implementation of renewable energy sources (such as wind or solar) on the grid. Rapid energy recovery and storage is critically important to enable immediate and continuous utilization of these resources, and provides other benefits to grid operators and consumers as well. In past decades, there has been significant progress in the development of electrochemical EES technologies which has had an immense impact on the consumer and micro-electronics industries. However, these advances primarily address small-scale storage, and are often not practical at the grid-scale. A new energy storage concept called "the electrochemical flow capacitor (EFC)" has been developed at Drexel which has significant potential to be an attractive technology for grid-scale energy storage. This new concept exploits the characteristics of both supercapacitors and flow batteries, potentially enabling fast response rates with high power density, high efficiency, and long cycle lifetime, while decoupling energy storage from power output (i.e., scalable energy storage capacity). The unique aspect of this concept is the use of flowable carbon-electrolyte slurry ("flowable electrode") as the active material for capacitive energy storage. This dissertation work seeks to lay the scientific groundwork necessary to develop this new concept into a practical technology, and to test the overarching hypothesis that energy can be capacitively stored and recovered from a flowable media. In line with these goals, the objectives of this Ph.D. work are to: i) perform an exploratory investigation of the operating principles and demonstrate the technical viability of this new concept and ii) establish a scientific framework to assess the key linkages between slurry composition, flow cell design, operating conditions and system performance. To achieve these goals, a combined experimental and computational approach is undertaken. The technical viability of the technology is demonstrated, and in-depth studies are performed to understand the coupling between flow rate and slurry conductivity, and localized effects arising within the cell. The outlook of EFCs and other flowable electrode technologies is assessed, and opportunities for future work are discussed.

  4. Comparative Study of the Shear Bond Strength of Flowable Composite in Permanent Teeth Treated with Conventional Bur and Contact or Non-Contact Er:YAG Laser

    PubMed Central

    Parhami, Parisa; Pourhashemi, Seyed Jalal; Ghandehari, Mehdi; Mighani, Ghasem; Chiniforush, Nasim

    2014-01-01

    Introduction: The aim of this study was to evaluate and compare the in vitro effect of the Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser with different radiation distances and high-speed rotary treatment on the shear bond strength of flowable composite to enamel of human permanent posterior teeth. Methods: freshly extracted human molar teeth with no caries or other surface defects were used in this study (n=45). The teeth were randomly divided into 3 groups. Group 1: treated with non-contact Er:YAG Laser and etched with Er:YAG laser, Group 2: treated with contact Er:YAG Laser and etched with Er:YAG laser, Group 3 (control): treated with diamond fissure bur and etched with acid phosphoric 37%. Then the adhesive was applied on the surafces of the teeth and polymerized using a curing light appliance. Resin cylinders were fabricated from flowable composite. Shear bond strength was tested at a crosshead speed of 0.5 mm/min. Results: The amount of Shear Bond Strength (SBS) in the 3 treatment groups was not the same (P<0.05).The group in which enamel surfaces were treated with diamond fissure bur and etched with acid (conrtol group) had the highest mean shear bond strength (19.92±4.76) and the group in which the enamel surfaces were treated with contact Er:YAG laser and etched with Er:YAG laser had the lowest mean shear bond strength (10.89±2.89). Mann-whitney test with adjusted P-value detected significant difference in shear bond strength between the control group and the other 2 groups (P < 0.05). Conclusion: It was concluded that both contact and non-contact Er:YAG laser treatment reduced shear bond strength of flowable resin composite to enamel in comparison with conventional treatment with high speed rotary. Different Er:YAG laser distance irradiations did not influence the shear bond strength of flowable composite to enamel. PMID:25653813

  5. [Effect of concomitant use of dental drug on the properties of recombinant human basic fibroblast growth factor formulation for periodontal disease].

    PubMed

    Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi

    2013-01-01

    We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.

  6. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  7. Polymerization kinetics and impact of post polymerization on the Degree of Conversion of bulk-fill resin-composite at clinically relevant depth.

    PubMed

    Al-Ahdal, Khold; Ilie, Nicoleta; Silikas, Nick; Watts, David C

    2015-10-01

    Since bulk-fill (BF) resin composites should cure efficiently to a depth up to 4mm, the aim of the study was to determine the time-dependence of degree of conversion (DC) at that depth during 24h post-irradiation. Eight representative BF resin composites were studied [x-tra base (XTB), Venus Bulk Fill (VBF), Tetric EvoCeram Bulk Fill (TECBF), Sonic Fill (SF), Filtek Bulk Fill (FBF), everX Posterior (eXP), Beautifil-Bulk Flowable (BBF), Beautifil-Bulk Restorative (BBR)]. Specimens were fabricated in white Delrin moulds of 4mm height and 5mm internal diameter directly on an attenuated total reflectance (ATR) accessory attachment of an (FTIR) spectrometer (Nicolet iS50, Thermo Fisher, Madison, USA). Upper specimen surfaces were irradiated in situ for 20 s with an LED curing unit (Elipar S10 with average tip irradiance of 1200 mW/cm(2)). Spectra from the lower surface were recorded continuously in real-time for 5 min and then at 30 and 60 min and 24h post irradiation. Mean ranges of DC4mm (%) of the materials at 4mm depth were 39-67; 48-75; 45-74; and 50-72 at 5, 30 and 60 min and 24h respectively. DCs for XTB, VBF, TECBF, FBF, BBR increased significantly 30 min after irradiation (p<0.05) and were not affected by subsequent time up to 24h (p>0.05). DC for SF was not affected by subsequent time after 5 min (p>0.05). For eXP and BBF, DC increased 24h after irradiation (p<0.05). The data were described by the superposition of two exponential functions characterising the gel phase (described by parameters a, b) and the glass phase (described by parameters c and d). Post polymerization impact of bulk-fill composites is material dependent. Five materials exhibited their maximum DC4mm already 30 min after starting the irradiation while DC4mm for two materials optimized after 24h. BF materials were found to exhibit after 24h a DC between 50 and 72% at 4mm depth under the stated irradiation conditions. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Six-month color change and water sorption of 9 new-generation flowable composites in 6 staining solutions.

    PubMed

    Arregui, Maria; Giner, Luis; Ferrari, Marco; Vallés, Marta; Mercadé, Montserrat

    2016-11-28

    Color match and water sorption are two factors that affect restorative materials. Discoloration is essential in the lifespan of restorations. The aim of this study was to evaluate color change and water sorption of nine flowable composites at multiple time points over 6 months. 60 samples of each composite were divided into two groups (Color Change and Water Sorption/Solubility). Each Color Change group was divided into six subgroups, which were immersed in distilled water (DW), coffee (CF), Coca-Cola (CC), red wine (RW), tea (TE) and orange juice (OJ). The color was measured at the baseline, 1, 2, 3 and 4 weeks, and 3 and 6 months and color change values (ΔE) were calculated. Each Water Sorption [WS]/Solubility [WL] group was tested according to ISO 4049:2009. The data were evaluated using two-way ANOVA, Fisher's post-hoc test and Pearson's correlation test. The composite with the lowest ΔE differed for each solution: Filtek™ Bulk Fill in DW (∆E = 0.73 (0.17-1.759)); Vertise Flow in CF (∆E = 14.75 (7.91-27.41)), in TE (∆E = 7.27 (2.81-24.81)) and OJ (∆E = 3.17 (0.87-9.92)); Tetric EvoFlow® in CC (∆E = 1.27 (0.45-4.02)); and Filtek™ Supreme XTE in RW (∆E = 8.88 (5.23-19.59)). RW caused the most discoloration (∆E = 23.62 (4.93-51.36)). Vertise Flow showed the highest water sorption (WS = 69.10 ± 7.19). The Pearson test showed statistically significant positive correlations between water sorption and solubility and between water sorption and ∆E; the positive solubility-∆E correlation was not statistically significant. The findings suggest that water sorption is one factor associated with the ability of composites to discolor; however, discoloration is a multifactorial problem.

  9. Evaluation of Four Different Restorative Materials for Restoration of the Periodontal Condition of Wedge-Shaped Defect: A Comparative Study.

    PubMed

    Ruan, Jian-Yong; Gong, Zheng-Lin; Zhang, Rui-Zhi; Zhang, Zhe; Xu, Ran; Li, Da-Xu; Ren, Le; Tao, Hong

    2017-09-16

    BACKGROUND This study aimed to conduct a clinical evaluation of four restorative materials for restoration of dental wedge-shaped defect (WSD) and their impacts on periodontal tissues. MATERIAL AND METHODS A total of 280 maxillary premolars with dental WSD were selected from 106 patients; the patient cases were divided into eight groups according to different combinations of restorative materials (flowable resin composites, Dyract compomers, glass ionomer cement (GIC), light-curing composite resin), and WSD positions (approaching gingival and subgingival positions). Gingival crevicular fluid (GCF) volume, levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), and interleukin-1β (IL-1β) in GCF were analyzed, while probing depth (PD), plaque index (PLI), and sulcus bleeding index (SBI) were also measured. The periodontal conditions of all patients were followed prior to restoration, as well as six months and 12 months after restoration. RESULTS After six months of restoration, the overall clinical success rates of flowable resin composites, Dyract compomers, and light-curing composite resin were greater than those of GIC. GCF volume, GCF-AST, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. After 12 months of restoration, the overall clinical success rates of flowable resin composites and Dyract compomers were greater than those of light-curing composite resin and GIC. GCF volume, GCF-AST, GCF-ALP, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. CONCLUSIONS Our study provided evidence that the clinical efficacy of flowable resin composites, Dyract compomers, and light-curing composite resin was greater than that of GIC for restoration of dental WSD.

  10. Evaluation of Four Different Restorative Materials for Restoration of the Periodontal Condition of Wedge-Shaped Defect: A Comparative Study

    PubMed Central

    Ruan, Jian-Yong; Gong, Zheng-Lin; Zhang, Rui-Zhi; Zhang, Zhe; Xu, Ran; Li, Da-Xu; Ren, Le; Tao, Hong

    2017-01-01

    Background This study aimed to conduct a clinical evaluation of four restorative materials for restoration of dental wedge-shaped defect (WSD) and their impacts on periodontal tissues. Material/Methods A total of 280 maxillary premolars with dental WSD were selected from 106 patients; the patient cases were divided into eight groups according to different combinations of restorative materials (flowable resin composites, Dyract compomers, glass ionomer cement (GIC), light-curing composite resin), and WSD positions (approaching gingival and subgingival positions). Gingival crevicular fluid (GCF) volume, levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), and interleukin-1β (IL-1β) in GCF were analyzed, while probing depth (PD), plaque index (PLI), and sulcus bleeding index (SBI) were also measured. The periodontal conditions of all patients were followed prior to restoration, as well as six months and 12 months after restoration. Results After six months of restoration, the overall clinical success rates of flowable resin composites, Dyract compomers, and light-curing composite resin were greater than those of GIC. GCF volume, GCF-AST, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. After 12 months of restoration, the overall clinical success rates of flowable resin composites and Dyract compomers were greater than those of light-curing composite resin and GIC. GCF volume, GCF-AST, GCF-ALP, IL-1β levels, PD, PLI, and SBI of cases restored by GIC were higher than those restored by the other three materials. Conclusions Our study provided evidence that the clinical efficacy of flowable resin composites, Dyract compomers, and light-curing composite resin was greater than that of GIC for restoration of dental WSD. PMID:28917087

  11. Characterization of bulk and shear properties of basmati and non-basmati rice flour.

    PubMed

    Jan, Shumaila; Ghoroi, Chinmay; Saxena, Dharmesh Chandra

    2018-01-01

    Flours are often unstable in relation to their flow performance, which is evident when a free-flowing material ceases to flow and the processing, handling, and production parameters depend on the inherent powder characteristics and their bulk behaviour. The present study was conducted to compare the flowability of basmati and non-basmati rice flour affecting bulk handling, which could be related to its particle size, shape and surface roughness (measured by atomic force microscopy) as well as bulk and shear properties, depending upon the processing conditions. Particle size (171.1-171.9 μm) of both samples was not significantly different. However, the flowability of the non-basmati rice flour was significantly affected by its particle shape (circularity 0.487), surface roughness (124.23 nm) and compressibility (25.32%) in comparison to basmati rice flour (circularity 0.653, surface roughness 113.59 nm and compressibility 21.09%), making it more cohesive than basmati rice flour. Also, basic flow energy was significantly higher in non-basmati flour, thus requiring more energy (147.54 mJ) to flow than basmati rice flour (130.15 mJ). Overall, flowability was analysed by applying three different pressures (3, 6 and 9 kPa), among which non-basmati rice flour was found to be less flowable (flow function coefficient (FFC) 2.33 at 9 kPa) in comparison to basmati (FFC 3.35 at 9 kPa), making bulk handling difficult. This study could be useful in designing processing equipment, hoppers and silos for rice flour handling. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno(®) V [self-etching adhesive system]) and BOND-1(®) SF (solvent-free self-etching adhesive system) in conjunction with Artiste(®) Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey's post hoc tests (P≤0.05). The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage.

  13. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  14. Real-time determination of critical quality attributes using near-infrared spectroscopy: a contribution for Process Analytical Technology (PAT).

    PubMed

    Rosas, Juan G; Blanco, Marcel; González, Josep M; Alcalà, Manel

    2012-08-15

    Process Analytical Technology (PAT) is playing a central role in current regulations on pharmaceutical production processes. Proper understanding of all operations and variables connecting the raw materials to end products is one of the keys to ensuring quality of the products and continuous improvement in their production. Near infrared spectroscopy (NIRS) has been successfully used to develop faster and non-invasive quantitative methods for real-time predicting critical quality attributes (CQA) of pharmaceutical granulates (API content, pH, moisture, flowability, angle of repose and particle size). NIR spectra have been acquired from the bin blender after granulation process in a non-classified area without the need of sample withdrawal. The methodology used for data acquisition, calibration modelling and method application in this context is relatively inexpensive and can be easily implemented by most pharmaceutical laboratories. For this purpose, Partial Least-Squares (PLS) algorithm was used to calculate multivariate calibration models, that provided acceptable Root Mean Square Error of Predictions (RMSEP) values (RMSEP(API)=1.0 mg/g; RMSEP(pH)=0.1; RMSEP(Moisture)=0.1%; RMSEP(Flowability)=0.6 g/s; RMSEP(Angle of repose)=1.7° and RMSEP(Particle size)=2.5%) that allowed the application for routine analyses of production batches. The proposed method affords quality assessment of end products and the determination of important parameters with a view to understanding production processes used by the pharmaceutical industry. As shown here, the NIRS technique is a highly suitable tool for Process Analytical Technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Linking flowability and granulometry of lactose powders.

    PubMed

    Boschini, F; Delaval, V; Traina, K; Vandewalle, N; Lumay, G

    2015-10-15

    The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose αr and static cohesive index σr) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle αf, dynamic cohesive index σf, angle of first avalanche αa and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Design and scale-up of a semi-industrial downer-reactor for the rounding of irregular polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, Marius; Schmidt, Jochen; Peukert, Wolfgang

    2016-03-09

    The recent development of rapid prototyping technologies towards additive manufacturing reveals some major drawbacks of processes such as laser beam melting (LBM). This contribution focuses on the lack of suitable polymer material with a fine particle size and good flowability. Polymer particles obtained by a wet grinding process 1 are treated in a heated downer reactor. This treatment changes the particles’ morphology from a chiselled state towards a spherical form by surface tension forces in a molten state 2 and leads to an improved flowability. To reach the required amount of rounded polymer powder, a downer reactor in semi-industrial scalemore » has been established and will be characterized in this article. For the purpose of particle rounding it is necessary to avoid contact of molten particles with each other and with the hot reactor walls. Furthermore, the heat distribution has been investigated as one of the key parameters of the process. Finally, a proof of concept by rounding wet grinded PBT material was successfully conducted. The product was examined to obtain data about a change in particle size and flowability.« less

  17. Concept and clinical application of the resin-coating technique for indirect restorations.

    PubMed

    Nikaido, Toru; Tagami, Junji; Yatani, Hirofumi; Ohkubo, Chikahiro; Nihei, Tomotaro; Koizumi, Hiroyasu; Maseki, Toshio; Nishiyama, Yuichiro; Takigawa, Tomoyoshi; Tsubota, Yuji

    2018-03-30

    The resin-coating technique is one of the successful bonding techniques used for the indirect restorations. The dentin surfaces exposed after cavity preparation are coated with a thin film of a coating material or a dentin bonding system combined with a flowable composite resin. Resin coating can minimize pulp irritation and improve the bond strength between a resin cement and tooth structures. The technique can also be applied to endodontically treated teeth, resulting in prevention of coronal leakage of the restorations. Application of a resin coating to root surface provides the additional benefit of preventing root caries in elderly patients. Therefore, the coating materials have the potential to reinforce sound tooth ("Super Tooth" formation), leading to preservation of maximum tooth structures.

  18. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems

    PubMed Central

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2014-01-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X1) and L-HPC (X2) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms. PMID:26702261

  19. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  20. Detailed studies of aviation fuel flowability

    NASA Technical Reports Server (NTRS)

    Mehta, H. K.; Armstrong, R. S.

    1985-01-01

    Six Jet A fuels, with varying compositions, were tested for low temperature flowability in a 190-liter simulator tank that modeled a section of a wing tank of a wide-body commercial airplane. The insulated tank was chilled by circulating coolant through the upper and lower surfaces. Flow-ability was determined as a function of fuel temperature by holdup, the fraction of unflowable fuel remaining in the tank after otherwise complete withdrawal. In static tests with subfreezing tank conditions, hold up varied with temperature and fuel composition. However, a general correlation of two or three classes of fuel type was obtained by plotting holdup as a function of the difference between freezing point and boundary-layer temperature, measured 0.6 cm above the bottom tank surface. Dynamic conditions of vibrations and slosh or rate of fuel withdrawal had very minor effects on holdup. Tests with cooling schedules to represent extreme, cold-day flights showed, at most, slight holdup for any combination of fuel type or dynamic conditions. Tests that superimposed external fuel heating and recirculation during the cooldown period indicates reduced hold up by modification of the low-temperature boundary layer. Fuel heating was just as effective when initiated during the later times of the tests as when applied continuously.

  1. Selected physical and chemical properties of Feverfew (Tanacetum parthenium) extracts important for formulated product quality and performance.

    PubMed

    Jin, Ping; Madieh, Shadi; Augsburger, Larry L

    2008-01-01

    The objectives of this research are: (1) to assess selected formulation-relevant physical properties of several commercial Feverfew extracts, including flowability, hygroscopicity, compressibility and compactibility (2) to develop and validate a suitable extraction method and HPLC assay, and (3) to determine the parthenolide content of several commercial Feverfew extracts. Carr's index, minimum orifice diameter and particle-particle interaction were used to evaluate powder flowability. Hygroscopicity was evaluated by determining the equilibrium moisture content (EMC) after storage at various % relative humidities. Heckle analysis and compression pressure-radial tensile strength relationship were used to represent compression and compaction properties of feverfew extracts. An adapted analytical method was developed based on literature methods and then validated for the determination of parthenolide in feverfew. The commercial extracts tested exhibited poor to very poor flowability. The comparatively low mean yield pressure suggested that feverfew extracts deformed mainly plastically. Hygroscopicity and compactibility varied greatly with source. No commercial feverfew extracts tested contained the label claimed parthenolide. Even different batches from the same manufacturer showed significantly different parthenolide content. Therefore, extract manufactures should commit to proper quality control procedures that ensure accurate label claims, and supplement manufacturers should take into account possible differences in physico-chemical properties when using extracts from multiple suppliers.

  2. Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory

    NASA Astrophysics Data System (ADS)

    Wei, Minghai; Lin, Kun; Guo, Qian

    2018-03-01

    Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.

  3. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer.

    PubMed

    Gandolfi, M G; Siboni, F; Prati, C

    2016-05-01

    Root canal filling sealers based on polymethyl hydrogensiloxane or polymethyl hydrogensiloxane-guttapercha--introduced to improve the quality of conventional guttapercha-based and resin-based systems--showed advantages in handiness and clinical application. The aim of the study was to evaluate the chemical-physical properties of a novel polysiloxane-guttapercha calcium silicate-containing root canal sealer (GuttaFlow bioseal). GuttaFlow bioseal was examined and compared with GuttaFlow2, RoekoSeal and MTA Fillapex sealers. Setting times, open and impervious porosity and apparent porosity, water sorption, weight loss, calcium release, and alkalinizing activity were evaluated. ESEM-EDX-Raman analyses of fresh materials and after soaking in simulated body fluid were also performed. Marked differences were obtained among the materials. GuttaFlow bioseal showed low solubility and porosity, high water sorption, moderate calcium release and good alkalinizing activity. MTA Fillapex showed the highest calcium release, alkalinizing activity and solubility, RoekoSeal the lowest calcium release, no alkalinizing activity, very low solubility and water sorption. Only GuttaFlow bioseal showed apatite forming ability. GuttaFlow bioseal showed alkalinizing activity together with negligible solubility and slight calcium release. Therefore, the notable nucleation of apatite and apatite precursors can be related to the co-operation of CaSi particles (SiOH groups) with polysiloxane (SiOSi groups). The incorporation of a calcium silicate component into polydimethyl polymethylhydrogensiloxane guttapercha sealers may represent an attractive strategy to obtain a bioactive biointeractive flowable guttapercha sealer for moist/bleeding apices with bone defects in endodontic therapy. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of degree of conversion and the effect of thermal aging on the color stability of resin cements and flowable composite.

    PubMed

    Prieto, Lúcia Trazzi; Pimenta de Araújo, Cíntia Tereza; Araujo Pierote, Josué Junior; Salles de Oliveira, Dayane Carvalho Ramos; Coppini, Erick Kamiya; Sartini Paulillo, Luís Alexandre Maffei

    2018-01-01

    The aim of this in vitro study was to evaluate the color stability and degree of conversion (DC) of dual-cure and light-cure cements and flowable composites after thermal aging. A total of 50 human incisors were prepared and divided into six groups ( n = 10). Veneers were fabricated using IPS Empress Direct composite resin were bonded with three types of luting agents: Light-cured, conventional dual, and flowable composite according to the manufacturer's instructions. The groups were as follows: Filtek Z350XT Flow/Single Bond 2, RelyX ARC/Single Bond 2, RelyX Veneer/Single Bond 2, Tetric N-Flow/Tetric N-Bond, and Variolink II/Tetric N-Bond. Commission Internationale de l'Éclairage L*, a* and b* color coordinates were measured 24 h after cementation procedure with a color spectrophotometer and reevaluated after 10,000 thermal cycles. To evaluate the DC 50 specimens ( n = 10) of each resin material were obtained and Fourier transform infrared spectroscopy was used to evaluate the absorption spectra. Statistical analysis was performed with one-way ANOVA and Tukey's test (α = 0.05). No statistically significant differences in ΔE* occurred after aging. The greatest change in lightness occurred in the Variolink II resin cement. Changes in red-green hue were very small for the same cement and largest in the Tetric N-Flow flowable resin composite, while the greatest change in blue-yellow hue was a yellowing of the RelyX ARC luting cement. RelyX ARC exhibited the highest DC, and there were no statistically significant differences in DC among the other cements. Resin-based luting agent might affect the final of ceramic veneer restorations. The thermal aging affected the final color of the evaluated materials, and these were regarded as clinically unacceptable (ΔE >3.3).

  5. [Solidification of magnolol phospholipid complex with polyvingypyrrolidone].

    PubMed

    Dai, Yun-Hao; Wang, Man; Ju, Jian-Ming; Zhang, Zhen-Hai

    2016-06-01

    In this study, magnolol phospholipid complex (MPC) was prepared and solidified with polyvingypyrrolidone (PVPP). The influence of PVPP on MPC's flowability, dissolution and oral bioavailability was investigated. The results of phase characterization using differential scanning calorimetry (DSC), infrared spectroscopy (IR), and scanning electron microscopy (SEM) showed that magnolol existed in solidified powder and MPC in an amorphous state. In flowability and dissolution experiments, solidified powder showed significant superiority. At the same time, it showed a higher oral bioavailability compared with MPC, with AUC0-∞ of 73.47 μg•h•mL⁻¹ vs. 63.48 μg•h•mL⁻¹. This process for solidifying powder with PVPP is simple and convenient. Copyright© by the Chinese Pharmaceutical Association.

  6. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  7. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press.

    PubMed

    Peeters, Elisabeth; De Beer, Thomas; Vervaet, Chris; Remon, Jean-Paul

    2015-04-01

    Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.

  8. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability measurement, which is directly related to the packing fraction. Two commonly used tests were compared to assess their utility: the rotational split-cell shear cell test and the Hausner ratio. The Hausner ratio proved to be better suited for characterizing the flowability of unconsolidated powders than the splitring shear cell. Results demonstrate that the optimal flowability test depends on the powder properties and the environment under which flow will be induced.

  9. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  10. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We havemore » demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.« less

  11. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.« less

  12. Mobile charge, soft breakdown, and self-healing in hydrogen silsesquioxane based intermetal dielectric

    NASA Astrophysics Data System (ADS)

    Devine, R. A. B.

    2002-09-01

    The electrical characteristics of hydrogen silsesquioxane based flowable oxide (FOxregistered) films proposed for interconnect isolation applications have been studied. It is demonstrated that negative and positive charges exist in the as-made, cured films with densities of 0.95 x1012 and 1.5 x1012 cm-2, respectively for thicknesses of 114 nm. The negative charges can be removed from the films by application of modest electric fields (positive or negative, approx1.75 MV cm-1). The positive charge can be similarly displaced but not removed from the film; this results in time dependent relaxation and redistribution of the positive charge if the films are left unbiased. Time dependent irreversible evolution of the leakage current under positive and negative bias (approx3 MV cm-1) shows a slow breakdown phenomena. An unusual self-healing effect is evidenced in these films.

  13. Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor.

    PubMed

    Hou, Shujin; Wang, Miao; Xu, Xingtao; Li, Yandong; Li, Yanjiang; Lu, Ting; Pan, Likun

    2017-04-01

    One of the most challenging issues in developing electrochemical flow capacitor (EFC) technology is the design and synthesis of active electrode materials with high energy density and long cycle life. However, in practical cases, the energy density and cycle ability obtained currently cannot meet the practical need. In this work, we propose a new active material, nitrogen-doped carbon spheres (NCSs), as flowable electrodes for EFC application. The NCSs were prepared via one-pot hydrothermal synthesis in the presence of resorcinol/formaldehyde as carbon precursors and melamine as nitrogen precursor, followed by carbonization in nitrogen flow at various temperatures. The results of EFC experiments demonstrate that NCSs obtained at 800°C exhibit a high energy density of 13.5Whkg -1 and an excellent cycle ability, indicating the superiority of NCSs for EFC application. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Self-consolidating concrete (SCC) for infrastructure elements.

    DOT National Transportation Integrated Search

    2012-09-01

    Because of its unique nature, self-consolidating concrete (SCC) has the potential to significantly reduce costs associated with : transportation-related infrastructure, benefiting both MoDOT and the residents of Missouri. SCC is a highly flowable, no...

  15. Self-consolidating concrete (SCC) for infrastructure elements.

    DOT National Transportation Integrated Search

    2012-07-01

    Because of its unique nature, self-consolidating concrete (SCC) has the potential to significantly reduce costs associated with : transportation-related infrastructure, benefiting both MoDOT and the residents of Missouri. SCC is a highly flowable, : ...

  16. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    NASA Astrophysics Data System (ADS)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  17. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.

    PubMed

    Shi, Limin; Feng, Yushi; Sun, Changquan Calvin

    2011-05-18

    The influence of massing during high shear wet granulation (HSWG) process on granule properties and performance was investigated using microcrystalline cellulose (MCC). Massing time varied from 0 to 40 min while other factors were fixed. Granule physical properties, including morphology, size, porosity, and specific surface area (SSA), were characterized. Changes in powder properties were profound in the first 10 min of massing but negligible beyond 10 min. With 10 min of massing, granule tabletability decreased by 75% while flowability increased by 75%. The significantly deteriorated tabletability and improved flowability resulted from dramatic changes in granule morphology, porosity, and SSA. The results confirm that massing time is a key process parameter in HSWG, and it must be carefully evaluated and controlled during process development, scale up, and manufacturing. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    NASA Astrophysics Data System (ADS)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  19. Utilization of SRS pond ash in controlled low strength material. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.A.; Rajendran, N.

