Sample records for flowering time variation

  1. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa.

    PubMed

    Wu, Jian; Wei, Keyun; Cheng, Feng; Li, Shikai; Wang, Qian; Zhao, Jianjun; Bonnema, Guusje; Wang, Xiaowu

    2012-08-28

    Flowering time is an important trait in Brassica rapa crops. FLOWERING LOCUS C (FLC) is a MADS-box transcription factor that acts as a potent repressor of flowering. Expression of FLC is silenced when plants are exposed to low temperature, which activates flowering. There are four copies of FLC in B. rapa. Analyses of different segregating populations have suggested that BraA.FLC.a (BrFLC1) and BraA.FLC.b (BrFLC2) play major roles in controlling flowering time in B. rapa. We analyzed the BrFLC2 sequence in nine B. rapa accessions, and identified a 57-bp insertion/deletion (InDel) across exon 4 and intron 4 resulting in a non-functional allele. In total, three types of transcripts were identified for this mutated BrFLC2 allele. The InDel was used to develop a PCR-based marker, which was used to screen a collection of 159 B. rapa accessions. The deletion genotype was present only in oil-type B. rapa, including ssp. oleifera and ssp. tricolaris, and not in other subspecies. The deletion genotype was significantly correlated with variation in flowering time. In contrast, the reported splicing site variation in BrFLC1, which also leads to a non-functional locus, was detected but not correlated with variation in flowering time in oil-type B. rapa, although it was correlated with variation in flowering time in vegetable-type B. rapa. Our results suggest that the naturally occurring deletion mutation across exon 4 and intron 4 in BrFLC2 gene contributes greatly to variation in flowering time in oil-type B. rapa. The observed different relationship between BrFLC1 or BrFLC2 and flowering time variation indicates that the control of flowering time has evolved separately between oil-type and vegetable-type B. rapa groups.

  2. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus

    PubMed Central

    Schiessl, Sarah; Samans, Birgit; Hüttel, Bruno; Reinhard, Richard; Snowdon, Rod J.

    2014-01-01

    Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species. PMID:25202314

  3. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.

    PubMed

    Johanson, U; West, J; Lister, C; Michaels, S; Amasino, R; Dean, C

    2000-10-13

    Vernalization, the acceleration of flowering by a long period of cold temperature, ensures that many plants overwinter vegetatively and flower in spring. In Arabidopsis, allelic variation at the FRIGIDA (FRI) locus is a major determinant of natural variation in flowering time. Dominant alleles of FRI confer late flowering, which is reversed to earliness by vernalization. We cloned FRI and analyzed the molecular basis of the allelic variation. Most of the early-flowering ecotypes analyzed carry FRI alleles containing one of two different deletions that disrupt the open reading frame. Loss-of-function mutations at FRI have thus provided the basis for the evolution of many early-flowering ecotypes.

  4. CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum.

    PubMed

    Borovsky, Yelena; Sharma, Vinod K; Verbakel, Henk; Paran, Ilan

    2015-06-01

    The APETALA2 transcription factor homolog CaAP2 is a candidate gene for a flowering repressor in pepper, as revealed by induced-mutation phenotype, and a candidate underlying a major QTL controlling natural variation in flowering time. To decipher the genetic control of transition to flowering in pepper (Capsicum spp.) and determine the extent of gene function conservation compared to model species, we isolated and characterized several ethyl methanesulfonate (EMS)-induced mutants that vary in their flowering time compared to the wild type. In the present study, we report on the isolation of an early-flowering mutant that flowers after four leaves on the primary stem compared to nine leaves in the wild-type 'Maor'. By genetic mapping and sequencing of putative candidate genes linked to the mutant phenotype, we identified a member of the APETALA2 (AP2) transcription factor family, CaAP2, which was disrupted in the early-flowering mutant. CaAP2 is a likely ortholog of AP2 that functions as a repressor of flowering in Arabidopsis. To test whether CaAP2 has an effect on controlling natural variation in the transition to flowering in pepper, we performed QTL mapping for flowering time in a cross between early and late-flowering C. annuum accessions. We identified a major QTL in a region of chromosome 2 in which CaAP2 was the most significant marker, explaining 52 % of the phenotypic variation of the trait. Sequence comparison of the CaAP2 open reading frames in the two parents used for QTL mapping did not reveal significant variation. In contrast, significant differences in expression level of CaAP2 were detected between near-isogenic lines that differ for the flowering time QTL, supporting the putative function of CaAP2 as a major repressor of flowering in pepper.

  5. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  6. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE PAGES

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric; ...

    2016-10-14

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  7. Latitudinal variation in sensitivity of flower bud formation to high temperature in Japanese Taraxacum officinale.

    PubMed

    Yoshie, Fumio

    2014-05-01

    Control of flowering time plays a key role in the successful range expansion of plants. Taraxacum officinale has expanded throughout Japan during the 110 years after it was introduced into a cool temperate region. The present study tested a hypothesis that there is a genetic difference in the bud formation time in relation to temperature along latitudinal gradient of T. officinale populations. In Experiment 1, plants from three populations at different latitudes (26, 36, and 43°N) were grown at three temperatures. Time to flower bud appearance did not significantly differ among the three populations when plants were grown at 14 °C, whereas it increased with increasing latitude when grown at 19 and 24 °C. Rosette diameter was not different among the populations, indicating that the variation in bud formation time reflected a difference in genetic control rather than size variation. The latitudinal variation in bud appearance time was confirmed by Experiment 2 in which plants from 17 population were used. In Experiment 3, the size of plants that exhibited late-flowering was studied to test a hypothesis that the variation in flowering time reflects dormancy of vegetative growth, but the late-flowering plants were found to continue growth, indicating that vegetative dormancy was not the cause of the variation. The results clearly indicate that the degree of suppression of flower bud formation at high temperature decreases with latitude from north to south, which is under genetic control.

  8. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  9. Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana.

    PubMed

    Samis, Karen E; Murren, Courtney J; Bossdorf, Oliver; Donohue, Kathleen; Fenster, Charles B; Malmberg, Russell L; Purugganan, Michael D; Stinchcombe, John R

    2012-06-01

    Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150-200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.

  10. Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana.

    PubMed

    Debieu, Marilyne; Tang, Chunlao; Stich, Benjamin; Sikosek, Tobias; Effgen, Sigi; Josephs, Emily; Schmitt, Johanna; Nordborg, Magnus; Koornneef, Maarten; de Meaux, Juliette

    2013-01-01

    Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.

  11. Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

    PubMed Central

    Wang, Yueqiang; Chen, Xin; Ren, Haixiang; Yang, Jiayin; Cheng, Wen; Zong, Chunmei; Gu, Heping; Qiu, Hongmei; Wu, Hongyan; Zhang, Xingzheng; Cui, Tingting; Xia, Zhengjun

    2014-01-01

    The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene. PMID:24830458

  12. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.

  13. Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits

    PubMed Central

    Brunet, Johanne

    2009-01-01

    Background and Aims Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In the present study, the variation in pollinator abundance over time and space was examined in populations of the Rocky Mountain columbine. The variation in three floral traits is described and correlations between pollinator type, functional pollinator groups or altitude and floral traits are examined. Methods Pollinator observations took place in six Aquilegia coerulea populations over 1–4 years and spur length, flower colour and sepal length were measured in 12 populations. Pollinator abundance, measured as visits per flower per hour, was compared among populations and years. Pollinators were grouped into two functional groups: pollen or nectar collectors. The following associations were examined: annual presence of hawkmoths and whiter flowers with longer spurs; the presence of Sphinx vashti and longer spurs; and higher altitudes and whiter flowers. The study looked at whether an increase in the proportion of hawkmoths in a population was associated with whiter and larger flowers with longer spurs. Key Results The abundance of different pollinator groups varied over time and space. Floral traits varied among populations. Higher altitude was correlated with bluer flowers. Whiter flowers were associated with the annual presence of hawkmoths. Populations visited by Sphinx vashti had longer spurs than populations visited only by Hyles lineata. Populations with greater percentage of nectar-collecting pollinators did not have whiter, larger flowers with longer spurs. Conclusions Despite the large variation in pollinator abundance over time and space, one species of bumble-bee or hawkmoth tended to predominate in each population each year. Future studies of Aquilegia coerulea should examine the specific influences of pollinators and the environment on flower colour and of hawkmoth species on spur length. PMID:19414518

  14. Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis.

    PubMed

    Huang, Xueqing; Ding, Jia; Effgen, Sigi; Turck, Franziska; Koornneef, Maarten

    2013-08-01

    Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.

  16. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time.

    PubMed

    Dombrowski, Nina; Schlaeppi, Klaus; Agler, Matthew T; Hacquard, Stéphane; Kemen, Eric; Garrido-Oter, Ruben; Wunder, Jörg; Coupland, George; Schulze-Lefert, Paul

    2017-01-01

    Recent field and laboratory experiments with perennial Boechera stricta and annual Arabidopsis thaliana suggest that the root microbiota influences flowering time. Here we examined in long-term time-course experiments the bacterial root microbiota of the arctic-alpine perennial Arabis alpina in natural and controlled environments by 16S rRNA gene profiling. We identified soil type and residence time of plants in soil as major determinants explaining up to 15% of root microbiota variation, whereas environmental conditions and host genotype explain maximally 11% of variation. When grown in the same soil, the root microbiota composition of perennial A. alpina is largely similar to those of its annual relatives A. thaliana and Cardamine hirsuta. Non-flowering wild-type A. alpina and flowering pep1 mutant plants assemble an essentially indistinguishable root microbiota, thereby uncoupling flowering time from plant residence time-dependent microbiota changes. This reveals the robustness of the root microbiota against the onset and perpetual flowering of A. alpina. Together with previous studies, this implies a model in which parts of the root microbiota modulate flowering time, whereas, after microbiota acquisition during vegetative growth, the established root-associated bacterial assemblage is structurally robust to perturbations caused by flowering and drastic changes in plant stature.

  17. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    PubMed

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  18. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea.

    PubMed

    Foucher, Fabrice; Morin, Julie; Courtiade, Juliette; Cadioux, Sandrine; Ellis, Noel; Banfield, Mark J; Rameau, Catherine

    2003-11-01

    Genes in the TERMINAL FLOWER1 (TFL1)/CENTRORADIALIS family are important key regulatory genes involved in the control of flowering time and floral architecture in several different plant species. To understand the functions of TFL1 homologs in pea, we isolated three TFL1 homologs, which we have designated PsTFL1a, PsTFL1b, and PsTFL1c. By genetic mapping and sequencing of mutant alleles, we demonstrate that PsTFL1a corresponds to the DETERMINATE (DET) gene and PsTFL1c corresponds to the LATE FLOWERING (LF) gene. DET acts to maintain the indeterminacy of the apical meristem during flowering, and consistent with this role, DET expression is limited to the shoot apex after floral initiation. LF delays the induction of flowering by lengthening the vegetative phase, and allelic variation at the LF locus is an important component of natural variation for flowering time in pea. The most severe class of alleles flowers early and carries either a deletion of the entire PsTFL1c gene or an amino acid substitution. Other natural and induced alleles for LF, with an intermediate flowering time phenotype, present no changes in the PsTFL1c amino acid sequence but affect LF transcript level in the shoot apex: low LF transcript levels are correlated with early flowering, and high LF transcript levels are correlated with late flowering. Thus, different TFL1 homologs control two distinct aspects of plant development in pea, whereas a single gene, TFL1, performs both functions in Arabidopsis. These results show that different species have evolved different strategies to control key developmental transitions and also that the genetic basis for natural variation in flowering time may differ among plant species.

  19. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566

  20. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  1. Variation in Time of Flowering and Seed Dispersal of Eastern Cottonwood In the Lower Mississippi Valley

    Treesearch

    Robert E. Farmer

    1966-01-01

    Flowering of Populus deItoides Bartr. occurred from early March to early April; differences between trees within stands accounted for 98 percent of the significant variation in dates. High correlation (r = .91 to .96) between 1963 and 1964 dates of individual trees indicated that trees within stands flower in a predictable sequence. Seed dispersal...

  2. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    USDA-ARS?s Scientific Manuscript database

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  3. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis.

    PubMed

    Méndez-Vigo, Belén; Picó, F Xavier; Ramiro, Mercedes; Martínez-Zapater, José M; Alonso-Blanco, Carlos

    2011-12-01

    Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0-2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.

  4. The timing of flowering in Douglas-fir is determined by cool-season temperatures and genetic variation

    Treesearch

    Janet S. Prevey; Constance A. Harrington; J. Bradley St. Clair

    2018-01-01

    Trees have evolved to time flowering to maximize outcrossing, minimize exposure to damaging frosts, and synchronize development with soil moisture and nutrient availability. Understanding the environmental cues that influence the timing of reproductive budburst will be important for predicting how flowering phenology of trees will change with a changing climate, and...

  5. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.

    PubMed

    Lessard-Therrien, Malie; Davies, T Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  6. Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field.

    PubMed

    Taylor, Mark A; Cooper, Martha D; Sellamuthu, Reena; Braun, Peter; Migneault, Andrew; Browning, Alyssa; Perry, Emily; Schmitt, Johanna

    2017-10-01

    Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W

    PubMed Central

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778

  8. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ 13C), and WUE plasticity to drought in Arabidopsis thaliana

    PubMed Central

    Kenney, Amanda M; McKay, John K; Richards, James H; Juenger, Thomas E

    2014-01-01

    Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought. PMID:25512847

  9. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    PubMed Central

    Isaac, Peter; Laurie, David A.

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation. PMID:22457747

  10. When can stress facilitate divergence by altering time to flowering?

    PubMed

    Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A

    2015-12-01

    Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.

  11. Effects of hurricanes and climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.

    PubMed

    Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E

    2018-06-01

    Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.

  12. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability.

    PubMed

    Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.

  13. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

    PubMed Central

    Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453

  14. Global warming and flowering times in Thoreau's Concord: a community perspective.

    PubMed

    Miller-Rushing, Abraham J; Primack, Richard B

    2008-02-01

    As a result of climate change, many plants are now flowering measurably earlier than they did in the past. However, some species' flowering times have changed much more than others. Data at the community level can clarify the variation in flowering responses to climate change. In order to determine how North American species' flowering times respond to climate, we analyzed a series of previously unstudied records of the dates of first flowering for over 500 plant taxa in Concord, Massachusetts, USA. These records began with six years of observations by the famous naturalist Henry David Thoreau from 1852 to 1858, continued with 16 years of observations by the botanist Alfred Hosmer in 1878 and 1888-1902, and concluded with our own observations in 2004, 2005, and 2006. From 1852 through 2006, Concord warmed by 2.4 degrees C due to global climate change and urbanization. Using a subset of 43 common species, we determined that plants are now flowering seven days earlier on average than they did in Thoreau's times. Plant flowering times were most correlated with mean temperatures in the one or two months just before flowering and were also correlated with January temperatures. Summer-flowering species showed more interannual variation in flowering time than did spring-flowering species, but the flowering times of spring-flowering species correlated more strongly to mean monthly temperatures. In many cases, such as within the genera Betula and Solidago, closely related, co-occurring species responded to climate very differently from one another. The differences in flowering responses to warming could affect relationships in plant communities as warming continues. Common St. John's wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum) are particularly responsive to changes in climate, are common across much of the United States, and could serve as indicators of biological responses to climate change. We discuss the need for researchers to be aware, when using data sets involving multiple observers, of how varying methodologies, sample sizes, and sampling intensities affect the results. Finally, we emphasize the importance of using historical observations, like those of Thoreau and Hosmer, as sources of long-term data and to increase public awareness of biological responses to climate change.

  15. EFFECT OF RADIOACTIVE ISOTOPE ON THE FLOWERING BEHAVIOUR OF JUTE (CORCHORUS OLITORIUS LINN.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Choudhury, A.K.R.

    1962-03-01

    Following irradiation with S/sup 35/, the dispersion of the flowering time of jute was increased in the first generation. The genetic variability of the treated population in the second generation was found to be greater than that of control population by two and a half times. But owing to the largeness of environmental variation, poor heritability of the flowering time was noticed. (auth)

  16. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    PubMed Central

    2010-01-01

    Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889

  17. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    PubMed

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  18. Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis.

    PubMed

    Nikkeshi, Aoi; Kurimoto, Daiki; Ushimaru, Atushi

    2015-12-01

    The evolutionary shift from radial to bilateral symmetry in flowers is generally associated with the evolution of low flower-size variation. This phenomenon supports the hypothesis that the lower size variation in bilateral flowers can be attributed to low pollinator diversity. In this study, we propose two other hypotheses to explain low flower-size variation in bilateral symmetrical flowers. To test the three hypotheses, we examined the relative importance of pollinator diversity, composition, and bilateral symmetry itself as selective forces on low flower-size variation. We examined pollinator diversity and composition and flower-size variation for 36 species in a seminatural ecosystem with high bee richness and frequent lepidopteran visitation. Bilateral flowers were more frequently visited than radial flowers by larger bees, but functional-group diversity of the pollinators did not differ between symmetry types. Although bilateral flowers had significantly lower flower-size variation than radial flowers, flower-size variation did not vary with pollinator diversity and composition but was instead related to bilateral symmetry. Our results suggest that the lower size variation in bilateral flowers might have evolved under selection favoring the control of pollinator behavior on flowers to enhance the accurate placement of pollen on the body of the pollinator, independent of pollinator type. Because of the limited research on this issue, future work should be conducted in various types of plant-pollinator communities worldwide to further clarify the issue. © 2015 Botanical Society of America.