    1995-12-01

    Design mixes for Controlled Low Strength Material (CLSM) were developed which incorporate pond ashes (fly ashes) from the A-Area Ash Pile, the old F-Area Ash Basin and the D-Area Ash Basin. CLSM is a pumpable, flowable, excavatable backfill used in a variety of construction applications at SRS. Results indicate that CLSM which meets all of the SRS design specifications for backfill, can be made with the A-, D-, and F-Area pond ashes. Formulations for the design mixes are provided in this report. Use of the pond ashes may result in a cost savings for CLSM used at SRS and willmore » utilize a by-product waste material, thereby decreasing the amount of material requiring disposal.« less

  20. Fracture resistance of simulated immature tooth roots reinforced with MTA or restorative materials.

    PubMed

    Karapinar-Kazandag, Meric; Basrani, Bettina; Tom-Kun Yamagishi, Valerie; Azarpazhooh, Amir; Friedman, Shimon

    2016-04-01

    Immature endodontically treated teeth may require reinforcing to reduce the risk of root fracture. This study assessed the fracture resistance of simulated immature tooth roots reinforced with mineral trioxide aggregate (MTA) or two composite resin (CR) materials. One hundred extracted roots of mature human maxillary incisors were decoronated and sectioned 9 mm further apically from the decoronation line and randomly divided into five groups (n = 20). In Group 1 (negative control), roots received no treatment. In groups 2-5, canals were enlarged to 2.1 mm diameter to simulate immature roots, dressed with calcium hydroxide (Ca(OH)2 ) and incubated for 7 days. After removal of Ca(OH)2 , canals in Group 2 (positive control) were left unfilled. Canals in groups 3, 4 and 5 were filled with MTA, BisFil 2B flowable CR or BisFil II posterior CR, respectively. After further incubation for 30 days, specimens were embedded in acrylic cylinders and horizontally loaded in a universal testing machine at cross head speed of 5 mm min(-1) until fracture occurred. Load (N) at and pattern of fracture were recorded. Load at fracture was significantly lower (t-test, P = 0.003) in Group 2 (630 ± 199.12) than in Group 1 (896.98 ± 311.79). It did not differ significantly among groups 1, 3, 4 and 5 (anova, P > 0.07). Pattern of fracture did not differ among the groups either. Within the limitations of this study, root canal filling with MTA and two CR materials affected reinforcement of simulated immature roots to levels comparable with intact roots. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The effect of different beverages on the color and translucency of flowable composites.

    PubMed

    Karadas, Muhammet

    2016-11-01

    This study examined the changes in color and translucency of flowable composites after immersion in different beverages. Thirty composite samples were prepared from four flowable composites (G-aenial Universal Flo, Filtek Ultimate, Esthelite Flow Quick, and Clearfil Majesty ES Flow) and a microhybrid composite (Filtek Z-250) and stored in distilled water at 37°C for 24 h. The samples were randomly divided into seven groups and then immersed in different beverages (Red Bull, coffee, black tea, Pepsi Cola, orange juice, and distilled water) for 7 days. The CIE L*a*b* values of each sample were measured against white and black backgrounds using a spectrophotometer before and after immersion. Data were analyzed using two-way analysis of variance and Tukey's post-hoc test (p < 0.05). The color changes were significantly different among the composite materials after immersion in beverages (p < 0.05). Filtek Ultimate and Esthelite Flow Quick exhibited less discoloration than did G-aenial Universal Flo and Clearfil Majesty ES Flow. No significant difference was found between Filtek Z-250 and either Filtek Ultimate or Esthelite Flow Quick (p > 0.05). Among the beverages, black tea and coffee caused the highest discoloration of all the materials. Immersion in coffee and black tea resulted in the highest negative changes in the translucency of the materials. The degree of discoloration for the composite resins depended on the material used and drinking beverage. SCANNING 38:701-709, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression.

    PubMed

    Chaheen, Mohammad; Sanchez-Ballester, Noelia M; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2018-04-24

    Owing to the increasing interest in multifunctional excipients for tableting, coprocessing of individual excipients is regularly used to produce excipients of improved multifunctionality superior to individual excipients or their physical mix. The use of chitin as an excipient in tablet formulation is limited because of certain drawbacks such as poor flowability and low true density. The objective of this work is to improve these properties through coprocessing of chitin with calcium carbonate (CaCO 3 ) by precipitating CaCO 3 on chitin particles using different methods. In addition, optimization of the coprocessed chitin was carried out to improve the excipient's properties. Physicochemical (CaCO 3 content, true density, X-ray diffraction, infrared spectroscopy, and scanning electron microscopy) and functional testing (swelling force, flowability, tensile strength, deformation mechanism, and disintegration time) were used to characterize the coprocessed product. Results showed that the calcite CaCO 3 polymorph is precipitated on the chitin surface and that it interacts with chitin at carbonyl- and amide-group level. In addition, the coprocessed excipient has an improved true density and powder flowability, with CaCO 3 forming single layer on the chitin particles surface. Tableting studies showed that the coprocessed powder exhibited an intermediate deformation behavior between CaCO 3 (most brittle) and chitin (most plastic). Tablets showed acceptable tensile strength and rapid disintegration (2-4 s). These results show the potential use of coprocessed chitin-CaCO 3 as a multifunctional excipient for fast disintegration of tablets produced by direct compression. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R; Cleereman, Robert J; Eurich, Gerald

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  4. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  5. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  6. Report A : self-consolidating concrete (SCC) for infrastructure elements - shear characteristics.

    DOT National Transportation Integrated Search

    2012-08-01

    Because of its unique ability to maintain high flow-ability and remain homogeneous, : self-consolidating concrete (SCC) has the potential to significantly reduce the costs : associated with civil infrastructure; however, the use of higher paste and l...

  7. Evaluation Physical Characteristics and Comparison Antimicrobial and Anti-Inflammation Potentials of Dental Root Canal Sealers Containing Hinokitiol In Vitro

    PubMed Central

    Shih, Yin-Hua; Lin, Dan-Jae; Chang, Kuo-Wei; Hsia, Shih-Min; Ko, Shun-Yao; Lee, Shyh-Yuan; Hsue, Shui-Sang; Wang, Tong-Hong; Chen, Yi-Ling; Shieh, Tzong-Ming

    2014-01-01

    Hinokitiol displays potent antimicrobial activity. It has been used in toothpaste and oral-care gel to improve the oral lichen planus and reduce halitosis. The aim of this study was to evaluate the antimicrobial activity of 3 different dental root canal sealers with hinokitiol (sealers+H) and their physical and biological effects. AH Plus (epoxy amine resin-based, AH), Apexit Plus (calcium-hydroxide-based, AP), and Canals (zinc-oxide-eugenol-based, CA), were used in this study. The original AH and CA exhibited strong anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity, but AP did not. The setting time, working time, flowability, film thickness, and solubility of each sealer+0.2%H complied with ISO 6876:2001. CA+0.2%H exhibited high cytotoxicity, but the others sealers+0.2%H did not. Because hinokitiol combined with Zn2+ in CA creates a synergistic effect. The physical tests of AP+0.5%–1%H complied with ISO 6876:2001, improved antimicrobial activity, inhibited inflammation genes cyclooxygenase-2 (COX-2) and hypoxia-inducible factor-1α (HIF-1α) mRNA in MG-63 cells and human gingival fibroblasts (HGF), and down-regulated lysyl oxidase (LOX) mRNA of HGF. In summary, AH and CA demonstrated strong antimicrobial activity, but AP did not. Application of hinokitiol increases AH anti-MRSA activity should less than 0.2% for keep well flowability. AP+0.5%–1% hinokitiol exhibited strong physical, antibacterial, and anti-inflammation potentials, and inhibited S. aureus abscess formation. Applying an appreciable proportion of hinokitiol to epoxy-amine-resin-based and calcium-hydroxide-based root canal sealers is warranted, but the enhanced cytotoxicity and synergistic effect must be considered. PMID:24915566

  8. Low temperature fuel behavior studies

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.

    1980-01-01

    Aircraft fuels at low temperatures near the freezing point. The principal objective was an improved understanding of the flowability and pumpability of the fuels in a facility that simulated the heat transfer and temperature profiles encountered during flight in the long range commercial wing tanks.

  9. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing

    NASA Astrophysics Data System (ADS)

    Ji, Lina; Wang, Changzhen; Wu, Wenjie; Tan, Chao; Wang, Guoyu; Duan, Xuan-Ming

    2017-10-01

    Stainless steel 316L (SS 316L) powder was spheroidized by plasma processing to improve its suitability for powder 3D printing. The obtained spheroidized (sphero) powder was characterized in terms of its crystalline phases, elemental composition, morphology, particle size and distribution, light absorption, and flow properties. The elemental composition of the sphero powder met the Chinese standard for SS 316L except for its Si content. The volume fraction of ferrite increased after plasma processing. Furthermore, plasma processing was shown to not only reduce the mean size of the particles in the size range of 10 to 100 μm but also generate particles in the size range of 0.1 to 10 μm. The smaller particles filled the voids among larger particles, increasing the powder density. The light absorption was also increased owing to enhanced internal reflection. Although the basic flow energy decreased after plasma processing, the flow function (FF) value was smaller for the sphero powder, indicating a lower flowability of the sphero powder. However, the density of SS 316L pieces printed with commercial and sphero powders was 98.76 pct and 98.16 pct of the SS 316L bulk density, respectively, indicating the suitability of the sphero powder for 3D printing despite an FF below 10.

  10. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

    PubMed Central

    Liu, Yayuan; Lin, Dingchang; Jin, Yang; Liu, Kai; Tao, Xinyong; Zhang, Qiuhong; Zhang, Xiaokun; Cui, Yi

    2017-01-01

    Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g−1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm−2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature. PMID:29062894

  11. Production of extended release mini-tablets using directly compressible grades of HPMC.

    PubMed

    Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R

    2013-11-01

    Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.

  12. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    PubMed

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground.

    PubMed

    Qian, Feifei; Zhang, Tingnan; Korff, Wyatt; Umbanhowar, Paul B; Full, Robert J; Goldman, Daniel I

    2015-10-08

    Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device consisting of an air fluidized bed trackway in which a gentle upward flow of air through the granular material resulted in a decreased penetration resistance. As the volumetric air flow, Q, increased to the fluidization transition, the penetration resistance decreased to zero. Using a bio-inspired hexapedal robot as a physical model, we systematically studied how locomotor performance (average forward speed, v(x)) varied with ground penetration resistance and robot leg frequency. Average robot speed decreased with increasing Q, and decreased more rapidly for increasing leg frequency, ω. A universal scaling model revealed that the leg penetration ratio (foot pressure relative to penetration force per unit area per depth and leg length) determined v(x) for all ground penetration resistances and robot leg frequencies. To extend our result to include continuous variation of locomotor foot pressure, we used a resistive force theory based terradynamic approach to perform numerical simulations. The terradynamic model successfully predicted locomotor performance for low resistance granular states. Despite variation in morphology and gait, the performance of running lizards, geckos and crabs on flowable ground was also influenced by the leg penetration ratio. In summary, appendage designs which reduce foot pressure can passively maintain minimal leg penetration ratio as the ground weakens, and consequently permits maintenance of effective locomotion over a range of terradynamically challenging surfaces.

  14. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. A novel silica alumina-based backfill material composed of coal refuse and fly ash.

    PubMed

    Yao, Yuan; Sun, Henghu

    2012-04-30

    In this paper, a systematic study was conducted to investigate a novel silica alumina-based backfill material composed of coal refuse and fly ash. The coal refuse and fly ash had different properties under various thermal activation temperatures (20 °C, 150 °C, 350 °C, 550 °C, 750 °C and 950 °C). It is known that a thermal activation temperature ranging from 20 °C to 950 °C significantly increases the flowability and pozzolanic properties of the coal refuse; however, the flowability of fly ash decreases when the activation temperature is higher than 550 °C because of a severe agglomeration phenomenon on its surface. An optimal design for this backfill material was determined to include an activated portion composed of 5% coal refuse at 750 °C and 15% fly ash at 20 °C. This combination yields the best performance with excellent flowability, a high compressive strength and a low bleeding rate. The microanalysis results corresponded well with the performance tests at different activation conditions. In the coal refuse, kaolinite peaks began to decrease because of their transformation into metakaolin at 550 °C. Chlorite peaks disappeared at 750 °C. Muscovite peaks decreased at 750 °C and disappeared at 950 °C. During this process, muscovite 2M(1) gradually dehydroxylated to muscovite HT. Furthermore, this paper examined the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based backfill material composed of coal refuse and fly ash not only meets EPA requirements but also has several advantages in industry feasibility when compared with hydraulic backfill, rock backfill and paste backfill. Published by Elsevier B.V.

  16. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yayuan; Lin, Dingchang; Jin, Yang

    Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellentmore » adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g -1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm -2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.« less

  17. The effect of different drinks on the color stability of different restorative materials after one month.

    PubMed

    Tekçe, Neslihan; Tuncer, Safa; Demirci, Mustafa; Serim, Merve Efe; Baydemir, Canan

    2015-11-01

    The aim of this study was to evaluate the effect of three different drinks on the color parameters of four different restorative materials. Three different composites (Filtek Ultimate Universal Restorative, Filtek Ultimate Flowable, and Filtek Silorane, 3M ESPE) and a polyacid-modified composite resin material (Dyract XP, Dentsply DeTrey GmbH) were evaluated. Eighty-four disc-shaped specimens of 8 mm in diameter and 2 mm in thickness were prepared (n = 21 each). Color coordinates (L*a*b*, ΔL*, Δa*, Δb*, and ΔE*) were measured using a VİTA Easyshade Compact (VİTA Zahnfabrik) after 24 hr of storage (baseline) and after 30 day of storage in three different beverages of black tea, Coca cola, or water (control) (n = 7). In each beverage, the specimens were stored three times a day, one hr each, for 30 day. The color changes (ΔE) were calculated and were analyzed by Kruskal-Wallis and Dunn multiple comparison test. The color difference (ΔE*) of the resin materials ranged between 1.31 and 15.28 after 30 day of immersion in the staining solutions. Dyract XP in Coca cola (15.28 ± 2.61) and black tea (12.22 ± 2.73) showed the highest mean ΔE* value after 30 day, followed by Filtek Ultimate Universal Restorative (5.99 ± 1.25) and Filtek Ultimate Flowable (4.71 ± 1.40) in black tea (p < 0.05). The compomers displayed unacceptable color changes at the end of 30 day in all beverages. Among resin composites, the silorane based composite exhibited relatively good color stability than the others. Filtek Ultimate Universal Restorative and Filtek Flowable showed similar color changes in all beverages.

  18. Fractography of interface after microtensile bond strength test using swept-source optical coherence tomography.

    PubMed

    Dao Luong, Minh Nguyet; Shimada, Yasushi; Turkistani, Alaa; Tagami, Junji; Sumi, Yasunori; Sadr, Alireza

    2016-07-01

    To determine the effect of crosshead speed and placement technique on interfacial crack formation in microtensile bond strength (MTBS) test using swept-source optical coherence tomography (SS-OCT). MTBS test beams (0.9×0.9mm(2)) were prepared from flat human dentin disks bonded with self-etch adhesive (Clearfil SE Bond, Kuraray) and universal composite (Clearfil AP-X, Kuraray) with or without flowable composite lining (Estelite Flow Quick, Tokuyama). Each beam was scanned under SS-OCT (Santec, Japan) at 1319nm center wavelength before MTBS test was performed at crosshead speed of either 1 or 10mm/min (n=10). The beams were scanned by SS-OCT again to detect and measure cracks at the debonded interface using digital image analysis software. Representative beams were observed under confocal laser scanning microscope to confirm the fractography findings. Two-way ANOVA showed that for MTBS the crosshead speed was not a significant factor (p>0.05), while there was a difference between placement techniques (p<0.001), with flowable lining yielding higher mean values. On the other hand, for crack formation, there was a significant difference between crosshead speeds (p<0.01), while the placement technique did not show up as a statistically significant factor (p>0.05). The interaction of factors were not significant (p>0.05). Testing MTBS samples at higher crosshead speeds induced more cracks in dentin. Lining with a flowable composite improved the bonding quality and increased the bond strength. SS-OCT can visualize interfacial cracks after restoration debonding. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

    DOE PAGES

    Liu, Yayuan; Lin, Dingchang; Jin, Yang; ...

    2017-10-01

    Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellentmore » adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g -1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm -2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.« less

  20. Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials

    PubMed Central

    Sawani, Shefali; Arora, Vipin; Jaiswal, Shikha; Nikhil, Vineeta

    2014-01-01

    Background: Evaluation of microleakage is important for assessing the success of new restorative materials and methods. Aim and Objectives: Comparative evaluation of microleakage in Class II restorations using open vs. closed centripetal build-up techniques with different lining materials. Materials and Methods: Standardized mesi-occlusal (MO) and distoocclusal (DO) Class II tooth preparations were preparedon 53 molars and samples were randomly divided into six experimental groups and one control group for restorations. Group 1: Open-Sandwich technique (OST) with flowable composite at the gingival seat. Group 2: OST with resin-modified glass ionomer cement (RMGIC) at the gingival seat. Group 3: Closed-Sandwich technique (CST) with flowable composite at the pulpal floor and axial wall. Group 4: CST with RMGIC at the pulpal floor and axial wall. Group 5: OST with flowable composite at the pulpal floor, axial wall, and gingival seat. Group 6: OST with RMGIC at the pulpal floor, axial wall, and gingival seat. Group 7: Control — no lining material, centripetal technique only. After restorations and thermocycling, apices were sealed and samples were immersed in 0.5% basic fuchsin dye. Sectioning was followed by stereomicroscopic evaluation. Results: Results were analyzed using Post Hoc Bonferroni test (statistics is not a form of tabulation). Cervical scores of control were more than the exprimental groups (P < 0.05). Less microleakage was observed in CST than OST in all experimental groups (P < 0.05). However, insignificant differences were observed among occlusal scores of different groups (P > 0.05). Conclusion: Class II composite restorations with centripetal build-up alone or when placed with CST reduces the cervical microleakage when compared to OST. PMID:25125847

  1. Setting time and flowability of accelerated Portland cement mixed with polycarboxylate superplasticizer.

    PubMed

    Wongkornchaowalit, Norachai; Lertchirakarn, Veera

    2011-03-01

    Important limitations of mineral trioxide aggregate for use in clinical procedures are extended setting time and difficult handling characteristics. The removal of gypsum at the end stage of the Portland cement manufacturing process and polycarboxylate superplasticizer admixture may solve these limitations. Different concentrations of polycarboxylate superplasticizer (0%, 1.2%, 1.8%, and 2.4% by volume) and liquid-to-powder ratios (0.27, 0.30, and 0.33 by weight) were mixed with white Portland cement without gypsum (AWPC-experimental material). Type 1 ordinary white Portland cement mixed with distilled water at the same ratios as the experimental material was used as controls. All samples were tested for setting time and flowability according to the International Organization for Standardization 6876:2001 guideline. The data were analyzed by two-way analysis of variance. Then, one-way analysis of variance and multiple comparison tests were used to analyze the significance among groups. The data are presented in mean ± standard deviation values. In all experimental groups, the setting times were in the range of 4.2 ± 0.4 to 11.3 ± 0.2 minutes, which were significantly (p < 0.05) lower than the control groups (26.0 ± 2.4 to 54.8 ± 2.5 minutes). The mean flows of AWPC plus 1.8% and 2.4% polycarboxylate superplasticizer groups were significantly increased (p < 0.001) at all liquid-to-powder ratios compared with control groups. Polycarboxylate superplasticizer at concentrations of 1.8% and 2.4% and the experimental liquid-to-powder ratios reduced setting time and increased flowability of cement, which would be beneficial for clinical use. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Rheological and Mechanical Response Modifications for a Self-Leveling Mortar

    NASA Astrophysics Data System (ADS)

    Katsiadramis, N. J.; Sotiropoulou, A. B.; Pandermarakis, Z. G.

    2010-06-01

    In many cases cement based materials demand a higher flowability and workability and this conventionally can’t be done without loss of its strength, due to the fact that the common practice to increase the workability is the addition of water. But, nowadays using a third generation superplasticizer (SP) we can achieve the desire flowability without loss of its strength. The action of superplastisizers is to spread efficiently the cement grains and so to wetting better the cement grains giving a more homogeneous mixture with higher strength. Nine different mixtures were prepared adding a small percentage of SP (1%). The conditions to get a self levelling mortar, have to do not only with rheological but also with mechanical demands. The bending and compression test gave the achieving mechanical strength whereas their rheological response came through slump flow and v-funnel flow tests. With the help of a small amount of stabilizer we obtain a robust mixture that deserves the desire response at the field too.

  3. Effect of moisture content on the flowability of crushed ores

    NASA Astrophysics Data System (ADS)

    Cabrejos, Francisco

    2017-06-01

    In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike's flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of "ratholes". The effect of an increase in water content of the ore is discussed with experimental results.

  4. Modification of flow and compressibility of corn starch using quasi-emulsion solvent diffusion method.

    PubMed

    Akhgari, Abbas; Sadeghi, Hasti; Dabbagh, Mohammad Ali

    2014-08-01

    The aim of this study was to improve flowability and compressibility characteristics of starch to use as a suitable excipient in direct compression tabletting. Quasi-emulsion solvent diffusion was used as a crystal modification method. Corn starch was dissolved in hydrochloric acid at 80°C and then ethanol as a non-solvent was added with lowering temperature until the formation of a precipitate of modified starch. Flow parameters, particle size and thermal behavior of the treated powders were compared with the native starch. Finally, the 1:1 mixture of naproxen and each excipient was tabletted, and hardness and friability of different tablets were evaluated. Larger and well shaped agglomerates were formed which showed different thermal behavior. Treated starch exhibited suitable flow properties and tablets made by the treated powder had relatively high hardness. It was found that recrystallization of corn starch by quasi emulsion solvent diffusion method could improve its flowability and compressibility characteristics.

  5. A bio-injectable algin-aminocaproic acid thixogel with tri-stimuli responsiveness.

    PubMed

    Chejara, Dharmesh R; Mabrouk, Mostafa; Badhe, Ravindra V; Mulla, Jameel A S; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Pillay, Viness

    2016-01-01

    In this article a novel bio-injectable algin-aminocaproic acid (Alg-ACA) tri-stimuli responsive thixogel system is reported. The designed soft thixotrophic hydrogel (thixogel) was characterized using various analytical techniques such as FT-IR, NMR, SEM, AFM and DSC. The soft thixogel system was further investigated for stress responsiveness using different rheological studies which confirmed the thixotropic nature of the gel [Thixotropic area (Ar) of Alg-ACA (1:0.5), Alg-ACA (1:1) and Alg-ACA (1:2), were 23.5%, 43.1%, and 27.59%, respectively, which were higher than that of Na-Alg (2.08%)]. The thixogel also demonstrated temperature and ultrasonication responsiveness. This tri-stimuli responsive soft thixogel system was rendered flowable (fluid) on applying the described physical stimuli and recovered its "rigid" gel structure upon removal of the applied stimuli. This approach of synthesizing a thixogels may be applicable to a broad variety of other natural polymers and has the potential for use in biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of pH adjustment, homogenization and diafiltration on physicochemical, reconstitution, functional and rheological properties of medium protein milk protein concentrates (MPC70).

    PubMed

    Meena, Ganga Sahay; Singh, Ashish Kumar; Gupta, Vijay Kumar; Borad, Sanket; Arora, Sumit; Tomar, Sudhir Kumar

    2018-04-01

    Poor solubility is the major limiting factor in commercial applications of milk protein concentrates (MPC) powders. Retentate treatments such as pH adjustment using disodium phosphate (Na 2 HPO 4 ), also responsible for calcium chelation with homogenization and; its diafiltration with 150 mM NaCl solution were hypothesized to improve the functional properties of treated MPC70 powders. These treatments significantly improved the solubility, heat stability, water binding, dispersibility, bulk density, flowability, buffer index, foaming and emulsifying capacity of treated powders over control. Rheological behaviour of reconstituted MPC solutions was best explained by Herschel Bulkley model. Compared to rough, large globular structures with dents in control; majorly intact, separate, smaller particles of smooth surface, without any aggregation were observed in SEM micrograph of treated powders. Applied treatments are easy, cost-effective and capable to improve functional properties of treated powders that could replace control MPC70 powder in various food applications where protein functionality is of prime importance.

  7. U.S. EPA, Pesticide Product Label, DACONIL ZN FLOWABLE FUNGICIDE, 02/20/2007

    EPA Pesticide Factsheets

    2011-04-21

    ... " .... chemi¢aI··r~sistalic~(c~te.gQrY.: s~l~ctipn':cti~·rt) : ~h;~~:j~:.~i:t~~~igv~;~~ a~;~f.'~m'.V!~~~iRrd(;(rnate~ai ~I Revised. • shoes plus socks ...

  8. 78 FR 72881 - Notice of Receipt of Requests to Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ...; the chemical industry; pesticide users; and members of the public interested in the sale, distribution... Flowable ene & Carboxin. Fungicide. 000264-00943 RTU-Vitavax-Thiram Thiram & Carboxin. Seed Protectant... subtilis GB03 & Metalaxyl. 000264-00958 Tops MZ Potato Seed- Mancozeb & Piece Treatment Thiophanate-methyl...

  9. Cottonwood leaf beetle control with imidacloprid soaked cuttings

    Treesearch

    Terry L. Robinson; Randall J. Rousseau

    2007-01-01

    Dormant, unrooted cuttings from three eastern cottonwood (Populus deltoides Marsh.) clones were soaked in either water or one of two concentrations of Admire® 2 Flowable (imidacloprid) insecticide. Half were planted immediately after soaking while the other half were stored for 12 weeks at -2℃ prior to planting. Trees from...

  10. U.S. EPA, Pesticide Product Label, CUTLASS AQUEOUS FLOWABLE BIOINSECTICIDE, 04/21/1994

    EPA Pesticide Factsheets

    2011-04-21

    ... _ of P .. tlclde Product ... West Langhorne, PA 19047-1810 • ·~~'ti;g" •.. 1a~1";¥tfU1119 111 .• w.taiocoI.#~Mt~;,IiYi!k!;i,!~~. Vi~~~l.fi~H~:~~ ; ...

  11. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not recommended to replace the coarse aggregate in SCC by more than 25% RAP.

  12. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.

    PubMed

    Bouzalakos, S; Dudeney, A W L; Chan, B K C

    2016-07-01

    We report on the leaching of heavy elements from cemented waste flowable fill, known as controlled low-strength materials (CLSM), for potential mine backfill application. Semi-dynamic tank leaching tests were carried out on laboratory-scale monoliths cured for 28 days and tested over 64 days of leaching with pure de-ionised water as leachant. Mineral processing waste include flotation tailings from a Spanish nickel-copper sulphide concentrate, and two bioleach neutralisation precipitates (from processing at 35°C and 70°C) from a South African arsenopyrite concentrate. Encapsulated CLSM formulations were evaluated to assess the reduction in leaching by encapsulating a 'hazardous' CLSM core within a layer of relatively 'inert' CLSM. The effect of each bioleach waste in CLSM core and tailings in CLSM encapsulating medium, are assessed in combination and in addition to CLSM with ordinary silica sand. Results show that replacing silica sand with tailings, both as core and encapsulating matrix, significantly reduced leachability of heavy elements, particularly As (from 0.008-0.190 mg/l to 0.008-0.060 mg/l), Ba (from 0.435-1.540 mg/l to 0.050-0.565 mg/l), and Cr (from 0.006-0.458 mg/l to 0.004-0.229 mg/l), to below the 'Dutch List' of groundwater contamination intervention values. Arsenic leaching was inherently high from both bioleach precipitates but was significantly reduced to below guideline values with encapsulation and replacing silica sand with tailings. Tailings proved to be a valuable encapsulating matrix largely owing to small particle size and lower hydraulic conductivity reducing diffusion transport of heavy elements. Field-scale trials would be necessary to prove this concept of encapsulation in terms of scale and construction practicalities, and further geochemical investigation to optimise leaching performance. Nevertheless, this work substantiates the need for alternative backfill techniques for sustainable management of hazardous finely-sized bulk mineral residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  14. Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle

    USDA-ARS?s Scientific Manuscript database

    Studies were undertaken to further characterize the previously identified synergistic activity of Bacillus thuringiensis- and Beauveria bassiana-based biopesticides against Colorado potato beetle (CPB). A flowable concentrate of B. thuringiensis morrisoni strain tenebrionis (Bt) (Novodor® FC) and a ...

  15. Effects of Varying CDS Levels and Drying and Cooling Temperatures on Flowability Properties of DDGS

    USDA-ARS?s Scientific Manuscript database

    Demand for alternative fuels and the need to reduce dependence on fossil fuels, have triggered the growth of corn-based ethanol production, and this is expected to rise in future years. Transportation of the co-product distillers dried grains with solubles (DDGS) from this industry occurs under vari...

  16. Alleviating Concrete Placement Issues Due to Congestion of Reinforcement in Post-Tensioned Haunch Slab Bridges - Phase 1

    DOT National Transportation Integrated Search

    2012-07-01

    A flowable hybrid concrete mix with a spread of 17 to 20 inches was created with a superplasticizer to be used in post-tension haunch-slab (PTHS) bridges where rebar congestion is heaviest. The mix would allow for proper concrete consolidation. A con...

  17. Novel Approaches in Formulation of Entomopathogenic Fungi for Control of Insects in Soil, Foliar, and Structural Habitats: Thinking Outside the Box and Expecting the Unexpected

    USDA-ARS?s Scientific Manuscript database

    By and large, mycoinsecticide formulations have involved sprayable products, typically oil flowables, emulsifiable suspensions, wettable powders, and water dispersable granules. Various nutritive or inert carriers have been used to create granular formulations for use against soil pests. Sometime...

  18. Process for improving soluble coal yield in a coal deashing process

    DOEpatents

    Rhodes, Donald E.

    1980-01-01

    Coal liquefaction products are contacted with a deashing solvent and introduced into a first separation zone. The first separation zone is maintained at an elevated temperature and pressure, determined to maximize the recovery of soluble coal products, to cause said coal liquefaction products to separate into a first light phase and a first heavy phase. Under these conditions the heavy phase while still fluid-like in character is substantially non-flowable. Flowability is returned to the fluid-like heavy phase by the introduction of an additional quantity of deashing solvent into the first separation zone at a location below the interface between the first light and heavy phases or into the heavy phase withdrawal conduit during withdrawal of the first heavy phase and prior to any substantial pressure reduction. The first heavy phase then is withdrawn from the first separation zone for additional downstream processing without plugging either the withdrawal conduit or the downstream apparatus. The first light phase comprising the soluble coal products is withdrawn and recovered in an increased yield to provide a more economical coal deashing process.

  19. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds.

    PubMed

    Butscher, Andre; Bohner, Marc; Roth, Christian; Ernstberger, Annika; Heuberger, Roman; Doebelin, Nicola; von Rohr, Philipp Rudolf; Müller, Ralph

    2012-01-01

    Three-dimensional printing (3DP) is a versatile method to produce scaffolds for tissue engineering. In 3DP the solid is created by the reaction of a liquid selectively sprayed onto a powder bed. Despite the importance of the powder properties, there has to date been a relatively poor understanding of the relation between the powder properties and the printing outcome. This article aims at improving this understanding by looking at the link between key powder parameters (particle size, flowability, roughness, wettability) and printing accuracy. These powder parameters are determined as key factors with a predictive value for the final 3DP outcome. Promising results can be expected for mean particle size in the range of 20-35 μm, compaction rate in the range of 1.3-1.4, flowability in the range of 5-7 and powder bed surface roughness of 10-25 μm. Finally, possible steps and strategies in pushing the physical limits concerning improved quality in 3DP are addressed and discussed. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.

    PubMed

    Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin

    2017-09-01

    The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.

  1. Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials

    DOEpatents

    McClelland, John F.; Jones, Roger W.

    1993-03-02

    A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

  2. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability of the 80/20 IgG1/mannitol powder, mannitol was partially substituted by a second excipient such as trehalose, sucrose, glycine, lactose, lactosucrose, or dextran 1. Differences in the stabilizing capability were noticeable upon closed storage at 40 degrees C/75% RH and open powder storage. Protein stabilization was improved by the addition of glycine but trehalose and sucrose were most effective in preventing aggregation, which can be primarily attributed to the water replacement properties of the sugars. The addition of another excipient, isoleucine had positive effects on both flowability and protein stability.

  3. Investigation of drug-excipient compatibility using rheological and thermal tools

    NASA Astrophysics Data System (ADS)

    Trivedi, Maitri R.

    HYPOTHESIS: We plan to investigate a different approach to evaluate drug-excipient physical compatibility using rheological and thermal tools as opposed to commonly used chemical techniques in pharmaceutical industry. This approach offers practical solutions to routinely associated problems arising with API's and commonly used hydrates forms of excipients. ABSTRACT: Drug-Excipient compatibility studies are an important aspect of pre-formulation and formulation development in pharmaceutical research and development. Various approaches have been used in pharmaceutical industry including use of thermal analysis and quantitative assessment of drug-excipient mixtures after keeping the samples under stress environment depending upon the type of formulation. In an attempt to provide better understanding of such compatibility aspect of excipients with different properties of API, various rheological and thermal studies were conducted on binary mixtures of excipients which exist in different hydrates. Dibasic Calcium Phosphate (DCP, anhydrous and dihydrate forms) and Lactose (Lac, anhydrous and monohydrate) were selected with cohesive API's (Acetaminophen and Aspirin). Binary mixtures of DCP and Lac were prepared by addition of 0% w/w to 50% w/w of the API into each powder blend. Rheological and thermal aspects were considered using different approaches such as powder rheometer, rotational shear cell and traditional rheometery approaches like angle of repose (AOR), hausner's ratio (HR) and cares index (CI). Thermal analysis was conducted using modulated differential scanning calorimetry (MDSC) and thermal effusivity. The data suggested that the powder rheometer showed distinctive understanding in the flowability behavior of binary mixtures with addition of increasing proportion of API's than traditional approaches. Thermal approaches revealed the potential interaction of water of crystallization DCP-D with the API (APAP) while such interactions were absent in DCP-A, while in case of Lac-M and Lac-A, interaction with water of crystallization were not present. Binary mixtures prepared with DCP-D were better flowable while blends with DCP-A were better in stability (physical), compressibility and permeability. Similarly binary mixtures prepared with Lac-M were better flowable and stable in physical compatibility as compared to Lac-A. Lac-A were better in compressibility and permeability. Second part of these research included understanding the powder behavior from wet granulation point of view. Wet granulation includes the formation of agglomerates with powders to form granules in order to have better flowability, content uniformity and compressibility of granular mass. End point determination of powders involving change in powder energies and compressibility, permeability along with thermal analyses were conducted. The effects of water of crystallization on end point determination was studied and based on which overall effects on drug-excipient compatibility using different hydrate forms of excipients were evaluated.

  4. Redox Active Colloids as Discrete Energy Storage Carriers.

    PubMed

    Montoto, Elena C; Nagarjuna, Gavvalapalli; Hui, Jingshu; Burgess, Mark; Sekerak, Nina M; Hernández-Burgos, Kenneth; Wei, Teng-Sing; Kneer, Marissa; Grolman, Joshua; Cheng, Kevin J; Lewis, Jennifer A; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-10-12

    Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

  5. Functionalised particles using dry powder coating in pharmaceutical drug delivery: promises and challenges.

    PubMed

    Dahmash, Eman Z; Mohammed, Afzal R

    2015-01-01

    Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.

  6. Coaxial printing method for directly writing stretchable cable as strain sensor

    NASA Astrophysics Data System (ADS)

    Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Hong, Xiao; Lau, Woon-ming; Mei, Jun; Hui, David; Yan, Hui; Liu, Yu

    2016-08-01

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well-posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  7. Coaxial printing method for directly writing stretchable cable as strain sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai-liang; Chengdu Green Energy and Green Manufacturing Technology R&D Center, 610299 Chengdu; Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchabilitymore » and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.« less

  8. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of CDS and Drying Temperature Levels on the Flowability Behavior of DDGS

    USDA-ARS?s Scientific Manuscript database

    The fuel ethanol industry has been one of the fastest growing industries, with a growth rate of more than 300% since 2000. Due to demand for alternative fuels and the need to reduce dependence on fossil fuels, the growth of ethanol production is expected to rise in future years. One of the problems ...

  10. Effects of Varying CDS, Drying and Cooling Temperatures on Glass Transition Temperature of DDGS

    USDA-ARS?s Scientific Manuscript database

    Distillers dried grains with solubles (DDGS), a co product of the corn-based fuel ethanol industry, is used widely as an animal feed. Due to increased demand for DDGS in livestock markets it has become essential to transport DDGS over long distances. Flowability problems in DDGS, due to particle cak...

  11. U.S. EPA, Pesticide Product Label, GRANOL PLUS FLOWABLE INSECT. AND FUNG. CEREAL SEED TRT., 07/31/1992

    EPA Pesticide Factsheets

    2011-04-21

    ... ( f ••••• trat~ Itt. k _ial. De .. te .. ... Iuti.,. lII .. t st_ actsS trfttH sttds WtW ,.Iuti., Ii ... Nttt To Ustrl Sttd cII.rdilll1T trftttd wi" tkis ""Itt lISt Itt _'-t,IY dYtd iii .. ...

  12. 75 FR 61750 - Chloroneb; Product Cancellation Order for Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... identified in Table 1 of Unit II. in a manner inconsistent with any of the Provisions for Disposition of... registrations are listed in sequence by registration number in Table 1 of this unit. Table 1--Chloroneb Product... Terraneb SP Turf Fungicide. 73782-4 Terraneb SP Flowable Turf and Ornamental Fungicide. Table 2 of this...

  13. 9 CFR 72.13 - Permitted dips and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flowable form labeled for use as a 0.25 percent dip and used at a concentration of 0.125 to 0.250. 4 (3... Section 72.13 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... until dry. 4 4 Care is required when treating animals and in maintaining the required concentration of...

  14. Disruption of the leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) in citrus: effect of blend and placement height, longevity of disruption and emission profile of a new dispenser

    USDA-ARS?s Scientific Manuscript database

    Recent efforts to disrupt mating of the leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), a global pest of citrus, have focused on the use of SPLAT™ (ISCA Technologies), a flowable wax emulsion intended to serve as a slow-release matrix for pheromones. Early success with this...

  15. Influence of casting conditions on durability and structural performance of HPC-AR : optimization of self-consolidating concrete to guarantee homogeneity during casting of long structural elements : final report.

    DOT National Transportation Integrated Search

    2017-05-01

    This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...

  16. Formulation, characterization and physicochemical evaluation of potassium citrate effervescent tablets.

    PubMed

    Aslani, Abolfazl; Fattahi, Fatemeh

    2013-01-01

    The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.

  17. Formulation, Characterization and Physicochemical Evaluation of Potassium Citrate Effervescent Tablets

    PubMed Central

    Aslani, Abolfazl; Fattahi, Fatemeh

    2013-01-01

    Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon) and (strawberry - raspberry) had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates. PMID:24312839

  18. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of carvedilol-cyclodextrin inclusion complexes using fluid-bed granulation: a novel solid-state complexation alternative with technological advantages.

    PubMed

    Alonso, Ellen C P; Riccomini, Karina; Silva, Luis Antônio D; Galter, Daniela; Lima, Eliana M; Durig, Thomas; Taveira, Stephania F; Martins, Felipe Terra; Cunha-Filho, Marcílio S S; Marreto, Ricardo N

    2016-10-01

    This study sought to evaluate the achievement of carvedilol (CARV) inclusion complexes with modified cyclodextrins (HPβCD and HPγCD) using fluid-bed granulation (FB). The solid complexes were produced using FB and spray drying (SD) and were characterised by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, SEM, flowability and particle size analyses and in vitro dissolution. The DSC, FTIR and powder X-ray diffraction findings suggested successful CARV inclusion in the modified β- and γ-cyclodextrins, which was more evident in acidic media. The CARV dissolution rate was ~7-fold higher for complexes with both cyclodextrins prepared using SD than for raw CARV. Complexes prepared with HPβCD using FB also resulted in a significant improvement in dissolution rate (~5-fold) and presented superior flowability and larger particle size. The findings suggested that FB is the best alternative for large-scale production of solid dosage forms containing CARV. Additionally, the results suggest that HPγCD could be considered as another option for CARV complexation because of its excellent performance in inclusion complex formation in the solid state. © 2016 Royal Pharmaceutical Society.

  20. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles.

    PubMed

    Tavassoli Hojati, Sara; Alaghemand, Homayoon; Hamze, Faeze; Ahmadian Babaki, Fateme; Rajab-Nia, Ramazan; Rezvani, Mohammad Bagher; Kaviani, Mehrnoosh; Atai, Mohammad

    2013-05-01

    The aim of this study is evaluating the antibacterial activity of resin composites containing ZnO nanoparticles against Streptococcus mutans and examining their physical and mechanical properties. The properties of flowable resin composites containing 0-5wt.% nano-ZnO are investigated using different tests: Although the agar diffusion test reveals no significant difference between the groups, the direct contact test demonstrates that by increasing the nanoparticle content, the bacterial growth is significantly diminished (p<0.05). In the aging test, however, the antibacterial properties reduce significantly (p<0.05). The flexural strength and compressive modulus remains unchanged by incorporation of nanoparticles (p>0.05) while the compressive strength and flexural modulus significantly increase (p<0.05). The ZnO containing resins show significantly lower depth of cure (p<0.05), and higher bond strength (p<0.05). There is no significant difference between the degrees of conversion, measured by FTIR technique, of the groups (p>0.05). Production of a dental resin composite with antibacterial activity without significant sacrificing effect on the mechanical properties is desirable in dental material science. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  2. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  3. Flowable resin and marginal gap on tooth third medial cavity involving enamel and radicular cementum: a SEM evaluation of two restoration techniques.

    PubMed

    Lo Giudice, G; Cicciù, M; Cervino, G; Lizio, A; Visco, A M

    2012-01-01

    The aim of this study is to investigate the presence and the extent of a possible marginal gap after the interposition of a flowable composite between the composite restoration and the dental structures (enamel and cementum). This technique is also used to eliminate the infiltration in a zone of the cavity preparation that is frequently at a risk of secondary decay. Fifteen human premolars extracted for orthodontic reasons were used for the study. A cavity with mesial and distal margin in enamel and cementum was realized in every tooth. The cavities were then restored with an adhesive system (ScotchBond 3MÔ) and composite (Filtek Supreme 3MÔ); and, a fine layer of flowable composite was applied in the distal margin of each cavity. Scanning electron microscopy (SEM) in secondary electron imaging (S.E.I.) modality was used for the study and identifying the marginal gaps in the composite restorations. Data was investigated on the mesial and distal margin of each cavity at the restoration-enamel interface, and at the restoration-cementum interface. The interfaces were divided in four groups: Group A (enamel/composite); Group B (enamel/flow/composite); Group C (cementum/composite); and, Group D (cementum/flow/composite). By the comparison of the gap's average width found in each group, it is evidenced that the average width of the gap increases when the interface moves from the coronal to the radicular end (Group A 0,1 ± 0,4 μm Vs Group C 12,3 ± 11,6 μm; Group B 0,2 ± 0,8 μm Vs Group D 2,8 ± 6,6 μm). Correlating the measurements of the marginal gap's average width among the Group A and Group B, no significant variations were obtained; and instead, on comparing Group C with Group D, the gap's average width decreases. The interposition of a low elastic modulus composite between the adhesive layer and the composite resin allows an improvement of the cementum-restoration interface by the means of a lower shrinkage stress during polymerization.

  4. SU-E-T-297: Dosimetric Assessment of An Air-Filled Balloon Applicator in HDR Vaginal Cuff Brachytherapy Using the Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H; Lee, Y; Pokhrel, D

    2015-06-15

    Purpose: As an alternative to cylindrical applicators, air inflated balloon applicators have been introduced into HDR vaginal cuff brachytherapy treatment to achieve sufficient dose to vagina mucosa as well as to spare rectum and bladder. In general, TG43 formulae based treatment planning systems do not take into account tissue inhomogeneity, and air in the balloon applicator can cause higher delivered dose to mucosa than treatment plan reported. We investigated dosimetric effect of air in balloon applicator using the Monte Carlo method. Methods: The thirteen-catheter Capri applicator with a Nucletron Ir-192 seed was modeled for various balloon diameters (2cm to 3.5cm)more » using the MCNP Monte Carlo code. Ir-192 seed was placed in both central and peripheral catheters to replicate real patient situations. Existence of charged particle equilibrium (CPE) with air balloon was evaluated by comparing kerma and dose at various distances (1mm to 70mm) from surface of air-filled applicator. Also mucosa dose by an air-filled applicator was compared with by a water-filled applicator to evaluate dosimetry accuracy of planning system without tissue inhomogeneity correction. Results: Beyond 1mm from air/tissue interface, the difference between kerma and dose was within 2%. CPE (or transient CPE) condition was deemed existent, and in this region no electron transport was necessary in Monte Carlo simulations. At 1mm or less, the deviation of dose from kerma became more apparent. Increase of dose to mucosa depended on diameter of air balloon. The increment of dose to mucosa was 2.5% and 4.3% on average for 2cm and 3.5cm applicators, respectively. Conclusion: After introduction of air balloon applicator, CPE fails only at the proximity of air/tissue interface. Although dose to mucosa is increased, there is no significant dosimetric difference (<5%) between air and water filled applicators. Tissue inhomogeneity correction is not necessary for air-filled applicators.« less

  5. Protein spheres prepared by drop jet freeze drying.

    PubMed

    Eggerstedt, Sören N; Dietzel, Mathias; Sommerfeld, Martin; Süverkrüp, Richard; Lamprecht, Alf

    2012-11-15

    In spray freeze drying (SFD) solutions are frozen by spraying into a very cold environment and subsequently dried by sublimation. In contrast to conventional freeze drying, spray freeze drying has the possibility to produce flowable lyophilizates which offers a variety of new pharmaceutical applications. Here, a drop jet nozzle is proposed as liquid dispenser that is able to produce droplets with a very narrow size distribution compared to standard methods. The drop jet nozzle is mounted in a spray tower designed to prevent direct contact of the product with the freezing medium. Various formulations have been tested containing lysozyme as model protein and stabilizers such as bovine serum albumin, polyvinylpyrrolidone or dextran in various concentrations and mannitol. Excellent free flowing and nearly monodispersed, porous particles are produced where particle properties can be controlled by formulation and process conditions. The particle diameter varied between 231 ± 3 μm and 310 ± 10 μm depending on the formulation composition. The lysozyme activity was >94 ± 5% for all formulations exhibiting a full preservation of enzyme activity. This new method is very promising for the production of nearly monodisperse particulate lyophilizates in various therapeutic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Co-processed excipients: a patent review.

    PubMed

    Garg, Nidhi; Dureja, Harish; Kaushik, Deepak

    2013-04-01

    The introduction of high speed tableting machines and the preference of direct compression as a method of tableting have increased the demands on the functionality of excipients mainly in terms of flowability and compressibility. Co-processed excipients, where in, excipients are combined by virtue of sub-particle level interaction have provided an attractive tool for developing high functionality excipients. The multifold advantages offered by co-processed excipients such as production of synergism in functionality of individual components, reduction of company's regulatory concern because of absence of chemical change during co-processing and improvement in physico-chemical properties have expanded their use in the pharmaceutical industry. In the recent years, there has been a spurt in the number of patents filed on co-processed excipients. Hence, the present review focuses on co-processed excipients and their application in pharmaceutical industry. The worldwide databases of European patent office (http://ep.espacenet.com) and United States patent office (www.uspto.gov) were employed to collect the patents and patent applications. The advantages, limitations, basis for the selection of excipients to be co-processed, methods of co-processing and regulatory perspective of co-processed excipients are also briefly discussed.

  7. Rheological properties of disintegrated sewage sludge

    NASA Astrophysics Data System (ADS)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  8. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  9. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images

    USGS Publications Warehouse

    Maxwell, S.K.; Schmidt, Gail L.; Storey, James C.

    2007-01-01

    On 31 May 2003, the Landsat Enhanced Thematic Plus (ETM+) Scan Line Corrector (SLC) failed, causing the scanning pattern to exhibit wedge-shaped scan-to-scan gaps. We developed a method that uses coincident spectral data to fill the image gaps. This method uses a multi-scale segment model, derived from a previous Landsat SLC-on image (image acquired prior to the SLC failure), to guide the spectral interpolation across the gaps in SLC-off images (images acquired after the SLC failure). This paper describes the process used to generate the segment model, provides details of the gap-fill algorithm used in deriving the segment-based gap-fill product, and presents the results of the gap-fill process applied to grassland, cropland, and forest landscapes. Our results indicate this product will be useful for a wide variety of applications, including regional-scale studies, general land cover mapping (e.g. forest, urban, and grass), crop-specific mapping and monitoring, and visual assessments. Applications that need to be cautious when using pixels in the gap areas include any applications that require per-pixel accuracy, such as urban characterization or impervious surface mapping, applications that use texture to characterize landscape features, and applications that require accurate measurements of small or narrow landscape features such as roads, farmsteads, and riparian areas.

  10. Cocrystal habit engineering to improve drug dissolution and alter derived powder properties.

    PubMed

    Serrano, Dolores R; O'Connell, Peter; Paluch, Krzysztof J; Walsh, David; Healy, Anne Marie

    2016-05-01

    Cocrystallization of sulfadimidine (SDM) with suitable coformers, such as 4-aminosalicylic acid (4-ASA), combined with changes in the crystal habit can favourably alter its physicochemical properties. The aim of this work was to engineer SDM : 4-ASA cocrystals with different habits to investigate the effect on dissolution, and the derived powder properties of flow and compaction. Cocrystals were prepared in a 1 : 1 molar ratio by solvent evaporation using ethanol (habit I) or acetone (habit II), solvent evaporation followed by grinding (habit III) and spray drying (habit IV). Powder X-ray diffraction showed Bragg peak position was the same in all the solid products. The peak intensity varied, indicating different preferred crystal orientation confirmed by SEM micrographs: large prismatic crystals (habit I), large plate-like crystals (habit II), small cube-like crystals (habit III) and microspheres (habit IV). The habit III exhibited the fasted dissolution rate; however, it underwent a polymorphic transition during dissolution. Habits I and IV exhibited the highest Carr's compressibility index, indicating poor flowability. However, habits II and III demonstrated improved flow. Spray drying resulted in cocrystals with improved compaction properties. Even for cocrystals with poor pharmaceutical characteristics, a habit can be engineered to alter the dissolution, flowability and compaction behaviour. © 2015 Royal Pharmaceutical Society.

  11. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-12-03

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.

  12. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    PubMed

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  13. Relationships between surface coverage ratio and powder mechanics of binary adhesive mixtures for dry powder inhalers.

    PubMed

    Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran

    2018-04-25

    The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Enhancement in in vitro anti-angiogenesis activity and cytotoxicity in lung cancer cell by pectin-PVP based curcumin particulates.

    PubMed

    Gaikwad, Dinanath; Shewale, Rajnita; Patil, Vinit; Mali, Dipak; Gaikwad, Uday; Jadhav, Namdeo

    2017-11-01

    The aim of this work was to prepare pectin-poly (vinyl pyrrolidone) [PVP] based curcumin particulates to enhance the anticancer potential of curcumin, solubility and allow its localized controlled release. Pectin-PVP based curcumin particulates (PECTIN-PVP CUR) were prepared by spray drying technique in different ratios and were evaluated for surface morphology, micromeritics, flowability, particle size, drug content, in vitro dissolution, inhalable fraction, anti-angiogenesis/angiolysis and cytotoxicity. Results of micromeritic properties, Carr's index, Hausner's ratio and angle of repose were satisfactory. The batch CP3 was considered as optimum, due to excellent flowability, acceptable aggregation and enhanced solubility. The particle size and size distribution data of selected batch CP3 showed 90% of curcumin particulates having size less than 2.74μm, which may deposit to lungs. Twin Impinger studies showed that 29% of respirable fraction was generated, which could be directly delivered to lungs. The in vitro dissolution data showed many fold increase in dissolution rate. Angiolytic activity and MTT assay of PECTIN-PVP CUR have demonstrated enhancement in the anti-tumor potential, compared to curcumin alone. Altogether, PECTIN-PVP CUR were found suitable for local delivery and enhance its anticancer potential of curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Endurance of Damping Properties of Foam-Filled Tubes

    PubMed Central

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-01-01

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools. PMID:28793425

  17. Endurance of Damping Properties of Foam-Filled Tubes.

    PubMed

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-07-07

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  18. Studies on the compressibility of wax matrix granules of acetaminophen and their admixtures with various tableting bases.

    PubMed

    Uhumwangho, M U; Okor, R S

    2006-04-01

    Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability, compressibility, and disintegration data, carnuba wax proved most promising in the melt granulation of the test drug for sustained release applications.

  19. Proportioning and performance evaluation of self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Wang, Xuhao

    A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages. Statistical analyses, response surface models and Tukey Honestly Significant Difference (HSD) tests, were conducted to relate the mix design parameters to the concrete performance. The work discussed in Paper 3 was to apply a digital image processing (DIP) method associated with a MATLAB algorithm to evaluate cross sectional images of self-consolidating concrete (SCC). Parameters, such as inter-particle spacing between coarse aggregate particles and average mortar to aggregate ratio defined as average mortar thickness index (MTI), were derived from DIP method and applied to evaluate the static stability and develop statistical models to predict flowability of SCC mixtures. The last paper investigated technologies available to monitor changing properties of a fresh mixture, particularly for use with self-consolidating concrete (SCC). A number of techniques were used to monitor setting time, stiffening and formwork pressure of SCC mixtures. These included longitudinal (P-wave) ultrasonic wave propagation, penetrometer based setting time, semi-adiabatic calorimetry, and formwork pressure. The first study demonstrated that the concrete mixes designed using the modified Brouwers mix design algorithm and particle packing concept had a potential to reduce up to 20% SCMs content compared to existing SCC mix proportioning methods and still maintain good performance. The second paper concluded that slump flow of the SCC mixtures increased with Vpaste/Vvoids at a given viscosity of mortar. Compressive trength increases with increasing Vpaste/Vvoids up to a point (~150%), after which the strength becomes independent of Vpaste/Vvoids, even slightly decreases. Vpaste/Vvoids has little effect on the shrinkage mixtures, while SCC mixtures tend to have a higher shrinkage than CC for a given Vpaste/Vvoids. Vpaste/Vvoids has little effects on surface resistivity of SCC mixtures. The paste quality tends to have a dominant effect. Statistical analysis is an efficient tool to identify the significance of influence factors on concrete performance. In third paper, proposed DIP method and MATLAB algorithm can be successfully used to derive inter-particle spacing and MTI, and quantitatively evaluate the static stability in hardened SCC samples. These parameters can be applied to overcome the limitations and challenges of existing theoretical frames and construct statistical models associated with rheological parameters to predict flowability of SCC mixtures. The outcome of this study can be of practical value for providing an efficient and useful tool in designing mixture proportions of SCC. Last paper compared several concrete performance measurement techniques, the P-wave test and calorimetric measurements can be efficiently used to monitor the stiffening and setting of SCC mixtures.

  20. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  1. Applications of Dredging and Beach Fills in GenCade

    DTIC Science & Technology

    2016-06-01

    June 2016 6 In the beach fills section, it was mentioned that multiple beach fills can be added at the same time to represent nonuniform beach fills...Figure 8 compares the shoreline change of a nonuniform beach fill to a uniform beach fill. For the uniform case, the added berm width along the...entire 1,000 ft is 100 ft. The added berm width for the first 500 ft of the nonuniform case is 150 ft while the added berm width for the second 500 ft is

  2. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  3. Lateral access to the holes of photonic crystal fibers selective filling and sensing applications

    NASA Astrophysics Data System (ADS)

    Cordeiro, Cristiano M. B.; Dos Santos, Eliane M.; Brito Cruz, C. H.; de Matos, Christiano J.; Ferreiira, Daniel S.

    2006-09-01

    A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

  4. 76 FR 48887 - Liddy's Pharmacy, L.L.C. Denial of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... practitioner acting in the usual course of his practice'' and that a pharmacist has ``a corresponding... pharmacist who fills the prescription.'' Id. Accordingly, the ``person knowingly filling such a purported... interpreted this regulation as ``prohibiting a pharmacist from filling a prescription for controlled...

  5. Studies of Transitional Flow, Unsteady Separation Phenomena and Particle Induced Augmentation Heating on Ablated Nose Tips.

    DTIC Science & Technology

    1975-10-01

    63 29 Variation of Profile Shape with Time for Axisyinmetric Camphor Models 63 30 The Development of Ablated Nose Shapes Over Which Flow...ablation tests using camphor models and inferred from downrange observation of full scale flight missions. Regions of gross instability on nose...been verified in wind tunnel tests of camphor models where shapes similar to those shown on Figure 29 can be developed under transitional conditions

  6. Liquid coated melt-spun Nd-Fe-B powders for bonded magnets

    NASA Astrophysics Data System (ADS)

    Li, D.; Gaiffi, S.; Kirk, D.; Young, K.; Herchenroeder, J.; Berwald, T.

    1999-04-01

    The liquid coating (LC) has been employed to apply epoxy and lubricant over the surface of rapidly solidified Nd-Fe-B powder particles. The LC led to an improvement of physical and magnetic properties for the powders and magnets compared to the dry blending and the encapsulation methods. The LC powders have excellent flowability and can be used for bonded magnets requiring very close tolerances; further bonded magnets made using this powder posses higher strength.

  7. Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed

    PubMed Central

    2013-01-01

    Background A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity. Results In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques. Conclusion The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum. PMID:23289739

  8. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study.

    PubMed

    Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr

    2013-06-01

    This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.

  9. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study

    PubMed Central

    Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR

    2013-01-01

    Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Materials & Methods: Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Results: Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. Conclusion: The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19. PMID:24155597

  10. Failure Rates of Orthodontic Fixed Lingual Retainers bonded with Two Flowable Light-cured Adhesives: A Comparative Prospective Clinical Trial.