  19. Synchronous flowering despite differences in snowmelt timing among habitats of Empetrum hermaphroditum

    NASA Astrophysics Data System (ADS)

    Bienau, Miriam J.; Kröncke, Michael; Eiserhardt, Wolf L.; Otte, Annette; Graae, Bente J.; Hagen, Dagmar; Milbau, Ann; Durka, Walter; Eckstein, R. Lutz

    2015-11-01

    The topography within arctic-alpine landscapes is very heterogeneous, resulting in diverse snow distribution patterns, with different snowmelt timing in spring. This may influence the phenological development of arctic and alpine plant species and asynchronous flowering may promote adaptation of plants to their local environments. We studied how flowering phenology of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitats (exposed ridges, sheltered depressions and birch forest) differing in winter snow depth and thus snowmelt timing in spring, and whether the observed patterns were consistent across three different study areas. Despite significant differences in snowmelt timing between habitats, full flowering of E. hermaphroditum was nearly synchronous between the habitats, and implies a high flowering overlap. Our data show that exposed ridges, which had a long lag phase between snowmelt and flowering, experienced different temperature and light conditions than the two late melting habitats between snowmelt and flowering. Our study demonstrates that small scale variation seems matter less to flowering of Empetrum than interannual differences in snowmelt timing.

  20. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time.

    PubMed

    van Dijk, Aalt D J; Molenaar, Jaap

    2017-01-01

    The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.

  1. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    PubMed

    Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M

    2017-06-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2  = 0.79, marginal R 2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Temporal and intraclonal variation of flowering and pseudovivipary in Poa bulbosa

    PubMed Central

    Ofir, Micha; Kigel, Jaime

    2014-01-01

    Background and Aims Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles. Methods Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction. Key Results Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles. Conclusions Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs. PMID:24685715

  3. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae).

    PubMed

    Forrest, Jessica R K; Ogilvie, Jane E; Gorischek, Alex M; Thomson, James D

    2011-07-01

    In sub-alpine habitats, patchiness in snowpack produces marked, small-scale variation in flowering phenology. Plants in early- and late-melting patches are therefore likely to experience very different conditions during their flowering periods. Mertensia fusiformis is an early-flowering perennial that varies conspicuously in style length within and among populations. The hypothesis that style length represents an adaptation to local flowering time was tested. Specifically, it was hypothesized that lower air temperatures and higher frost risk would favour short-styled plants (with stigmas more shielded by corollas) in early-flowering patches, but that the pollen-collecting behaviour of flower visitors in late-flowering patches would favour long-styled plants. Floral morphology was measured, temperatures were monitored and pollinators were observed in several matched pairs of early and late populations. To evaluate effects of cold temperatures on plants of different style lengths, experimental pollinations were conducted during mornings (warm) and evenings (cool), and on flowers that either had or had not experienced a prior frost. The effectiveness of different pollinators was quantified as seed set following single visits to plants with relatively short or long styles. Late-flowering populations experienced warmer temperatures than early-flowering populations and a different suite of pollinators. Nectar-foraging bumble-bee queens and male solitary bees predominated in early populations, whereas pollen-collecting female solitary bees were more numerous in later sites. Pollinators differed significantly in their abilities to transfer pollen to stigmas at different heights, in accordance with our prediction. However, temperature and frost sensitivity did not differ between long- and short-styled plants. Although plants in late-flowering patches tended to have longer styles than those in early patches, this difference was not consistent. Seasonal change in pollinator-mediated selection on style length may help maintain variation in this trait in M. fusiformis, but adaptation to local flowering time is not apparent. The prevalence of short styles in these populations requires further explanation.

  4. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time.

    PubMed

    Wang, Yan; Gu, Yongzhe; Gao, Huihui; Qiu, Lijuan; Chang, Ruzhen; Chen, Shouyi; He, Chaoying

    2016-04-12

    Flowering time is a domestication trait of Glycine max and varies in soybeans, yet, a gene for flowering time variation has not been associated with soybean domestication. GIGANTEA (GI) is a major gene involved in the control of flowering time in Arabidopsis, although three GI homologs complicate this model in the soybean genome. In the present work, we revealed that the geographic evolution of the GIGANTEAa (GIa) haplotypes in G. max (GmGIa) and Glycine soja (GsGIa). Three GIa haplotypes (H1, H2, and H3) were found among cultivated soybeans and their wild relatives, yet an additional 44 diverse haplotypes were observed in wild soybeans. H1 had a premature stop codon in the 10(th) exon, whereas the other haplotypes encoded full-length GIa protein isoforms. In both wild-type and cultivated soybeans, H2 was present in the Southern region of China, and H3 was restricted to areas near the Northeast region of China. H1 was genetically derived from H2, and it was dominant and widely distributed among cultivated soybeans, whereas in wild populations, the ortholog of this domesticated haplotype H1 was only found in Yellow River basin with a low frequency. Moreover, this mutated GIa haplotype significantly correlated with early flowering. We further determined that the differences in gene expression of the three GmGIa haplotypes were not correlated to flowering time variations in cultivated soybeans. However, only the truncated GmGIa H1 could partially rescue gi-2 Arabidopsis from delayed flowering in transgenic plants, whereas both GmGIa H2 and H3 haplotypes could significantly repress flowering in transgenic Arabidopsis with a wild-type background. Thus, GmGIa haplotype diversification may have contributed to flowering time adaptation that facilitated the radiation of domesticated soybeans. In light of the evolution of the GIa gene, soybean domestication history for an early flowering phenotype is discussed.

  5. Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics

    PubMed Central

    Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay

    2016-01-01

    Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1–120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research. PMID:28018419

  6. Genetic variation of flowering time and biomass in switchgrass

    USDA-ARS?s Scientific Manuscript database

    The timing of phase change from juvenile (vegetative) to adult with reproductive competence is a key factor influencing biomass yield of switchgrass. A decline in biomass yield is typically observed in switchgrass immediately following completion of flowering. In temperate regions of the USA, if flo...

  7. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.

    PubMed

    Tabas-Madrid, Daniel; Méndez-Vigo, Belén; Arteaga, Noelia; Marcer, Arnald; Pascual-Montano, Alberto; Weigel, Detlef; Xavier Picó, F; Alonso-Blanco, Carlos

    2018-03-08

    Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants. © 2018 John Wiley & Sons Ltd.

  8. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    PubMed

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  9. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations

    PubMed Central

    Domínguez, Paula; Guitián, Javier A.; Guitián, Pablo; Guitián, José M.

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation. PMID:26172378

  10. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  11. The evolution of flowering strategies in US weedy rice.

    PubMed

    Thurber, Carrie S; Reagon, Michael; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2014-10-01

    • Local adaptation in plants often involves changes in flowering time in response to day length and temperature. Many crops have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading the agricultural environment. Given the shared species designation of cultivated rice (Oryza sativa) and its the invasive conspecific weed, weedy rice, we assessed the extent to which flowering time differed between these groups. We further assessed whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the United States.• We quantified flowering time under day-neutral conditions in weedy, cultivated, and wild Oryza groups. We also sequenced two candidate gene regions: Hd1, a locus involved in promotion of flowering under short days, and the promoter of Hd3a, a locus encoding the mobile signal that induces flowering.• We found that flowering time has diverged between two distinct weedy rice groups, such that straw-hull weeds tend to flower earlier and black-hull awned weeds tend to flower later than cultivated rice. These differences are consistent with weed Hd1 alleles. At both loci, weeds share haplotypes with their cultivated progenitors, despite significantly different flowering times.• Our phenotypic data indicate the existence of multiple flowering strategies in weedy rice. Flowering differences between weeds and ancestors suggest this trait has evolved rapidly. From a weed management standpoint, there is the potential for overlap in flowering of black-hull awned weeds and crops in the United States, permitting hybridization and the potential escape of genes from crops. © 2014 Botanical Society of America, Inc.

  12. Survey of capeweed distribution in Australia in relation to climate, landforms, soil types and management practices

    NASA Technical Reports Server (NTRS)

    Arnold, G. W.; Honey, F. R. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The ground measurements of the reflectivity of the capeweed species shows significant variation from the pasture species measured. The variation in the capeweed signature, as a function of the flower cover indicates that the optimum time for a survey would be when the capeweed is at peak flowering.

  13. Local Populations of Arabidopsis thaliana Show Clear Relationship between Photoperiodic Sensitivity of Flowering Time and Altitude

    PubMed Central

    Lewandowska-Sabat, Anna M.; Fjellheim, Siri; Olsen, Jorunn E.; Rognli, Odd A.

    2017-01-01

    Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana. PMID:28659966

  14. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation

    PubMed Central

    Lázaro, A.; Totland, Ø.

    2014-01-01

    Background and Aims The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Methods Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Key Results Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. Conclusions The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. PMID:24838838

  15. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation.

    PubMed

    Lázaro, A; Totland, O

    2014-07-01

    The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus

    PubMed Central

    Schlumpberger, Boris O.; Cocucci, Andrea A.; Moré, Marcela; Sérsic, Alicia N.; Raguso, Robert A.

    2009-01-01

    Background and aims A South American cactus species, Echinopsis ancistrophora (Cactaceae), with dramatic among-population variation in floral traits is presented. Methods Eleven populations of E. ancistrophora were studied in their habitats in northern Argentina, and comparisons were made of relevant floral traits such as depth, stigma position, nectar volume and sugar concentration, and anthesis time. Diurnal and nocturnal pollinator assemblages were evaluated for populations with different floral trait combinations. Key Results Remarkable geographical variations in floral traits were recorded among the 11 populations throughout the distribution range of E. ancistrophora, with flower lengths ranging from 4·5 to 24·1 cm. Other floral traits associated with pollinator attraction also varied in a population-specific manner, in concert with floral depth. Populations with the shortest flowers showed morning anthesis and those with the longest flowers opened at dusk, whereas those with flowers of intermediate length opened at unusual times (2300–0600 h). Nectar production varied non-linearly with floral length; it was absent to low (population means up to 15 µL) in short- to intermediate-length flowers, but was high (population means up to 170 µL) in the longest tubed flowers. Evidence from light-trapping of moths, pollen carriage on their bodies and moth scale deposition on stigmas suggests that sphingid pollination is prevalent only in the four populations with the longest flowers, in which floral morphological traits and nectar volumes match the classic expectations for the hawkmoth pollination syndrome. All other populations, with flowers 4·5–15 cm long, were pollinated exclusively by solitary bees. Conclusions The results suggest incipient differentiation at the population level and local adaptation to either bee or hawkmoth (potentially plus bee) pollination. PMID:19342397

  17. Tropical flowering phenologies

    NASA Astrophysics Data System (ADS)

    Wright, S. J.

    2016-12-01

    Most tropical plants flower synchronously at species-specific times. This holds at the geographic equator where day length is constant and at the meteorological equator where temperature is virtually aseasonal. Thus, the well-studied environmental cues for flowering at higher latitudes can be irrelevant in the tropics where they are replaced by an abundance of hypotheses. Low and high temperatures, drought and rain, day length, daily solar irradiance, and seasonal changes in solar insolation at the forest canopy or at the top of the atmosphere have all been hypothesized to act as environmental cues for tropical flowering. This abundance of hypotheses has been confronted by a paucity of data, precluding rejection of even one hypothesis. I will use new long-term data sets from Barro Colorado Island (BCI), Panama (9°N, 79°W) and a model selection framework to begin the winnowing. The data extend from 1987 to the present and include more than 250,000 flower records obtained in 1,515 weekly censuses of 200 passive traps and standard meteorological variables obtained just above the forest canopy. The model selection framework was used to evaluate every proximate cue hypothesized to control tropical flowering times for the 55 tree and liana species best represented in the data. Hypotheses concerning seasonal variation in day length, temperature, rainfall and photosynthetically active radiation (PAR) best matched the data for five, zero, seven and 32 species, respectively. Many species previously believed to respond to seasonal changes in moisture availability are actually sensitive to seasonal variation in cloud cover and PAR. BCI lies on the meteorological equator, thus it is unsurprising that temperature variation is not a viable proximate cue. The flowering phenology of the remaining 11 species could not be explained by any of the hypothesized proximate cues. Solutions to the environmental control of tropical flowering times remain to be discovered.

  18. Spatio-temporal variation in fitness responses to contrasting environments in Arabidopsis thaliana.

    PubMed

    Exposito-Alonso, Moises; Brennan, Adrian C; Alonso-Blanco, Carlos; Picó, F Xavier

    2018-06-27

    The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness-related traits can be heterogeneous over time. We estimated selection of life-history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north-western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north-western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north-western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  19. Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeus.

    PubMed

    Atlan, A; Barat, M; Legionnet, A S; Parize, L; Tarayre, M

    2010-02-01

    The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.

  20. FlowerMorphology: fully automatic flower morphometry software.

    PubMed

    Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V

    2018-05-01

    The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .

  1. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    PubMed

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  2. Genetic architecture of the circadian clock and flowering time in Brassica rapa.

    PubMed

    Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R

    2011-08-01

    The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.

  3. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS.

    PubMed

    Campoli, Chiara; Drosse, Benedikt; Searle, Iain; Coupland, George; von Korff, Maria

    2012-03-01

    Variation in photoperiod response is a major factor determining plant development and the agronomic performance of crops. The genetic control of photoperiodic flowering has been elucidated in the model plant Arabidopsis, and many of the identified genes are structurally conserved in the grasses. In this study, HvCO1, the closest barley ortholog of the key photoperiod response gene CONSTANS in Arabidopsis, was over-expressed in the spring barley Golden Promise. Over-expression of HvCO1 accelerated time to flowering in long- and short-day conditions and caused up-regulation of HvFT1 mRNA under long-day conditions. However, the transgenic plants retained a response to photoperiod, suggesting the presence of photoperiod response factors acting downstream of HvCO1 transcription. Analysis of a population segregating for HvCO1 over-expression and natural genetic variation at Ppd-H1 demonstrated that Ppd-H1 acts downstream of HvCO1 transcription on HvFT1 expression and flowering. Furthermore, variation at Ppd-H1 did not affect diurnal expression of HvCO1 or HvCO2. Over-expression of HvCO1 increased transcription of the spring allele of Vrn-H1 in long- and short-day conditions, while genetic variation at Ppd-H1 did not affect Vrn-H1 expression. Over-expression of HvCO1 and natural genetic variation at Ppd-H1 accelerated inflorescence development and stem elongation. Thus, HvCO1 probably induces flowering by activating HvFT1 whilst Ppd-H1 regulates HvFT1 independently of HvCO1 mRNA, and all three genes also appear to have a strong effect in promoting inflorescence development. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  4. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  5. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.

    PubMed

    Iler, Amy M; Inouye, David W; Høye, Toke T; Miller-Rushing, Abraham J; Burkle, Laura A; Johnston, Eleanor B

    2013-08-01

    Variation in species' responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant-pollinator phenological synchrony using a long-term syrphid fly-flowering phenology dataset (1992-2011). Degree-days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20-year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree-days were the best predictors of the end of flowering, whereas degree-days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower-syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation in these flower-syrphid interactions and shows that species-level responses can differ from community-level responses in nonintuitive ways. © 2013 John Wiley & Sons Ltd.

  6. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.

    PubMed

    Wadgymar, Susana M; Ogilvie, Jane E; Inouye, David W; Weis, Arthur E; Anderson, Jill T

    2018-04-01

    Climate change has induced pronounced shifts in the reproductive phenology of plants, yet we know little about which environmental factors contribute to interspecific variation in responses and their effects on fitness. We integrate data from a 43 yr record of first flowering for six species in subalpine Colorado meadows with a 3 yr snow manipulation experiment on the perennial forb Boechera stricta (Brassicaceae) from the same site. We analyze shifts in the onset of flowering in relation to environmental drivers known to influence phenology: the timing of snowmelt, the accumulation of growing degree days, and photoperiod. Variation in responses to climate change depended on the sequence in which species flowered, with early-flowering species reproducing faster, at a lower heat sum, and under increasingly disparate photoperiods relative to later-flowering species. Early snow-removal treatments confirm that the timing of snowmelt governs observed trends in flowering phenology of B. stricta and that climate change can reduce the probability of flowering, thereby depressing fitness. Our findings suggest that climate change is decoupling historical combinations of photoperiod and temperature and outpacing phenological changes for our focal species. Accurate predictions of biological responses to climate change require a thorough understanding of the factors driving shifts in phenology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    PubMed

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  8. Spatio-temporal variation of nectar robbing in Salvia gesneriflora and its effects on nectar production and legitimate visitors.

    PubMed

    Cuevas, E; Rosas-Guerrero, V

    2016-01-01

    Nectar robbing occurs when floral visitors remove floral nectar through floral damage and usually without providing pollination in return. Even though nectar robbing may have negative, neutral or even positive effects on plant fitness, few studies have investigated temporal and spatial variation in robbing rate and their consequences, particularly in the tropics. In this study, robbing levels were estimated during 3 years in four populations of Salvia gesneriflora, a hummingbird-pollinated shrub endemic to central Mexico that is mainly robbed by birds, carpenter bees and bumblebees. The effect of robbing on nectar availability, flower longevity and on visitation rate by floral visitors was also evaluated. Our results indicate great variation in robbing levels across years and populations and a positive relationship between robbing level and flower abundance per population. Moreover, our results show that nectar availability is about eight times higher in unrobbed flowers than in robbed flowers, and that nectar robbers prefer younger flowers, although lifespan of robbed and unrobbed flowers did not differ statistically. Primary and secondary nectar robbers showed a higher visitation rate compared to legitimate visitors, and neither legitimate nor illegitimate floral visitors seem to discriminate between robbed and unrobbed flowers. These results suggest that robbers may respond to food availability and that no floral visitors apparently could differentiate between robbed and unrobbed flowers. Finally, results show that nectar robbers prefer the youngest flowers, which suggests that strong competition for access to nectar between pollinators and robbers might occur, mainly at the first stages of the flowers. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems

    PubMed Central

    Phillips, Benjamin W.

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600–1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600–0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600–1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers. PMID:26587337

  10. Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (Cucurbita pepo) agroecosystems.

    PubMed

    Phillips, Benjamin W; Gardiner, Mary M

    2015-01-01

    Pumpkin (Cucurbita pepo) production relies on insect-mediated pollination, which is provided by managed and wild pollinators. The goals of this study were to measure the visitation frequency, longevity and temporal activity patterns of pumpkin pollinators and to determine if local habitat management and landscape composition affected this pollination service. We used video surveillance to monitor bee acitivty within male and female pumpkin flowers in 2011 and 2012 across a pollination window of 0600-1200 h. We also quantified the amount of pollen deposited in female flowers across this time period. In 2011, A. mellifera made significantly more floral visits than other bees, and in 2012 Bombus spp. was the dominant pumpkin pollinator. We found variation in visitation among male and female pumpkin flowers, with A. mellifera visiting female flowers more often and spending longer per visit within them than male flowers in both 2011 and 2012. The squash bee P. pruinosa visited male flowers more frequently in 2012, but individuals spent equal time in both flower sexes. We did not find variation in the timing of flower visitation among species across the observed pollination window. In both 2011 and 2012 we found that the majority of pollen deposition occurred within the first two hours (0600-0800 h) of observation; there was no difference between the pollen deposited during this two-hour period and full pollination window (0600-1200 h). Local additions of sweet alyssum floral strips or a field buffer strip of native wildflowers did not have an effect on the foraging activity of bees or pollen deposition. However, semi-natural and urban habitats in the surrounding landscape were positively correlated with the frequency of flower visitation by wild pollinators and the amount of pollen deposited within female flowers.

  11. Ecological causes and consequences of flower color polymorphism in a self-pollinating plant (Boechera stricta).

    PubMed

    Vaidya, Priya; McDurmon, Ansley; Mattoon, Emily; Keefe, Michaela; Carley, Lauren; Lee, Cheng-Ruei; Bingham, Robin; Anderson, Jill T

    2018-04-01

    Intraspecific variation in flower color is often attributed to pollinator-mediated selection, yet this mechanism cannot explain flower color polymorphisms in self-pollinating species. Indirect selection mediated via biotic and abiotic stresses could maintain flower color variation in these systems. The selfing forb, Boechera stricta, typically displays white flowers, but some individuals produce purple flowers. We quantified environmental correlates of flower color in natural populations. To disentangle plasticity from genotypic variation, we performed a multiyear field experiment in five gardens. In controlled conditions, we evaluated herbivore preferences and the effects of drought stress and soil pH on flower color expression. In natural populations, purple-flowered individuals experienced lower foliar herbivory than did their white-flowered counterparts. This pattern also held in the common gardens. Additionally, low-elevation environments induced pigmented flowers (plasticity), and the likelihood of floral pigmentation decreased with source elevation of maternal families (genetic cline). Viability selection favored families with pigmented flowers. In the laboratory, herbivores exerted greater damage on tissue derived from white- vs purple-flowered individuals. Furthermore, drought induced pigmentation in white-flowered lineages, and white-flowered plants had a fecundity advantage in the well-watered control. Flower color variation in selfing species is probably maintained by herbivory, drought stress, and other abiotic factors that vary spatially. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    PubMed

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico

    PubMed Central

    Martínez-Adriano, Cristian Adrian; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants. PMID:27231656

  14. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    PubMed

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas.

    PubMed

    Irwin, Judith A; Soumpourou, Eleni; Lister, Clare; Ligthart, Jan-Dick; Kennedy, Sue; Dean, Caroline

    2016-09-01

    Variation in flowering time and response to overwintering has been exploited to breed brassica vegetables that can be harvested year-round. Our knowledge of flowering time control now enables the investigation of the molecular basis of this important variation. Here, we show that a major determinant of heading date variation in Brassica oleracea is from variation in vernalization response through allelic variation at FLOWERING LOCUS C.C2 (BoFLC4). We characterize two alleles of BoFLC.C2 that are both functional and confer a requirement for vernalization, but they show distinct expression dynamics in response to cold. Complementation experiments in Arabidopsis thaliana revealed that the allelic variation results from cis polymorphism at BoFLC.C2, which quantitatively influences the degree of cold-induced epigenetic silencing. This results in one allelic variant conferring consistently later heading under both glasshouse and field conditions through reduced environmental sensitivity. Our results suggest that breeding of brassica varieties for commercially valuable variation in heading date has been achieved through the selection of cis polymorphism at FLC, similar to that underpinning natural variation in A. thaliana. This understanding will allow for the selection of alleles with distinct sensitivities to cold and robust heading dates under variable climatic conditions, and will facilitate the breeding of varieties more resistant to climate change. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  16. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site.

    PubMed

    Silady, Rebecca A; Effgen, Sigi; Koornneef, Maarten; Reymond, Matthieu

    2011-01-01

    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.

  17. Genotype-by-environment interactions leads to variable selection on life-history strategy in Common Evening Primrose (Oenothera biennis).

    PubMed

    Johnson, M T J

    2007-01-01

    Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.

  18. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse)

    PubMed Central

    Toorop, Peter E.; Campos Cuerva, Rafael; Begg, Graham S.; Locardi, Bruna; Squire, Geoff R.; Iannetta, Pietro P. M.

    2012-01-01

    Background and Aims The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. Methods Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. Key Results Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. Conclusions In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields. PMID:22147546

  19. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat.

    PubMed

    Nguyen, Anh T; Iehisa, Julio C M; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-12-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.

  20. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat

    PubMed Central

    Nguyen, Anh T.; Iehisa, Julio C. M.; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-01-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5′ upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times. PMID:24399909

  1. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    Treesearch

    Bryce A. Richardson; Linsay Chaney; Nancy L. Shaw; Shannon M. Still

    2016-01-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In...

  2. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  3. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris.

    PubMed

    Raine, Nigel E; Chittka, Lars

    2007-06-20

    Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases.

  4. The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus terrestris

    PubMed Central

    Raine, Nigel E.; Chittka, Lars

    2007-01-01

    Innate sensory biases could play an important role in helping naïve animals to find food. As inexperienced bees are known to have strong innate colour biases we investigated whether bumblebee (Bombus terrestris) colonies with stronger biases for the most rewarding flower colour (violet) foraged more successfully in their local flora. To test the adaptive significance of variation in innate colour bias, we compared the performance of colour-naïve bees, from nine bumblebee colonies raised from local wild-caught queens, in a laboratory colour bias paradigm using violet (bee UV-blue) and blue (bee blue) artificial flowers. The foraging performance of the same colonies was assessed under field conditions. Colonies with a stronger innate bias for violet over blue flowers in the laboratory harvested more nectar per unit time under field conditions. In fact, the colony with the strongest bias for violet (over blue) brought in 41% more nectar than the colony with the least strong bias. As violet flowers in the local area produce more nectar than blue flowers (the next most rewarding flower colour), these data are consistent with the hypothesis that local variation in flower traits could drive selection for innate colour biases. PMID:17579727

  5. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    PubMed

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  6. Topology of Plant - Flower-Visitor Networks in a Tropical Mountain Forest: Insights on the Role of Altitudinal and Temporal Variation.

    PubMed

    Cuartas-Hernández, Sandra; Medel, Rodrigo

    2015-01-01

    Understanding the factors determining the spatial and temporal variation of ecological networks is fundamental to the knowledge of their dynamics and functioning. In this study, we evaluate the effect of elevation and time on the structure of plant-flower-visitor networks in a Colombian mountain forest. We examine the level of generalization of plant and animal species and the identity of interactions in 44 bipartite matrices obtained from eight altitudinal levels, from 2200 to 2900 m during eight consecutive months. The contribution of altitude and time to the overall variation in the number of plant (P) and pollinator (A) species, network size (M), number of interactions (I), connectance (C), and nestedness was evaluated. In general, networks were small, showed high connectance values and non-nested patterns of organization. Variation in P, M, I and C was better accounted by time than elevation, seemingly related to temporal variation in precipitation. Most plant and insect species were specialists and the identity of links showed a high turnover over months and at every 100 m elevation. The partition of the whole system into smaller network units allowed us to detect small-scale patterns of interaction that contrasted with patterns commonly described in cumulative networks. The specialized but erratic pattern of network organization observed in this tropical mountain suggests that high connectance coupled with opportunistic attachment may confer robustness to plant-flower-visitor networks occurring at small spatial and temporal units.

  7. Mutagenic influences of colchicine on phenological and molecular diversity of Calendula officinalis L.

    PubMed

    El-Nashar, Y I; Ammar, M H

    2016-04-26

    Six different colchicine concentrations: 0, 400, 800, 1200, 1600, and 2000 ppm, in combination with four soaking time treatments (1, 2, 3, and 4 h), were selected to assess the effects on germination, vegetative growth, and flower yield components in calendula plants. The molecular diversity among the treatments was assessed using ten SRAP marker combinations. Seed soaking in colchicine significantly enhanced both the fresh and the dry shoot and root masses, flowering date, number of flowers per plant, and flower diameter. At 1200-ppm colchicine combined with a 4-h soaking time, a superior effect on seed germination was observed, whereas 800 ppm for 4 h produced the highest number of flowers and the largest flower diameter. The earliest flowering time was found at 800 ppm combined with a short soaking time (1 h), while the 4-h soaking time with 800 ppm, is recommended for growing calendula outdoors, since it enhances flower development. At the molecular level, 752 fragments were successfully amplified using the SRAP primers, with 280 genetic loci found throughout the calendula genome. The polymorphism percentage ranged from 79 to 100% and the polymorphic information content (PIC) values ranged between 0.85 and 0.97. The high number of detected loci and PIC values suggests a great power of SRAP markers in detecting mutant molecular diversity. Our results clearly show the existence of genetic variation among colchicine treated calendula plants and the clustering of the studied mutants was concordant with the colchicine concentration used.

  8. Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae).

    PubMed

    Mauro-Herrera, Margarita; Wang, Xuewen; Barbier, Hugues; Brutnell, Thomas P; Devos, Katrien M; Doust, Andrew N

    2013-02-01

    We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental conditions to identify a small number of quantitative trait loci (QTL) that control differences in flowering time. Many of the QTL across trials colocalize, suggesting that the genetic control of flowering in Setaria is robust across a range of photoperiod and other environmental factors. A detailed comparison of QTL for flowering in Setaria, sorghum, and maize indicates that several of the major QTL regions identified in maize and sorghum are syntenic orthologs with Setaria QTL, although the maize large effect QTL on chromosome 10 is not. Several Setaria QTL intervals had multiple LOD peaks and were composed of multiple syntenic blocks, suggesting that observed QTL represent multiple tightly linked loci. Candidate genes from flowering time pathways identified in rice and Arabidopsis were identified in Setaria QTL intervals, including those involved in the CONSTANS photoperiod pathway. However, only three of the approximately seven genes cloned for flowering time in maize colocalized with Setaria QTL. This suggests that variation in flowering time in separate grass lineages is controlled by a combination of conserved and lineage specific genes.

  9. Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae)

    PubMed Central

    Mauro-Herrera, Margarita; Wang, Xuewen; Barbier, Hugues; Brutnell, Thomas P.; Devos, Katrien M.; Doust, Andrew N.

    2013-01-01

    We report the first study on the genetic control of flowering in Setaria, a panicoid grass closely related to switchgrass, and in the same subfamily as maize and sorghum. A recombinant inbred line mapping population derived from a cross between domesticated Setaria italica (foxtail millet) and its wild relative Setaria viridis (green millet), was grown in eight trials with varying environmental conditions to identify a small number of quantitative trait loci (QTL) that control differences in flowering time. Many of the QTL across trials colocalize, suggesting that the genetic control of flowering in Setaria is robust across a range of photoperiod and other environmental factors. A detailed comparison of QTL for flowering in Setaria, sorghum, and maize indicates that several of the major QTL regions identified in maize and sorghum are syntenic orthologs with Setaria QTL, although the maize large effect QTL on chromosome 10 is not. Several Setaria QTL intervals had multiple LOD peaks and were composed of multiple syntenic blocks, suggesting that observed QTL represent multiple tightly linked loci. Candidate genes from flowering time pathways identified in rice and Arabidopsis were identified in Setaria QTL intervals, including those involved in the CONSTANS photoperiod pathway. However, only three of the approximately seven genes cloned for flowering time in maize colocalized with Setaria QTL. This suggests that variation in flowering time in separate grass lineages is controlled by a combination of conserved and lineage specific genes. PMID:23390604

  10. Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system.

    PubMed

    Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan

    2017-10-17

    Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    PubMed

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development

    PubMed Central

    Ridge, Stephen; Brown, Philip H.; Hecht, Valérie; Driessen, Ronald G.; Weller, James L.

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F2 population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under ‘natural’ vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. PMID:25355864

  13. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants.

    PubMed

    Herrera, Javier

    2009-05-01

    While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200-400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed.

  14. Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of Brassica rapa Crops: Implications for Gene Flow

    PubMed Central

    Mesa, Laura A.; Howlett, Bradley G.; Grant, Jan E.; Didham, Raphael K.

    2013-01-01

    The potential movement of transgenes from genetically modified crops to non-genetically modified crops via insect-mediated pollen dispersal has been highlighted as one of the areas of greatest concern in regards to genetically modified crops. Pollen movement depends sensitively on spatial and temporal variation in the movement of insect pollinators between crop fields. This study tested the degree of variation in the diversity and relative abundance of flower-visiting insects entering versus leaving pak choi, Brassica rapa var. chinensis L. (Brassicales: Brassicaceae), crops throughout different stages of the flowering cycle. The relative abundance of flower-visiting insects varied significantly with Brassica crop phenology. Greater numbers of flower-visiting insects were captured inside rather than outside the crop fields, with the highest capture rates of flower-visitors coinciding with the peak of flowering in both spring-flowering and summer-flowering crops. Moreover, the ratio of flower-visiting insects entering versus leaving crop fields also varied considerably with changing crop phenology. Despite high variation in relative capture rates, the data strongly indicate non-random patterns of variation in insect movement in relation to crop phenology, with early-season aggregation of flower-visiting insects entering and remaining in the crop, and then mass emigration of flower-visiting insects leaving the crop late in the flowering season. Although pollen movement late in the flowering cycle might contribute relatively little to total seed set (and hence crop production), the findings here suggest that extensive late-season pollinator redistribution in the landscape could contribute disproportionately to long-distance gene movement between crops. PMID:23937538

  15. Seed after-ripening and dormancy determine adult life history independently of germination timing.

    PubMed

    de Casas, Rafael Rubio; Kovach, Katherine; Dittmar, Emily; Barua, Deepak; Barco, Brenden; Donohue, Kathleen

    2012-05-01

    • Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  16. Inter-specific variation in headspace scent volatiles composition of four commercially cultivated jasmine flowers.

    PubMed

    Bera, Paramita; Kotamreddy, Jhansi Narmada Reddy; Samanta, Tanmoy; Maiti, Saborni; Mitra, Adinpunya

    2015-01-01

    Jasmines are commercially grown for their fragrant flowers and essential oil production. The flowers of jasmine emit sweet-smelling fragrance from evening till midnight. This study was designed to study the composition and inter-specific variation of the emitted scent volatiles from flowers of four commercially cultivated Jasminum species namely, Jasminum sambac, Jasminum auriculatum, Jasminum grandiflorum and Jasminum multiflorum. Gas chromatography-mass spectrometry analysis revealed that the scent volatiles composition of these flowers was predominantly enriched with both terpenoid and benzenoid compounds. Linalool and (3E,6E)-α-farnesene were identified as the major monoterpene and sesquiterpene in all the four species, respectively. The most abundant benzenoid detected in all flowers was benzyl acetate. Comparison of volatile profiles indicated a variation in fragrance contents and types emitted from these four jasmine flowers. The outcome of this study shall help in elucidating the enzymes and genes of fragrance biosynthesis in jasmines and in aiming to create flowers with improved scent quality.

  17. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  18. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  19. Male-biased hermaphrodites in a gynodioecious shrub, Daphne jezoensis.

    PubMed

    Sinclair, J P; Kameyama, Y; Shibata, A; Kudo, G

    2016-09-01

    Gynodioecy, a state where female and hermaphrodite plants coexist in populations, has been widely proposed an intermediate stage in the evolutionary pathway from hermaphroditism to dioecy. In the gynodioecy-dioecy pathway, hermaphrodites may gain most of their fitness through male function once females invade populations. To test this prediction, comprehensive studies on sex ratio variation across populations and reproductive characteristics of hermaphrodite and female phenotypes are necessary. This study examined the variation in sex ratio, sex expression, flower and fruit production and sexual dimorphism of morphological traits in a gynodioecious shrub, Daphne jezoensis, over multiple populations and years. Population sex ratio (hermaphrodite:female) was close to 1:1 or slightly hermaphrodite-biased. Sex type of individual plants was largely fixed, but 15% of plants changed their sex during a 6-year census. Hermaphrodite plants produced larger flowers and invested 2.5 times more resources in flower production than female plants, but they exhibited remarkably low fruit set (proportion of flowers setting fruits). Female plants produced six times more fruits than hermaphrodite plants. Low fruiting ability of hermaphrodite plants was retained even when hand-pollination was performed. Fruit production of female plants was restricted by pollen limitation under natural conditions, irrespective of high potential fecundity, and this minimised the difference in resources allocated to reproduction between the sexes. Negative effects of previous flower and fruit production on current reproduction were not apparent in both sexes. This study suggests that gynodioecy in this species is functionally close to a dioecious mating system: smaller flower production with larger fruiting ability in female plants, and larger flower production with little fruiting ability in hermaphrodite plants. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Population genomics of the Arabidopsis thaliana flowering time gene network.