    PubMed

    Talic, Nabeel F

    2016-08-01

    This comparative prospective randomized clinical trial examined the in vivo failure rates of fixed mandibular and maxillary lingual retainers bonded with two light-cured flowable composites over 6 months. Consecutive patients were divided into two groups on a 1:1 basis. Two hundred fixed lingual retainers were included, and their failures were followed for 6 months. One group (n = 50) received retainers bonded with a nano-hybrid composite based on nano-optimized technology (Tetric-N-Flow, Ivoclar Vivadent). Another group (n = 50) received retainers bonded with a low viscosity (LV) composite (Transbond Supreme LV, 3M Unitek). There was no significant difference between the overall failure rates of mandibular retainers bonded with Transbond (8%) and those bonded with Tetric-N-Flow (18%). However, the odds ratio for failure using Tetric-N-flow was 2.52-fold greater than that of Transbond. The failure rate of maxillary retainers bonded with Transbond was higher (14%), but not significantly different, than that of maxillary retainers bonded with Tetric-N-flow (10%). There was no significant difference in the estimated mean survival times of the maxillary and mandibular retainers bonded with the two composites. Both types of composites tested in the current study can be used to bond fixed maxillary and mandibular lingual retainers, with low failure rates.

  11. Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders

    NASA Astrophysics Data System (ADS)

    Chenfan, YU; Xin, ZHOU; Dianzheng, WANG; Neuyen VAN, LINH; Wei, LIU

    2018-01-01

    Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro-crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly.

  12. [Comparative study of polymerization shrinkage and related properties of flowable composites and an unfilled resin].

    PubMed

    Bukovinszky, Katalin; Molnár, Lilla; Bakó, József; Szalóki, Melinda; Hegedus, Csaba

    2014-03-01

    The polymerization shrinkage and shrinkage stress of dental composites are in the center of the interest of researchers and manufacturers. It is a great challenge to minimize this important property as low as possible. Many factors are related and are in complicated correlation with each other affecting the polymerization shrinkage. Polymerization shrinkage stress degree of conversion and elasticity has high importance from this aspect. Our aim was to study the polymerization shrinkage and related properties (modulus of elasticity, degree of conversion, shrinkage stress) of three flowable composite (Charisma Opal Flow, SDR, Filtek Ultimate) and an unfilled composite resin. Modulus of elasticity was measured using three point flexure tests on universal testing machine. The polymerization shrinkage stress was determined using bonded-disc technique. The degree of conversion measurements were performed by FT-IR spectroscopy. And the volumetric shrinkage was investigated using Archimedes principle and was measured on analytical balance with special additional equipment. The unfilled resin generally showed higher shrinkage (8,26%), shrinkage stress (0,8 MPa) and degree of conversion (38%), and presented the lowest modulus of elasticity (3047,02MPa). Highest values of unfilled resin correspond to the literature. The lack of fillers enlarges the shrinkage, and the shrinkage stress, but gives the higher flexibility and higher degree of conversion. Further investigations needs to be done to understand and reveal the differences between the composites.

  13. Effect of Ingested Liquids on Color Change of Composite Resins.

    PubMed

    Malek Afzali, Beheshteh; Ghasemi, Amir; Mirani, Asrin; Abdolazimi, Zahra; Akbarzade Baghban, Alireza; Kharazifard, Mohammad Javad

    2015-08-01

    Color change of composite restorations is well known to dentists. However, the effect of commonly consumed drinks on discoloration of composite resins has yet to be determined. This study sought to assess the color change of a nanofilled (Premise) and a flowable composite resin (Premise flowable) following simulated consumption of tea, cola, iron drops and multivitamin syrup. Forty disk-shaped specimens (7 mm in diameter and 2 mm thick) were fabricated from each composite resin. The baseline color values were measured according to the CIE L*a*b* system using digital imaging. The specimens of each restorative material were randomly divided into five groups (eight each) according to the storage media namely tea, cola, iron drops, multivitamin syrup or distilled water (control). The specimens were immersed in staining solutions for three hours daily over a 40-day test period. Following this, the color change values (ΔE*) were calculated. For statistical analyses, the color differences were analyzed using two-way ANOVA and Tukey's test (P< 0.05). There was no significant difference in ΔE* values between the two types of composite resins (P>0.05). In both composite materials, the difference among the solutions was not significant (P>0.05). Under the tested experimental conditions, both restorative materials were susceptible to discoloration by all four staining solutions. The color change values were not related to the solution or the type of material used.

  14. Feasibility study of a soil-based rubberized CLSM.

    PubMed

    Wu, Jason Y; Tsai, Mufan

    2009-02-01

    The development of beneficial uses of recycled scrap tires is always in great demand around the world. The disposal of on-site surplus excavated soil and the production of standard engineering aggregates have also been facing increasing environmental and ecological challenges in congested islands, such as Taiwan. This paper presents an experimental study using recycled crumb rubber and native silty sand to produce a lightweight, soil-based, rubberized controlled low strength material (CLSM) for a bridge approach repair. To assess the technical feasibility of this material, the effects of weight ratios of cement-to-water (C/W) and water-to-solid (W/S), and of rubber content on the engineering properties for different mixtures were investigated. The presented test results include flowability, unit weight, strength, settlement potential, and bearing capacity. Based on the findings, we conclude that a soil-based rubberized CLSM with 40% sand by weight and an optimal design ratio of 0.7 for C/W and 0.35 for W/S can be used for the proposed bridge approach repair. Such a mixture has demonstrated acceptable flowability, strength, and bearing capacity. Its lower unit weight, negligible compressibility, and hydrocollapse potential also help ensure that detrimental settlement is unlikely to occur. The results illustrate a novel scheme of CLSM production, and suggest a beneficial alternative for the reduction of scrap tires as well as conservation of resources and environment.

  15. Photobiomodulation of a flowable matrix in a human skin ex vivo model demonstrates energy-based enhancement of engraftment integration and remodeling.

    PubMed

    Neves, Lia M G; Parizotto, Nivaldo A; Cominetti, Marcia R; Bayat, Ardeshir

    2018-04-24

    The use of dermal substitutes to treat skin defects such as ulcers has shown promising results, suggesting a potential role for skin substitutes for treating acute and chronic wounds. One of the main drawbacks with the use of dermal substitutes is the length of time from engraftment to graft take, plus the risk of contamination and failure due to this prolonged integration. Therefore, the use of adjuvant energy-based therapeutic modalities to augment and accelerate the rate of biointegration by dermal substitute engraftments is a desirable outcome. The photobiomodulation (PBM) therapy modulates the repair process, by stimulating cellular proliferation and angiogenesis. Here, we evaluated the effect of PBM on a collagen-glycosaminoglycan flowable wound matrix (FWM) in an ex vivo human skin wound model. PBM resulted in accelerated rate of re-epithelialization and organization of matrix as seen by structural arrangement of collagen fibers, and a subsequent increased expression of alpha-smooth muscle actin (α-SMA) and vascular endothelial growth factor A (VEGF-A) leading to an overall improved healing process. The use of PBM promoted a beneficial effect on the rate of integration and healing of FWM. We therefore propose that the adjuvant use of PBM may have utility in enhancing engraftment and tissue repair and be of value in clinical practice. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and evaluation of highly drug-loaded fine globular granules using a multi-functional rotor processor.

    PubMed

    Iwao, Yasunori; Kimura, Shin-Ichiro; Ishida, Masayuki; Mise, Ryohei; Yamada, Masaki; Namiki, Noriyuki; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The manufacture of highly drug-loaded fine globular granules eventually applied for orally disintegrating tablets has been investigated using a unique multi-functional rotor processor with acetaminophen, which was used as a model drug substance. Experimental design and statistical analysis were used to evaluate potential relationships between three key operating parameters (i.e., the binder flow rate, atomization pressure and rotating speed) and a series of associated micromeritics (i.e., granule mean size, proportion of fine particles (106-212 µm), flowability, roundness and water content). The results of multiple linear regression analysis revealed several trends, including (1) the binder flow rate and atomization pressure had significant positive and negative effects on the granule mean size value, Carr's flowability index, granular roundness and water content, respectively; (2) the proportion of fine particles was positively affected by the product of interaction between the binder flow rate and atomization pressure; and (3) the granular roundness was negatively and positively affected by the product of interactions between the binder flow rate and the atomization pressure, and the binder flow rate and rotating speed, respectively. The results of this study led to the identification of optimal operating conditions for the preparation of granules, and could therefore be used to provide important information for the development of processes for the manufacture of highly drug-loaded fine globular granules.

  17. Recent developments in plasma spray processes for applications in energy technology

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  18. Theory Of Dewetting In A Filled Elastomer Under Stress

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.

    1993-01-01

    Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.

  19. 75 FR 34476 - Draft Supplemental Environmental Impact Statement for Incidental Take and Wetland Fill Permits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... that would take the Alabama beach mouse (Peromyscus polionotus ammobates) and place fill in wetlands on... endangered Alabama beach mouse and fill in wetlands incidental to construction and occupation of adjacent... 48.1 acres of Alabama beach mouse habitat. Next Steps We will evaluate these ITP applications...

  20. Effect of suspension property on granule morphology and compaction behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  1. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  2. Audible acoustics in high-shear wet granulation: application of frequency filtering.

    PubMed

    Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn

    2009-08-13

    Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.

  3. Silver nanoparticles-containing dual-function hydrogels based on a guar gum-sodium borohydride system

    PubMed Central

    Dai, Lei; Nadeau, Ben; An, Xingye; Cheng, Dong; Long, Zhu; Ni, Yonghao

    2016-01-01

    Dual-function hydrogels, possessing both stimuli-responsive and self-healing properties, have recently attracted attention of both chemists and materials scientists. Here we report a new paradigm using natural polymer (guar gum, GG) and sodium borohydride (NaBH4), for the preparation of silver nanoparticles (AgNPs)-containing smart hydrogels in a simple, fast and economical way. NaBH4 performs as a reducing agent for AgNPs synthesis using silver nitrate (AgNO3) as the precursor. Meanwhile, sodium metaborate (NaBO2) (from NaBH4) behaves as a cross-linking agent between GG molecular chains. The AgNPs/GG hydrogels with excellent viscoelastic properties can be obtained within 3 min at room temperature without the addition of other cross-linkers. The resultant AgNPs/GG hydrogels are flowable and injectable, and they possess excellent pH/thermal responsive properties. Additionally, they exhibit rapid self-healing capacity. This work introduces a facile and scale-up way to prepare a class of hydrogels that can have great potential to biomedical and other industrial applications. PMID:27819289

  4. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2018-01-01

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  5. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2017-12-11

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  6. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation-drying-milling process.

    PubMed

    Kumar, Vijay; Taylor, Michael K; Mehrotra, Amit; Stagner, William C

    2013-06-01

    Focused beam reflectance measurement (FBRM) was used as a process analytical technology tool to perform inline real-time particle size analysis of a proprietary granulation manufactured using a continuous twin-screw granulation-drying-milling process. A significant relationship between D20, D50, and D80 length-weighted chord length and sieve particle size was observed with a p value of <0.0001 and R(2) of 0.886. A central composite response surface statistical design was used to evaluate the effect of granulator screw speed and Comil® impeller speed on the length-weighted chord length distribution (CLD) and particle size distribution (PSD) determined by FBRM and nested sieve analysis, respectively. The effect of granulator speed and mill speed on bulk density, tapped density, Compressibility Index, and Flowability Index were also investigated. An inline FBRM probe placed below the Comil-generated chord lengths and CLD data at designated times. The collection of the milled samples for sieve analysis and PSD evaluation were coordinated with the timing of the FBRM determinations. Both FBRM and sieve analysis resulted in similar bimodal distributions for all ten manufactured batches studied. Within the experimental space studied, the granulator screw speed (650-850 rpm) and Comil® impeller speed (1,000-2,000 rpm) did not have a significant effect on CLD, PSD, bulk density, tapped density, Compressibility Index, and Flowability Index (p value > 0.05).

  7. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    PubMed

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p<0.05). The test sealers showed water sorption and porosity similar to MTA (p>0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Physical and Chemical Properties and Subcutaneous Implantation of Mineral Trioxide Aggregate Mixed with Propylene Glycol.

    PubMed

    Marciano, Marina Angélica; Guimarães, Bruno Martini; Amoroso-Silva, Pablo; Camilleri, Josette; Hungaro Duarte, Marco Antonio

    2016-03-01

    The aim of this study was to evaluate the physical, chemical, and biological properties of mineral trioxide aggregate (MTA) mixed with 80% distilled water and 20% propylene glycol (PG) compared with MTA mixed with distilled water only. Flowability, film thickness, and solubility were analyzed according to American National Standards Institute/American Dental Association specification 57/2000. Initial and final setting times were assessed according to American Society for Testing and Materials specification C266/08. Porosity was assessed by using mercury intrusion porosimetry after 1 and 28 days of hydration, and the pH and calcium ion release were assessed after 3, 24, 72, and 168 hours. For the tissue reaction, the cements were implanted in 24 albino rats (2 groups, n = 12). An analysis of the inflammatory infiltrate was performed after 15, 30, and 60 days. MTA + PG exhibited lower film thickness and higher final setting time. No differences were verified for flowability (P > .05). MTA + PG showed high porosity at 1 day of hydration (P < .05). All the test cements demonstrated an alkaline pH. Microscopic analysis of the specimens revealed neoformation of connective tissue in contact with the cements. The introduction of PG as a mixing vehicle alters the physical and chemical properties of MTA and is biologically acceptable. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. [Research on bond durability among different core materials and zirconia ceramic cemented by self-adhesive resin cements].

    PubMed

    Xinyu, Luo; Xiangfeng, Meng

    2017-02-01

    This research estimated shear bond durability of zirconia and different substrates cemented by two self-adhesive resin cements (Clearfil SA Luting and RelyX U100) before and after aging conditioning. Machined zirconia ceramic discs were cemented with four kinds of core material (cobalt-chromium alloy, flowable composite resin core material, packable composite resin, and dentin) with two self-adhesive resin cements (Clearfil SA Luting and RelyX U100). All specimens were divided into eight test groups, and each test group was divided into two subgroups. Each subgroup was subjected to shear test before and after 10 000 thermal cycles. All factors (core materials, cements, and thermal cycle) significantly influenced bond durability of zirconia ceramic (P<0.00 1). After 10 000 thermal cycles, significant decrease was not observed in shear bond strength of cobalt-chromium alloy luted with Clearfil SA Luting (P>0.05); observed shear bond strength was significantly higher than those of other substrates (P<0.05). Significantly higher shear bond strength was noted in Clearfil SA Luting luted with cobalt-chromium alloy, flowable composite resin core material, and packable composite resin than that of RelyX U100 (P<0.05). However, significant difference was not observed in shear bond strength of dentin luted with Clearfil SA Luting and RelyX U100 (P>0.05). Different core materials and self-adhesive resin cements can significantly affect bond durability of zirconia ceramic. 
.

  10. Characterization of third-body media particles and their effect on in vitro composite wear

    PubMed Central

    Lawson, Nathaniel C.; Cakir, Deniz; Beck, Preston; Litaker, Mark S.; Burgess, John O.

    2012-01-01

    Objectives The purpose of this study was to compare four medium particles currently used for in vitro composite wear testing (glass and PMMA beads and millet and poppy seeds). Methods Particles were prepared as described in previous wear studies. Hardness of medium particles was measured with a nano-indentor, particle size was measured with a particle size analyzer, and the particle form was determined with light microscopy and image analysis software. Composite wear was measured using each type of medium and water in the Alabama wear testing device. Four dental composites were compared: a hybrid (Z100), flowable microhybrid (Estelite Flow Quick), micromatrix (Esthet-X), and nano-filled (Filtek Supreme Plus). The test ran for 100,000 cycles at 1.2Hz with 70N force by a steel antagonist. Volumetric wear was measured by non-contact profilometry. A two-way analysis of variance (ANOVA) and Tukey's test was used to compare both materials and media. Results Hardness values (GPa) of the particles are (glass, millet, PMMA, poppy respectively): 1.310(0.150), 0.279(.170), 0.279(0.095), and 0.226(0.146). Average particle sizes (μm) are (glass, millet, PMMA, poppy respectively): 88.35(8.24), 8.07(4.05), 28.95(8.74), and 14.08(7.20). Glass and PMMA beads were considerably more round than the seeds. During composite wear testing, glass was the only medium that produced more wear than the use of water alone. The rank ordering of the materials varied with each medium, however, the glass and PMMA bead medium allowed better discrimination between materials. Significance PMMA beads are a practical and relevant choice for composite wear testing because they demonstrate similar physical properties as seeds but reduce the variability of wear measurements. PMID:22578990

  11. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    PubMed

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites.

    PubMed

    Al Sunbul, Hanan; Silikas, Nick; Watts, David C

    2016-08-01

    To investigate a set of resin-composites and the effect of their composition on polymerization shrinkage strain and strain kinetics, shrinkage stress and the apparent elastic modulus. Eighteen commercially available resin-composites were investigated. Three specimens (n=3) were made per material and light-cured with an LED unit (1200mW/cm(2)) for 20s. The bonded-disk method was used to measure the shrinkage strain and Bioman shrinkage stress instrument was used to measure shrinkage stress. The shrinkage strain kinetics at 23°C was monitored for 60min. Maximum strain and stress was evaluated at 60min. The shrinkage strain rate was calculated using numerical differentiation. The shrinkage strain values ranged from 1.83 (0.09) % for Tetric Evoceram (TEC) to 4.68 (0.04) % for Beautifil flow plus (BFP). The shrinkage strain rate ranged from 0.11 (0.01%s(-1)) for Gaenial posterior (GA-P) to 0.59 (0.07) %s(-1) for BFP. Shrinkage stress values ranged from 3.94 (0.40)MPa for TET to 10.45 (0.41)MPa for BFP. The apparent elastic modulus ranged from 153.56 (18.7)MPa for Ever X posterior (EVX) to 277.34 (25.5) MPa for Grandio SO heavy flow (GSO). The nature of the monomer system determines the amount of the bulk contraction that occurs during polymerization and the resultant stress. Higher values of shrinkage strain and stress were demonstrated by the investigated flowable materials. The bulk-fill materials showed comparable result when compared to the traditional resin-composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, T.A.; Moran, T.C.; Broschart, D.W.

    1998-12-31

    The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990`s, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. An innovative procedure of injecting grout into the mine workings to reduce AMD and the resulting treatment costs is proposed. The procedure involves injecting grout mixesmore » composed primarily of coal combustion byproducts (CCB`s) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to help achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera operation confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. Closer injection hole spacing was used in second-mined areas to account for collapsed workings. The construction documents have been prepared with the project being bid in late 1997. The engineer`s cost estimate was approximately $2,500,000, with the low bid of approximately $2,300,000 being submitted by Howard Concrete Pumping of Bridgeville, PA.« less

  14. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The application of waste fly ash and construction-waste in cement filling material in goaf

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  16. Experimental and Numerical Characterization of Polymer Nanocomposites for Solid Rocket Motor Internal Insulation

    DTIC Science & Technology

    2009-09-30

    combustion chamber. Kevlar®-filled ethylene-propylene-diene rubber ( EPDM ) is the baseline insulation material for solid rocket motor cases. A novel...filled EPDM is the industry standard for this application. Since the elastic modulus of rubbers is low, they also act as absorbers during...Santoprene® thermoplastic rubber is already demonstrating their performance capability to replace EPDM in automotive weather seal applications [18]. An

  17. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  18. Hole filling and library optimization: application to commercially available fragment libraries.

    PubMed

    An, Yuling; Sherman, Woody; Dixon, Steven L

    2012-09-15

    Compound libraries comprise an integral component of drug discovery in the pharmaceutical and biotechnology industries. While in-house libraries often contain millions of molecules, this number pales in comparison to the accessible space of drug-like molecules. Therefore, care must be taken when adding new compounds to an existing library in order to ensure that unexplored regions in the chemical space are filled efficiently while not needlessly increasing the library size. In this work, we present an automated method to fill holes in an existing library using compounds from an external source and apply it to commercially available fragment libraries. The method, called Canvas HF, uses distances computed from 2D chemical fingerprints and selects compounds that fill vacuous regions while not suffering from the problem of selecting only compounds at the edge of the chemical space. We show that the method is robust with respect to different databases and the number of requested compounds to retrieve. We also present an extension of the method where chemical properties can be considered simultaneously with the selection process to bias the compounds toward a desired property space without imposing hard property cutoffs. We compare the results of Canvas HF to those obtained with a standard sphere exclusion method and with random compound selection and find that Canvas HF performs favorably. Overall, the method presented here offers an efficient and effective hole-filling strategy to augment compound libraries with compounds from external sources. The method does not have any fit parameters and therefore it should be applicable in most hole-filling applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Thermoplasticized gutta percha in apexification].

    PubMed

    Vicente Gómez, A; Miñana Laliga, R

    1990-01-01

    Filling the root canals in teeth after apexification is one useful clinical application of the thermoplasticized gutta-percha. We described 7 cases which Ultrafil was used in order to fill the canals. In all of them we made X-ray check-up.

  20. 76 FR 60016 - Bellwood Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ...-high rock or earth fill main dam and a new 2,500-foot-long, 60-foot-high rock or earth fill saddle dam...-long, 185-foot-high rock or earth fill dam forming a lower reservoir having a surface area of 120 acres... registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your...

  1. Reinforcing the inner phase of the filled hydrogels with CNTs alters drug release properties and human keratinocyte morphology: A study on the gelatin- tamarind gum filled hydrogels.

    PubMed

    Maharana, Vivek; Gaur, Deepanjali; Nayak, Suraj K; Singh, Vinay K; Chakraborty, Subhabrata; Banerjee, Indranil; Ray, Sirsendu S; Anis, Arfat; Pal, Kunal

    2017-11-01

    The study reports the synthesis and characterization of gelatin-tamarind gum (TG) based filled hydrogels for drug delivery applications. In this study, three different types of carbon nanotubes (CNTs) were incorporated within the dispersed TG phase of the filled hydrogels. The prepared hydrogels were thoroughly characterised using bright field microscope, FESEM, FTIR spectroscopy, differential scanning calorimeter, and mechanical tester. The swelling and the drug (salicylic acid) release properties of the filled hydrogels were also evaluated. The micrographs revealed the formation of biphasic systems. The internal phase appeared as agglomerates, and the CNTs were confined within the dispersed TG phase. FTIR and XRD studies revealed that CNTs promoted associative interactions among the components of the hydrogel, which promoted the formation of large crystallite size. The mechanical study indicated better resistance to the breakdown of the architecture of the CNT-containing filled hydrogels. Drug release studies, both passive and iontophoretic, suggested that the non-Fickian diffusion of the drug was prevalent during its release from hydrogel matrices. The prepared hydrogels were cytocompatible with human keratinocytes. The results suggested the probable use of such hydrogels in wound healing, tissue engineering and drug delivery applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    PubMed

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. TOPICAL REVIEW Recent developments in inorganically filled carbon nanotubes: successes and challenges

    NASA Astrophysics Data System (ADS)

    Gautam, Ujjal K.; Costa, Pedro M. F. J.; Bando, Yoshio; Fang, Xiaosheng; Li, Liang; Imura, Masataka; Golberg, Dmitri

    2010-10-01

    Carbon nanotubes (CNTs) are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  4. Left atrial strain: a new parameter for assessment of left ventricular filling pressure.

    PubMed

    Cameli, Matteo; Mandoli, Giulia Elena; Loiacono, Ferdinando; Dini, Frank Lloyd; Henein, Michael; Mondillo, Sergio

    2016-01-01

    In order to obtain accurate diagnosis, treatment and prognostication in many cardiac conditions, there is a need for assessment of left ventricular (LV) filling pressure. While systole depends on ejection function of LV, diastole and its disturbances influence filling function and pressures. The commonest condition that represents the latter is heart failure with preserved ejection fraction in which LV ejection is maintained, but diastole is disturbed and hence filling pressures are raised. Significant diastolic dysfunction results in raised LV end-diastolic pressure, mean left atrial (LA) pressure and pulmonary capillary wedge pressure, all referred to as LV filling pressures. Left and right heart catheterization has traditionally been used as the gold standard investigation for assessing these pressures. More recently, Doppler echocardiography has taken over such application because of its noninvasive nature and for being patient friendly. A number of indices are used to achieve accurate assessment of filling pressures including: LV pulsed-wave filling velocities (E/A ratio, E wave deceleration time), pulmonary venous flow (S wave and D wave), tissue Doppler imaging (E' wave and E/E' ratio) and LA volume index. LA longitudinal strain derived from speckle tracking echocardiography (STE) is also sensitive in estimating intracavitary pressures. It is angle-independent, thus overcomes Doppler limitations and provides highly reproducible measures of LA deformation. This review examines the application of various Doppler echocardiographic techniques in assessing LV filling pressures, in particular the emerging role of STE in assessing LA pressures in various conditions, e.g., HF, arterial hypertension and atrial fibrillation.

  5. Accuracy of micro powder dosing via a vibratory sieve-chute system.

    PubMed

    Besenhard, M O; Faulhammer, E; Fathollahi, S; Reif, G; Calzolari, V; Biserni, S; Ferrari, A; Lawrence, S M; Llusa, M; Khinast, J G

    2015-08-01

    This paper describes a powder dosing system with a vibratory sieve mounted on a chute that doses particles into a capsule. Vertical vibration occurred with a broad range of frequencies and amplitudes. During dosing events, the fill weight was accurately recorded via a capacitance sensor, covering the capsules and making it possible to analyze filling characteristics, that is, the fill rates and their robustness. The range of frequencies and amplitudes was screened for settings that facilitated reasonable (no blocking, no spilling) fill rates for three lactose powders. The filling characteristics were studied within this operating space. The results reveal similar operating spaces for all investigated powders. The fill rate robustness varied distinctly in the operating space, which is of prime importance for selecting the settings for continuous feeding applications. In addition, we present accurate dosing studies utilizing the knowledge about the filling characteristics of each powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Diversity in general surgery: a period of progress.

    PubMed

    Andriole, Dorothy A; Klingensmith, Mary E; Schechtman, Kenneth B

    2005-01-01

    Although 1996 to 2002 was a period of declining interest in general surgery (GS) among U.S. medical students (USS), most categorical general surgery (C-GS) training positions offered in the National Residency Matching Program (NRMP) continued to fill. We measured the impact of the decreasing U.S. student applicant volume on C-GS match outcomes and GS resident workforce composition over this time period. Match outcomes were analyzed for 7 applicant categories. Subsequent GS resident workforce compositions were analyzed for proportions of U.S. allopathic medical school graduates (USG), osteopathic medical graduates (OMG), Canadian MG (CMG), foreign MG (FMG), female physicians, and African-American physicians. Mantel-Haenzel chi-square tests measured trends in match percentages, C-GS positions filled, and GS workforce composition. All p-values are 2-sided. Increasing match percentages for USS applicants (p < 0.0001) and USG (p = 0.001), with a decreasing percentage of C-GS positions filled by these applicants (p < 0.0001), were from declining applicant volumes. Increasing match percentage for non-U.S. allopathic medical applicants reflected increases in both applicant volumes and matched applicants, with an increasing percentage of C-GS positions filled by these applicants (p < 0.0001). The subsequent resident workforce included increasing proportions of FMGs and OMGs (each p < 0.001); proportions of USG MDs and CMGs decreased (p < 0.0001 and p < 0.02, respectively). Concurrently, there were increasing numbers and proportions of female physicians (p < 0.0001) and African-American physicians (p < 0.0001) in the general surgery resident workforce. Declining interest among U.S. students in GS has resulted in a workforce comprised of residents from a broad range of educational backgrounds, but also it has provided an opportunity for progress toward achievement of a GS resident physician workforce more equitably representative of the racial and gender composition of our society at large.

  7. HIGH SHEAR GRANULATION PROCESS: ASSESSING IMPACT OF FORMULATION VARIABLES ON GRANULES AND TABLETS CHARACTERISTICS OF HIGH DRUG LOADING FORMULATION USING DESIGN OF EXPERIMENT METHODOLOGY.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Ali, Bahaa E

    2017-03-01

    High shear wet granulation is a significant component procedure in the pharmaceutical industry. The objective of the study was to investigate the influence of two independent formulation variables; polyvinypyrrolidone (PVP) as a binder (X,) and croscarmellose sodium (CCS) as a disintegrant (X2) on the crit- ical quality attributes of acetaminophen granules and their corresponding tablets using design of experiment (DoE) approach. A two factor, three level (32) full factorial design has been applied; each variable was investi- gated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their density, granule size and flowability. Additionally, the produced tablets have been investigated for: break- ing force, friability, disintegration time and t. of drug dissolution. The analysis of variance (ANOVA) showed that the two variables had a significant impact (p < 0.05) on granules and tablets characteristics, while only the binder concentration influenced the tablets friability. Furthermore, significant interactions (p < 0.05) between the two variables, for granules and tablets attributes, were also found. However, variables interaction showed minimal effect for granules flowability as well as tablets friability. Desirability function was carried out to opti- mize the variables under study to obtain product within the USP limit. It was found that the higher desirability (0.985) could be obtained at the medium level of PVP and low level of CCS. Ultimately, this study supplies the formulator with beneficial tools in selecting the proper level of binder and disintegrant to attain product with desired characteristics.