    PubMed

    Flowers, Jonathan M; Hanzawa, Yoshie; Hall, Megan C; Moore, Richard C; Purugganan, Michael D

    2009-11-01

    The time to flowering is a key component of the life-history strategy of the model plant Arabidopsis thaliana that varies quantitatively among genotypes. A significant problem for evolutionary and ecological genetics is to understand how natural selection may operate on this ecologically significant trait. Here, we conduct a population genomic study of resequencing data from 52 genes in the flowering time network. McDonald-Kreitman tests of neutrality suggested a strong excess of amino acid polymorphism when pooling across loci. This excess of replacement polymorphism across the flowering time network and a skewed derived frequency spectrum toward rare alleles for both replacement and noncoding polymorphisms relative to synonymous changes is consistent with a large class of deleterious polymorphisms segregating in these genes. Assuming selective neutrality of synonymous changes, we estimate that approximately 30% of amino acid polymorphisms are deleterious. Evidence of adaptive substitution is less prominent in our analysis. The photoperiod regulatory gene, CO, and a gibberellic acid transcription factor, AtMYB33, show evidence of adaptive fixation of amino acid mutations. A test for extended haplotypes revealed no examples of flowering time alleles with haplotypes comparable in length to those associated with the null fri(Col) allele reported previously. This suggests that the FRI gene likely has a uniquely intense or recent history of selection among the flowering time genes considered here. Although there is some evidence for adaptive evolution in these life-history genes, it appears that slightly deleterious polymorphisms are a major component of natural molecular variation in the flowering time network of A. thaliana.

  1. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.).

    PubMed

    Ding, Feng; Zhang, Shuwei; Chen, Houbin; Su, Zuanxian; Zhang, Rong; Xiao, Qiusheng; Li, Hongli

    2015-12-01

    Litchi (Litchi chinensis) is an important subtropical evergreen fruit crop with high commercial value due to its high nutritional values and favorable tastes. However, irregular bearing attributed to unstable flowering is a major ongoing problem for litchi producers. There is a need to better understand the genetic and molecular mechanisms underlying the reproductive process in litchi. In a previous study, our laboratory had analyzed the transcriptome of litchi leaves before and after low-temperature treatment with RNA-seq technology. Herein, we demonstrated that litchi flowering was induced by low-temperature and identified two FLOWERING LOCUS T (FT) homologue genes named LcFT1 and LcFT2, respectively. We found that low-temperature could only induce LcFT1 expression in leaves, but could not induce LcFT2 expression. Heterologous expression of LcFT1 in transgenic tobacco and Arabidopsis plants induced their precocious flowering. These results indicate that LcFT1 plays a pivotal role in litchi floral induction by low-temperature. In addition, we found that two types of LcFT1 promoter existed in different litchi cultivars. The LcFT1 promoters in the early-flowering cultivars belonged to one type whereas LcFT1 promoters in the late-flowering belonged to another one. LcFT1 promoter in the early-flowering cultivars was more sensitive to low-temperature than that of the late-flowering cultivars was, which may be caused by the different cis-acting elements, including MYC, MYB, ABRE, and WRKY cis-acting elements, which were found to be present in the LcFT1 promoter sequences of the early-flowering cultivars. This difference may be responsible for the different requirements of low-temperature for floral induction in the early- and late-flowering cultivars of litchi. Taken together, the difference in LcFT1 promoter sequences may be one of the leading cause for the natural variation of flowering timing in different litchi cultivars. Our study has provided valuable genetic basis for cross-breeding of litchi cultivars to generate new litchi cultivars for overcoming the problem of unstable flowering for litchi producers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success.

    PubMed

    Sobral, Mar; Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.

  3. Flower color preferences of insects and livestock: effects on Gentiana lutea reproductive success

    PubMed Central

    Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2016-01-01

    Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock. PMID:27014509

  4. Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant.

    PubMed

    Austen, Emily J; Weis, Arthur E

    2014-07-01

    Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities. A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender. Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness. The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Correlated variation of floral and leaf traits along a moisture availability gradient.

    PubMed

    Lambrecht, Susan C; Dawson, Todd E

    2007-04-01

    Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.

  6. Survey of insect visitation of ornamental flowers in Southover Grange garden, Lewes, UK.

    PubMed

    Garbuzov, Mihail; Samuelson, Elizabeth E W; Ratnieks, Francis L W

    2015-10-01

    Ornamental flowers commonly grown in urban gardens and parks can be of value to flower-visiting insects. However, there is huge variation in the number of insects attracted among plant varieties. In this study, we quantified the insect attractiveness of 79 varieties in full bloom being grown in a public urban garden that is popular due to its beautiful flowers and other attractions. The results showed very clearly that most varieties (77%, n = 61) were either poorly attractive or completely unattractive to insect flower visitors. Several varieties (19%, n = 15) were moderately attractive, but very few (4%, n = 3) were highly attractive. Closer examination of Dahlia varieties showed that "open" flowered forms were approximately 20 times more attractive than "closed" flowered forms. These results strongly suggest that there is a great potential for making urban parks and gardens considerably more bee- and insect-friendly by selecting appropriate varieties. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  7. Haplotype Variation of Flowering Time Genes of Sugar Beet and Its Wild Relatives and the Impact on Life Cycle Regimes.

    PubMed

    Höft, Nadine; Dally, Nadine; Hasler, Mario; Jung, Christian

    2017-01-01

    The species Beta vulgaris encompasses wild and cultivated members with a broad range of phenological development. The annual life cycle is commonly found in sea beets (ssp. maritima ) from Mediterranean environments which germinate, bolt, and flower within one season under long day conditions. Biennials such as the cultivated sugar beet ( B. vulgaris ssp. vulgaris ) as well as sea beets from northern latitudes require prolonged exposure to cold temperature over winter to acquire floral competence. Sugar beet is mainly cultivated for sugar production in Europe and is likely to have originated from sea beet. Flowering time strongly affects seed yield and yield potential and is thus a trait of high agronomic relevance. Besides environmental cues, there are complex genetic networks known to impact life cycle switch in flowering plants. In sugar beet, BTC1, BvBBX19, BvFT1 , and BvFT2 are major flowering time regulators. In this study, we phenotyped plants from a diversity Beta panel encompassing cultivated and wild species from different geographical origin. Plants were grown under different day length regimes with and without vernalization. Haplotype analysis of BTC1, BvBBX19, BvFT1 , and BvFT2 was performed to identify natural diversity of these genes and their impact on flowering. We found that accessions from northern latitudes flowered significantly later than those from southern latitudes. Some plants did not flower at all, indicating a strong impact of latitude of origin on life cycle. Haplotype analysis revealed a high conservation of the CCT-, REC-, BBX-, and PEBP-domains with regard to SNP occurrence. We identified sequence variation which may impact life cycle adaptation in beet. Our data endorse the importance of BTC1 in the domestication process of cultivated beets and contribute to the understanding of distribution and adaption of Beta species to different life cycle regimes in response to different environments. Moreover, our data provide a resource for haplotypes identified for the major floral regulators in beet.

  8. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping.

    PubMed

    González, Ana M; Yuste-Lisbona, Fernando J; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M; Lozano, Rafael; Santalla, Marta

    2016-01-01

    Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 ( TFL1 ) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y ) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield.

  9. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping

    PubMed Central

    González, Ana M.; Yuste-Lisbona, Fernando J.; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M.; Lozano, Rafael; Santalla, Marta

    2016-01-01

    Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 (TFL1) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield. PMID:28082996

  10. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum.

    PubMed

    Pacheco, Diego Andrés; Dudley, Leah S; Cabezas, Josefina; Cavieres, Lohengrin A; Arroyo, Mary T K

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower longevity along the altitudinal gradient is less common for potential flower longevity than for open-pollination flower longevity. Independently of any selection that may occur on potential longevity, plastic responses of flowers to environmental conditions are likely to contribute to altitudinal variation in flower longevity, especially in dry alpine areas. Such plastic responses could push flowers of alpine species towards shorter life-lengths under climate change, with uncertain consequences for successful pollination and plant fitness in a warming world.

  11. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum

    PubMed Central

    Cavieres, Lohengrin A.

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower longevity along the altitudinal gradient is less common for potential flower longevity than for open-pollination flower longevity. Independently of any selection that may occur on potential longevity, plastic responses of flowers to environmental conditions are likely to contribute to altitudinal variation in flower longevity, especially in dry alpine areas. Such plastic responses could push flowers of alpine species towards shorter life-lengths under climate change, with uncertain consequences for successful pollination and plant fitness in a warming world. PMID:27861586

  12. Recent advances in flower color variation and patterning of Japanese morning glory and petunia

    PubMed Central

    Morita, Yasumasa; Hoshino, Atsushi

    2018-01-01

    The Japanese morning glory (Ipomoea nil) and petunia (Petunia hybrida), locally called “Asagao” and “Tsukubane-asagao”, respectively, are popular garden plants. They have been utilized as model plants for studying the genetic basis of floricultural traits, especially anthocyanin pigmentation in flower petals. In their long history of genetic studies, many mutations affecting flower pigmentation have been characterized, and both structural and regulatory genes for the anthocyanin biosynthesis pathway have been identified. In this review, we will summarize recent advances in the understanding of flower pigmentation in the two species with respect to flower hue and color patterning. Regarding flower hue, we will describe a novel enhancer of flavonoid production that controls the intensity of flower pigmentation, new aspects related to a flavonoid glucosyltransferase that has been known for a long time, and the regulatory mechanisms of vacuolar pH being a key determinant of red and blue coloration. On color patterning, we describe particular flower patterns regulated by epigenetic and RNA-silencing mechanisms. As high-quality whole genome sequences of the Japanese morning glory and petunia wild parents (P. axillaris and P. inflata, respectively) were published in 2016, further study on flower pigmentation will be accelerated. PMID:29681755

  13. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus

    PubMed Central

    Bennett, Rick A.; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola–whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity. PMID:29320498

  14. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    PubMed

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  15. Dissecting the contributions of plasticity and local adaptation to the phenology of a butterfly and its host plants.

    PubMed

    Phillimore, Albert B; Stålhandske, Sandra; Smithers, Richard J; Bernard, Rodolphe

    2012-11-01

    Phenology affects the abiotic and biotic conditions that an organism encounters and, consequently, its fitness. For populations of high-latitude species, spring phenology often occurs earlier in warmer years and regions. Here we apply a novel approach, a comparison of slope of phenology on temperature over space versus over time, to identify the relative roles of plasticity and local adaptation in generating spatial phenological variation in three interacting species, a butterfly, Anthocharis cardamines, and its two host plants, Cardamine pratensis and Alliaria petiolata. All three species overlap in the time window over which mean temperatures best predict variation in phenology, and we find little evidence that a day length requirement causes the sensitive time window to be delayed as latitude increases. The focal species all show pronounced temperature-mediated phenological plasticity of similar magnitude. While we find no evidence for local adaptation in the flowering times of the plants, geographic variation in the phenology of the butterfly is consistent with countergradient local adaptation. The butterfly's phenology appears to be better predicted by temperature than it is by the flowering times of either host plant, and we find no evidence that coevolution has generated geographic variation in adaptive phenological plasticity.

  16. Simulating spatiotemporal variation in full-flowering dates for tree peonies (1955-2011) in the middle and lower reaches of the Yellow River, China: using a panel data model

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2015-12-01

    In China, the tree peony (Paeonia suffruticosa) is well known as the "king of flowers" since ancient times. The springtime flowering of it attracts a great number of tourists every year. Under the current background of rapid climate change, the flowering time of the tree peony has changed accordingly, which affected the travel arrangements of tourists. This paper is concerned with developing a panel data model to describe the relationship between full-flowering date (FFD) of the tree peony (Zhongyuan cultivar group) and relevant temperature change in the middle and lower reaches of the Yellow River. Then FFD time series at 24 sites in the period 1955-2011 were reconstructed using the above-mentioned model. At last, spatial and temporal variations in FFD were analysed. The results showed that the panel data model could simulate the FFDs of the tree peony accurately, with explained variance (R2)>0.65 and the root-mean-square error (RMSE)<4.0 in the steps of double cross-validation. The simulated 57-year mean FFDs in the distribution area generally followed the latitudinal gradient. The FFDs in this area have advanced by 6 to 9 days over the past 57 years, at the rate of 0.8 to 1.8 days/decade. Compared with the other sub-areas in this area, the eastern forelands of Taihang Mountains and Luliang Mountains showed clearer advances of FFD. These conclusions reflected the comprehensive impact of climate change and the foehn on phenophases and are helpful for historical climate studies and festival events management

  17. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  18. Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach.

    PubMed Central

    Rees, Mark; Rose, Karen E

    2002-01-01

    The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed. PMID:12137582

  19. Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach.

    PubMed

    Rees, Mark; Rose, Karen E

    2002-07-22

    The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed.

  20. Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles.

    PubMed

    Chiang, George C K; Barua, Deepak; Dittmar, Emily; Kramer, Elena M; de Casas, Rafael Rubio; Donohue, Kathleen

    2013-03-01

    In the wild, organismal life cycles occur within seasonal cycles, so shifts in the timing of developmental transitions can alter the seasonal environment experienced subsequently. Effects of genes that control the timing of prior developmental events can therefore be magnified in the wild because they determine seasonal conditions experienced by subsequent life stages, which can influence subsequent phenotypic expression. We examined such environmentally induced pleiotropy of developmental-timing genes in a field experiment with Arabidopsis thaliana. When studied in the field under natural seasonal variation, an A. thaliana seed-dormancy gene, Delay Of Germination 1 (DOG1), was found to influence not only germination, but also flowering time, overall life history, and fitness. Flowering time of the previous generation, in turn, imposed maternal effects that altered germination, the effects of DOG1 alleles, and the direction of natural selection on these alleles. Thus under natural conditions, germination genes act as flowering genes and potentially vice versa. These results illustrate how seasonal environmental variation can alter pleiotropic effects of developmental-timing genes, such that effects of genes that regulate prior life stages ramify to influence subsequent life stages. In this case, one gene acting at the seed stage impacted the entire life cycle. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  1. The role of cold cues at different life stages on germination and flowering phenology.

    PubMed

    Rubin, Matthew J; Friedman, Jannice

    2018-04-23

    The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species. © 2018 Botanical Society of America.

  2. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.

    PubMed

    Schiessl, Sarah; Iniguez-Luy, Federico; Qian, Wei; Snowdon, Rod J

    2015-09-29

    Flowering time, plant height and seed yield are strongly influenced by climatic and day-length adaptation in crop plants. To investigate these traits under highly diverse field conditions in the important oilseed crop Brassica napus, we performed a genome-wide association study using data from diverse agroecological environments spanning three continents. A total of 158 European winter-type B.napus inbred lines were genotyped with 21,623 unique, single-locus single-nucleotide polymorphism (SNP) markers using the Brassica 60 K-SNP Illumina® Infinium consortium array. Phenotypic associations were calculated in the panel over the years 2010-2012 for flowering time, plant height and seed yield in 5 highly diverse locations in Germany, China and Chile, adding up to 11 diverse environments in total. We identified 101 genome regions associating with the onset of flowering, 69 with plant height, 36 with seed yield and 68 cross-trait regions with potential adaptive value. Within these regions, B.napus orthologs for a number of candidate adaptation genes were detected, including central circadian clock components like CIRCADIAN CLOCK- ASSOCIATED 1 (Bna.CCA1) and the important flowering-time regulators FLOWERING LOCUS T (Bna.FT) and FRUITFUL (Bna.FUL). Gene ontology (GO) enrichment analysis of candidate regions suggested that selection of genes involved in post-transcriptional and epigenetic regulation of flowering time may play a potential role in adaptation of B. napus to highly divergent environments. The classical flowering time regulators Bna.FLC and Bna.CO were not found among the candidate regions, although both show functional variation. Allelic effects were additive for plant height and yield, but not for flowering time. The scarcity of positive minor alleles for yield in this breeding pool points to a lack of diversity for adaptation that could restrict yield gain in the face of environmental change. Our study provides a valuable framework to further improve the adaptability and yield stability of this recent allopolyploid crop under changing environments. The results suggest that flowering time regulation within an adapted B. napus breeding pool is driven by a high number of small modulating processes rather than major transcription factors like Bna.CO. In contrast, yield regulation appears highly parallel, therefore yield could be increased by pyramiding positively associated haplotypes.

  3. Intra-plant floral variation in Cleome viscosa L. and its possible significance in breeding system.

    PubMed

    Saroop, Shveta; Kaul, Veenu

    2015-07-01

    Cleome viscosa L., an annual rainy season weed, is cosmopolitan in distribution. Two naturally growing populations of C. viscosa from Jammu, J & K, India have been studied for floral variation at an intra-plant level and its possible role in its life cycle. Plants of both the populations bear flowers which exhibit tremendous intra-plant variation in size (large and small) and sex (hermaphrodite, staminate and pistillate). The average number of flowers per plant varied significantly and so did their structural and functional details. Greater propensity, however, was towards hermaphroditism at both plant and flower levels. The large and small sized flowers differed in their morphology and reproductive features; the former were significantly larger than the latter. Anthesis, anther dehiscence and stigma receptivity were coupled in all flower types. This functional aspect along with the structural proximity between stamens at two lengths and pistil further facilitated self-pollination. However, conspicuous floral display attracted diverse pollinator fauna (Apis dorsata, Halictus albescens, Nomia curvipes and N. elliotii) which in turn mediated cross pollination. Nevertheless, each floral type contributed towards plant's fitness in its own way. Hermaphrodite flowers exhibited both self and cross pollination and assured survival by setting fruits and seeds with the large sized counterparts more productive. All these floral variations seemed to impart flexibility to the pollination system and provide fitness over the short flowering season.

  4. [Morphogenetic lability of reproductive structures in Ruppia maritima (Ruppiaceae, Alismatales): from two lateral flowers to a terminal flower].

    PubMed

    Lokk, I É; Sokolov, D D; Remizova, M V

    2011-01-01

    Flowers of Ruppia are normally arranged into an open two-flowered spike, but sometimes the two lateral flowers are congenitally united with each other and form a terminal flower-like structure. This developmental abnormality resembles those described in well-investigated mutants of model organisms of developmental genetics such as Arabidopsis Antirrhinum. A study of Ruppia allows investigating morphogenetic lability of this feature in natural populations. These data will be important for understanding evolutionary transitions between open and closed inflorescences. This paper presents first data on frequencies ofterminal flower-like structures in natural populations of Ruppia maritima and first observations of their development. Vascular supply of inflorescences with free and united flowers is compared for the first time. Strong differences in frequencies of occurrence of terminal flower-like structures among examined natural populations are revealed. Data on variation of organ numbers in flowers of plants from different populations allow hypothesizing that increased size of floral primordia is a factor that plays a role in their amalgamation into ajoint primordium of a terminal structure. Vascular system of inflorescences of R. maritima with united flowers is quite similar to the vascular system of a flower and nothing contradicts a hypothesis on terminal position ofthis structure. Transversally inserted stamens in inflorescences with united flowers are usually of inverted polarity. This appears to be the first documented example of an inversion of relative polarity of stamens and carpels in angiosperms.

  5. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae).

    PubMed

    Guitián, Javier A; Sobral, Mar; Veiga, Tania; Losada, María; Guitián, Pablo; Guitián, José M

    2017-01-01

    The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea -which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)-is locally adapted to the pollinator community. We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum , B. soroensis ancaricus and B. lapidarius decipiens ) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris ) consistently preferred the foreign morph. We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition.

  6. Differences in pollination success between local and foreign flower color phenotypes: a translocation experiment with Gentiana lutea (Gentianaceae)

    PubMed Central

    Sobral, Mar; Veiga, Tania; Guitián, Pablo; Guitián, José M.

    2017-01-01

    Background The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea—which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)—is locally adapted to the pollinator community. Methods We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. Results Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris) consistently preferred the foreign morph. Discussion We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition. PMID:28194308

  7. Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours.

    PubMed

    Rohde, Katja; Papiorek, Sarah; Lunau, Klaus

    2013-03-01

    Differences in the concentration of pigments as well as their composition and spatial arrangement cause intraspecific variation in the spectral signature of flowers. Known colour preferences and requirements for flower-constant foraging bees predict different responses to colour variability. In experimental settings, we simulated small variations of unicoloured petals and variations in the spatial arrangement of colours within tricoloured petals using artificial flowers and studied their impact on the colour choices of bumblebees and honeybees. Workers were trained to artificial flowers of a given colour and then given the simultaneous choice between three test colours: either the training colour, one colour of lower and one of higher spectral purity, or the training colour, one colour of lower and one of higher dominant wavelength; in all cases the perceptual contrast between the training colour and the additional test colours was similarly small. Bees preferred artificial test flowers which resembled the training colour with the exception that they preferred test colours with higher spectral purity over trained colours. Testing the behaviour of bees at artificial flowers displaying a centripetal or centrifugal arrangement of three equally sized colours with small differences in spectral purity, bees did not prefer any type of artificial flowers, but preferentially choose the most spectrally pure area for the first antenna contact at both types of artificial flowers. Our results indicate that innate preferences for flower colours of high spectral purity in pollinators might exert selective pressure on the evolution of flower colours.

  8. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    PubMed

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements.

  9. Major QTLs for critical photoperiod and vernalization underlie extensive variation in flowering in the Mimulus guttatus species complex.

    PubMed

    Friedman, Jannice; Willis, John H

    2013-07-01

    Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. The mean and variability of a floral trait have opposing effects on fitness traits

    PubMed Central

    Dai, Can; Liang, Xijian; Ren, Jie; Liao, Minglin; Li, Jiyang; Galloway, Laura F.

    2016-01-01

    Background and Aims Floral traits are essential for ensuring successful pollination and reproduction in flowering plants. In particular, style and anther positions are key for pollination accuracy and efficiency. Variation in these traits among individuals has been well studied, but less is known about variation within flowers and plants and its effect on pollination and reproductive success. Methods Style deflexion is responsible for herkogamy and important for pollen deposition in Passiflora incarnata. The degree of deflexion may vary among stigmas within flowers as well as among flowers. We measured the variability of style deflexion at both the flower and the plant level. The fitness consequences of the mean and variation of style deflexion were then evaluated under natural pollination by determining their relationship to pollen deposition, seed production and average seed weight using structural equation modelling. In addition, the relationship between style deflexion and self-pollen deposition was estimated in a greenhouse experiment. Key Results We found greater variation in style deflexion within flowers and plants than among plants. Variation of style deflexion at the flower and plant level was positively correlated, suggesting that variability in style deflexion may be a distinct trait in P. incarnata. Lower deflexion and reduced variation in that deflexion increased pollen deposition, which in turn increased seed number. However, lower styles also increased self-pollen deposition. In contrast, higher deflexion and greater variability of that deflexion increased variation in pollen deposition, which resulted in heavier seeds. Conclusions Variability of style deflexion and therefore stigma placement, independent from the mean, appears to be a property of individual P. incarnata plants. The mean and variability of style deflexion in P. incarnata affected seed number and seed weight in contrasting ways, through the quantity and potentially quality of pollen deposition. This antagonistic selection via different fitness components may maintain diverse style phenotypes. PMID:26749589

  11. A meta-analysis of predation risk effects on pollinator behaviour.

    PubMed

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  12. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines

    PubMed Central

    Wang, Gongwei; Schmalenbach, Inga; von Korff, Maria; Léon, Jens; Kilian, Benjamin; Rode, Jeannette

    2010-01-01

    The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to Ppd-H1. Here, the exotic allele was associated with a reduction of number of days until flowering by 8.0 and 12.7%, respectively. Our data suggest that Ppd-H1, Vrn-H2 and Vrn-H3 may also exert pleiotropic effects on yield and yield-related traits. PMID:20155245

  13. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.

    PubMed

    Iler, Amy M; Inouye, David W; Schmidt, Niels M; Høye, Toke T

    2017-03-01

    Time series have played a critical role in documenting how phenology responds to climate change. However, regressing phenological responses against climatic predictors involves the risk of finding potentially spurious climate-phenology relationships simply because both variables also change across years. Detrending by year is a way to address this issue. Additionally, detrending isolates interannual variation in phenology and climate, so that detrended climate-phenology relationships can represent statistical evidence of phenotypic plasticity. Using two flowering phenology time series from Colorado, USA and Greenland, we detrend flowering date and two climate predictors known to be important in these ecosystems: temperature and snowmelt date. In Colorado, all climate-phenology relationships persist after detrending. In Greenland, 75% of the temperature-phenology relationships disappear after detrending (three of four species). At both sites, the relationships that persist after detrending suggest that plasticity is a major component of sensitivity of flowering phenology to climate. Finally, simulations that created different strengths of correlations among year, climate, and phenology provide broader support for our two empirical case studies. This study highlights the utility of detrending to determine whether phenology is related to a climate variable in observational data sets. Applying this as a best practice will increase our understanding of phenological responses to climatic variation and change. © 2016 by the Ecological Society of America.

  14. Molecular signatures of selection on reproductive character displacement of flower color in Phlox drummondii.

    PubMed

    Hopkins, Robin; Levin, Donald A; Rausher, Mark D

    2012-02-01

    Character displacement, which arises when species diverge in sympatry to decrease competition for resources or reproductive interference, has been observed in a wide variety of plants and animals. A classic example of reproductive character displacement, presumed to be caused by reinforcing selection, is flower-color variation in the native Texas wildflower Phlox drummondii. Here, we use population genetic analyses to investigate molecular signatures of selection on flower-color variation in this species. First, we quantify patterns of neutral genetic variation across the range of P. drummondii to demonstrate that restricted gene flow and genetic drift cannot explain the pattern of flower-color divergence in this species. There is evidence of extensive gene flow across populations with different flower colors, suggesting selection caused flower-color divergence. Second, analysis of sequence variation in the genes underlying this divergence reveals a signature of a selective sweep in one of the two genes, further indicating selection is responsible for divergence in sympatry. The lack of a signature of selection at the second locus does not necessarily indicate a lack of selection on this locus but instead brings attention to the uncertainty in depending on molecular signatures to identify selection. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato.

    PubMed

    Soyk, Sebastian; Müller, Niels A; Park, Soon Ju; Schmalenbach, Inga; Jiang, Ke; Hayama, Ryosuke; Zhang, Lei; Van Eck, Joyce; Jiménez-Gómez, José M; Lippman, Zachary B

    2017-01-01

    Plants evolved so that their flowering is triggered by seasonal changes in day length. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.

  16. Flower color as a model system for studies of plant evo-devo.

    PubMed

    Sobel, James M; Streisfeld, Matthew A

    2013-01-01

    Even though pigmentation traits have had substantial impacts on the field of animal evolutionary developmental biology, they have played only relatively minor roles in plant evo-devo. This is surprising given the often direct connection between flower color and fitness variation mediated through the effects of pollinators. At the same time, ecological and evolutionary genetic studies have utilized the molecular resources available for the anthocyanin pathway to generate several examples of the molecular basis of putatively adaptive transitions in flower color. Despite this opportunity to synthesize experimental approaches in ecology, evolution, and developmental biology, the investigation of many fundamental questions in evo-devo using this powerful model is only at its earliest stages. For example, a long-standing question is whether predictable genetic changes accompany the repeated evolution of a trait. Due to the conserved nature of the biochemical and regulatory control of anthocyanin biosynthesis, it has become possible to determine whether, and under what circumstances, different types of mutations responsible for flower color variation are preferentially targeted by natural selection. In addition, because plants use anthocyanin and related compounds in vegetative tissue for other important physiological functions, the identification of naturally occurring transitions from unpigmented to pigmented flowers provides the opportunity to examine the mechanisms by which regulatory networks are co-opted into new developmental domains. Here, we review what is known about the ecological and molecular basis of anthocyanic flower color transitions in natural systems, focusing on the evolutionary and developmental features involved. In doing so, we provide suggestions for future work on this trait and suggest that there is still much to be learned from the evolutionary development of flower color transitions in nature.

  17. A REEXAMINATION OF THE POLLEN-DONATION HYPOTHESIS IN AN EXPERIMENTAL POPULATION OF ASCLEPIAS EXALTATA.

    PubMed

    Broyles, Steven B; Wyatt, Robert

    1995-02-01

    The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the "pollen-donation hypothesis" have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success. © 1995 The Society for the Study of Evolution.

  18. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica.

    PubMed

    Li, Qiaoxia; Huo, Qingdi; Wang, Juan; Zhao, Jing; Sun, Kun; He, Chaoying

    2016-07-07

    Some plants develop a breeding system that produces both chasmogamous (CH) and cleistogamous (CL) flowers. However, the underlying molecular mechanism remains elusive. In the present study, we observed that Viola philippica develops CH flowers with short daylight, whereas an extended photoperiod induces the formation of intermediate CL and CL flowers. In response to long daylight, the respective number and size of petals and stamens was lower and smaller than those of normally developed CH flowers, and a minimum of 14-h light induced complete CL flowers that had no petals but developed two stamens of reduced fertility. The floral ABC model indicates that B-class MADS-box genes largely influence the development of the affected two-whorl floral organs; therefore, we focused on characterizing these genes in V. philippica to understand this particular developmental transition. Three such genes were isolated and respectively designated as VpTM6-1, VpTM6-2, and VpPI. These were differentially expressed during floral development (particularly in petals and stamens) and the highest level of expression was observed in CH flowers; significantly low levels were detected in intermediate CL flowers, and the lowest level in CL flowers. The observed variations in the levels of expression after floral induction and organogenesis apparently occurred in response to variations in photoperiod. Therefore, inhibition of the development of petals and stamens might be due to the downregulation of B-class MADS-box gene expression by long daylight, thereby inducing the generation of CL flowers. Our work contributes to the understanding of the adaptive evolutionary formation of dimorphic flowers in plants.

  19. Hydraulic conductance and the maintenance of water balance in flowers.

    PubMed

    Roddy, Adam B; Brodersen, Craig R; Dawson, Todd E

    2016-10-01

    Flowers face desiccating conditions, yet little is known about their ability to transport water. We quantified variability in floral hydraulic conductance (Kflower ) for 20 species from 10 families and related it to traits hypothesized to be associated with liquid and vapour phase water transport. Basal angiosperm flowers had trait values associated with higher water and carbon costs than monocot and eudicot flowers. Kflower was coordinated with water supply (vein length per area, VLA) and loss (minimum epidermal conductance, gmin ) traits among the magnoliids, but was insensitive to variation in these traits among the monocots and eudicots. Phylogenetic independent contrast (PIC) correlations revealed that few traits had undergone coordinated evolution. However, VLA and the desiccation time (Tdes ), the quotient of water content and gmin , had significant trait and PIC correlations. The near absence of stomata from monocot and eudicot flowers may have been critical in minimizing water loss rates among these clades. Early divergent, basal angiosperm flowers maintain higher Kflower because of traits associated with high rates water loss and water supply, while monocot and eudicot flowers employ a more conservative strategy of limiting water loss and may rely on stored water to maintain turgor and delay desiccation. © 2016 John Wiley & Sons Ltd.

  20. Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterranean Iris lutescens (Iridaceae)

    PubMed Central

    Wang, Hui; Talavera, María; Min, Ya; Flaven, Elodie; Imbert, Eric

    2016-01-01

    Background and Aims Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple–yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. Methods Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. Key Results Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. Conclusions Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens. PMID:27084922

  1. Neutral processes contribute to patterns of spatial variation for flower colour in the Mediterranean Iris lutescens (Iridaceae).

    PubMed

    Wang, Hui; Talavera, María; Min, Ya; Flaven, Elodie; Imbert, Eric

    2016-05-01

    Flower colour polymorphism in plants has been used as a classic model for understanding the importance of neutral processes vs. natural selection in population differentiation. However, current explanations for the maintenance of flower colour polymorphism mainly rely on balancing selection, while neutral processes have seldom been championed. Iris lutescens (Iridaceae) is a widespread species in the northern Mediterranean basin, which shows a stable and striking purple-yellow flower colour polymorphism. To evaluate the roles of neutral processes in the spatial variation for flower colour in this species, patterns of neutral genetic variation across its distribution range were quantified, and phenotypic differentiation was compared with neutral genetic differentiation. Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 1120 individuals in 41 populations ranging from Spain to France, using a set of eight newly developed microsatellite markers. In addition, phenotypic differentiation for flower colour was also quantified by counting colour morph frequency in each population, and measuring the reflectance spectra of sampled individuals. Populations in Spain present a sharp colour transition from solely purple to solely yellow. The results provide evidence that genetic drift through limited gene flow is important in the evolution of monomorphic populations. In contrast, most populations in France are polymorphic with both phenotypes, and the colour frequencies vary geographically without any spatial gradients observed. A pattern of isolation by distance is detected in France, and gene flow between adjacent populations seems to be an important factor maintaining populations polymorphic. Overall, neutral processes contribute to patterns of spatial variation for flower colour in I. lutescens, but it cannot be excluded that natural selection is also operating. An interaction between neutral processes and natural selection is suggested to explain the spatial variation for flower colour in I. lutescens. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Genetic Control of Reproductive Development under High Ambient Temperature.

    PubMed

    Ejaz, Mahwish; von Korff, Maria

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN

    PubMed Central

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855

  4. Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently discovered pollination mutualism

    PubMed Central

    Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang

    2016-01-01

    A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228

  5. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the ‘Nagafu No. 2’ and ‘Qinguan’ Varieties of Apple (Malus domestica Borkh.)

    PubMed Central

    Xing, Libo; Zhang, Dong; Song, Xiaomin; Weng, Kai; Shen, Yawen; Li, Youmei; Zhao, Caiping; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-01-01

    Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, ‘Nagafu No. 2’ and ‘Qinguan,’ which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in ‘Nagafu No. 2’ and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in ‘Qinguan.’ The ‘SNP,’ ‘INDEL,’ and ‘SV’ distributions were non-random, with variation-rich or -poor regions throughout the genomes. In ‘Nagafu No. 2’ and ‘Qinguan’ there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in ‘Nagafu No. 2,’ ‘Qinguan,’ and ‘Golden Delicious,’ identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between ‘Nagafu No. 2’ and ‘Qinguan.’ The genome variation data provided a foundation for the further exploration of apple diversity and gene–phenotype relationships, and for future research on molecular breeding to improve apple and related species. PMID:27446138

  6. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.

    PubMed

    Marchin, Renée M; Salk, Carl F; Hoffmann, William A; Dunn, Robert R

    2015-08-01

    Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6-5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5-15 days and delayed leaf coloring by 18-21 days, resulting in an extension of the growing season by as much as 20-29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring-porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse-porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring-porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10-16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring-blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology. © 2015 John Wiley & Sons Ltd.

  7. Variation in cannabis potency and prices in a newly legal market: evidence from 30 million cannabis sales in Washington state.