  8. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.

    PubMed

    Lanzerstorfer, Christof

    2017-04-01

    Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230±35kg/m 3 , which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl - , S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl - and S were lower. This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. Copyright © 2016. Published by Elsevier B.V.

  9. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    PubMed

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  10. Secondary Amine Functional Disiloxanes as CO2 Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, MJ; Farnum, RL; Perry, RJ

    2014-05-01

    A series of two different types of secondary amine functional disiloxanes were prepared and screened as CO2 capture solvents. The first group of materials contained RNHCH2CH2CH2 side chains where the R groups were C1-6 alkyls. When R was a primary alkyl group, these materials exhibited CO2 uptake values slightly in excess of theoretical. As the alkyl groups were changed to more sterically hindered secondary or tertiary alkyls, the uptake was less efficient. Heats of absorption values for these materials were generally in the range 2000-2200 kJ/kg of CO2, values significantly lower than those obtained for primary amine functional disiloxanes (2500-2700more » kJ/kg of CO2). Also explored were a series of secondary amine functional disiloxanes with X-CH2CH2NH-CH2CH2CH2 - substituents. When X was an electron-donating group (RO-, R2N-, RO-CH2-) the CO2 uptake was also in excess of theoretical. Interestingly, these compounds were generally found to produce carbamate salts that were flowable, low-viscosity oils. Furthermore, the heat of absorption values determined for these materials were even lower. Most compounds gave values below 2000 kJ/kg of CO2. Overall the most promising results were obtained with a methoxyethylaminopropyl derivative, an ethoxyethylaminopropyl-containing material, and a dimethylaminoethylaminopropyl-based compound. These materials showed excellent CO2 uptake, had low heats of absorption, and produced carbamate salts that were flowable liquids even at room temperature.« less

  11. Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control.

    PubMed

    Kassa, Adane; Stephan, Dietrich; Vidal, Stefan; Zimmermann, Gisbert

    2004-01-01

    Currently, mycopesticide development for locust and grasshopper control depends on aerial conidia or submerged spores of entomopathogenic fungi. In our study, the production of submerged conidia of Metarhizium anisopliae var. acridum (IMI 330189) was investigated in a liquid medium containing 3% biomalt and 1% yeast extract (BH-medium). The effects of freeze and spray drying techniques on the quality of submerged conidia were determined. The influence of different additives on the viability of fresh submerged conidia and their suitability for oil flowable concentrate formulation development was assessed. In a BH medium maintained at 180 rev min(-1), at 30 degrees C for 72 h, IMI 330189 produced a green pigmented biomass of submerged conidia whereas in Adámek medium it produced a yellowish biomass of submerged spores. The spore concentration was high in both media; however, the size of the spores produced in the BH medium was significantly lower than those produced in Adámek medium (P < 0.001). Submerged conidia can be effectively dried using either freeze or spray drying techniques. The viability and speed of germination were significantly affected by the drying and pulverizing process (P < 0.001). The initial viability was significantly higher for spray-dried submerged conidia than for freeze-dried spores. Pulverizing of freeze-dried submerged conidia reduced the speed of germination and the viability by 63-95%. Dried submerged conidia can be stored over 45 wk at low temperatures (< 10 degrees) without suffering a significant loss in viability. Furthermore, we have identified carriers that are suitable for oil flowable concentrate formulation development.

  12. Incidence of thromboembolic events after use of gelatin-thrombin-based hemostatic matrix during intracranial tumor surgery.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Conti, Carlo; De Bonis, Costanzo

    2018-01-01

    Association between the use of hemostatic agents made from collagen/gelatin mixed with thrombin and thromboembolic events in patients undergoing tumor resection has been suggested. This study evaluates the relationship between flowable hemostatic matrix and deep vein thrombosis in a large cohort of patients treated for brain tumor removal. The authors conducted a retrospective, multicenter, clinical review of all craniotomies for tumor removal performed between 2013 and 2014. Patients were classified in three groups: group I (flowable gelatin hemostatic matrix with thrombin), group II (gelatin hemostatic without thrombin), and group III (classical hemostatic). A total of 932 patients were selected: tumor pathology included 441 gliomas, 296 meningiomas, and 195 metastases. Thromboembolic events were identified in 4.7% of patients in which gelatin matrix with thrombin was applied, in 8.4% of patients with gelatin matrix without thrombin, and in 3.6% of cases with classical methods of hemostasis. Patients with venous thromboembolism had an increased proportion of high-grade gliomas (7.2%). Patients receiving a greater dose than 10 ml gelatin hemostatic had a higher rate of thromboembolic events. Intracranial hematoma requiring reintervention occurred in 19 cases: 4.5% of cases of group III, while reoperation was performed in 1.3 and 1.6% of patients in which gelatin matrix with or without thrombin was applied. Gelatin matrix hemostat is an efficacious tool for neurosurgeons in cases of difficult intraoperative bleeding during cranial tumor surgery. This study may help to identify those patients at high risk for developing thromboembolism and to treat them accordingly.

  13. Use of the dye stain assay and ultraviolet light test for assessing vaginal insertion of placebo-filled applicators before and after sex.

    PubMed

    Keller, Marla J; Buckley, Niall; Katzen, Lauren L; Walsh, Jennifer; Friedland, Barbara; Littlefield, Sarah; Lin, Juan; Xue, Xiaonan; Cornelison, Terri; Herold, Betsy C; Einstein, Mark H

    2013-12-01

    Applicator dye staining and ultraviolet (UV) light have been used in trials to measure adherence, but not in the setting of before and after sex gel dosing (BAT-24). This study was designed to determine if semen or presex gel dosing impacts the sensitivity and specificity of a dye stain assay (DSA) for measuring vaginal insertion of placebo-filled applicators with BAT-24 dosing. Healthy monogamous couples received Microlax-type applicators (Tectubes, Åstorp, Sweden) filled with hydroxyethylcelluose placebo gel. Women were instructed to vaginally insert 1 dose of gel before and a second dose after sex and to return applicators within 48 hours after sex. Applicators were stained to detect semen, followed by UV then DSA, and scored by 2 readers. Positive and negative controls were randomly included in applicator batches. Fifteen couples completed the study. Each woman returned at least 6 applicators over a 30-day period. The sensitivity for insertion of postsex applicators was higher for UV (97%) compared with DSA (90%), and the specificity was similar (≥96%). For presex applicators, the sensitivity and specificity were higher for DSA (100%) compared with UV testing (87% sensitivity, 96% specificity). Among returned postsex applicators, 95% tested positive by UV compared with 87% by DSA. Agreement between readers was significantly better on the presex applicators for DSA than for UV, and for postsex readings, agreement was less than half that for UV, although the results were not statistically significant. Applicator tests are feasible for measuring adherence in trials with gel dosing before and after sex.

  14. Use of an automatic resistivity system for detecting abandoned mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, W.R.; Burdick, R.G.

    1983-01-01

    A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.

  15. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.

    PubMed

    Bajaj, Poonam R; Bhunia, Kanishka; Kleiner, Leslie; Joyner Melito, Helen S; Smith, Denise; Ganjyal, Girish; Sablani, Shyam S

    2017-03-01

    Unhydrolysed pea protein (UN) forms very viscous emulsions when used at higher concentrations. To overcome this, UN was hydrolysed using enzymes alcalase, flavourzyme, neutrase, alcalase-flavourzyme, and neutrase-flavourzyme at 50 °C for 0 min, 30 min, 60 min, and 120 min to form hydrolysed proteins A, F, N, AF, and NF, respectively. All hydrolysed proteins had lower apparent viscosity and higher solubility than UN. Foaming capacity of A was the highest, followed by NF, N, and AF. Hydrolysed proteins N60, A60, NF60, and AF60 were prepared by hydrolysing UN for 60 min and used further for microencapsulation. At 20% oil loading (on a total solid basis), the encapsulated powder N60 had the highest microencapsulation efficiency (ME = 56.2). A decrease in ME occurred as oil loading increased to 40%. To improve the ME of N60, >90%, UN and maltodextrin were added. Flowability and particle size distribution of microencapsulated powders with >90% microencapsulation efficiency and morphology of all powders were investigated. This study identified a new way to improve pea protein functionality in emulsions, as well as a new application of hydrolysed pea protein as wall material for microencapsulation.

  16. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    NASA Astrophysics Data System (ADS)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  17. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  18. How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates.

    PubMed

    Freitag, Franziska; Kleinebudde, Peter

    2003-07-01

    The effect of roll compaction/dry granulation on the particle and bulk material characteristics of different magnesium carbonates was evaluated. The flowability of all materials could be improved, even by the application of low specific compaction forces. The tablet properties made of powder and dry granulated magnesium carbonate were compared. Roll compaction/dry granulation resulted in a modified compactibility of the material and, consequently, tablets with reduced tensile strength. The higher relative tap density of the compacted material does not allow a densification to the same extent as the uncompacted powder. The degree of densification during tableting can be expressed as the ratio of the relative tablet density to the relative tap density of the feed material. Increasing the specific compaction forces resulted in higher apparent mean yield pressure, gained from Heckel plots, of all materials analysed. The partial loss of compactibility leads to the demand of low loads during roll compaction. Comparing the tablet properties of different magnesium carbonates reveals an obvious capping disposition. However, it depends on the type of magnesium carbonate, the specific compaction force and also on the tableting force applied.

  19. Application of spherical silicate to prepare solid dispersion dosage forms with aqueous polymers.

    PubMed

    Nagane, Kentaro; Kimura, Susumu; Ukai, Koji; Takahashi, Chisato; Ogawa, Noriko; Yamamoto, Hiromitsu

    2015-09-30

    The objective of this study is to prepare and characterize solid dispersions of nifedipine (NP) using porous spherical silicate micro beads (MB) that were approximately 100 μm in diameter with vinylpyrrolidone/vinyl acetate copolymer (PVP/VA) and a Wurster-type fluidized bed granulator. Compared with previously reported solid dispersion using only MB, the supersaturation of NP dissolved from the proposed system of MB and PVP/VA was maintained during dissolution tests. The proposed system produced a solid dispersion product coated on MB, and morphology was maintained after the coating process to prepare solid dispersion; therefore, the powder characteristics, such as flowability of the proposed solid dispersion product, was tremendously preferable to that of the conventional spray-dried solid dispersions of NP with PVP/VA, expecting to make the consequent manufacturing processes easy for development. Another advantage in the terms of manufacturing is its simple process to prepare solid dispersion by spraying the drug and polymer that were dissolved in an organic solvent onto a MB in a Wurster-type fluidized bed granulator, thus, simplifying the optimization and scale-up with ease. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang

    2012-09-01

    Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.

  1. Low Loss Polymer Nanoparticle Composites for RF Applications

    DTIC Science & Technology

    2014-09-17

    size of nanoparticles below a critical dimension ( skin depth).6 It is possible to increase the skin depth of the hybrid material by decreasing the...filled with elastomers,[10-12] polymer-nanoparticle composites,[13, 14] liquid metal filled microfluidic channels,[4, 15] conductive networks on pre

  2. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  3. Generation of digitized microfluidic filling flow by vent control.

    PubMed

    Yoon, Junghyo; Lee, Eundoo; Kim, Jaehoon; Han, Sewoon; Chung, Seok

    2017-06-15

    Quantitative microfluidic point-of-care testing has been translated into clinical applications to support a prompt decision on patient treatment. A nanointerstice-driven filling technique has been developed to realize the fast and robust filling of microfluidic channels with liquid samples, but it has failed to provide a consistent filling time owing to the wide variation in liquid viscosity, resulting in an increase in quantification errors. There is a strong demand for simple and quick flow control to ensure accurate quantification, without a serious increase in system complexity. A new control mechanism employing two-beam refraction and one solenoid valve was developed and found to successfully generate digitized filling flow, completely free from errors due to changes in viscosity. The validity of digitized filling flow was evaluated by the immunoassay, using liquids with a wide range of viscosity. This digitized microfluidic filling flow is a novel approach that could be applied in conventional microfluidic point-of-care testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Method for filling the cavities of cells with a chromogenic fluid

    DOEpatents

    Tonazzi, J.C.L.; Kucharczyk, J.E. Jr.; Agrawal, A.

    1999-01-05

    A method and apparatus are disclosed for filling a cell cavity positioned between a first substrate and a second substrate with a cell filling liquid. The method entails forming at least one evacuation cavity encompassing at least a portion of an outer surface of each of the first and second substrates of a cell containing a cell cavity and isolating the cell cavity from the evacuation cavity; reducing a pressure in each of the evacuation cavity and the cell cavity; and dispensing the cell filling fluid into the cell cavity. The application is to the fabrication of electrochromic windows. 22 figs.

  5. Impact of future fuel properties on aircraft engines and fuel systems

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  6. 29 CFR 2570.43 - Notification of interested persons by applicant.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...., Washington, DC 20210, ATTENTION: Application No. ___. 4 3 The applicant will fill in the room number of the... delivery by first-class mail will be considered reasonable methods of furnishing notice. (d) After...

  7. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario; Safigholi, H

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, threemore » different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.« less

  8. Use of the Dye Stain Assay and Ultraviolet Light Test for Assessing Vaginal Insertion of Placebo-filled Applicators Before and After Sex

    PubMed Central

    Keller, Marla J.; Buckley, Niall; Katzen, Lauren L.; Walsh, Jennifer; Friedland, Barbara; Littlefield, Sarah; Lin, Juan; Xue, Xiaonan; Cornelison, Terri; Herold, Betsy C.; Einstein, Mark H.

    2014-01-01

    Background Applicator dye staining and ultraviolet (UV) light have been used in trials to measure adherence, but not in the setting of before and after sex gel dosing (BAT-24). This study was designed to determine if semen or pre-sex gel dosing impacts the sensitivity and specificity of a dye stain assay (DSA) for measuring vaginal insertion of placebo-filled applicators with BAT-24 dosing. Methods Healthy monogamous couples received Microlax®-type applicators filled with hydroxyethylcelluose placebo gel. Women were instructed to vaginally insert one dose of gel before and a second dose after sex and to return applicators within 48 hours after sex. Applicators were stained to detect semen followed by UV then DSA and scored by two readers. Positive and negative controls were randomly included in applicator batches. Results Fifteen couples completed the study. Each female returned at least six applicators over a 30-day period. The sensitivity for insertion of post-sex applicators was higher for UV (97%) compared to DSA (90%) and the specificity was similar (≥96%). For pre-sex applicators, the sensitivity and specificity were higher for DSA (100%) compared to UV testing (87% sensitivity, 96% specificity). Among returned post-sex applicators, 95% tested positive by UV compared to 87% by DSA. Agreement between readers was significantly better on the pre-sex applicators for DSA than for UV and for post-sex readings agreement was less than half that for UV, although the results were not statistically significant. Conclusions Applicator tests are feasible for measuring adherence in trials with gel dosing before and after sex. PMID:24220355

  9. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  10. 27 CFR 5.45 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Standards of Fill for Bottled Distilled Spirits § 5.45 Application. No person engaged in business as a distiller, rectifier, importer...

  11. 40 CFR Appendix S to Subpart G of... - Substitutes Listed in the September 19, 2012 Final Rule, Effective December 18, 2012.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Extinguishing Systems.For establishments filling, installing, servicing, using, or disposing of containers or systems to be used in total flooding applications, EPA recommends the following: —appropriate protective... 2010 standard for Aerosol Extinguishing Systems.For establishments filling, installing, servicing...

  12. 40 CFR Appendix S to Subpart G of... - Substitutes Listed in the September 19, 2012 Final Rule, Effective December 18, 2012.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Extinguishing Systems.For establishments filling, installing, servicing, using, or disposing of containers or systems to be used in total flooding applications, EPA recommends the following: —appropriate protective... 2010 standard for Aerosol Extinguishing Systems.For establishments filling, installing, servicing...

  13. 40 CFR 265.19 - Construction quality assurance program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conductivity requirements must be verified by using in-situ testing on the constructed test fill. The test fill... specifications in the permit. The program must be developed and implemented under the direction of a CQA officer... applicable units, and a description of how they will be constructed. (2) Identification of key personnel in...

  14. 40 CFR 265.19 - Construction quality assurance program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conductivity requirements must be verified by using in-situ testing on the constructed test fill. The test fill... specifications in the permit. The program must be developed and implemented under the direction of a CQA officer... applicable units, and a description of how they will be constructed. (2) Identification of key personnel in...

  15. Blowing Polymer Bubbles in an Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    In new manufacturing process, small gas-filled polymer shells made by injecting gas directly into acoustically levitated prepolymer drops. New process allows sufficient time for precise control of shell geometry. Applications foreseen in fabrication of deuterium/tritium-filled fusion targets and in pharmaceutical coatings. New process also useful in glass blowing and blow molding.

  16. New Doppler echocardiographic applications for the study of diastolic function

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Klein, A. L.

    1998-01-01

    Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.

  17. Clinical evaluation of flowable resins in non-carious cervical lesions: two-year results.

    PubMed

    Celik, Cigdem; Ozgünaltay, Gül; Attar, Nuray

    2007-01-01

    This study evaluated the two-year clinical performance of one microhybrid composite and three different types of flowable resin materials in non-carious cervical lesions. A total of 252 noncarious cervical lesions were restored in 37 patients (12 male, 25 female) with Admira Flow, Dyract Flow, Filtek Flow and Filtek Z250, according to manufacturers' instructions. All the restorations were placed by one operator, and two other examiners evaluated the restorations clinically within one week after placement and after 6, 12, 18 and 24 months, using modified USPHS criteria. At the end of 24 months, 172 restorations were evaluated in 26 patients, with a recall rate of 68%. Statistical analysis was completed using the Pearson Chi-square and Fisher-Freeman-Halton tests (p < 0.05). Additionally, survival rates were analyzed with the Kaplan-Meier estimator and the Log-Rank test (p < 0.05). The Log-Rank test indicated statistically significant differences between the survival rates of Dyract Flow/Admira Flow and Dyract Flow/Filtek Z250 (p < 0.05). While there was a statistically significant difference between Dyract Flow and the other materials for color match at 12 and 18 months, no significant difference was observed among all of the materials tested at 24 months. Significant differences were revealed between Filtek Z250 and the other materials for marginal adaptation at 18 and 24 months (p < 0.05). With respect to marginal discoloration, secondary caries, surface texture and anatomic form, no significant differences were found between the resin materials (p > 0.05). It was concluded that different types of resin materials demonstrated acceptable clinical performance in non-carious cervical lesions, except for the retention rates of the Dyract Flow restorations.

  18. Variation in hospital resource use and cost among surgical procedures using topical absorbable hemostats

    PubMed Central

    Martyn, Derek; Meckley, Lisa M; Miyasato, Gavin; Lim, Sangtaeck; Riebman, Jerome B; Kocharian, Richard; Scaife, Jillian G; Rao, Yajing; Corral, Mitra

    2015-01-01

    Background Adjunctive hemostats are used to assist with the control of intraoperative bleeding. The most common types are flowables, gelatins, thrombins, and oxidized regenerated celluloses (ORCs). In the US, Surgicel® products are the only US Food and Drug Administration-approved ORCs. Objective To compare the outcomes of health care resource utilization (HRU) and costs associated with using ORCs compared to other adjunctive hemostats (OAHs are defined as flowables, gelatins, and topical thrombins) for surgical procedures in the US inpatient setting. Patients and methods A retrospective, US-based cohort study was conducted using hospital inpatient discharges from the 2011–2012 calendar years in the Premier Healthcare Database. Patients with either an ORC or an OAH who underwent a cardiovascular procedure (valve surgery and/or coronary artery bypass graft surgery), carotid endarterectomy, cholecystectomy, or hysterectomy were included. Propensity score matching was used to create comparable groups of ORC and OAH patients. Clinical, economic, and HRU outcomes were compared. Results The propensity score matching created balanced patient cohorts for cardiovascular procedure (22,718 patients), carotid endarterectomy (10,890 patients), cholecystectomy (6,090 patients), and hysterectomy (9,348 patients). In all procedures, hemostatic agent costs were 28%–56% lower for ORCs, and mean hemostat units per discharge were 16%–41% lower for ORCs compared to OAHs. Length of stay and total procedure costs for patients treated with ORCs were lower for carotid endarterectomy patients (0.3 days and US$700) and for cholecystectomy patients (1 day and US$3,350) (all P<0.001). Conclusion Costs and HRU for patients treated with ORCs were lower than or similar to patients treated with OAHs. Proper selection of the appropriate hemostatic agents has the potential to influence clinical outcomes and treatment costs. PMID:26604807

  19. Experimental study on latent heat storage characteristics of W/O emulsion -Supercooling rate of dispersed water drops by direct contact heat exchange-

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Horibe, Akihiko; Haruki, Naoto; Inaba, Hideo

    2013-04-01

    Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ˜ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.

  20. Single Layer Extended Release Two-in-One Guaifenesin Matrix Tablet: Formulation Method, Optimization, Release Kinetics Evaluation and Its Comparison with Mucinex® Using Box-Behnken Design.

    PubMed

    Morovati, Amirhosein; Ghaffari, Alireza; Erfani Jabarian, Lale; Mehramizi, Ali

    2017-01-01

    Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex ® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release "%" in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X 1 : Cetyl alcohol, X 2 : Starch 1500 ® , X 3 : HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X 1 : 37.10, X 2 : 2, X 3 : 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500 ® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too.

  1. Single Layer Extended Release Two-in-One Guaifenesin Matrix Tablet: Formulation Method, Optimization, Release Kinetics Evaluation and Its Comparison with Mucinex® Using Box-Behnken Design

    PubMed Central

    Morovati, Amirhosein; Ghaffari, Alireza; Erfani jabarian, Lale; Mehramizi, Ali

    2017-01-01

    Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release “%” in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X1: Cetyl alcohol, X2: Starch 1500®, X3: HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X1: 37.10, X2: 2, X3: 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too. PMID:29552045

  2. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    PubMed

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  3. Physical characterization of whole and skim dried milk powders.

    PubMed

    Pugliese, Alessandro; Cabassi, Giovanni; Chiavaro, Emma; Paciulli, Maria; Carini, Eleonora; Mucchetti, Germano

    2017-10-01

    The lack of updated knowledge about the physical properties of milk powders aimed us to evaluate selected physical properties (water activity, particle size, density, flowability, solubility and colour) of eleven skim and whole milk powders produced in Europe. These physical properties are crucial both for the management of milk powder during the final steps of the drying process, and for their use as food ingredients. In general, except for the values of water activity, the physical properties of skim and whole milk powders are very different. Particle sizes of the spray-dried skim milk powders, measured as volume and surface mean diameter were significantly lower than that of the whole milk powders, while the roller dried sample showed the largest particle size. For all the samples the size distribution was quite narrow, with a span value less than 2. The loose density of skim milk powders was significantly higher than whole milk powders (541.36 vs 449.75 kg/m 3 ). Flowability, measured by Hausner ratio and Carr's index indicators, ranged from passable to poor when evaluated according to pharmaceutical criteria. The insolubility index of the spray-dried skim and whole milk powders, measured as weight of the sediment (from 0.5 to 34.8 mg), allowed a good discrimination of the samples. Colour analysis underlined the relevant contribution of fat content and particle size, resulted in higher lightness ( L *) for skim milk powder than whole milk powder, which, on the other hand, showed higher yellowness ( b *) and lower greenness (- a *). In conclusion a detailed knowledge of functional properties of milk powders may allow the dairy to tailor the products to the user and help the food processor to perform a targeted choice according to the intended use.

  4. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug

    PubMed Central

    Alyami, Hamad; Dahmash, Eman; Bowen, James

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation. PMID:28609454

  5. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol.

    PubMed

    Kaialy, Waseem; Nokhodchi, Ali

    2015-02-20

    The purpose of this work was to evaluate the physicochemical and inhalation characteristics of different size fractions of a promising carrier, i.e., freeze-dried mannitol (FDM). FDM was prepared and sieved into four size fractions. FDMs were then characterized in terms of micromeritic, solid-state and bulk properties. Dry powder inhaler (DPI) formulations were prepared using salbutamol sulphate (SS) and then evaluated in terms of drug content homogeneity and in vitro aerosolization performance. The results showed that the crystalline state of mannitol was maintained following freeze-drying for all size fractions of FDM. All FDM particles showed elongated morphology and contained mixtures of α-, β- and δ-mannitol. In comparison to small FDM particles, FDMs with larger particle sizes demonstrated narrower size distributions, higher bulk and tap densities, lower porosities and better flowability. Regardless of particle size, all FDMs generated a significantly higher (2.2-2.9-fold increase) fine particle fraction (FPF, 37.5 ± 0.9%-48.6 ± 2.8%) of SS in comparison to commercial mannitol. The FPFs of SS were related to the shape descriptors of FDM particles; however, FPFs did not prove quantitative apparent relationships with either particle size or powder bulk descriptors. Large FDM particles were more favourable than smaller particles because they produced DPI formulations with better flowability, better drug content homogeneity, lower amounts of the drug depositing on the throat and contained lower fine-particle-mannitol. Optimized stable DPI formulations with superior physicochemical and pharmaceutical properties can be achieved using larger particles of freeze-dried mannitol (FDM). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.

    PubMed

    Alyami, Hamad; Dahmash, Eman; Bowen, James; Mohammed, Afzal R

    2017-01-01

    Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.

  7. Formulation studies on ibuprofen sodium-cationic dextran conjugate: effect on tableting and dissolution characteristics of ibuprofen.

    PubMed

    Abioye, Amos Olusegun; Kola-Mustapha, Adeola

    2016-01-01

    The effect of electrostatic interaction between ibuprofen sodium (IbS) and cationic diethylaminoethyl dextran (Ddex), on the tableting properties and ibuprofen release from the conjugate tablet was investigated. Ibuprofen exhibits poor flow, compaction (tableting) and dissolution behavior due to its hydrophobic structure, high cohesive, adhesive and viscoelastic properties therefore it was granulated with cationic Ddex to improve its compression and dissolution characteristics. Electrostatic interaction and hydrogen bonding between IbS and Ddex was confirmed with FT-IR and DSC results showed a stepwise endothermic solid-solid structural transformation from racemic to anhydrous forms between 120 and 175 °C which melted into liquid form at 208.15 °C. The broad and diffused DSC peaks of the conjugate granules as well as the disappearance of ibuprofen melting peak provided evidence for their highly amorphous state. It was evident that Ddex improved the flowability and densification of the granules and increased the mechanical and tensile strengths of the resulting tablets as the tensile strength increased from 0.67 ± 0.0172 to 1.90 ± 0.0038 MPa with increasing Ddex concentration. Both tapping and compression processes showed that the most prominent mechanism of densification were particle slippage, rearrangement and plastic deformation while fragmentation was minimized. Ddex retarded the extent of dissolution in general, indicating potentials for controlled release formulations. Multiple release mechanisms including diffusion; anomalous transport and super case II transport were noted. It was concluded that interaction between ibuprofen sodium and Ddex produced a novel formulation with improved flowability, tableting and dissolution characteristics with potential controlled drug release characteristics dictated by Ddex concentration.

  8. Effect of resin coating and occlusal loading on microleakage of Class II computer-aided design/computer-aided manufacturing fabricated ceramic restorations: a confocal microscopic study.

    PubMed

    Kitayama, Shuzo; Nasser, Nasser A; Pilecki, Peter; Wilson, Ron F; Nikaido, Toru; Tagami, Junji; Watson, Timothy F; Foxton, Richard M

    2011-05-01

    To evaluate the effect of resin coating and occlusal loading on microleakage of class II computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic restorations. Molars were prepared for an mesio-occlusal-distal (MOD) inlay and were divided into two groups: non-coated (controls); and resin-coated, in which the cavity was coated with a combination of a dentin bonding system (Clearfil Protect Bond) and a flowable resin composite (Clearfil Majesty Flow). Ceramic inlays were fabricated using the CAD/CAM technique (CEREC 3) and cemented with resin cement (Clearfil Esthetic Cement). After 24 h of water storage, the restored teeth in each group were divided into two subgroups: unloaded or loaded with an axial force of 80 N at a rate of 2.5 cycles/s for 250,000 cycles while stored in water. After immersion in 0.25% Rhodamine B solution, the teeth were sectioned bucco-lingually at the mesial and distal boxes. Tandem scanning confocal microscopy (TSM) was used for evaluation of microleakage. The locations of the measurements were assigned to the cavity walls and floor. Loading did not have a significant effect on microleakage in either the resin-coated or non-coated group. Resin coating significantly reduced microleakage regardless of loading. The cavity floor exhibited greater microleakage compared to the cavity wall. TSM observation also revealed that microleakage at the enamel surface was minimal regardless of resin coating. In contrast, non-coated dentin showed extensive leakage, whereas resin-coated dentin showed decreased leakage. Resin coating with a combination of a dentin-bonding system and a flowable resin composite may be indicated prior to impression-taking when restoring teeth with CAD/CAM ceramic inlays in order to reduce microleakage at the tooth-resin interface.