    PubMed

    Smart, Rosanna; Caulkins, Jonathan P; Kilmer, Beau; Davenport, Steven; Midgette, Greg

    2017-12-01

    To (1) assess trends and variation in the market share of product types and potency sold in a legal cannabis retail market and (2) estimate how potency and purchase quantity influence price variation for cannabis flower. Secondary analysis of publicly available data from Washington State's cannabis traceability system spanning 7 July 2014 to 30 September 2016. Descriptive statistics and linear regressions assessed variation and trends in cannabis product variety and potency. Hedonic regressions estimated how purchase quantity and potency influence cannabis flower price variation. Washington State, USA. (1) A total of 44 482 176 million cannabis purchases, including (2) 31 052 123 cannabis flower purchases after trimming price and quantity outliers. Primary outcome measures were (1) monthly expenditures on cannabis, total delta-9-tetrahydrocannabinol (THC) concentration and cannabidiol (CBD) concentration by product type and (2) excise tax-inclusive price per gram of cannabis flower. Key covariates for the hedonic price regressions included quantity purchased, THC and CBD. Traditional cannabis flowers still account for the majority of spending (66.6%), but the market share of extracts for inhalation increased by 145.8% between October 2014 and September 2016, now comprising 21.2% of sales. The average THC-level for cannabis extracts is more than triple that for cannabis flowers (68.7% compared to 20.6%). For flower products, there is a statistically significant relationship between price per gram and both THC [coefficient = 0.012; 95% confidence interval (CI) = 0.011-0.013] and CBD (coefficient = 0.017; CI = 0.015-0.019). The estimated discount elasticity is -0.06 (CI = -0.07 to -0.05). In the state of Washington, USA, the legal cannabis market is currently dominated by high-THC cannabis flower, and features growing expenditures on extracts. For cannabis flower, both THC and CBD are associated with higher per-gram prices, and there are small but significant quantity discounts. © 2017 Society for the Study of Addiction.

  8. Selection on spur shape in Impatiens capensis.

    PubMed

    Young, Helen J

    2008-06-01

    Rapid speciation within some plant families has been attributed to the evolution of floral spurs and to the effect of spur length on plant reproductive success. The flowers of Impatiens capensis (jewelweed) possess a long, curved spur in which nectar is produced and stored. Spur length and curvature varies among plants within one population. Here I document that spur shape is variable in natural populations, variation within plants is less than variation among plants, and spur shape is correlated with components of female and male reproductive success. The apparent natural selection is weakly directional in 1 of 2 years, with greatest seed production and pollen removal occurring in flowers with the greatest spur curvature. Bee pollinator visit length is longest at flowers with highly curved spurs, and they leave less nectar in these spurs than in flowers with straighter spurs. Spur angle evolution may be limited, at least in part, by opposing selection by nectar-robbers who prefer to visit flowers with greater spur curvature. Other factors that might contribute to the maintenance of spur angle variation are temporal variation in the strength of selection and potential genetic correlations of spur shape with other traits under selection.

  9. Variation in the Breeding System of Prunella vulgaris L.

    PubMed

    Qu, Luping; Widrlechner, Mark P

    2011-05-01

    Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species.

  10. Variation in the Breeding System of Prunella vulgaris L

    PubMed Central

    Qu, Luping; Widrlechner, Mark P.

    2011-01-01

    Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species. PMID:21776085

  11. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    PubMed

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  12. Intra-plant Variation in Nectar Sugar Composition in Two Aquilegia Species (Ranunculaceae): Contrasting Patterns under Field and Glasshouse Conditions

    PubMed Central

    Canto, Azucena; Pérez, Ricardo; Medrano, Mónica; Castellanos, María Clara; Herrera, Carlos M.

    2007-01-01

    Background and Aims Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp. cazorlensis (Ranunculaceae). The aims of the study are to assess the generality of extreme intra-plant variation in nectar sugar composition recently reported for other species in the field, and gaining insight on the possible mechanisms involved. Methods The proportions of glucose, fructose and sucrose in single-nectary nectar samples collected from field and glasshouse plants were determined using high performance liquid chromatography. A hierarchical variance partition was used to dissect total variance into components due to variation among plants, flowers within plants, and nectaries within flowers. Key Results Nectar of the two species was mostly sucrose-dominated, but composition varied widely in the field, ranging from sucrose-only to fructose-dominated. Most intra-specific variance was due to differences among nectaries of the same flower, and flowers of the same plant. The high intra-plant variation in sugar composition exhibited by field plants vanished in the glasshouse, where nectar composition emerged as a remarkably constant feature across plants, flowers and nectaries. Conclusions In addition to corroborating the results of previous studies documenting extreme intra-plant variation in nectar sugar composition in the field, this study suggests that such variation may ultimately be caused by biotic factors operating on the nectar in the field but not in the glasshouse. Pollinator visitation and pollinator-borne yeasts are suggested as likely causal agents. PMID:17259227

  13. Spiral phyllotaxis underlies constrained variation in Anemone (Ranunculaceae) tepal arrangement.

    PubMed

    Kitazawa, Miho S; Fujimoto, Koichi

    2018-05-01

    Stabilization and variation of floral structures are indispensable for plant reproduction and evolution; however, the developmental mechanism regulating their structural robustness is largely unknown. To investigate this mechanism, we examined positional arrangement (aestivation) of excessively produced perianth organs (tepals) of six- and seven-tepaled (lobed) flowers in six Anemone species (Ranunculaceae). We found that the tepal arrangement that occurred in nature varied intraspecifically between spiral and whorled arrangements. Moreover, among the studied species, variation was commonly limited to three types, including whorls, despite five geometrically possible arrangements in six-tepaled flowers and two types among six possibilities in seven-tepaled flowers. A spiral arrangement, on the other hand, was unique to five-tepaled flowers. A spiral phyllotaxis model with stochasticity on initiating excessive primordia accounted for these limited variations in arrangement in cases when the divergence angle between preexisting primordia was less than 144°. Moreover, interspecific differences in the frequency of the observed arrangements were explained by the change of model parameters that represent meristematic growth and differential organ growth. These findings suggest that the phyllotaxis parameters are responsible for not only intraspecific stability but interspecific difference of floral structure. Decreasing arrangements from six-tepaled to seven-tepaled Anemone flowers demonstrate that the stabilization occurs as development proceeds to increase the component (organ) number, in contrast from the intuition that the variation will be larger due to increasing number of possible states (arrangements).

  14. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    PubMed

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  15. Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae

    Treesearch

    Melissa K. McCormick; Dennis F. Whigham; John P. O' Neill; Janie J. Becker; Sarah Werner; Hanne N. Rasmussen; Thomas D. Bruns; D. Lee Taylor

    2009-01-01

    The abundance and reproductive activity of orchids have been linked to variations in weather conditions, but few investigators have examined the relationships between orchid flowering dynamics and the distribution and abundance of mycorrhizal fungi. We quantified the abundance of flowering individuals of Corallorhiza odontorhiza, a...

  16. Metabolomic profiling of the nectars of Aquilegia pubescens and A. canadensis

    USDA-ARS?s Scientific Manuscript database

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the...

  17. Evolutionary and Morphometric Implications of Morphological Variation Among Flowers Within an Inflorescence: A Case-Study Using European Orchids

    PubMed Central

    BATEMAN, RICHARD M.; RUDALL, PAULA J.

    2006-01-01

    • Background and Aims This study explores the previously largely ignored morphological variation that occurs among flowers within a single inflorescence. • Methods Variation in four metric parameters (labellum length and width, spur length and width) that together strongly influence pollination frequency is documented within the simple racemose inflorescences of eight individuals that represent a primary hybrid and six species of European orchids. • Key Results Regression of each parameter against the location of each flower on the inflorescence, and calculation of correlation coefficients for each pair of parameters within each inflorescence, demonstrate significant decoupling of labellum and spur development, despite the fact that they are different portions of the same floral organ. Spur length and diameter are constant across inflorescences of Dactylorhiza other than the vestigial-spurred D. viridis, whereas in other genera spur length declines in parallel with labellum dimensions. These differences are likely to reflect selection pressures or developmental constraints. Strong negative deviations from the regression line for one or more parameters are evident in occasional flowers, occurring most frequently in the lowermost and uppermost one or two flowers, and so reflecting transitions in meristematic behaviour. Thus, population-level morphometric studies are best conducted on flowers taken from approximately the mid-point of the inflorescence. Moreover, in the two relatively large inflorescences where lower flowers were removed for measurement before the upper flowers had opened, labellum size increased significantly in the flowers immediately above the excisions, suggesting that excision liberated resources that were diverted into the opening buds. Repeat measurement of all flowers from one selected inflorescence demonstrated typical measurement errors of only ± 30–80 μm, irrespective of the size of the structure studied. If flowers are not mounted and measured immediately following excision, modest negative deviations of 30–50 μm result from post-mounting shrinkage; this occurs less rapidly in the spur than in the thinner labellum, which should therefore be measured first. Variation in all four parameters among all the flowers of a single inflorescence is between 42 % and 107 % of that observed between a similar number of flowers sampled from a consistent location on different (but conspecific and coexisting) inflorescences. • Conclusions This result demonstrates the strong influence of epigenesis on flower morphology and further emphasizes the importance of (a) sampling from a consistent location within the inflorescences under comparison, (b) interpreting morphometric ordinations hierarchically, building from individuals to infraspecific taxa and species via populations, and (c) considering in any microevolutionary study the potentially profound effects of the cline in flower size within each inflorescence. PMID:17018569

  18. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.

    PubMed

    Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G

    2017-11-17

    While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.

  19. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    PubMed

    Iler, Amy M; Høye, Toke T; Inouye, David W; Schmidt, Niels M

    2013-08-19

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974-2011) and Zackenberg, Greenland (1996-2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.

  20. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): direct and correlated responses to selection on flower size and number.

    PubMed

    Worley, A C; Barrett, S C

    2000-10-01

    Trade-offs between flower size and number seem likely to influence the evolution of floral display and are an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). Differences in nectar, pollen, and ovule production between S+ and S- lines supported an overall divergence in investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These results likely reflect the combined effects of variation in genes controlling the resources available for flowering and genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral display is not necessarily constrained by trade-offs between flower size and number, as is often assumed.

  1. Are flowers vulnerable to xylem cavitation during drought?

    PubMed

    Zhang, Feng-Ping; Brodribb, Timothy J

    2017-05-17

    Water stress is known to cause xylem cavitation in the leaves, roots and stems of plants, but little is known about the vulnerability of flowers to xylem damage during drought. This is an important gap in our understanding of how and when plants become damaged by water stress. Here we address fundamental questions about if and when flowers suffer cavitation damage, using a new technique of cavitation imaging to resolve the timing of cavitation in water-stressed flower petals compared with neighbouring leaves. Leaves and flowers from a sample of two herbaceous and two woody eudicots were exposed to a severe water stress while the spatial and temporal propagation of embolism through veins was recorded. Although in most cases water potentials inducing 50% embolism of herbaceous flower veins were more negative than neighbouring leaves, there was no significant difference between the average vulnerability of leaves and petals of herbaceous species. In both woody species, petals were more vulnerable to cavitation than leaves, in one case by more than 3 MPa. Early cavitation and subsequent damage of flowers in the two woody species would thus be expected to precede leaf damage during drought. Similar cavitation thresholds of flowers and leaves in the herb sample suggest that cavitation during water shortage in these species will occur simultaneously among aerial tissues. Species-specific differences in the cavitation thresholds of petals provide a new axis of variation that may explain contrasting flowering ecology among plant species. © 2017 The Author(s).

  2. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity1[OPEN

    PubMed Central

    Rubenach, Andrew J.S.; Vander Schoor, Jacqueline K.; Aubert, Gregoire; Burstin, Judith

    2017-01-01

    Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b. Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR. These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant. PMID:28202598

  3. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara.

    PubMed

    Bills, John W; Roalson, Eric H; Busch, Jeremiah W; Eidesen, Pernille B

    2015-07-01

    • Sexual reproduction often requires more energy and time than clonal reproduction. In marginal arctic conditions, species that can reproduce both sexually and clonally dominate. Plants with this capacity may thrive because they can alter reproduction depending on environmental conditions. Bistorta vivipara is a circumpolar herb that predominately reproduces clonally, but certain environmental conditions promote higher investment in flowers (and possible sexual reproduction). Despite largely reproducing clonally, the herb has high levels of genetic variation, and the processes underlying this paradoxical pattern of variation remain unclear. Here we identified environmental factors associated with sexual investment and examined whether sexual reproduction is associated with higher levels of genetic variation.• We sampled 20 populations of B. vivipara across the high Arctic archipelago of Svalbard. In each population, we measured reproductive traits, environmental variables, and collected samples for genetic analyses. These samples permitted hypotheses to be tested regarding sexual investment and ecological and genetic correlates.• Increased soil nitrogen and organic matter content and decreased elevation were positively associated with investment in flowers. Increased investment in flowers significantly correlated with more genotypes per population. Linkage disequilibrium was consistent with predominant clonality, but several populations showed higher genetic variation and lower differentiation than expected. There was no geographical genetic structure.• In B. vivipara, sexual investment is positively associated with habitat quality. Bistorta vivipara predominantly reproduces clonally, but occasional outcrossing, efficient clonal reproduction, and dispersal by bulbils can explain the considerable genetic variation and weak genetic structure in B. vivipara. © 2015 Botanical Society of America, Inc.

  4. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    PubMed

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M

    2008-10-07

    An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.

  6. HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis

    PubMed Central

    Loscos, Jorge; Igartua, Ernesto; Contreras-Moreira, Bruno; Gracia, M. Pilar; Casas, Ana M.

    2014-01-01

    Flowering time in plants is a tightly regulated process. In barley (Hordeum vulgare L.), HvFT1, ortholog of FLOWERING LOCUS T, is the main integrator of the photoperiod and vernalization signals leading to the transition from vegetative to reproductive state of the plant. This gene presents sequence polymorphisms affecting flowering time in the first intron and in the promoter. Recently, copy number variation (CNV) has been described for this gene. An allele with more than one copy was linked to higher gene expression, earlier flowering, and an overriding effect of the vernalization mechanism. This study aims at (1) surveying the distribution of HvFT1 polymorphisms across barley germplasm and (2) assessing gene expression and phenotypic effects of HvFT1 alleles. We analyzed HvFT1 CNV in 109 winter, spring, and facultative barley lines. There was more than one copy of the gene (2–5) only in spring or facultative barleys without a functional vernalization VrnH2 allele. CNV was investigated in several regions inside and around HvFT1. Two models of the gene were found: one with the same number of promoters and transcribed regions, and another with one promoter and variable number of transcribed regions. This last model was found in Nordic barleys only. Analysis of HvFT1 expression showed that association between known polymorphisms at the HvFT1 locus and the expression of the gene was highly dependent on the genetic background. Under long day conditions the earliest flowering lines carried a sensitive PpdH1 allele. Among spring cultivars with different number of copies, no clear relation was found between CNV, gene expression and flowering time. This was confirmed in a set of doubled haploid lines of a population segregating for HvFT1 CNV. Earlier flowering in the presence of several copies of HvFT1 was only seen in cultivar Tammi, which carries one promoter, suggesting a relation of gene structure with its regulation. HvCEN also affected to a large extent flowering time. PMID:24936204

  7. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca).

    PubMed

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F; Handschuh, Stephan; Metscher, Brian D; Krenn, Harald W

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  8. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)

    NASA Astrophysics Data System (ADS)

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F.; Handschuh, Stephan; Metscher, Brian D.; Krenn, Harald W.

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  9. Irreversible commitment to flowering in two mango cultivars

    USDA-ARS?s Scientific Manuscript database

    In recent years, the state of Nayarit, Mexico has experienced variations in rainfall distribution and warmer temperatures during the autumn-winter season which have caused erratic flowering of mango. The early-flowering cultivars, such as ‘Ataulfo’, have been less affected than tardy ones such as ‘T...

  10. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  11. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  12. Pollinator-mediated interactions in experimental arrays vary with neighbor identity.

    PubMed

    Ha, Melissa K; Ivey, Christopher T

    2017-02-01

    Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.

  13. Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize.

    PubMed

    Cui, Min; Jia, Bo; Liu, Huanhuan; Kan, Xin; Zhang, Yu; Zhou, Ronghua; Li, Zhipeng; Yang, Liang; Deng, Dexiang; Yin, Zhitong

    2017-01-01

    The leaf number above the primary ear (LA) is a major contributing factor to plant architecture in maize. The yield of leafy maize, which has extra LA compared to normal maize, is higher than normal maize in some regions. One major concern is that increasing LA may be accompanied by increased plant height and/or flowering time. Using an F 2:3 population comprising 192 families derived from a leafy maize line and a normal maize line, an association population comprising 437 inbred maize lines, and a pair of near-isogenic maize lines, we mapped the quantitative trait loci (QTL) associated with LA and assessed its genetic relationship with flowering time and plant height. Ten QTL with an additive and dominant effect, 18 pairs of interacting QTL in the F 2:3 population and seventeen significant SNPs in the association population were detected for LA. Two major QTL, qLA3-4 and qLA7-1 , were repeatedly detected and explained a large proportion of the phenotypic variation. The qLA3-4 was centered on lfy1 , which is a dominant gene underlying extra leaves above the ear in leafy maize. Four LA QTL were found to overlap with flowering time and/or plant height, which suggested that these QTL might have a pleiotropic effect. The pleiotropy of the lfy1 locus on LA, flowering time and plant height were validated by near-isogenic line analysis. These results enhance our understanding of the genetic architecture affecting maize LA and the development of maize hybrids with increased LA.

  14. Chemical composition and seasonal variations in the amount of secondary compounds in Gentiana lutea leaves and flowers.

    PubMed

    Menković, N; Savikin-Fodulović, K; Savin, K

    2000-03-01

    The chemical investigation of MeOH extracts of Gentiana lutea leaves and flowers showed that xanthones were one of the dominant class of compounds. Secoiridoids and flavonoids were also recorded. The amount of secondary metabolites varied depending on development stage. In the phase of flowering, leaves are rich with compounds possessing C-glycoside structures while O-glycoside structures accumulate mainly before flowering.

  15. A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L.).

    PubMed

    Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel

    2013-01-01

    Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value.

  16. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae).

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Kawahara, Taihachi

    2015-09-30

    How species ranges form in landscapes is a matter of long-standing evolutionary interest. However, little is known about how natural phenotypic variations of ecologically important traits contribute to species range expansion. In this study, we examined the phylogeographic patterns of phenotypic changes in life history (seed production) and phenological (flowering time) traits during the range expansion of Aegilops tauschii Coss. from the Transcaucasus and Middle East to central Asia. Our comparative analyses of the patterns of natural variations for those traits and their association with the intraspecific lineage structure showed that (1) the eastward expansion to Asia was driven by an intraspecific sublineage (named TauL1b), (2) high seed production ability likely had an important role at the initial dispersal stage of TauL1b's expansion to Asia, and (3) the phenological change to early flowering phenotypes was one of the key adaptation events for TauL1b to further expand its range in Asia. This study provides for the first time a broad picture of the process of Ae. tauschii's eastward range expansion in which life history and phenological traits may have had respective roles in its dispersal and adaptation in Asia. The clear association of seed production and flowering time patterns with the intraspecific lineage divergence found in this study invites further genetic research to bring the mechanistic understanding of the changes in these key functional traits during range expansion within reach.

  17. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.

    PubMed

    Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C B

    2009-11-01

    The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.

  18. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  19. The role of pollinators in maintaining variation in flower color in the Rocky Mountain columbine, Aquilegia coerulea

    USDA-ARS?s Scientific Manuscript database

    Flower color varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea. The abundance of hawkmoths and bumble bees, the two major pollinators of this plant species, also varies among populations. We investigated the preference of hawkmoths and bumble bees for flower col...

  20. Variation in bioactive compounds, antioxidant enzymes and radical-scavenging activity during flower development of Rosa hybrida

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru

    2018-04-01

    Roses are one of the most important ornamental plants and have long been used for edible and medicinal flowers. In the present study, the effect of growth and florescence on changes in anthocyanins, proanthocyanidins (PAs), and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxide (APX) and glutathione reductase (GR) of two different colored Rosa hybrida genotypes were determined. Four complementary assays, l,l-diphenyl-2-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals scavenging capacity, ferric reducing antioxidant power (FRAP) assay were used to screen the antioxidant activity of rose flower extracts. Significant variations in bioactive compounds, antioxidant enzymes and radical-scavenging activity were observed at six different developmental stages. No significant difference in antioxidant activity between the white cultivar and red cultivar was found. During flower development, total antioxidant activity and involved compounds decreased, however some antioxidant components such as anthocyanins increased. Overall, rose flowers from flower-bud stage to initiating bloom stage possess the high functional benefit and thus would be the appropriate harvesting stage in the view of nutritional consideration.

  1. Population structure in the model grass Brachypodium distachyon is highly correlated with flowering differences across broad geographic areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Ludmila; Lee, Scott J.; Young, Nelson D.

    The small, annual grass Brachypodium distachyon (L.) Beauv., a close relative of wheat ( Triticum aestivum L.) and barley ( Hordeum vulgare L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in B. distachyon by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 B. distachyon, seven B. hybridum, and three B. stacei accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Overmore » 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the B. hybridum genome, which appears as a mosaic of B. distachyon-like and B. stacei-like sequences. Analysis of more than 50,000 SNPs for the B. distachyon accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between B. distachyon populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within B. distachyon populations. As a result, our characterization elucidates genes underlying population differences, expands the germplasm resources available for Brachypodium, and illustrates the feasibility and limitations of GWAS in this model grass.« less

  2. Population structure in the model grass Brachypodium distachyon is highly correlated with flowering differences across broad geographic areas

    DOE PAGES

    Tyler, Ludmila; Lee, Scott J.; Young, Nelson D.; ...

    2016-04-29

    The small, annual grass Brachypodium distachyon (L.) Beauv., a close relative of wheat ( Triticum aestivum L.) and barley ( Hordeum vulgare L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in B. distachyon by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 B. distachyon, seven B. hybridum, and three B. stacei accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Overmore » 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the B. hybridum genome, which appears as a mosaic of B. distachyon-like and B. stacei-like sequences. Analysis of more than 50,000 SNPs for the B. distachyon accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between B. distachyon populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within B. distachyon populations. As a result, our characterization elucidates genes underlying population differences, expands the germplasm resources available for Brachypodium, and illustrates the feasibility and limitations of GWAS in this model grass.« less

  3. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    PubMed

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  4. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.

    PubMed

    Wolkovich, Elizabeth M; Davies, T Jonathan; Schaefer, Hanno; Cleland, Elsa E; Cook, Benjamin I; Travers, Steven E; Willis, Charles G; Davis, Charles C

    2013-07-01

    The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. Here, we use long-term records of species’ first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change (“flowering time shifts”). Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. Our findings provide cross-site support for the role of phenology and climate change in explaining species’ invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.

  5. Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots.

    PubMed

    Alonso, Conchita; Navarro-Fernández, Carmen M; Arceo-Gómez, Gerardo; Meindl, George A; Parra-Tabla, Víctor; Ashman, Tia-Lynn

    2013-11-01

    Insufficient pollination is a function of quantity and quality of pollen receipt, and the relative contribution of each to pollen limitation may vary with intrinsic plant traits and extrinsic ecological properties. Community-level studies are essential to evaluate variation across species in quality limitation under common ecological conditions. This study examined whether endemic species are more limited by pollen quantity or quality than non-endemic co-flowering species in three endemic-rich plant communities located in biodiversity hotspots of different continents (Andalusia, California and Yucatan). Natural variations in pollen receipt and pollen tube formation were analysed for 20 insect-pollinated plants. Endemic and non-endemic species that co-flowered were paired in order to estimate and compare the quantity and quality components of pre-zygotic pollination success, obtained through piecewise regression analysis of the relationship between pollen grains and pollen tubes of naturally pollinated wilted flowers. Pollen tubes did not frequently exceed the number of ovules per flower. Only the combination of abundant and good quality pollen and a low number of ovules per flower conferred relief from pre-zygotic pollen limitation in the three stochastic pollination environments studied. Quality of pollen receipt was found to be as variable as quantity among study species. The relative pollination success of endemic and non-endemic species, and its quantity and quality components, was community dependent. Assessing both quality and quantity of pollen receipt is key to determining the ovule fertilization potential of both endemic and widespread plants in biodiverse hotspot regions. Large natural variation among flowers of the same species in the two components and pollen tube formation deserves further analysis in order to estimate the environmental, phenotypic and intraindividual sources of variation that may affect how plants evolve to overcome this limitation in different communities worldwide.

  6. Size-dependent gender modification in Lilium apertum (Liliaceae): does this species exhibit gender diphasy?

    PubMed Central

    Zhang, Zhi-Qiang; Zhu, Xing-Fu; Sun, Hang; Yang, Yong-Ping; Barrett, Spencer C. H.

    2014-01-01

    Background and Aims Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons. Methods Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China. Key Results Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers. Conclusions The results for L. apertum are consistent with the ‘size advantage hypothesis’ developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example of gender diphasy, a rare sexual system in flowering plants. PMID:25062885

  7. A Quantitative Framework for Flower Phenotyping in Cultivated Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel

    2013-01-01

    Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value. PMID:24349209

  8. Variation of hyperforin in Hypericum montbretii during its phenological cycle.

    PubMed

    Cirak, C; Radusiene, J

    2007-11-01

    Hypericum montbretii, a perennial herbaceous plant from Turkish flora has a great pharmaceutical potential with its well-documented chemical content. In the present study, morphogenetic and phenological variations of hyperforin were investigated in this species for the first time. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh fruiting, and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for hyperforin by HPLC method. Phenological changes in hyperforin content were found to be significant. After decreasing at floral budding slightly, hyperforin concentration in whole shoots increased with advancing of plant development and the highest level was reached at fresh fruiting. Among different parts of the plant, reproductive tissues namely green capsules and full opened flowers accumulated significantly higher amount of hyperforin when compared to stems and leaves. Such kind of data could be useful for elucidation of the chemotaxonomical significance of hyperforin and phytochemical evaluation of H. montbretii.

  9. How to cheat when you cannot lie? Deceit pollination in Begonia gracilis.

    PubMed

    Castillo, Reyna A; Caballero, Helga; Boege, Karina; Fornoni, Juan; Domínguez, César A

    2012-07-01

    Mimicry between rewarding and non-rewarding flowers within individuals has been accepted as a strategy favored by selection to deceive pollinators. It has been proposed that this mechanism relies on the exploitation of pollinator's sensory biases, but field evidence is still scarce. In this study, we describe the mechanism of deceit pollination in the monoecious herb Begonia gracilis, a species with exposed rewarding structures (pollen) and intersexual mimicry. Specifically, we test the role of mimicry and exploitation of sensory biases on the reproductive success of male (pollination visitation) and female flowers (probability of setting fruits). We show that pollinators' perception of the amount of reward provided by male flowers is influenced by the independent variation in the sizes of the androecium and the perianth. Large rewarding structures and small perianths were preferred by pollinators, suggesting a central role of the relative size of the rewarding structure on pollinators' foraging decisions. Hence, rewarding male flowers cheat pollinators by exploiting their sensory biases, a strategy followed by non-rewarding female flowers. We suggest that intersexual mimicry operates through the functional resemblance of male flowers' deceit strategy. Artificial manipulation of the flowers supports our findings in natural conditions. Overall, we propose that the continuous and independent variation in the size of the perianth and the reproductive organs among male and female flowers could itself be adaptive.

  10. FLOWERING LOCUS C Mediates Natural Variation in the High-Temperature Response of the Arabidopsis Circadian Clock[W

    PubMed Central

    Edwards, Kieron D.; Anderson, Paul E.; Hall, Anthony; Salathia, Neeraj S.; Locke, James C.W.; Lynn, James R.; Straume, Martin; Smith, James Q.; Millar, Andrew J.

    2006-01-01

    Temperature compensation contributes to the accuracy of biological timing by preventing circadian rhythms from running more quickly at high than at low temperatures. We previously identified quantitative trait loci (QTL) with temperature-specific effects on the circadian rhythm of leaf movement, including a QTL linked to the transcription factor FLOWERING LOCUS C (FLC). We have now analyzed FLC alleles in near-isogenic lines and induced mutants to eliminate other candidate genes. We showed that FLC lengthened the circadian period specifically at 27°C, contributing to temperature compensation of the circadian clock. Known upstream regulators of FLC expression in flowering time pathways similarly controlled its circadian effect. We sought to identify downstream targets of FLC regulation in the molecular mechanism of the circadian clock using genome-wide analysis to identify FLC-responsive genes and 3503 transcripts controlled by the circadian clock. A Bayesian clustering method based on Fourier coefficients allowed us to discriminate putative regulatory genes. Among rhythmic FLC-responsive genes, transcripts of the transcription factor LUX ARRHYTHMO (LUX) correlated in peak abundance with the circadian period in flc mutants. Mathematical modeling indicated that the modest change in peak LUX RNA abundance was sufficient to cause the period change due to FLC, providing a molecular target for the crosstalk between flowering time pathways and circadian regulation. PMID:16473970

  11. Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?

    PubMed

    Dart, Sara; Eckert, Christopher G

    2015-02-01

    Evolutionary transitions from outcrossing to self-fertilization are thought to occur because selfing provides reproductive assurance when pollinators or mates are scarce, but they could also occur via selection to reduce floral vulnerability to herbivores. This study investigated geographic covariation between floral morphology, fruit set, pollen limitation and florivory across the geographic range of Camissoniopsis cheiranthifolia, a Pacific coastal dune endemic that varies strikingly in flower size and mating system. Fruit set was quantified in 75 populations, and in 41 of these floral herbivory by larvae of a specialized moth (Mompha sp.) that consumes anthers in developing buds was also quantified. Experimental pollen supplementation was performed to quantify pollen limitation in three large-flowered, outcrossing and two small-flowered, selfing populations. These parameters were also compared between large- and small-flowered phenotypes within three mixed populations. Fruit set was much lower in large-flowered populations, and also much lower among large- than small-flowered plants within populations. Pollen supplementation increased per flower seed production in large-flowered but not small-flowered populations, but fruit set was not pollen limited. Hence inadequate pollination cannot account for the low fruit set of large-flowered plants. Floral herbivory was much more frequent in large-flowered populations and correlated negatively with fruit set. However, florivores did not preferentially attack large-flowered plants in three large-flowered populations or in two of three mixed populations. Selfing alleviated pollen limitation of seeds per fruit, but florivory better explains the marked variation in fruit set. Although florivory was more frequent in large-flowered populations, large-flowered individuals were not generally more vulnerable within populations. Rather than a causative selective factor, reduced florivory in small-flowered, selfing populations is probably an ecological consequence of mating system differentiation, with potentially significant effects on population demography and biotic interactions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Assessment of Quercus flowering trends in NW Spain

    NASA Astrophysics Data System (ADS)

    Jato, V.; Rodríguez-Rajo, F. J.; Fernandez-González, M.; Aira, M. J.

    2015-05-01

    This paper sought to chart airborne Quercus pollen counts over the last 20 years in the region of Galicia (NW Spain) with a view to detecting the possible influence of climate change on the Quercus airborne pollen season (APS). Pollen data from Ourense, Santiago de Compostela, Vigo and Lugo were used. The Quercus airborne pollen season was characterized in terms of the following parameters: pollen season start and end dates, peak pollen count, pollen season length and pollen index. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were applied. A diverse APS onset timing sequence was observed for the four cities as Quercus flowers few days in advance in Vigo. The variations observed could be related to differences in the meteorological conditions or the thermal requirements needed for flowering. Thermal requirements differed depending on local climate conditions in the study cities: the lowest values for chilling accumulation were recorded in Vigo and the highest in Lugo, whereas the lowest heat accumulation was achieved in Vigo. Differences in APS trends between cities may reflect variations in weather-related trends. A significant trend towards rising Quercus pollen indices and higher maximum daily mean pollen counts was observed in Ourense, linked to the more marked temperature increase across southern Galicia. A non-uniform trend towards increased temperatures was noted over the study period, particularly in late summer and early autumn in all four study cities. Additionally, an increase in spring temperatures was observed in south-western Galicia.

  13. Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation.

    PubMed

    Zhu, Wei; Zheng, Wen; Hu, Xingjiang; Xu, Xiaobao; Zhang, Lin; Tian, Jingkui

    2017-04-01

    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Loss of floral repressor function adapts rice to higher latitudes in Europe

    PubMed Central

    Gómez-Ariza, Jorge; Galbiati, Francesca; Goretti, Daniela; Brambilla, Vittoria; Shrestha, Roshi; Pappolla, Andrea; Courtois, Brigitte; Fornara, Fabio

    2015-01-01

    The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals. PMID:25732533

  15. The screening research of anti-inflammatory bioactive markers from different flowering phases of Flos Lonicerae Japonicae.

    PubMed

    Jiang, Min; Han, Yan-qi; Zhou, Meng-ge; Zhao, Hong-zhi; Xiao, Xue; Hou, Yuan-yuan; Gao, Jie; Bai, Gang; Luo, Guo-an

    2014-01-01

    Flos Lonicerae Japonicae (FLJ) is an important cash crop in eastern Asia, and it is an anti-inflammatory Traditional Chinese Medicine. There are large variations in the quality of the marketed FLJ products. To find marker ingredients useful for quality control, a tandem technology integrating ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF), principal component analysis (PCA), heat map analysis and hierarchical cluster analysis coupled with a NF-κB luciferase reporter gene assay were used to identify the different ingredients from the green bud, white bud, flowering stage and leaf stages, as well as to screen the anti-inflammatory activity of FLJ compositions. As flowering progressed, the anti-inflammatory effects of FLJ gradually decreased; however, chlorogenic acid, swertiamarin and sweroside should be used to evaluate the quality of FLJ products.

  16. The Screening Research of Anti-Inflammatory Bioactive Markers from Different Flowering Phases of Flos Lonicerae Japonicae

    PubMed Central

    Jiang, Min; Han, Yan-qi; Zhou, Meng-ge; Zhao, Hong-zhi; Xiao, Xue; Hou, Yuan-yuan; Gao, Jie; Bai, Gang; Luo, Guo-an

    2014-01-01

    Flos Lonicerae Japonicae (FLJ) is an important cash crop in eastern Asia, and it is an anti-inflammatory Traditional Chinese Medicine. There are large variations in the quality of the marketed FLJ products. To find marker ingredients useful for quality control, a tandem technology integrating ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF), principal component analysis (PCA), heat map analysis and hierarchical cluster analysis coupled with a NF-κB luciferase reporter gene assay were used to identify the different ingredients from the green bud, white bud, flowering stage and leaf stages, as well as to screen the anti-inflammatory activity of FLJ compositions. As flowering progressed, the anti-inflammatory effects of FLJ gradually decreased; however, chlorogenic acid, swertiamarin and sweroside should be used to evaluate the quality of FLJ products. PMID:24809338

  17. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    PubMed

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  18. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrowmore » during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.« less

  19. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity

    PubMed Central

    Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C. B.

    2009-01-01

    Background and Aims The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Methods Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. Key Results The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Conclusions Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established. PMID:19789174

  20. Relationship between the species-representative phenotype and intraspecific variation in Ranunculaceae floral organ and Asteraceae flower numbers.