  9. Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties.

    PubMed

    Ghunaim, Rasha; Scholz, Maik; Damm, Christine; Rellinghaus, Bernd; Klingeler, Rüdiger; Büchner, Bernd; Mertig, Michael; Hampel, Silke

    2018-01-01

    In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

  10. A Science-Based Understanding of Cermet Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesarano, III, Joseph; Roach, Robert Allen; Kilgo, Alice C.

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Duemore » to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7« less

  11. Modeling and control of flow during impregnation of heterogeneous porous media, with application to composite mold-filling processes

    NASA Astrophysics Data System (ADS)

    Bickerton, Simon

    Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold cavities. The molds applied in this study have required careful consideration of cavity thickness variations. Any effects on mold filling due to corner radii have been overshadowed by those due to preform compression. While numerical tools are available to study actively controlled mold filling in a virtual environment, some development is required for the physical equipment to implement this in practice. A versatile, multiple line fluid injection system is developed here. The equipment and control algorithms employed have provided servo control of flow rate, or injection pressure, and have been tested under very challenging conditions. The single injection line developed is expanded to a multiple line system, and shows great potential for application to actual resin systems. A case study is presented, demonstrating design and implementation of a simple actively controlled injection scheme. The experimental facility developed provides an excellent testbed for application of actively controlled mold filling concepts, an area that is providing great promise for the advancement of LCM processes.

  12. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

  13. Improved Gas Filling and Sealing of an HC-PCF

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Meras, Patrick; Chang, Daniel; Spiers, Gary

    2008-01-01

    An improved packaging approach has been devised for filling a hollow-core photonic-crystal fiber (HC-PCF) with a gas, sealing the HC-PCF to retain the gas, and providing for optical connections and, optionally, a plumbing fitting for changing or augmenting the gas filling. Gas-filled HC-PCFs can be many meters long and have been found to be attractive as relatively compact, lightweight, rugged alternatives to conventional gas-filled glass cells for use as molecular-resonance frequency references for stabilization of lasers in some optical-metrology, lidar, optical-communication, and other advanced applications. Prior approaches to gas filling and sealing of HC-PCFs have involved, variously, omission of any attempt to connectorize the PCF, connectorization inside a vacuum chamber (an awkward and expensive process), or temporary exposure of one end of an HC-PCF to the atmosphere, potentially resulting in contamination of the gas filling. Prior approaches have also involved, variously, fusion splicing of HC-PCFs with other optical fibers or other termination techniques that give rise to Fresnel reflections of about 4 percent, which results in output intensity noise.

  14. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill process to develop an analytical model of No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing stage, but then becomes less significant.

  15. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    PubMed Central

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  16. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  17. Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.

  18. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing state, but then becomes less significant.

  19. 40 CFR 52.2286 - Control of evaporative losses from the filling of gasoline storage vessels in the Dallas-Fort...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum.... (b) This section is applicable to the following counties in Texas: Dallas, Tarrant, Denton, Wise...

  20. 40 CFR 52.2286 - Control of evaporative losses from the filling of gasoline storage vessels in the Dallas-Fort...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum.... (b) This section is applicable to the following counties in Texas: Dallas, Tarrant, Denton, Wise...

  1. High throughput nanoimprint lithography for semiconductor memory applications

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun

    2017-03-01

    Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non-fill defectivity is well under 1.0 defects/cm2 for both field types. Next, by further reducing drop volume and optimizing drop patterns, a fill time of 1.1 seconds was demonstrated.

  2. Behavioral response of fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) to pyrethroids.

    PubMed

    Alzogaray, R A; Zerba, E N

    2001-01-15

    The hyperactivity (an increase in locomotor activity) and repellency produced by eight pyrethroids, applied as films on filter paper, were evaluated on fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) using a video tracking technique. All the pyrethroids studied produced hyperactivity. As a trend, hyperactivity produced by cyanopyrethroids was higher than that produced by non-cyanopyrethroids. Hyperactivity was not observed when nymphs were pretreated with the sulphydryl reagent N-ethylmaleimide before exposure to the pyrethroids. The eight pyrethroids failed to produce repellency. No repellency was also observed for the flowable formulation of deltamethrin at the concentration recommended for T. infestans control.

  3. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, R.B.; Yagiela, A.S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member. 3 figs.

  4. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, Robert B.; Yagiela, Anthony S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.

  5. Experimental Study of Low Temperature Behavior of Aviation Turbine Fuels in a Wing Tank Model

    NASA Technical Reports Server (NTRS)

    Stockemer, Francis J.

    1979-01-01

    An experimental investigation was performed to study aircraft fuels at low temperatures near the freezing point. The objective was an improved understanding of the flowability and pumpability of the fuels under conditions encoutered during cold weather flight of a long range commercial aircraft. The test tank simulated a section of an outer wing tank and was chilled on the upper and lower surfaces. Fuels included commercial Jet A and Diesel D-2; JP-5 from oil shale; and Jet A, intermediate freeze point, and D-2 fuels derived from selected paraffinic and naphthenic crudes. A pour point depressant was tested.

  6. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    PubMed Central

    Schesser, J H

    1976-01-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg). PMID:984828

  7. Commercial formulations of Bacillus thuringiensis for control of Indian meal moth.

    PubMed

    Schesser, J H

    1976-10-01

    Doses of four commercial formulations and one experimental formulation of Bacillus thuringiensis Berliner were mixed with the diet used to rear colonies of the Indian meal moth Plodia interpunctella (Hübner). Indian meal moth eggs were introduced to the treated diet, and the resultant adult emergence was tabulated. The experimental formulations ranked as follows in efficacy in controlling the Indian meal moth: Dipel (50% lethal concentration [LC50], 25 mg/kg) greater than Bactospeine WP (LC50, 100 mg/kg) greater than Thuricide (LC50, 150 mg/kg) greater than IMC 90007 (LC30, 180 mg/kg) greater than Bactospeine Flowable (LC50, 440 mg/kg).

  8. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    DTIC Science & Technology

    1993-03-17

    modulator: Number of Elements 16 x 16 Pixel Size 1 mmxl mm Area Fill Factor > 90% Reflectance > 90% Phase Shift 900 Frame Rate > 1 kHz Operational Spectral...electro-optic constants. By using reflected light from the second interface a factor of two increase in phase shift is obtained for an applied voltage vs...wavelengths in general require thinner PLZT wafers. One of the objectives of the SLM design was to maximize pixel area fill factor and thereby the

  9. Development of highly efficient laser bars emitting at around 1060 nm for medical applications

    NASA Astrophysics Data System (ADS)

    Pietrzak, Agnieszka; Zorn, Martin; Meusel, Jens; Huelsewede, Ralf; Sebastian, Juergen

    2018-02-01

    An overview is presented on the recent progress in the development of high power laser bars at wavelengths around 1060nm. The development is focused on highly efficient and reliable laser performance under pulsed operation for medical applications. The epitaxial structure and lateral layout of the laser bars were tailored to meet the application requirements. Reliable operation peak powers of 350W and 500W are demonstrated from laser bars with fill-factor FF=75% and resonator lengths 1.5mm and 2.0mm, respectively. Moreover, 60W at current 65A with lifetime <10.000h are presented. The power scaling with fill-factor enables a cost reduction ($/W) up to 35%.

  10. 76 FR 13363 - Intent To Prepare an Environmental Impact Statement for the Port of Gulfport Expansion Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... application filed on March 17, 2010, proposed filling approximately 700 acres of open-water benthic habitat... filling of up to 400 acres of open-water bottom in the Mississippi Sound, the construction of wharfs... the USACE in deciding whether to issue a Department of the Army permit. The purpose of this Notice of...

  11. Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs

    ERIC Educational Resources Information Center

    Wu-Rorrer, Ray

    2017-01-01

    The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…

  12. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  13. 29 CFR 2570.43 - Notification of interested persons by applicant.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hearing on the exemption before making its final decision, you will be notified of the time and place of...., Washington, DC 20210, ATTENTION: Application No. ___. 4 3 The applicant will fill in the room number of the... regarding the application. The Department will make no final decision on the proposed exemption until it...

  14. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    PubMed

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  15. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice

    PubMed Central

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273

  16. Continuous direct compression as manufacturing platform for sustained release tablets.

    PubMed

    Van Snick, B; Holman, J; Cunningham, C; Kumar, A; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2017-03-15

    This study presents a framework for process and product development on a continuous direct compression manufacturing platform. A challenging sustained release formulation with high content of a poorly flowing low density drug was selected. Two HPMC grades were evaluated as matrix former: standard Methocel CR and directly compressible Methocel DC2. The feeding behavior of each formulation component was investigated by deriving feed factor profiles. The maximum feed factor was used to estimate the drive command and depended strongly upon the density of the material. Furthermore, the shape of the feed factor profile allowed definition of a customized refill regime for each material. Inline NIRs was used to estimate the residence time distribution (RTD) in the mixer and monitor blend uniformity. Tablet content and weight variability were determined as additional measures of mixing performance. For Methocel CR, the best axial mixing (i.e. feeder fluctuation dampening) was achieved when an impeller with high number of radial mixing blades operated at low speed. However, the variability in tablet weight and content uniformity deteriorated under this condition. One can therefore conclude that balancing axial mixing with tablet quality is critical for Methocel CR. However, reformulating with the direct compressible Methocel DC2 as matrix former improved tablet quality vastly. Furthermore, both process and product were significantly more robust to changes in process and design variables. This observation underpins the importance of flowability during continuous blending and die-filling. At the compaction stage, blends with Methocel CR showed better tabletability driven by a higher compressibility as the smaller CR particles have a higher bonding area. However, tablets of similar strength were achieved using Methocel DC2 by targeting equal porosity. Compaction pressure impacted tablet properties and dissolution. Hence controlling thickness during continuous manufacturing of sustained release tablets was crucial to ensure reproducible dissolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  18. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.

    PubMed

    Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko

    2017-11-01

    A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.

  20. Inulin rich carbohydrates extraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers and application of different drying methods.

    PubMed

    Rubel, Irene A; Iraporda, Carolina; Novosad, Rocio; Cabrera, Fernanda A; Genovese, Diego B; Manrique, Guillermo D

    2018-01-01

    In this study the operational extraction variables to obtain higher yields of inulin from Jerusalem artichoke tubers (JAT), as well as the optimal conditions to obtain a stable and dispersible powdered product by either spray or freeze drying, were studied. With this purpose, the powder yield, moisture content, water activity and flowability or products obtained by different experimental conditions were analyzed. Inulin rich carbohydrates (IRC) extraction was performed from lyophilized and ground tubers employing distilled hot water as solvent. It was proved that the solid:solvent ratio (S:S) was the critical variable in the extraction process, followed by temperature. Thus, the IRC extraction was optimal without ultrasound assistance, at 76°C, employing a S:S of 1:16, during 90min. In addition, the powder obtained by freeze-drying of the IRC extract showed advantages respect to powders obtained by spray-drying regarding the yield and considering that maltodextrin was not necessary as encapsulation agent. In another hand, spray drying process provided IRC powered materials with appropriate flow properties, and taking into account cost and time of production, this method should be considered as an alternative of freeze-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments

    USGS Publications Warehouse

    Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

    2000-01-01

    The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.

  2. Controlled formation of closed-edge nanopores in graphene

    NASA Astrophysics Data System (ADS)

    He, Kuang; Robertson, Alex W.; Gong, Chuncheng; Allen, Christopher S.; Xu, Qiang; Zandbergen, Henny; Grossman, Jeffrey C.; Kirkland, Angus I.; Warner, Jamie H.

    2015-07-01

    Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport.Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport. Electronic supplementary information (ESI) available: Low magnification images, image processing techniques employed, modelling and simulation of closed edge nanoribbon, comprehensive AC-TEM dataset, and supporting analysis. See DOI: 10.1039/c5nr02277k

  3. Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2014-05-01

    Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.

  4. Filling box stratification fed by a gravity current

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Huppert, Herbert; Imberger, Jorg

    2012-11-01

    Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.

  5. The "collimator monitoring fill factor" of a two-dimensional detector array, a measure of its ability to detect collimation errors.

    PubMed

    Stelljes, Tenzin Sonam; Looe, Hui Khee; Harder, Dietrich; Poppe, Björn

    2017-03-01

    Two-dimensional detector arrays are routinely used for constancy checks and treatment plan verification in photon-beam radiotherapy. In addition to the spatial resolution of the dose profiles, the "coverage" of the radiation field with respect to the detection of any beam collimation deficiency appears as the second characteristic feature of a detector array. The here proposed "collimator monitoring fill factor" (CM fill factor) has been conceived to serve as a quantitative characteristic of this "coverage". The CM fill factor is defined as the probability of a 2D array to detect any collimator position error. Therefore, it is represented by the ratio of the "sensitive area" of a single detector, in which collimator position errors are detectable, and the geometrical "cell area" associated with this detector within the array. Numerical values of the CM fill factor have been Monte Carlo simulated for 2D detector arrays equipped with air-vented ionization chambers, liquid-filled ionization chambers and diode detectors and were compared with the "FWHM fill factor" defined by Gago-Arias et al. (2012). For arrays with vented ionization chambers, the differences between the CM fill factor and the FWHM fill factor are moderate, but occasionally the latter exceeds unity. For narrower detectors such as liquid-filled ionization chambers and Si diodes and for small sampling distances, large differences between the FWHM fill factor and the CM fill factor have been observed. These differences can be explained by the shapes of the fluence response functions of these narrow detectors. A new parameter "collimator monitoring fill factor" (CM fill factor), applicable to quantitate the collimator position error detection probability of a 2D detector array, has been proposed. It is designed as a help in classifying the clinical performance of two-dimensional detector arrays in photon-beam radiotherapy. © 2017 American Association of Physicists in Medicine.

  6. 33 CFR 338.2 - Activities involving the discharge of dredged or fill material into waters of the U.S.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality certifications and, if applicable, coastal zone consistency determinations. For activities which... and, if applicable, coastal zone consistency determinations should be provided using the procedures of...

  7. 33 CFR 338.2 - Activities involving the discharge of dredged or fill material into waters of the U.S.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality certifications and, if applicable, coastal zone consistency determinations. For activities which... and, if applicable, coastal zone consistency determinations should be provided using the procedures of...

  8. Application Form for NCI Cancer Genetics Services Directory

    Cancer.gov

    Professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, and others) may fill out this application form to be listed in the National Cancer Institute's Cancer Genetics Services Directory.

  9. Mitigating ballast fouling and enhancing rail freight capacity.

    DOT National Transportation Integrated Search

    2012-11-01

    In this report, an application using polyurethane void filling and particle bonding technology for stabilizing ballast is : evaluated. Application of rigid-polyurethane foam (RPF) as an in situ stabilization method does not require premixing : with a...

  10. Development of heat-storage building materials for passive-solar applications

    NASA Astrophysics Data System (ADS)

    Fletcher, J. W.

    A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.

  11. Filled and Unfilled Temperature-Dependent Epoxy Resin Blends for Lossy Transducer Substrates

    PubMed Central

    Eames, Matthew D.C.; Hossack, John A.

    2016-01-01

    In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature-dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends—tungsten and fiberglass fillers—were analyzed across a 35°C temperature range in 5°C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R2 values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect. PMID:19406716

  12. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    NASA Astrophysics Data System (ADS)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  13. 27 CFR 4.70 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Application. 4.70 Section 4.70 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Standards of Fill for Wine § 4.70 Application...

  14. A new e-beam application in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Sadat, Theo; Malcolm, Fiona

    2005-10-01

    The paper presents a new electron beam application in the pharmaceutical industry: an in-line self-shielded atropic transfer system using electron beam for surface decontamination of products entering a pharmaceutical filling line. The unit was developed by Linac Technologies in response to the specifications of a multi-national pharmaceutical company, to solve the risk of microbial contamination entering a filling line housed inside an isolator. In order to fit the sterilization unit inside the pharmaceutical plant, a "miniature" low-energy (200 keV) electron beam accelerator and e-beam tunnel were designed, all conforming to the pharmaceutical good manufacturing practice (GMP) regulations. Process validation using biological indicators is described, with reference to the regulations governing the pharmaceutical industry. Other industrial applications of a small-sized self-shielded electron beam sterilization unit are mentioned.

  15. The Application of a Three-Dimensional Printed Product to Fill the Space After Organ Removal.

    PubMed

    Weng, Jui-Yu; Wang, Che-Chuna; Chen, Pei-Jar; Lim, Sher-Wei; Kuo, Jinn-Rung

    2017-11-01

    Maintaining body integrity, especially in Asian societies, is an independent predictor of organ donation. Herein, we report the case of an 18-year-old man who suffered a traumatic brain injury with ensuing brain death caused by a car accident. According to the family's wishes, we used a 3-dimensional printer to create simulated heart, kidneys, and liver to fill the spaces after the patient's organs were removed. This is the first case report to introduce this new clinical application of 3-dimensional printed products during transplantation surgery. This new clinical application may have supportive psychological effects on the family and caregivers; however, given the varied responses to our procedure, this ethical issue is worth discussing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Application of mathematical planning in production of filled emulsion rubbers

    NASA Astrophysics Data System (ADS)

    Pugacheva, I. N.; Molokanova, L. V.; Popova, L. V.; Repin, P. S.

    2018-05-01

    The applicability of mathematical planning of experiment in the field of chemistry and chemical engineering, in particular in the industrial production of synthetic rubbers, is considered in the article. Possibility of using secondary material resources, which are waste products of light industry, in the production of elastomeric compositions is studied. The method of obtaining a powdered cellulose additive from wastes containing cellulose fiber is described. The best way of introducing the obtained additive into elastomeric compositions based on the emulsion rubber is established. Optimal conditions for obtaining filled emulsion rubber with the help of a powdered cellulose additive were established basing on the mathematical planning of experiment.

  17. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    PubMed

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  19. Effect of instrument settings on liquid-containing lesion images characterized by radiofrequency ultrasound local estimators.

    PubMed

    Wang, Jian; Kang, Chunsong; Feng, Tinghua; Xue, Jiping; Shi, Kailing; Li, Tingting; Liu, Xiaofang; Wang, Yu

    2013-05-01

    The purpose of this study was to investigate the effects of ultrasonic instrument gain, transducer frequency, and depth on the color variety and color filling of radiofrequency ultrasonic local estimators (RULES) images which indicated specific physical representation of liquid-containing lesions in order to find the optimal settings for the clinical application of RULES in liquid-containing lesions. Changing the ultrasonic instrument gain, transducer frequency, and depth affected the color filling and color variety of 21 pathologically-confirmed liquid-containing lesion images analyzed by RULES. Blue colored fill dominated the RULES images to represent the liquid-containing lesions. A frequency of 12.5MHz led to red and green colors along the inner edges of the liquid-containing lesions. Changing the gain resulted in significantly different blue colored filling that was highest when the gain was 90 to 100. Changing the frequency also significantly changed the blue color filling, with the highest filling occurring at 12.5MHz. Changing the depth did not affect the blue color filling. The liquid components of the lesions may be identified by their characteristic manifestations in RULES, where color variety is affected by transducer frequency and blue color filling which represent liquid-containing lesions in RULES images is affected by frequency and gain. Copyright © 2012. Published by Elsevier GmbH.

  20. Automatic Operation For A Robot Lawn Mower

    NASA Astrophysics Data System (ADS)

    Huang, Y. Y.; Cao, Z. L.; Oh, S. J.; Kattan, E. U.; Hall, E. L.

    1987-02-01

    A domestic mobile robot, lawn mower, which performs the automatic operation mode, has been built up in the Center of Robotics Research, University of Cincinnati. The robot lawn mower automatically completes its work with the region filling operation, a new kind of path planning for mobile robots. Some strategies for region filling of path planning have been developed for a partly-known or a unknown environment. Also, an advanced omnidirectional navigation system and a multisensor-based control system are used in the automatic operation. Research on the robot lawn mower, especially on the region filling of path planning, is significant in industrial and agricultural applications.

  1. Outcomes in the Orthopaedic Sports Medicine Fellowship Match, 2010-2017.

    PubMed

    Mulcahey, Mary K; Hayes, Meghan K; Smith, Christopher M; Kraeutler, Matthew J; Trojan, Jeffrey D; McCarty, Eric C

    2018-05-01

    Sports medicine is one of the most competitive fellowships in orthopaedic surgery. Despite its popularity, fellowship applicants have limited understanding of the orthopaedic sports medicine fellowship match process. To define key outcomes in the orthopaedic sports medicine fellowship match, including the overall match rate, number of programs filled, and number of applicants ranked by programs that filled between 2010 and 2017. Cross-sectional study. This study utilized data regarding the orthopaedic sports medicine fellowship match collected by the American Orthopaedic Society for Sports Medicine (AOSSM) from 2010 through 2017. Applicant data included number of applicants, number of matched and unmatched applicants, and percentage of applicants matching into their top choices. Fellowship program data included number of programs participating in the match and number of applicants ranked by filled and unfilled programs. Between 2010 and 2017, the mean number of orthopaedic sports medicine fellowship applicants was 244.8. On average, 92.0% of applicants matched into a fellowship program. The mean number of programs participating in the fellowship match was 92.9, with a mean of 219.9 accredited positions and 5.4 nonaccredited positions. Over the time period studied, a mean of 75.8% of programs matched all available positions. Programs that matched fully ranked 9.0 applicants per position, on average, compared with a mean of 6.5 applicants ranked per position among programs that did not fully match ( P = .0016). From 2010 to 2017, the number of applicants, positions available, overall match rate, and number of programs participating in the orthopaedic sports medicine fellowship match have remained consistent. The mean number of applicants per position ranked by fully matched fellowship programs was 9.0 compared with a mean of 6.5 applicants per position ranked by programs that did not fully match. These data may be helpful as we look to the future of orthopaedic sports medicine fellowship positions and the match process. In addition, this study reveals characteristics that divide sports medicine fellowship programs that fully match from those that do not. Applicants and/or fellowship program directors may utilize this information to modify their approach to the match process going forward.

  2. Outcomes in the Orthopaedic Sports Medicine Fellowship Match, 2010-2017

    PubMed Central

    Mulcahey, Mary K.; Hayes, Meghan K.; Smith, Christopher M.; Kraeutler, Matthew J.; Trojan, Jeffrey D.; McCarty, Eric C.

    2018-01-01

    Background: Sports medicine is one of the most competitive fellowships in orthopaedic surgery. Despite its popularity, fellowship applicants have limited understanding of the orthopaedic sports medicine fellowship match process. Purpose: To define key outcomes in the orthopaedic sports medicine fellowship match, including the overall match rate, number of programs filled, and number of applicants ranked by programs that filled between 2010 and 2017. Study Design: Cross-sectional study. Methods: This study utilized data regarding the orthopaedic sports medicine fellowship match collected by the American Orthopaedic Society for Sports Medicine (AOSSM) from 2010 through 2017. Applicant data included number of applicants, number of matched and unmatched applicants, and percentage of applicants matching into their top choices. Fellowship program data included number of programs participating in the match and number of applicants ranked by filled and unfilled programs. Results: Between 2010 and 2017, the mean number of orthopaedic sports medicine fellowship applicants was 244.8. On average, 92.0% of applicants matched into a fellowship program. The mean number of programs participating in the fellowship match was 92.9, with a mean of 219.9 accredited positions and 5.4 nonaccredited positions. Over the time period studied, a mean of 75.8% of programs matched all available positions. Programs that matched fully ranked 9.0 applicants per position, on average, compared with a mean of 6.5 applicants ranked per position among programs that did not fully match (P = .0016). Conclusion: From 2010 to 2017, the number of applicants, positions available, overall match rate, and number of programs participating in the orthopaedic sports medicine fellowship match have remained consistent. The mean number of applicants per position ranked by fully matched fellowship programs was 9.0 compared with a mean of 6.5 applicants per position ranked by programs that did not fully match. These data may be helpful as we look to the future of orthopaedic sports medicine fellowship positions and the match process. In addition, this study reveals characteristics that divide sports medicine fellowship programs that fully match from those that do not. Applicants and/or fellowship program directors may utilize this information to modify their approach to the match process going forward. PMID:29796398

  3. Installation Assessment of Headquarters, Walter Reed Army Medical Center, Washington, DC and Noncontiguous Sections Forest Glen, Silver Spring, Maryland and Glen Haven, Wheaton, Maryland.

    DTIC Science & Technology

    1984-06-01

    percent Aerosol 30 12-oz cans Diazinon 47.5 percent EML 8 gal Malathion 3 percent solution 55 gal Propoxur 1 percent solution 2 gal Propoxur 2 percent...bait 2 5-lb cans Amino 2,4-D 49 percent EML 5 gal Metham-Sodiwa 33 percent solution I gal Carbaryl 41.5 percent flowable 2 lb Pival 0.025 percent 30 lb...Lice "o"pital 9,000 ft 2 DiasLnon 47.5 percent DII. 0.3 gal Wasps Residential 2,000 ft2 Carbaryl 60 percent Dust 0.21 lbs Plant Disease Open Brush I

  4. Safety biocompatibility of gelatin hemostatic matrix (Floseal and Surgiflo) in neurosurgical procedures.

    PubMed

    Gazzeri, Roberto; Galarza, Marcelo; Alfier, Alex

    2012-12-01

    Adequate hemostasis in cranial and spinal surgery is of paramount importance in a neurosurgeon's daily practice. Generalized ooze bleeding from the surgical wall cavities, coming from the dura mater or nervous tissue may be troublesome and may limit visualization in minimally invasive neurosurgery. Hemostatic matrix is a mixture of a flowable gelatin matrix (bovine or porcine) and a thrombin component mixed together. A total of 318 patients undergoing cranial, craniospinal, and spinal procedure with the use of gelatin hemostatic matrix (Floseal and Surgiflo) were enrolled in this clinical study. We compared the different hemostatic techniques using the gelatin hemostatic matrix, and investigated indications, time to bleeding control, and its efficacy and safety in neurosurgery.

  5. Clean-up and disposal process of polluted sediments from urban rivers.

    PubMed

    He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C

    2001-10-01

    In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.

  6. Development of analytic intermodal freight networks for use within a GIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, F.; Xiong, D.; Middendorf, D.

    1997-05-01

    The paper discusses the practical issues involved in constructing intermodal freight networks that can be used within GIS platforms to support inter-regional freight routing and subsequent (for example, commodity flow) analysis. The procedures described can be used to create freight-routable and traffic flowable interstate and intermodal networks using some combination of highway, rail, water and air freight transportation. Keys to realistic freight routing are the identification of intermodal transfer locations and associated terminal functions, a proper handling of carrier-owned and operated sub-networks within each of the primary modes of transport, and the ability to model the types of carrier servicesmore » being offered.« less

  7. Ultrasonic wave propagation in powders

    NASA Astrophysics Data System (ADS)

    Al-Lashi, R. S.; Povey, M. J. W.; Watson, N. J.

    2018-05-01

    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders.

  8. Rheology of concentrated suspensions of non-colloidal rigid fibers

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier

    2017-11-01

    Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.

  9. Evaluation of self-combustion risk in tire derived aggregate fills.

    PubMed

    Arroyo, Marcos; San Martin, Ignacio; Olivella, Sebastian; Saaltink, Maarten W

    2011-01-01

    Lightweight tire derived aggregate (TDA) fills are a proven recycling outlet for waste tires, requiring relatively low cost waste processing and being competitively priced against other lightweight fill alternatives. However its value has been marred as several TDA fills have self-combusted during the early applications of this technique. An empirical review of these cases led to prescriptive guidelines from the ASTM aimed at avoiding this problem. This approach has been successful in avoiding further incidents of self-combustion. However, at present there remains no rational method available to quantify self-combustion risk in TDA fills. This means that it is not clear which aspects of the ASTM guidelines are essential and which are accessory. This hinders the practical use of TDA fills despite their inherent advantages as lightweight fill. Here a quantitative approach to self-combustion risk evaluation is developed and illustrated with a parametric analysis of an embankment case. This is later particularized to model a reported field self-combustion case. The approach is based on the available experimental observations and incorporates well-tested methodological (ISO corrosion evaluation) and theoretical tools (finite element analysis of coupled heat and mass flow). The results obtained offer clear insights into the critical aspects of the problem, allowing already some meaningful recommendations for guideline revision. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. 75 FR 66083 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... following: (1) A 225-foot- high, 1,795-foot-long upper dam made of either zoned earth and rockfill or concrete-face earth and rockfill; (2) a 50-foot-high, 950-foot-long earth-filled upper saddle dike A; (3) a 20-foot-high, 400-foot-long earth-filled upper saddle dike B; (4) a 40-foot-high, 6,559-foot-long...

  11. 75 FR 53963 - Iron Mask Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...-long upper dam made of either zoned earth and rockfill or concrete-face earth and rockfill; (2) a 50-foot-high, 950-foot-long earth-filled upper saddle dike A; (3) a 20-foot-high, 400-foot-long earth-filled upper saddle dike B; (4) a 40-foot-high, 6,559-foot-long lower embankment made of zoned earth or...

  12. 76 FR 74783 - Apache Hydro LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... project would consist of the following: (1) A 210-foot-high, 1,610-foot-long earth fill dam; (2) a 20-foot... acre-foot storage capacity; (4) a 170-foot-high, 1,270.0-foot-long earth fill dam creating; (5) a lower... prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must...

  13. [Clinical applications of thermoplasticized gutta percha].

    PubMed

    Vincente Gómez, A

    1990-01-01

    Step-Back technique or similar is the method of choice for the thermoplasticized gutta-percha. There are no significant differences in the apical seal produced by different filling techniques. There is a little volumetric reduction, similar than in the regular gutta-percha points, when cooling gutta-percha. The results of a clinical study about thermoplasticized gutta-percha with and without sealer are similar than in a control group filled by lateral condensation.

  14. Observation of strong Kondo like features and co-tunnelling in superparamagnetic GdCl3 filled 1D nanomagnets

    NASA Astrophysics Data System (ADS)

    Ncube, S.; Coleman, C.; de Sousa, A. S.; Nie, C.; Lonchambon, P.; Flahaut, E.; Strydom, A.; Bhattacharyya, S.

    2018-06-01

    Filling of carbon nanotubes has been tailored over years to modify the exceptional properties of the 1-dimensional conductor for magnetic property based applications. Hence, such a system exploits the spin and charge property of the electron, analogous to a quantum conductor coupled to magnetic impurities, which poses an interesting scenario for the study of Kondo physics and related phenomena. We report on the electronic transport properties of MWNTs filled with GdCl3 nanomagnets, which clearly show the co-existence of Kondo correlation and cotunelling within the superparamagnetic limit. The Fermi liquid description of the Kondo effect and the interpolation scheme are fitted to the resistance-temperature dependence yielding the onset of the Kondo scattering temperature and a Kondo temperature for this nanocomposite, respectively. Cotunneling of conduction electrons interfering with a Kondo type interaction has been verified from the exponential decay of the intensity of the fano shaped nonzero bias anomalous conductance peaks, which also show strong resonant features observed only in GdCl3 filled MWNT devices. Hence, these features are explained in terms of magnetic coherence and spin-flip effects along with the competition between the Kondo effect and co-tunneling. This study raises a new possibility of tailoring magnetic interactions for spintronic applications in carbon nanotube systems.

  15. Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration.

    PubMed

    Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G

    2011-08-01

    This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted.

  16. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  17. The demand for doctorally prepared public health personnel in institutions of higher education.

    PubMed

    Scutchfield, F D; Quimson, S; Williams, S J; Hofstetter, R

    1988-01-01

    We examined the demand for doctorally prepared public health personnel in academia. We developed an unduplicated list of positions advertised during 1983 in several of the nation's public health journals. Based on this, we identified a total of 217 available positions. We surveyed the persons who placed the advertisements regarding their perceptions of the applicant pool, their experiences in filling the positions, and their perceptions of the future supply of doctorally prepared public health personnel. Of the respondents, 93% were in institutions of higher education. Based on their response, it appears that the current supply of doctorally prepared public health personnel is short and is likely to continue to be limited. Respondents had difficulty filling the advertised positions, based on the amount of time necessary to fill the position, and a number of positions had to be modified in order to be filled. Thirty-two percent of the respondents replied that the pool of applicants was low or poor. Thirty-four percent felt there was a shortage of such personnel, and a similar percentage felt there would be a future shortage. Based on our data, we believe that there is now a shortage of doctorally educated public health personnel for academic positions and that this shortage is likely to continue.

  18. 33 CFR 335.5 - Applicable laws.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Applicable laws. 335.5 Section 335.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... OF DREDGED OR FILL MATERIAL INTO WATERS OF THE U.S. OR OCEAN WATERS § 335.5 Applicable laws. (a) The...

  19. 33 CFR 335.5 - Applicable laws.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Applicable laws. 335.5 Section 335.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... OF DREDGED OR FILL MATERIAL INTO WATERS OF THE U.S. OR OCEAN WATERS § 335.5 Applicable laws. (a) The...

  20. 33 CFR 335.5 - Applicable laws.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Applicable laws. 335.5 Section 335.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... OF DREDGED OR FILL MATERIAL INTO WATERS OF THE U.S. OR OCEAN WATERS § 335.5 Applicable laws. (a) The...

  1. 33 CFR 335.5 - Applicable laws.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Applicable laws. 335.5 Section 335.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... OF DREDGED OR FILL MATERIAL INTO WATERS OF THE U.S. OR OCEAN WATERS § 335.5 Applicable laws. (a) The...

  2. 33 CFR 335.5 - Applicable laws.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Applicable laws. 335.5 Section 335.5 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF... OF DREDGED OR FILL MATERIAL INTO WATERS OF THE U.S. OR OCEAN WATERS § 335.5 Applicable laws. (a) The...

  3. 7 CFR 247.11 - Applicants exceed caseload levels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Applicants exceed caseload levels. 247.11 Section 247... exceed caseload levels. (a) What must the local agency do if the number of applicants exceeds the local agency's caseload level? If all caseload has been filled, the local agency must maintain a waiting list...

  4. Entry of substances into perilymph through the bone of the otic capsule following intratympanic applicatons in guinea pigs: Implications for local drug delivery in humans

    PubMed Central

    Mikulec, Anthony A; Plontke, Stefan K.; Hartsock, Jared J.; Salt, Alec N.

    2008-01-01

    Introduction Drugs applied intratympanically in humans are believed to enter the cochlea primarily through the round window membrane (RWM). Local drug treatments of the ear are commonly evaluated in rodent models. The otic capsule is much thinner at the cochlear apex in rodents than in humans. We therefore investigated whether drugs applied to the middle ear could enter perilymph through the otic capsule as well as through the RWM. Methods The distribution of gentamicin and the marker trimethylphenylammonium (TMPA) along the guinea pig cochlea was assessed with sequential apical perilymph sampling following two delivery paradigms that included i) completely filling the tympanic bulla with solution, and ii) applying the solution to the RWM only. In addition, TMPA entry into perilymph of the third turn was measured with ion-selective electrodes while the bulla was filled with TMPA solution. Results In application protocols that allowed drug to contact the otic capsule (by completely filling the bulla) markedly higher drug concentrations were found in the apical, low-frequency regions of the cochlea compared with drug applications to the RWM only. Conclusions Gentamicin and TMPA can enter perilymph of guinea pigs through the RWM and simultaneously through the bony otic capsule. Drug distribution along the cochlea following intratympanic applications will therefore be dramatically different in rodents and humans. Results obtained from intratympanic drug treatments of animals, in which the bulla is filled with solution and contacts the bony capsule of the cochlea, do not provide a good model for the human situation. PMID:19180674

  5. Validation of a dye stain assay for vaginally inserted HEC-filled microbicide applicators

    PubMed Central

    Katzen, Lauren L.; Fernández-Romero, José A.; Sarna, Avina; Murugavel, Kailapuri G.; Gawarecki, Daniel; Zydowsky, Thomas M.; Mensch, Barbara S.

    2011-01-01

    Background The reliability and validity of self-reports of vaginal microbicide use are questionable given the explicit understanding that participants are expected to comply with study protocols. Our objective was to optimize the Population Council's previously validated dye stain assay (DSA) and related procedures, and establish predictive values for the DSA's ability to identify vaginally inserted single-use, low-density polyethylene microbicide applicators filled with hydroxyethylcellulose gel. Methods Applicators, inserted by 252 female sex workers enrolled in a microbicide feasibility study in Southern India, served as positive controls for optimization and validation experiments. Prior to validation, optimal dye concentration and staining time were ascertained. Three validation experiments were conducted to determine sensitivity, specificity, negative predictive values and positive predictive values. Results The dye concentration of 0.05% (w/v) FD&C Blue No. 1 Granular Food Dye and staining time of five seconds were determined to be optimal and were used for the three validation experiments. There were a total of 1,848 possible applicator readings across validation experiments; 1,703 (92.2%) applicator readings were correct. On average, the DSA performed with 90.6% sensitivity, 93.9% specificity, and had a negative predictive value of 93.8% and a positive predictive value of 91.0%. No statistically significant differences between experiments were noted. Conclusions The DSA was optimized and successfully validated for use with single-use, low-density polyethylene applicators filled with hydroxyethylcellulose (HEC) gel. We recommend including the DSA in future microbicide trials involving vaginal gels in order to identify participants who have low adherence to dosing regimens. In doing so, we can develop strategies to improve adherence as well as investigate the association between product use and efficacy. PMID:21992983

  6. Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange

    Treesearch

    J.H. Gove; D.Y. Hollinger; D.Y. Hollinger

    2006-01-01

    A dual unscented Kalman filter (UKF) was used to assimilate net CO2 exchange (NEE) data measured over a spruce-hemlock forest at the Howland AmeriFlux site in Maine, USA, into a simple physiological model for the purpose of filling gaps in an eddy flux time series. In addition to filling gaps in the measurement record, the UKF approach provides continuous estimates of...

  7. Cost-consequence analysis of different active flowable hemostatic matrices in cardiac surgical procedures.

    PubMed

    Makhija, D; Rock, M; Xiong, Y; Epstein, J D; Arnold, M R; Lattouf, O M; Calcaterra, D

    2017-06-01

    A recent retrospective comparative effectiveness study found that use of the FLOSEAL Hemostatic Matrix in cardiac surgery was associated with significantly lower risks of complications, blood transfusions, surgical revisions, and shorter length of surgery than use of SURGIFLO Hemostatic Matrix. These outcome improvements in cardiac surgery procedures may translate to economic savings for hospitals and payers. The objective of this study was to estimate the cost-consequence of two flowable hemostatic matrices (FLOSEAL or SURGIFLO) in cardiac surgeries for US hospitals. A cost-consequence model was constructed using clinical outcomes from a previously published retrospective comparative effectiveness study of FLOSEAL vs SURGIFLO in adult cardiac surgeries. The model accounted for the reported differences between these products in length of surgery, rates of major and minor complications, surgical revisions, and blood product transfusions. Costs were derived from Healthcare Cost and Utilization Project's National Inpatient Sample (NIS) 2012 database and converted to 2015 US dollars. Savings were modeled for a hospital performing 245 cardiac surgeries annually, as identified as the average for hospitals in the NIS dataset. One-way sensitivity analysis and probabilistic sensitivity analysis were performed to test model robustness. The results suggest that if FLOSEAL is utilized in a hospital that performs 245 mixed cardiac surgery procedures annually, 11 major complications, 31 minor complications, nine surgical revisions, 79 blood product transfusions, and 260.3 h of cumulative operating time could be avoided. These improved outcomes correspond to a net annualized saving of $1,532,896. Cost savings remained consistent between $1.3m and $1.8m and between $911k and $2.4m, even after accounting for the uncertainty around clinical and cost inputs, in a one-way and probabilistic sensitivity analysis, respectively. Outcome differences associated with FLOSEAL vs SURGIFLO that were previously reported in a comparative effectiveness study may result in substantial cost savings for US hospitals.

  8. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.

    PubMed

    Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu

    2012-05-30

    Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners.

    PubMed

    Arora, Rajesh; Kapur, Ravi; Sibal, Nikhil; Juneja, Sumit

    2012-09-01

    The advent of the esthetic era and advances in adhesive technology saw the emergence of resin composite materials. But the problem of polymerization shrinkage remained. This was due to the contraction of the resin during curing inducing internal and interfacial stresses at the tooth restoration interface, leading to gap formation and subsequent micro-leakage. A number of techniques and modifications in the material have been proposed to minimize polymerization shrinkage and microleakage. In this study, the hypothesis that the placement of resin-modified glass ionomer cement (RMGIC) or flowable composite, as liner, beneath the packable composite, on the gingival surface of the tooth [coronal or apical to cementoenamel junction (CEJ)], could reduce the microleakage in class II composite restorations, was tested. Sixty recently extracted noncarious human mandibular molars were used. The teeth were randomly divided into three groups (20 specimens each): Group I (Filtek P60 with RMGIC liner), group II (Filtek P60 with Filtek Z350 liner) and Group III (Filtek P60 without liner). The teeth of each group were further subdivided into two subgroups (equal number of cavities). Subgroup A gingival seat 1 mm occlusal to CEJ on mesial side. Subgroup B gingival seat 1 mm apical to CEJ on distal side. It was concluded that in class II composite restorations gingival microleakage is more at the dentinal surface than on enamel. The use of a flowable composite and RMGIC, as liners, beneath the packable composite, in class II composite restorations, significantly reduces the microleakage when margins are in dentin, but the reverse is true, when the margins are in enamel. How to cite this article: Arora R, Kapur R, Sibal N, Juneja S. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners. Int J Clin Pediatr Dent 2012;5(3):178-184.

  10. Effect of roll-compaction and milling conditions on granules and tablet properties.

    PubMed

    Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim

    2016-09-01

    Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with rimmed-roll and the highest roll-force used. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate.

    PubMed

    Mönckedieck, M; Kamplade, J; Fakner, P; Urbanetz, N A; Walzel, P; Steckel, H; Scherließ, R

    2017-05-30

    Nowadays, dry powder inhalation as applied in the therapy of pulmonary diseases is known as a very effective route of drug delivery to the lungs. Here, the system of coarse carrier and fine drug particles attached to the carrier surface has successfully been applied to overcome the cohesiveness of small drug particles. Particle properties of both carrier and drug are known to affect drug dispersion as has widely been discussed for lactose monohydrate and various drugs. This study utilises particle-engineered mannitol as an alternative carrier to discover the effect of mannitol carrier particle properties like particle shape, surface roughness, flowability or particle size on aerodynamic performance during inhalation. Spray drying as a technique to accurately control those properties was chosen for the generation of carrier sizes between 50 and 80 μm and different morphologies and therefore various carrier flowabilities. A set of these carriers has then been blended with different spray dried and jet-milled qualities of salbutamol sulphate as model drug to examine the influence of carrier particle properties on aerodynamic behaviour and at the same time to cover the effect of drug particle properties on particle-particle interactions. This experimental setup allowed a general view on how drug and carrier properties affect the Fine Particle Fraction (FPF) as indicator for inhalation performance and gave the first study to distinguish between mannitol carrier particle shape and surface roughness. Further it was possible to relate carrier particle size and shape to drug accumulation and detachment mechanisms during inhalation as size and shape had the main influence on drug detachment. The addition of jet-milled mannitol fines provided an initial insight into the improving effect of ternary powder blends as has been intensively studied for lactose monohydrate but not for mannitol yet. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The effect of mixing method on tricalcium silicate-based cement.

    PubMed

    Duque, J A; Fernandes, S L; Bubola, J P; Duarte, M A H; Camilleri, J; Marciano, M A

    2018-01-01

    To evaluate the effect of three methods of mixing on the physical and chemical properties of tricalcium silicate-based cements. The materials evaluated were MTA Angelus and Portland cement with 20% zirconium oxide (PC-20-Zr). The cements were mixed using a 3 : 1 powder-to-liquid ratio. The mixing methods were manual (m), trituration (tr) and ultrasonic (us) activation. The materials were characterized by means of scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy. Flowability was analysed according to ANSI/ADA 57/2012. Initial and final setting times were assessed following ASTM C266/08. Volume change was evaluated using a micro-CT volumetric method. Solubility was analysed according to ADA 57/2012. pH and calcium ion release were measured after 3, 24, 72 and 168 h. Statistical analysis was performed using two-way analysis of variance. The level of significance was set at P = 0.05. The SEM analysis revealed that ultrasonic activation was associated with a homogeneous distribution of particles. Flowability, volume change and initial setting time were not influenced by the mixing method (P > 0.05). Solubility was influenced by the mixing method (P < 0.05). For pH, at 168 h, significant differences were found between MTA-m and PC-20-Zr-m (P < 0.05). For calcium ion release, PC-20-Zr-tr had higher values than MTA-m at 3 h, and MTA-tr had higher values than PC-20-Zr-m at 168 h (P < 0.05). The ultrasonic and trituration methods led to higher calcium ion release and pH compared with manual mixing for all cements, whilst the ultrasonic method produced smaller particles for the PC-20-Zr cement. Flow, setting times and volume change were not influenced by the mixing method used; however, it did have an impact on solubility. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. A Study on the Thermomechanical Reliability Risks of Through-Silicon-Vias in Sensor Applications

    PubMed Central

    Shao, Shuai; Liu, Dapeng; Niu, Yuling; O’Donnell, Kathy; Sengupta, Dipak; Park, Seungbae

    2017-01-01

    Reliability risks for two different types of through-silicon-vias (TSVs) are discussed in this paper. The first is a partially-filled copper TSV, if which the copper layer covers the side walls and bottom. A polymer is used to fill the rest of the cavity. Stresses in risk sites are studied and ranked for this TSV structure by FEA modeling. Parametric studies for material properties (modulus and thermal expansion) of TSV polymer are performed. The second type is a high aspect ratio TSV filled by polycrystalline silicon (poly Si). Potential risks of the voids in the poly Si due to filling defects are studied. Fracture mechanics methods are utilized to evaluate the risk for two different assembly conditions: package assembled to printed circuit board (PCB) and package assembled to flexible substrate. The effect of board/substrate/die thickness and the size and location of the void are discussed. PMID:28208758

  14. Supporting International Applicants and Promoting an Ethical Model of Global College Admission

    ERIC Educational Resources Information Center

    Redding, Alexis Brooke

    2013-01-01

    This article examines the challenges facing the pool of global applicants to US colleges and evaluates the practices of the internationaI IECs who currently fill the void that exists between applicants and admission officers. The author, is a doctoral student at the Harvard Graduate School of Education, where she researches ethical issues in…

  15. 40 CFR 122.21 - Application for a permit (applicable to State programs, see § 123.25).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... under the Marine Protection Research and Sanctuaries Act. (viii) Dredge or fill permits under section... “quantitative data” for a pollutant are required, the applicant must collect a sample of effluent and analyze it... and report that quantitative data as applying to the substantially identical outfall. The requirements...

  16. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.

    PubMed

    Persson, B N J

    2016-12-21

    I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.

  17. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2016-12-01

    I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.

  18. 18 CFR 1304.412 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous... targeted elevation to which TVA plans to fill each reservoir during its annual operating cycle. Applicants... summer pool elevation for the reservoir in question at the time the application is submitted. Land-based...

  19. 50 CFR 660.150 - Mothership (MS) Coop Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-allocations. [Reserved] (i) Mothership catcher vessel catch history assignments. [Reserved] (ii) Annual coop...-delivered within normal business hours no later than November 1, 2010. If an applicant fails to submit a...-filled application where NMFS has preliminarily determined the processing history that may qualify the...

  20. 18 CFR 1304.412 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS Miscellaneous... targeted elevation to which TVA plans to fill each reservoir during its annual operating cycle. Applicants... summer pool elevation for the reservoir in question at the time the application is submitted. Land-based...

  1. Rationale and protocol for using a smartphone application to study autism spectrum disorders: SMARTAUTISM.

    PubMed

    Bonnot, Olivier; Bonneau, Dominique; Doudard, Aude; Duverger, Philippe

    2016-11-22

    Longitudinal studies on the evolution of autism spectrum disorder (ASD) symptoms are limited and have primarily used repeated measurements performed several months apart. However, measurements of changes in everyday life should more closely reflect the 'real life' of the patient and his or her family. We propose to study the child's ASD symptoms and their effect on the quality of life, psychological status and anxiety of the child's parents over a 6-month period using SMARTAUTISM, a smartphone application. This is a prospective, longitudinal, exploratory, open study with a 6-month follow-up period. Data will be recorded longitudinally over multiple weeks under natural conditions. The factors affecting the quality of life and anxiety of parents of children with ASD and the children's functional symptoms will be examined, and the feasibility of using a smartphone application designed for parents of ASD patients will be assessed. Explore the evolution of a child's behaviour over 6 months and the (psychological and social) effects of these changes on the family. Assess the feasibility of our application by examining the filling rate and application usage by parents for 6 months. 100 families containing 1 child diagnosed with ASD will be included. At baseline, sociodemographic, psychiatric and medical data will be recorded. The correlations of the general epidemiological variables (primary outcome measure) will be evaluated via multivariate analysis. The application filling rate (relative to the ideal filling rate) will be used to assess the feasibility of the application (secondary outcome measure). The SMARTAUTISM study has the approval of the local ethics committee, and data security will be ensured via the use of encryption and a secure medical server. The use of this application will be proposed at autism resource centres across France. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    PubMed

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  3. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol

    NASA Astrophysics Data System (ADS)

    Shi, Min; Li, Shuguang; Chen, Hailiang

    2018-06-01

    A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.

  4. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity.

    PubMed

    Zhang, Hui; Gao, Shecheng; Luo, Yunhan; Chen, Zhenshi; Xiong, Songsong; Wan, Lei; Huang, Xincheng; Huang, Bingsen; Feng, Yuanhua; He, Miao; Liu, Weiping; Chen, Zhe; Li, Zhaohui

    2018-04-17

    A liquid-filled D-shaped fiber (DF) cavity serving as an in-fiber Mach–Zehnder interferometer (MZI) has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs) to form a microcavity (MC) for filling and replacement of various refractive index (RI) liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms), experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis.

  5. DEF: an automated dead-end filling approach based on quasi-endosymbiosis.

    PubMed

    Liu, Lili; Zhang, Zijun; Sheng, Taotao; Chen, Ming

    2017-02-01

    Gap filling for the reconstruction of metabolic networks is to restore the connectivity of metabolites via finding high-confidence reactions that could be missed in target organism. Current methods for gap filling either fall into the network topology or have limited capability in finding missing reactions that are indirectly related to dead-end metabolites but of biological importance to the target model. We present an automated dead-end filling (DEF) approach, which is derived from the wisdom of endosymbiosis theory, to fill gaps by finding the most efficient dead-end utilization paths in a constructed quasi-endosymbiosis model. The recalls of reactions and dead ends of DEF reach around 73% and 86%, respectively. This method is capable of finding indirectly dead-end-related reactions with biological importance for the target organism and is applicable to any given metabolic model. In the E. coli iJR904 model, for instance, about 42% of the dead-end metabolites were fixed by our proposed method. DEF is publicly available at http://bis.zju.edu.cn/DEF/. mchen@zju.edu.cn Supplementary data are available at Bioinformatics online.

  6. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.

  7. Photostabilization of wood flour filled HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2002-01-01

    Wood/plastic composites are increasingly examined for non-structural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, resulting in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. This study...

  8. 76 FR 14458 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... will administer the PTIN application process. Most applications will be filled out on-line. Form W-12... process. Respondents: Individuals or Households. Estimated Total Burden Hours: 1,464,000 hours. OMB Number... report controlled group status and information on orphan drug credits allowed for covered pharmaceutical...

  9. NEWS RELEASE - Agencies Agree to Joint Regulatory Framework for Processing Applications for Surface Coal Mining Operations

    EPA Pesticide Factsheets

    News release from February 10, 2005 announcing a memorandum of understanding (MOU) that offers a joint framework to improve permit application procedures for surface coal mining operations that place dredged or fill material in waters of the United States.

  10. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  11. User Guidance for Application of TREECS (trademark) and CTS for Environmental Risk Assessment of Contaminants on Department of Defense (DoD) Ranges

    DTIC Science & Technology

    2017-06-01

    physicochemical properties of complex organic chemicals. The CTS has capabilities for estimating chemical-specific properties in the absence of experimentally ...obtained properties; thus, CTS can help fill data gaps for properties, particularly for emerging MC that have limited experimental data. This report...specific properties in the absence of experimentally obtained properties; thus, CTS can help fill data gaps for properties, particularly for emerging

  12. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  13. Use of landsat ETM+ SLC-off segment-based gap-filled imagery for crop type mapping

    USGS Publications Warehouse

    Maxwell, S.K.; Craig, M.E.

    2008-01-01

    Failure of the Scan Line Corrector (SLC) on the Landsat ETM+ sensor has had a major impact on many applications that rely on continuous medium resolution imagery to meet their objectives. The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) program uses Landsat imagery as the primary source of data to produce crop-specific maps for 20 states in the USA. A new method has been developed to fill the image gaps resulting from the SLC failure to support the needs of Landsat users who require coincident spectral data, such as for crop type mapping and monitoring. We tested the new gap-filled method for a CDL crop type mapping project in eastern Nebraska. Scan line gaps were simulated on two Landsat 5 images (spring and late summer 2003) and then gap-filled using landscape boundary models, or segment models, that were derived from 1992 and 2002 Landsat images (used in the gap-fill process). Various date combinations of original and gap-filled images were used to derive crop maps using a supervised classification process. Overall kappa values were slightly higher for crop maps derived from SLC-off gap-filled images compared to crop maps derived from the original imagery (0.3–1.3% higher). Although the age of the segment model used to derive the SLC-off gap-filled product did not negatively impact the overall agreement, differences in individual cover type agreement did increase (−0.8%–1.6% using the 2002 segment model to −5.0–5.1% using the 1992 segment model). Classification agreement also decreased for most of the classes as the size of the segment used in the gap-fill process increased.

  14. Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products

    PubMed Central

    Brandão, Ana D.; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso

    2017-01-01

    This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts. PMID:28772882

  15. Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products.

    PubMed

    Brandão, Ana D; Gerard, Romain; Gumpinger, Johannes; Beretta, Stefano; Makaya, Advenit; Pambaguian, Laurent; Ghidini, Tommaso

    2017-05-12

    This work studies the tensile properties of Ti-6Al-4V samples produced by laser powder bed based Additive Manufacturing (AM), for different build orientations. The results showed high scattering of the yield and tensile strength and low fracture elongation. The subsequent fractographic investigation revealed the presence of tungsten particles on the fracture surface. Hence, its detection and impact on tensile properties of AM Ti-6Al-4V were investigated. X-ray Computed Tomography (X-ray CT) scanning indicated that these inclusions were evenly distributed throughout the samples, however the inclusions area was shown to be larger in the load-bearing plane for the vertical specimens. A microstructural study proved that the mostly spherical tungsten particles were embedded in the fully martensitic Ti-6Al-4V AM material. The particle size distribution, the flowability and the morphology of the powder feedstock were investigated and appeared to be in line with observations from other studies. X-ray CT scanning of the powder however made the high density particles visible, where various techniques, commonly used in the certification of powder feedstock, failed to detect the contaminant. As the detection of cross contamination in the powder feedstock proves to be challenging, the use of only one type of powder per AM equipment is recommended for critical applications such as Space parts.

  16. EFFECT OF MAGNESIUM STEARATE CONCENTRATION ON DISSOLUTION PROPERTIES OF RANITIDINE HYDROCHLORIDE COATED TABLETS

    PubMed Central

    Uzunović, Alija; Vranić, Edina

    2007-01-01

    Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response. PMID:17848158

  17. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  18. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  19. Multimodal transmission property in a liquid-filled photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Miao, Yinping; Song, Binbin; Zhang, Hao; Liu, Bo; Liu, Yange; Yan, Donglin

    2015-02-01

    The multimode interference (MMI) effect in a liquid-filled photonic crystal fiber (PCF) has been experimentally demonstrated by fully infiltrating the air-hole cladding of a solid-core PCF with the refractive index (RI) matching liquid whose RI is close to the silica background. Due to the weak mode confinement capability of the cladding region, several high-order modes are excited to establish the multimode interference effect. The multimode interferometer shows a good temperature tunability of 12.30 nm/K, which makes it a good candidate for a highly tunable optical filtering as well as temperature sensing applications. Furthermore, this MMI effect would have great promise in various applications such as highly sensitive multi-parameter sensing, tunable optically filtering, and surface-enhanced Raman scattering.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Peeyush; Peter, William H.; Lowe, Larry E.

    In this study, powder bed based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reusemore » time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented.« less

  1. High energy density redox flow device

    DOEpatents

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  2. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  3. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  4. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    NASA Astrophysics Data System (ADS)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  5. Concentric crater fill on Mars - An aeolian alternative to ice-rich mass wasting

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Clifford, S. M.; Williams, S. H.

    1989-01-01

    Concentric crater fill, a distinctive martian landform represented by a concentric pattern of surface undulations confined within a crater rim, has been interpreted as an example of ice-enhanced regolith creep at midlatitudes (e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of + or - 30 deg, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45 deg N, 271 deg W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model. Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. It is suggested that an aeolian interpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.

  6. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  7. Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion.

    PubMed

    Steffan, Shawn A; Chasen, Elissa M; Deutsch, Annie E; Mafra-Neto, Agenor

    2017-01-01

    Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hübner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system. In 2013 and 2014, we tested a blend of pheromones targeting A. vaccinii and R. naevana in field-scale, replicated trials. Pheromones were loaded into SPLAT and the resulting "SPLAT BFW CFW" formulation was deployed in commercial cranberry marshes. We compared moth trap-catch counts within SPLAT-treated blocks to those of conventionally managed blocks. In 2013, applications of SPLAT BFW CFW resulted in highly successful disruption of R. naevana and promising, though inconsistent, disruption of A. vaccinii. To improve disruption of A. vaccinii, the pheromone load was increased in 2014, providing 92% and 74% reductions in trap-catch for R. naevana and A. vaccinii, respectively. Importantly, larval infestation rates in SPLAT-treated blocks were lower than those of conventionally managed blocks. These results suggest that a multispecies mating disruption system (SPLAT BFW CFW) may represent an effective pesticide-alternative for serious pests of cranberries. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  8. An effective approach for gap-filling continental scale remotely sensed time-series

    PubMed Central

    Weiss, Daniel J.; Atkinson, Peter M.; Bhatt, Samir; Mappin, Bonnie; Hay, Simon I.; Gething, Peter W.

    2014-01-01

    The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000–2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets. PMID:25642100

  9. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images

    USGS Publications Warehouse

    Chen, Jin; Zhu, Xiaolin; Vogelmann, James E.; Gao, Feng; Jin, Suming

    2011-01-01

    The scan-line corrector (SLC) of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003, resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the scientific applications of ETM+ data. While there have been a number of methods developed to fill in the data gaps, each method has shortcomings, especially for heterogeneous landscapes. Based on the assumption that the same-class neighboring pixels around the un-scanned pixels have similar spectral characteristics, and that these neighboring and un-scanned pixels exhibit similar patterns of spectral differences between dates, we developed a simple and effective method to interpolate the values of the pixels within the gaps. We refer to this method as the Neighborhood Similar Pixel Interpolator (NSPI). Simulated and actual SLC-off ETM+ images were used to assess the performance of the NSPI. Results indicate that NSPI can restore the value of un-scanned pixels very accurately, and that it works especially well in heterogeneous regions. In addition, it can work well even if there is a relatively long time interval or significant spectral changes between the input and target image. The filled images appear reasonably spatially continuous without obvious striping patterns. Supervised classification using the maximum likelihood algorithm was done on both gap-filled simulated SLC-off data and the original "gap free" data set, and it was found that classification results, including accuracies, were very comparable. This indicates that gap-filled products generated by NSPI will have relevance to the user community for various land cover applications. In addition, the simple principle and high computational efficiency of NSPI will enable processing large volumes of SLC-off ETM+ data.

  10. Application of the TEMPEST computer code to canister-filling heat transfer problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch fillingmore » mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.« less

  11. Experimental investigation on a pulsating heat pipe with hydrogen

    NASA Astrophysics Data System (ADS)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  12. Improving poor fill factors for solar cells via light-induced plating

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Rui, Jia; Wuchang, Ding; Yanlong, Meng; Zhi, Jin; Xinyu, Liu

    2012-09-01

    Silicon solar cells are prepared following the conventional fabrication processes, except for the metallization firing process. The cells are divided into two groups with higher and lower fill factors, respectively. After light-induced plating (LIP), the fill factors of the solar cells in both groups with different initial values reach the same level. Scanning electron microscope (SEM) images are taken under the bulk silver electrodes, which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process. Moreover, the application of LIP to cells with poor electrode contact performance, such as nanowire cells and radial junction solar cells, is proposed.

  13. Image masking using polygon fills and morphological transformations

    NASA Technical Reports Server (NTRS)

    Simpson, James J.

    1992-01-01

    Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.

  14. Use of New Industrial Coatings for the U.S. Navy Waterfront Structures

    DTIC Science & Technology

    2008-12-01

    utilized as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...typical application process, a separate set of test Table 7. MCU Coating Systems (SSPC SP 10 Surfaces) (5). SystelD CoatiIli System A Zinc -rich urethane...urethane/MID & AI-filled Urethane/MIO-filled urethane 315/315/314 336/336/336 340/340/336 ~ Micaceous iron oxide. \\) Aluminum. C Zinc . 12 as well as an

  15. Computational and experimental study of atmospheric moisture in ceramic blocks filled with waste fibres in winter season

    NASA Astrophysics Data System (ADS)

    Stastnik, S.

    2016-06-01

    Development of materials for vertical outer building structures tends to application of hollow clay blocks filled with some appropriate insulation material. Ceramic fittings provide high thermal resistance, but the walls built from them suffer from condensation of air humidity in winter season frequently. The paper presents the computational simulation and experimental laboratory validation of moisture behaviour of such masonry with insulation prepared from waste fibres under the Central European climatic conditions.

  16. Large scale particle image velocimetry with helium filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  17. Vegetation Phenology Metrics Derived from Temporally Smoothed and Gap-filled MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeff; Wolfe, Robert; Esaias, Wayne; Gao, Feng; Ederer, Greg; Nightingale, Joanne; Nickeson, Jamie E.; Ma, Pete; Pedely, Jeff

    2012-01-01

    Smoothed and gap-filled VI provides a good base for estimating vegetation phenology metrics. The TIMESAT software was improved by incorporating the ancillary information from MODIS products. A simple assessment of the association between retrieved greenup dates and ground observations indicates satisfactory result from improved TIMESAT software. One application example shows that mapping Nectar Flow Phenology is tractable on a continental scale using hive weight and satellite vegetation data. The phenology data product is supporting more researches in ecology, climate change fields.

  18. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.

  19. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    USGS Publications Warehouse

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  20. Evaluation of different magnetic resonance imaging contrast materials to be used as dummy markers in image-guided brachytherapy for gynecologic malignancies*

    PubMed Central

    Sales, Camila Pessoa; Carvalho, Heloisa de Andrade; Taverna, Khallil Chaim; Pastorello, Bruno Fraccini; Rubo, Rodrigo Augusto; Borgonovi, Arthur Felipe; Stuart, Silvia Radwanski; Rodrigues, Laura Natal

    2016-01-01

    Objective To identify a contrast material that could be used as a dummy marker for magnetic resonance imaging. Materials and Methods Magnetic resonance images were acquired with six different catheter-filling materials-water, glucose 50%, saline, olive oil, glycerin, and copper sulfate (CuSO4) water solution (2.08 g/L)-inserted into compatible computed tomography/magnetic resonance imaging ring applicators placed in a phantom made of gelatin and CuSO4. The best contrast media were tested in four patients with the applicators in place. Results In T2-weighted sequences, the best contrast was achieved with the CuSO4-filled catheters, followed by saline- and glycerin-filled catheters, which presented poor visualization. In addition (also in T2-weighted sequences), CuSO4 presented better contrast when tested in the phantom than when tested in the patients, in which it provided some contrast but with poor identification of the first dwell position, mainly in the ring. Conclusion We found CuSO4 to be the best solution for visualization of the applicator channels, mainly in T2-weighted images in vitro, although the materials tested presented low signal intensity in the images obtained in vivo, as well as poor precision in determining the first dwell position. PMID:27403016

  1. Interconnect patterns for printed organic thermoelectric devices with large fill factors

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.

    2017-09-01

    Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.

  2. Introduction to the enhanced logistics intratheater support tool (ELIST) mission application and its segments : global data segment version 8.1.0.0, database instance segment version 8.1.0.0, database fill segment version 8.1.0.0, database segment versio

    DOT National Transportation Integrated Search

    2002-02-26

    This document, the Introduction to the Enhanced Logistics Intratheater Support Tool (ELIST) Mission Application and its Segments, satisfies the following objectives: : It identifies the mission application, known in brief as ELIST, and all seven ...

  3. Shell Filling and Magnetic Anisotropy In A Few Hole Silicon Metal-Oxide-Semiconductor Quantum Dot

    NASA Astrophysics Data System (ADS)

    Hamilton, Alex; Li., R.; Liles, S. D.; Yang, C. H.; Hudson, F. E.; Veldhorst, M. E.; Dzurak, A. S.

    There is growing interest in hole spin states in group IV materials for quantum information applications. The near-absence of nuclear spins in group IV crystals promises long spin coherence times, while the strong spin-orbit interaction of the hole states provides fast electrical spin manipulation methods. However, the level-mixing and magnetic field dependence of the p-orbital hole states is non-trivial in nanostructures, and is not as well understood as for electron systems. In this work, we study the hole states in a gate-defined silicon metal-oxide-semiconductor quantum dot. Using an adjacent charge sensor, we monitor quantum dot orbital level spacing down to the very last hole, and find the standard two-dimensional (2D) circular dot shell filling structure. We can change the shell filling sequence by applying an out-of-plane magnetic field. However, when the field is applied in-plane, the shell filling is not changed. This magnetic field anisotropy suggests that the confined hole states are Ising-like.

  4. Multiprocessor sparse L/U decomposition with controlled fill-in

    NASA Technical Reports Server (NTRS)

    Alaghband, G.; Jordan, H. F.

    1985-01-01

    Generation of the maximal compatibles of pivot elements for a class of small sparse matrices is studied. The algorithm involves a binary tree search and has a complexity exponential in the order of the matrix. Different strategies for selection of a set of compatible pivots based on the Markowitz criterion are investigated. The competing issues of parallelism and fill-in generation are studied and results are provided. A technque for obtaining an ordered compatible set directly from the ordered incompatible table is given. This technique generates a set of compatible pivots with the property of generating few fills. A new hueristic algorithm is then proposed that combines the idea of an ordered compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. Finally, an elimination set to reduce the matrix is selected. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices are presented and analyzed.

  5. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy.

    PubMed

    Sedelnikova, O V; Korovin, E Yu; Dorozhkin, K V; Kanygin, M A; Arkhipov, V E; Shubin, Yu V; Zhuravlev, V A; Suslyaev, V I; Bulusheva, L G; Okotrub, A V

    2018-04-27

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  6. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    NASA Astrophysics Data System (ADS)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  7. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  8. Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy

    NASA Astrophysics Data System (ADS)

    Sedelnikova, O. V.; Korovin, E. Yu; Dorozhkin, K. V.; Kanygin, M. A.; Arkhipov, V. E.; Shubin, Yu V.; Zhuravlev, V. A.; Suslyaev, V. I.; Bulusheva, L. G.; Okotrub, A. V.

    2018-04-01

    Interface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst. According to the x-ray diffraction analysis, encapsulated ICNs were mainly in the form of iron carbide. Thin composite films were prepared from the iron-filled MWCNTs and polymethylmethacrylate (PMMA) by casting and stretching methods. The composites showed an enhanced permittivity and anisotropy in the transmittance spectra when iron content increased. This behaviour was related to the mechanism based on electrical conductivity and polarization of ICNs and ICN/MWCNT interfaces. Since terahertz field penetrates inside MWCNTs, the filling of their cavities can be a way of varying the electromagnetic properties of MWCNT-containing composites.

  9. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity

    PubMed Central

    Zhang, Hui; Gao, Shecheng; Luo, Yunhan; Xiong, Songsong; Wan, Lei; Huang, Xincheng; Huang, Bingsen; Feng, Yuanhua; He, Miao; Liu, Weiping; Chen, Zhe; Li, Zhaohui

    2018-01-01

    A liquid-filled D-shaped fiber (DF) cavity serving as an in-fiber Mach–Zehnder interferometer (MZI) has been proposed and experimentally demonstrated for temperature sensing with ultrahigh sensitivity. The miniature MZI is constructed by splicing a segment of DF between two single-mode fibers (SMFs) to form a microcavity (MC) for filling and replacement of various refractive index (RI) liquids. By adjusting the effective RI difference between the DF and MC (the two interference arms), experimental and calculated results indicate that the interference spectra show different degrees of temperature dependence. As the effective RI of the liquid-filled MC approaches that of the DF, temperature sensitivity up to −84.72 nm/°C with a linear correlation coefficient of 0.9953 has been experimentally achieved for a device with the MC length of 456 μm, filled with liquid RI of 1.482. Apart from ultrahigh sensitivity, the proposed MCMZI device possesses additional advantages of its miniature size and simple configuration; these features make it promising and competitive in various temperature sensing applications, such as consumer electronics, biological treatments, and medical diagnosis. PMID:29673220

  10. Further understanding on the mechanism of alkyl ketene dimer sizing on the causticized calcium carbonate filled paper and its improvements.

    PubMed

    Wang, Jian; Dang, Miao; Duan, Chao; Qian, Li

    2017-02-01

    Causticized calcium carbonate (CCC), a solid waste derived from kraft black recovery process, can be used as an alternative for the conventional precipitated calcium carbonate (PCC). However, the application of the CCC has been limited due to its low sizing efficiency in its filled paper. In this study, the characteristics of the CCC were studied aiming to improve the alkyl ketene dimer (AKD) sizing performances of the CCC filled papers, and the results were compared with those from PCC filled papers. The results showed that the CCC had higher pore structure, higher specific surface area, and more negative charge density than the PCC, thus leading to a higher cationic AKD adsorption onto the CCC filler. The lower AKD sizing efficiency in the CCC filled paper can be explained by the combination of higher AKD adsorption and migration, both of which resulted in preferred AKD adsorption onto/into the CCC fillers, rather than the cellulose fibers. Based on the above, the prior addition of polyamide-polyamine epichlorhydrin (PAE) resin to the CCC filler system was proposed to remedy the related issues, thus improving the sizing efficiency.

  11. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    PubMed

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  12. 48 CFR 252.232-7006 - Wide Area WorkFlow Payment Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... submission. Document submissions may be via Web entry, Electronic Data Interchange, or File Transfer Protocol... acceptance locations or “Not applicable.”) (3) Document routing. The Contractor shall use the information in the Routing Data Table below only to fill in applicable fields in WAWF when creating payment requests...

  13. 21 CFR 1301.13 - Application for registration; time for application; expiration date; registration for independent...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the business activity is registered. (d) At the time a retail pharmacy, hospital/clinic, practitioner..., Hospital/Clinic, Retail Pharmacy, Online Pharmacy, Central fill pharmacy, Teaching Institution) Schedules II-V New—224Renewal—224a Online Pharmacy—224c 551551 3 May conduct research and instructional...

  14. 76 FR 77479 - Foreign-Trade Zone 7-Mayaguez, PR; Application for Temporary/Interim Manufacturing Authority...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... (Pharmaceutical and Nutritional Intravenous Bags and Administration Sets); Aibonito and Jayuya, PR An application... Baxter facilities (200 million unit capacity) are used for the manufacture of pharmaceutical and... authority to produce filled pharmaceutical and nutritional I.V. bags (HTSUS 3004.20, 3004.40, 3004.50, 3004...

  15. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, C. J.; Fox, M. J.; Lstiburek, J.

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  16. Ultraviolet weathering of photostabilized wood-flour-filled high-density polyethylene composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana

    2003-01-01

    Wood–plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of...

  17. 33 CFR 323.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the review of applications for DA permits to authorize the discharge of dredged or fill material into... Harbors Act of 1899 (33 U.S.C. 403; see 33 CFR part 322). A DA permit will also be required under these... into waters of the United States. Applicants for DA permits under this part should refer to the other...

  18. Applications of nanocomposites and woodfiber plastics for microcellular injection molding

    Treesearch

    Lih-Sheng Turng; Mingjun Yuan; Hrishikesh Kharbas; Herman Winata; Daniel F. Caulfield

    2003-01-01

    The paper reviews the processing advantages and challenges of microcellular injection molding and presents recent research results on applications of nanocomposites and woodfiber-plastic composites as well as new process develop for the microcellular injection molding process. In particular, two types of polyamide (PA-6) neat resins and their filled counterparts, such...

  19. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM

    NASA Astrophysics Data System (ADS)

    Martz, Lawrence W.; Garbrecht, Jurgen

    1999-08-01

    Automated drainage analysis of raster DEMs typically begins with the simulated filling of all closed depressions and the imposition of a drainage pattern on the resulting flat areas. The elimination of closed depressions by filling implicitly assumes that all depressions are caused by elevation underestimation. This assumption is difficult to support, as depressions can be produced by overestimation as well as by underestimation of DEM values.This paper presents a new algorithm that is applied in conjunction with conventional depression filling to provide a more realistic treatment of those depressions that are likely due to overestimation errors. The algorithm lowers the elevation of selected cells on the edge of closed depressions to simulate breaching of the depression outlets. Application of this breaching algorithm prior to depression filling can substantially reduce the number and size of depressions that need to be filled, especially in low relief terrain.Removing or reducing the size of a depression by breaching implicitly assumes that the depression is due to a spurious flow blockage caused by elevation overestimation. Removing a depression by filling, on the other hand, implicitly assumes that the depression is a direct artifact of elevation underestimation. Although the breaching algorithm cannot distinguish between overestimation and underestimation errors in a DEM, a constraining parameter for breaching length can be used to restrict breaching to closed depressions caused by narrow blockages along well-defined drainage courses. These are considered the depressions most likely to have arisen from overestimation errors. Applying the constrained breaching algorithm prior to a conventional depression-filling algorithm allows both positive and negative elevation adjustments to be used to remove depressions.The breaching algorithm was incorporated into the DEM pre-processing operations of the TOPAZ software system. The effect of the algorithm is illustrated by the application of TOPAZ to a DEM of a low-relief landscape. The use of the breaching algorithm during DEM pre-processing substantially reduced the number of cells that needed to be subsequently raised in elevation to remove depressions. The number and kind of depression cells that were eliminated by the breaching algorithm suggested that the algorithm effectively targeted those topographic situations for which it was intended. A detailed inspection of a portion of the DEM that was processed using breaching algorithm in conjunction with depression-filling also suggested the effects of the algorithm were as intended.The breaching algorithm provides an empirically satisfactory and robust approach to treating closed depressions in a raster DEM. It recognises that depressions in certain topographic settings are as likely to be due to elevation overestimation as to elevation underestimation errors. The algorithm allows a more realistic treatment of depressions in these situations than conventional methods that rely solely on depression-filling.

  20. Integrated Information Support System (IISS). Volume 8. User Interface Subsystem. Part 3. User Interface Services Product Specification.

    DTIC Science & Technology

    1985-11-01

    User Interface that consists of a set of callable execution time routines available to an application program for form processing . IISS Function Screen...provisions for test consists of the normal testing techniques that are accomplished during the construction process . They consist of design and code...application presents a form * to the user which must be filled in with information for processing by that application. The application then

  1. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction

    NASA Astrophysics Data System (ADS)

    Koch, Sebastian; Duvigneau, Fabian; Orszulik, Ryan; Gabbert, Ulrich; Woschke, Elmar

    2017-04-01

    In this paper, the damping effect of granular materials is explored to reduce the vibration and noise of mechanical structures. To this end, a honeycomb structure with high stiffness is used to contain a granular filling which presents the possiblity for the distribution of the granular material to be designed. As a particular application example, the oil pan bottom of a combustion engine is used to investigate the influence on the vibration behavior and the sound emission. The effect of the honeycomb structure along with the granular mass, distribution, and type on the vibration behaviour of the structure is investigated via laser scanning vibrometry. From this, an optimized filling is determined and then its noise suppression level validated on an engine test bench through measurements with an acoustic array.

  2. Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.

    2018-04-01

    The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.

  3. Dental Glass Ionomer Cements as Permanent Filling Materials? —Properties, Limitations Future Trends

    PubMed Central

    Lohbauer, Ulrich

    2009-01-01

    Glass ionomer cements (GICs) are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  4. Observations on the effects of image processing functions on fingermark data in the Fourier domain

    NASA Astrophysics Data System (ADS)

    Bramble, Simon K.; Fabrizi, Paola M.

    1995-09-01

    One of the image processing functions used for the enhancement of laten fingermark images is the Fourier transform. This paper describes some effects of spatial resolution, zero-filling and windowing on fingermark data in the Fourier domain. It is shown that with an understanding of the fingermark structure it is possible to determine the approximate prosition of the frequency data in the Fourier domain corresponding to the fingermark image detail. The effect of attenuation of frequency data on a zero-filled image is shown to be different to the same attenuation on a non-zero-filled image. The effects of windowing spatial data on the frequency data are also highlighted and compared with the same data after the application of a Hanning window.

  5. Effect of screens in wide-angle diffusers

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Spangenberg, W G

    1949-01-01

    An experimental investigation at low airspeeds was made of the filling effect observed when a screen or similar resistance is placed across a diffuser. The filling effect is found to be real in that screens can prevent separation or restore separated flow in diffusers even of extreme divergence and to depend principally on screen location and pressure-drop coefficient of the screen. Results are given for three different diffusers of circular cross section with a variety of screen arrangements. Effects of single screens and multiple screens are shown. The mechanics of the filling effect is explained, and possible efficiencies are discussed. Results of arrangements of multiple screens in wide-angle diffusers are given to show a possible application to damping screens as used in wind tunnels to reduce turbulence. (author)

  6. Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins.

    PubMed

    Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas

    2017-05-16

    Biomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA. These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in the absence of a protein hydration shell. Moreover, solvent-free biological liquids containing viruses can be used as novel storage and process media serving as a formulation technology for the delivery of highly concentrated bioactive compounds. We are confident that this new class of hybrid biomaterials will fuel further studies and applications of biomacromolecules beyond water and other solvents and in a much broader context than just the traditional physiological conditions.

  7. Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain.

    PubMed

    Gaiser, Patrick; Binz, Jonas; Gompf, Bruno; Berrier, Audrey; Dressel, Martin

    2015-03-14

    Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.

  8. Preliminary endurance tests of water vaporizers for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Macrae, Gregory S.

    1993-01-01

    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops.

  9. An alternative data filling approach for prediction of missing data in soft sets (ADFIS).

    PubMed

    Sadiq Khan, Muhammad; Al-Garadi, Mohammed Ali; Wahab, Ainuddin Wahid Abdul; Herawan, Tutut

    2016-01-01

    Soft set theory is a mathematical approach that provides solution for dealing with uncertain data. As a standard soft set, it can be represented as a Boolean-valued information system, and hence it has been used in hundreds of useful applications. Meanwhile, these applications become worthless if the Boolean information system contains missing data due to error, security or mishandling. Few researches exist that focused on handling partially incomplete soft set and none of them has high accuracy rate in prediction performance of handling missing data. It is shown that the data filling approach for incomplete soft set (DFIS) has the best performance among all previous approaches. However, in reviewing DFIS, accuracy is still its main problem. In this paper, we propose an alternative data filling approach for prediction of missing data in soft sets, namely ADFIS. The novelty of ADFIS is that, unlike the previous approach that used probability, we focus more on reliability of association among parameters in soft set. Experimental results on small, 04 UCI benchmark data and causality workbench lung cancer (LUCAP2) data shows that ADFIS performs better accuracy as compared to DFIS.

  10. Activities in support of the wax-impregnated wallboard concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.; Stovall, T.K.

    1989-01-01

    The concept of octadecane wax impregnated wallboard for the passive solar application is a major thrust of the Oak Ridge National Laboratory (ORNL) Thermal Energy Storage (TES) program. Thus, ORNL has initiated a number of internal efforts in support of this concept. The results of these efforts are: The immersion process for filling wallboard with wax has been successfully sealed up from small samples to full-size sheets; analysis shows that the immersion process has the potential for achieving higher storage capacity than adding wax filled pellets to wallboard during its manufacture; analysis indicates that 75/degree/F is close to an optimummore » phase change temperature for the non-passive solar application; and the thermal conductivity of wallboard without wax has been measured and will be measured for wax impregnated wallboard. In addition, efforts are underway to confirm an analytical model that handles phase change wallboard for the passive solar application. 4 refs., 10 figs.« less

  11. Homogeneity of Ge-rich nanostructures as characterized by chemical etching and transmission electron microscopy.

    PubMed

    Bollani, Monica; Chrastina, Daniel; Montuori, Valeria; Terziotti, Daniela; Bonera, Emiliano; Vanacore, Giovanni M; Tagliaferri, Alberto; Sordan, Roman; Spinella, Corrado; Nicotra, Giuseppe

    2012-02-03

    The extension of SiGe technology towards new electronic and optoelectronic applications on the Si platform requires that Ge-rich nanostructures be obtained in a well-controlled manner. Ge deposition on Si substrates usually creates SiGe nanostructures with relatively low and inhomogeneous Ge content. We have realized SiGe nanostructures with a very high (up to 90%) Ge content. Using substrate patterning, a regular array of nanostructures is obtained. We report that electron microscopy reveals an abrupt change in Ge content of about 20% between the filled pit and the island, which has not been observed in other Ge island systems. Dislocations are mainly found within the filled pit and only rarely in the island. Selective chemical etching and electron energy-loss spectroscopy reveal that the island itself is homogeneous. These Ge-rich islands are possible candidates for electronic applications requiring locally induced stress, and optoelectronic applications which exploit the Ge-like band structure of Ge-rich SiGe.

  12. Effect of surface preparation on the failure load of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite.

    PubMed

    Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Takahashi, Yutaka

    2009-04-01

    The purpose of the present study was to evaluate the effect of surface preparation on the maximum fracture load value of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite. A polymer-monomer matrix was made by mixing urethane dimethacrylate and triethyleneglycol dimethacrylate at a ratio of 1:1 with camphorquinone and 2-dimethylaminoethyl methacrylate as a light initiator. The matrix was then polymerized in a disk-shaped silicone mold with a light-polymerizing unit. The flat surfaces of the polymer-monomer matrix disk were prepared in one of the following ways: (1) without preparation; (2) application of silane coupling agent; or (3) application of matrix liquid and prepolymerization. A highly filled composite material was applied and polymerized with a light-polymerizing unit. Additional test specimens made entirely of the polymer-monomer matrix were fabricated as references; the disk and cylinder were fabricated in one piece using a mold specially made for the present study (group 4). Half the specimens were thermocycled up to 10,000 times in water with a 1-minute dwell time at each temperature (5 degrees C and 55 degrees C). The maximum fracture load values were determined using a universal testing machine (n = 10). The maximum fracture loads for group 3 were significantly enhanced both before and after thermocycling, whereas the maximum fracture loads of group 2 were significantly enhanced before thermocycling (p < 0.05); however, the failure loads decreased for all groups after thermocycling (p < 0.05). All the specimens in groups 1 and 2 debonded during thermocycling. The failure load of group 3 was significantly lower than that of group 4 both before and after thermocycling (p < 0.05). Within the limitations of the current in vitro study, the application and prepolymerization of a mixed dimethacrylate resin liquid prior to the application of a highly filled composite was an effective surface preparation for the polymer-monomer matrix of a fiber-reinforced composite; however, the bond durability may be insufficient.

  13. Gas cushion control of OVJP print head position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate somore » as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.« less

  14. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  15. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  16. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics.

    PubMed

    Han, Yu Long; Liu, Hao; Ouyang, Cheng; Lu, Tian Jian; Xu, Feng

    2015-07-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded.

  17. Compliant high temperature seals for dissimilar materials

    DOEpatents

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  18. High energy density redox flow device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai

    2017-04-04

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % ofmore » the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.« less

  19. Shear bond strength of bulk-fill and nano-restorative materials to dentin.

    PubMed

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.

  20. Healing process following application of set or fresh mineral trioxide aggregate as a root-end filling material.

    PubMed

    Habibi, Mehdi; Ghoddusi, Jamileh; Habibi, Ataollah; Mohtasham, Nooshin

    2011-01-01

    An unsuccessful attempt to reach the apical area or to place the retrograde material is a major difficulty in periradicular surgery. The aim of this study was to compare the histological evaluation of the healing process following an orthograde versus a retrograde application of mineral trioxide aggregate (MTA) as a root-end filling material during apical surgery on cats' teeth in order to find out whether orthograde placement of MTA before surgery can be used instead of retrograde placement during surgery. In this experimental study, 24 canine teeth in 12 mature and healthy cats were filled with either MTA or gutta-percha in an orthograde manner. Two weeks later, the teeth with MTA were surgically exposed and resected to the set-MTA within the canals. The teeth previously filled by gutta-percha were also surgically exposed, and retrograde cavities were prepared at the root ends and filled with fresh-MTA. After 8 weeks, the animals were euthanized by vital perfusion. Six-micron histological slices were prepared from samples, stained by Hematoxylin & Eosin, and histologically studied by means of a light microscope. The collected data was analyzed by the Chi-square and the T-test. One of the samples in the fresh-MTA group was omitted during processing because of inappropriate sectioning. In the set-MTA group, 5 out of 12 showed chronic abscess, while in the fresh-MTA group, 2 out of 11 were discovered to have chronic abscess; however, no significant difference was observed (P>.05). Hard tissue healing (cementum, bone, cementum + bone formation) in the set-MTA and fresh-MTA groups were 7 out of 12 and 9 out of 11, respectively. While healing seemed more likely to occur in the fresh-MTA group, the difference was statistically insignificant (P>.05). The magnitude of bone, cementum, or bone and cementum formation showed slight differences between the two groups; however, the figures failed to show any marked differences (P>.05). Orthograde placement of MTA could be used as an obturation material before surgery. In this way, after root-end resection, there would be no need for root-end preparation and filling procedures.

Top