    PubMed

    Kitazawa, Miho S; Fujimoto, Koichi

    2016-04-01

    Phenotypic variation in floral morphologies contributes to speciation by testing various morphologies that might have higher adaptivity, leading eventually to phylogenetic diversity. Species diversity has been recognized, however, by modal morphologies where the variation is averaged out, so little is known about the relationship between the variation and the diversity. We analysed quantitatively the intraspecific variation of the organ numbers within flowers of Ranunculaceae, a family which branched near the monocot-eudicot separation, and the numbers of flowers within the capitula of Asteraceae, one of the most diverse families of eudicots. We used four elementary statistical quantities: mean, standard deviation (s.d.), degree of symmetry (skewness) and steepness (kurtosis). While these four quantities vary among populations, we found a common relationship between s.d. and the mean number of petals and sepals in Ranunculaceae and number of flowers per capitulum in Asteraceae. The s.d. is equal to the square root of the difference between the mean and specific number, showing robustness: for example, 3 in Ficaria sepals, 5 in Ranunculus petals and Anemone tepals, and 13 in Farfugium ray florets. This square-root relationship was not applicable to Eranthis petals which show little correlation between the s.d. and mean, and the stamens and carpels of Ranunculaceae whose s.d. is proportional to the mean. The specific values found in the square-root relationship provide a novel way to find the species-representative phenotype among varied morphologies. The representative phenotype is, in most cases, unique to the species or genus level, despite intraspecific differences of average phenotype among populations. The type of variation shown by the statistical quantities indicates not only the robustness of the morphologies but also how flowering plants changed during evolution among representative phenotypes that eventually led to phylogenetic diversification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Relationship between the species-representative phenotype and intraspecific variation in Ranunculaceae floral organ and Asteraceae flower numbers

    PubMed Central

    Kitazawa, Miho S.; Fujimoto, Koichi

    2016-01-01

    Background and Aims Phenotypic variation in floral morphologies contributes to speciation by testing various morphologies that might have higher adaptivity, leading eventually to phylogenetic diversity. Species diversity has been recognized, however, by modal morphologies where the variation is averaged out, so little is known about the relationship between the variation and the diversity. Methods We analysed quantitatively the intraspecific variation of the organ numbers within flowers of Ranunculaceae, a family which branched near the monocot–eudicot separation, and the numbers of flowers within the capitula of Asteraceae, one of the most diverse families of eudicots. We used four elementary statistical quantities: mean, standard deviation (s.d.), degree of symmetry (skewness) and steepness (kurtosis). Key Results While these four quantities vary among populations, we found a common relationship between s.d. and the mean number of petals and sepals in Ranunculaceae and number of flowers per capitulum in Asteraceae. The s.d. is equal to the square root of the difference between the mean and specific number, showing robustness: for example, 3 in Ficaria sepals, 5 in Ranunculus petals and Anemone tepals, and 13 in Farfugium ray florets. This square-root relationship was not applicable to Eranthis petals which show little correlation between the s.d. and mean, and the stamens and carpels of Ranunculaceae whose s.d. is proportional to the mean. The specific values found in the square-root relationship provide a novel way to find the species-representative phenotype among varied morphologies. Conclusions The representative phenotype is, in most cases, unique to the species or genus level, despite intraspecific differences of average phenotype among populations. The type of variation shown by the statistical quantities indicates not only the robustness of the morphologies but also how flowering plants changed during evolution among representative phenotypes that eventually led to phylogenetic diversification. PMID:27052344

  2. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    PubMed

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  3. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill

    PubMed Central

    Fassinou Hotegni, V. Nicodème; Lommen, Willemien J. M.; Agbossou, Euloge K.; Struik, Paul C.

    2015-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers. PMID:25653659

  4. Habitat-specific population structure in native western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera).

    PubMed

    Brunner, P C; Frey, J E

    2010-04-01

    Invasions by pest organisms are among the main challenges for sustainable crop protection. They pose a serious threat to crop production by introducing a highly unpredictable element to existing crop protection strategies. The western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera) managed to invade ornamental greenhouses worldwide within < 25 years. To shed light on possible genetic and/or ecological factors that may have been responsible for this invasion success, we studied the population genetic structure of western flower thrips in its native range in western North America. Analysis of nucleotide sequence variation and variation at microsatellite loci revealed the existence of two habitat-specific phylogenetic lineages (ecotypes) with allopatric distribution. One lineage is associated with hot/dry climates, the second lineage is restricted to cool/moist climates. We speculate that the ecological niche segregation found in this study may be among the key factors determining the invasion potential of western flower thrips.

  5. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators

    NASA Astrophysics Data System (ADS)

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  6. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators.

    PubMed

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  7. Rapid floral senescence following male function and breeding systems of some tropical orchids.

    PubMed

    Huda, M K; Wilcock, C C

    2012-03-01

    No comparative study of floral senescence following male function among a range of tropical orchid genera has previously been undertaken. The timing and pattern of floral senescence and occurrence of fruit formation were studied following self-, geitonogamous and cross-pollination in 14 epiphytic and two terrestrial orchid species to determine their breeding system and assess the occurrence of floral abscission following pollinaria removal. Both pollination and pollinaria removal caused rapid floral senescence, and the pattern and timing of the floral changes were the same in all treatments. Six Dendrobium species and Pelatantheria insectifera were self-incompatible (SI) and eight other species, including one terrestrial species, were self-compatible (SC). Capsules produced from outcrossing in four SC species, Phalaenopsis cornu-cervi, Eria pubescens, Cleisostoma appendiculatum and Arundina graminifolia, were larger and heavier than those produced after selfing. Reductions in flower life span following pollinaria removal were positively correlated with flower size and longevity of unpollinated flowers but not with position in the inflorescence or nature of the breeding system. Rapid flower senescence following pollinaria removal reported here suggests that it may be widespread in tropical species. The significant association of the response with size of flowers and inflorescences among the species studied suggests that the cost of flower maintenance outweighs the benefit of remaining open for female function after pollinaria have been removed. Both SC and SI species were found among tropical orchids, but variation in capsule size following self- and cross-pollination indicates that there may be a reduction in seed production following selfing, even in SC species, and that fruit formation alone should not be taken as reliable evidence of full self-compatibility. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Morphology, Carbohydrate Composition and Vernalization Response in a Genetically Diverse Collection of Asian and European Turnips (Brassica rapa subsp. rapa)

    PubMed Central

    Zhang, Ningwen; Zhao, Jianjun; Lens, Frederic; de Visser, Joan; Menamo, Temesgen; Fang, Wen; Xiao, Dong; Bucher, Johan; Basnet, Ram Kumar; Lin, Ke; Cheng, Feng; Wang, Xiaowu; Bonnema, Guusje

    2014-01-01

    Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization. PMID:25474111

  9. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea.

    PubMed

    Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina

    2015-12-01

    Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Mobile Gibberellin Directly Stimulates Arabidopsis Hypocotyl Xylem Expansion[W][OA

    PubMed Central

    Ragni, Laura; Nieminen, Kaisa; Pacheco-Villalobos, David; Sibout, Richard; Schwechheimer, Claus; Hardtke, Christian S.

    2011-01-01

    Secondary growth of the vasculature results in the thickening of plant structures and continuously produces xylem tissue, the major biological carbon sink. Little is known about the developmental control of this quantitative trait, which displays two distinct phases in Arabidopsis thaliana hypocotyls. The later phase of accelerated xylem expansion resembles the secondary growth of trees and is triggered upon flowering by an unknown, shoot-derived signal. We found that flowering-dependent hypocotyl xylem expansion is a general feature of herbaceous plants with a rosette growth habit. Flowering induction is sufficient to trigger xylem expansion in Arabidopsis. By contrast, neither flower formation nor elongation of the main inflorescence is required. Xylem expansion also does not depend on any particular flowering time pathway or absolute age. Through analyses of natural genetic variation, we found that ERECTA acts locally to restrict xylem expansion downstream of the gibberellin (GA) pathway. Investigations of mutant and transgenic plants indicate that GA and its signaling pathway are both necessary and sufficient to directly trigger enhanced xylogenesis. Impaired GA signaling did not affect xylem expansion systemically, suggesting that it acts downstream of the mobile cue. By contrast, the GA effect was graft transmissible, suggesting that GA itself is the mobile shoot-derived signal. PMID:21498678

  11. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays

    PubMed Central

    Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal

    2018-01-01

    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459

  12. Relationships between the floral neighborhood and individual pollen limitation in two self-incompatible herbs.

    PubMed

    Jakobsson, Anna; Lázaro, Amparo; Totland, Orjan

    2009-07-01

    Local flower density can affect pollen limitation and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. Many studies have investigated the relationship between conspecific density and pollen limitation among populations, but less is known about within-population relationships and the effect of heterospecific flower density. In addition, few studies have explicitly assessed how the spatial scales at which flowers are monitored affect relationships. We investigated the effect of floral neighborhood on pollen limitation at four spatial scales in the self-incompatible herbs Armeria maritima spp. maritima and Ranunculus acris spp. acris. Moreover, we measured pollen deposition in Armeria and pollinator visits to Ranunculus. There was substantial variation in pollen limitation among Armeria individuals, and 25% of this variation was explained by the density of compatible and heterospecific flowers within a 3 m circle. Deposition of compatible pollen was affected by the density of compatible and incompatible inflorescences within a 0.5 m circle, and deposition of heterospecific pollen was affected by the density of heterospecific flowers within a 2 m circle. In Ranunculus, the number of pollinator visits was affected by both conspecific and heterospecific flower densities. This did not, however, result in effects of the floral neighborhood on pollen limitation, probably due to an absence of pollen limitation at the population level. Our study shows that considerable variation in pollen limitation may occur among individuals of a population, and that this variation is partly explained by floral neighborhood density. Such individual-based measures provide an important link between pollen limitation theory, which predicts ecological and evolutionary causes and consequences for individual plants, and studies of the effects of landscape fragmentation on plant species persistence. Our study also highlights the importance of considering multiple spatial scales to understand the spatial extent of pollination processes within a population.

  13. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.

    PubMed

    Mattila, Tiina M; Aalto, Esa A; Toivainen, Tuomas; Niittyvuopio, Anne; Piltonen, Susanna; Kuittinen, Helmi; Savolainen, Outi

    2016-01-01

    Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species. © 2015 John Wiley & Sons Ltd.

  14. Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture.

    PubMed

    Chen, Ya Huei; Tsai, Yi Jung; Huang, Jian Zhi; Chen, Fure Chyi

    2005-08-01

    Tissue culture has been widely used for mass propagation of Phalaenopsis. However, somaclonal variation occurred during micropropagation process posed a severe problem by affecting product quality. In this study, wild type and peloric flower buds of Phalaenopsis hybrids derived from flower stalk nodal culture were used for cDNA-RAPD and cDNA suppression subtractive hybridization analyses in order to study their genetic difference in terms of expressed sequence tags. A total of 209 ESTs from normal flower buds and 230 from mutants were sequenced. These ESTs sequences can be grouped into several functional categories involved in different cellular processes including metabolism, signal transduction, transcription, cell growth and division, protein synthesis, and protein localization, and into a subcategory of proteins with unknown function. Cymbidium mosaic virus transcript was surprisingly found expressed frequently in the peloric mutant of P. Little Mary. Real-time RT-PCR analysis on selected ESTs showed that in mutant flower buds, a bZIP transcription factor (TGA1a-like protein) was down-regulated, while up-regulated genes include auxin-regulated protein kinase, cyclophilin, and TCP-like genes. A retroelement clone was also preferentially expressed in the peloric mutant flowers. On the other hand, ESTs involved in DNA methylation, chromatin remodeling and post-transcriptional regulation, such as DNA methyltransferase, histone acetyltransferase, ERECTA, and DEAD/DEAH RNA helicase, were enriched in normal flower buds than the mutants. The enriched transcripts in the wild type indicate the down regulation of these transcripts in the mutants, and vice versa. The potential roles of the analyzed transcripts in the development of Phalaenopsis flowers are discussed.

  15. Early flowering and seed production in a yellow birch progeny test

    Treesearch

    Knud E. Clausen

    1976-01-01

    Trees in a yellow birch progeny test began to bear seed when 7 years old and the proportion of fruiting trees increased in the following 2 years. Male catkins were produced at age 8 and the number of trees with males increased greatly the following years. Although there is much variation between and within families in earliness of flowering and in number of flowers and...

  16. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    PubMed

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  17. Pseudohypericin and hyperforin in Hypericum perforatum from Northern Turkey: variation among populations, plant parts and phenological stages.

    PubMed

    Cirak, Cüneyt; Radusiene, Jolita; Janulis, Valdimaras; Ivanauskas, Liudas

    2008-05-01

    Hypericum perforatum is a perennial medicinal plant known as "St. John's wort" in Western Europe and has been used in the treatment of several diseases for centuries. In the present study, morphologic, phenologic and population variability in pseudohypericin and hyperforin concentrations among H. perforatum populations from Northern Turkey was investigated for the first time. The aerial parts of H. perforatum plants representing a total of 30 individuals were collected at full flowering from 10 sites of Northern Turkey to search the regional variation in the secondary metabolite concentrations. For morphologic and phenologic sampling, plants from one site were gathered in five phenological stages: vegetative, floral budding, full flowering, fresh fruiting and mature fruiting. The plant materials were air-dried at room temperature and subsequently assayed for chemical concentrations by high performance liquid chromatography. Secondary metabolite concentrations ranged from traces to 2.94 mg/g dry weight (DW) for pseudohypericin and traces -6.29 mg/g DW for hyperforin. The differences in the secondary metabolite concentrations among populations of H. perforatum were found to be significant. The populations varied greatly in hyperforin concentrations, whereas they produced a similar amount of pseudohypericin. Concentrations of both secondary metabolites in all tissues increased with advancing of plant development and higher accumulation levels were reached at flowering. Among different tissues, full opened flowers were found to be superior to stems, leaves and the other reproductive parts with regard to pseudohypericin and hyperforin accumulations. The present findings might be useful to optimize the processing methodology of wild-harvested plant material and obtain increased concentrations of these secondary metabolites.

  18. Explaining the apparent paradox of persistent selection for early flowering.

    PubMed

    Austen, Emily J; Rowe, Locke; Stinchcombe, John R; Forrest, Jessica R K

    2017-08-01

    Decades of observation in natural plant populations have revealed pervasive phenotypic selection for early flowering onset. This consistent pattern seems at odds with life-history theory, which predicts stabilizing selection on age and size at reproduction. Why is selection for later flowering rare? Moreover, extensive evidence demonstrates that flowering time can and does evolve. What maintains ongoing directional selection for early flowering? Several non-mutually exclusive processes can help to reconcile the apparent paradox of selection for early flowering. We outline four: selection through other fitness components may counter observed fecundity selection for early flowering; asymmetry in the flowering-time-fitness function may make selection for later flowering hard to detect; flowering time and fitness may be condition-dependent; and selection on flowering duration is largely unaccounted for. In this Viewpoint, we develop these four mechanisms, and highlight areas where further study will improve our understanding of flowering-time evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.

    PubMed

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.

  1. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    PubMed Central

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  2. Climatic variability leads to later seasonal flowering of Floridian plants.

    PubMed

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-07-21

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.

  3. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce.

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-10-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce.

  4. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Carmen González-Mas, M.; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2011-01-01

    Background and Aims The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus. Methods The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield. Key Results First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load. Conclusions These results suggest for the first time that fruit inhibits flowering by repressing CiFT and SOC1 expression in leaves of alternate-bearing citrus. Fruit also reduces CsAP1 expression in leaves, and the significant increase in leaf CsLFY expression from off trees in late February was associated with the onset of floral differentiation. PMID:21856639

  5. Hydrolyzable Tannins, Flavonol Glycosides, and Phenolic Acids Show Seasonal and Ontogenic Variation in Geranium sylvaticum.

    PubMed

    Tuominen, Anu; Salminen, Juha-Pekka

    2017-08-09

    The seasonal variation of polyphenols in the aboveground organs and roots of Geranium sylvaticum in four populations was studied using UPLC-DAD-ESI-QqQ-MS/MS. The content of the main compound, geraniin, was highest (16% of dry weight) in the basal leaves after the flowering period but stayed rather constant throughout the growing season. Compound-specific mass spectrometric methods revealed the different seasonal patterns in minor polyphenols. Maximum contents of galloylglucoses and flavonol glycosides were detected in the small leaves in May, whereas the contents of further modified ellagitannins, such as ascorgeraniin and chebulagic acid, increased during the growing season. In flower organs, the polyphenol contents differed significantly between ontogenic phases so that maximum amounts were typically found in the bud phase, except in pistils the amount of gallotannins increased significantly in the fruit phase. These results can be used in evaluating the role of polyphenols in plant-herbivore interactions or in planning the best collection times of G. sylvaticum for compound isolation purposes.

  6. Variations in Hormones and Antioxidant Status in Relation to Flowering in Early, Mid, and Late Varieties of Date Palm (Phoenix dactylifera) of United Arab Emirates.

    PubMed

    Cheruth, Abdul J; Kurup, Shyam S; Subramaniam, Sreeramanan

    2015-01-01

    The present study was carried out to assess the status of various hormones responsible for the flower induction of Nagal, Lulu, and Khalas date palm varieties in UAE. The nonenzymatic antioxidant compounds and the antioxidant enzymatic activities at preflowering, flowering, and postflowering stages of the date palm varieties were quantified. The ABA and zeatin concentrations were found to be significantly higher during the preflowering stage but gradually decreased during the flowering period and then increased after the flowering stage. Gibberellic acid (GA) concentrations were significantly higher in the early flowering varieties and higher levels of ABA may contribute to the delayed flowering in mid and late varieties. The results on hormone profiling displayed a significant variation between seasons (preflowering, flowering, and postflowering) and also between the three date palms (early, mid, and late flowering varieties). Ascorbic acid (AA) concentration was low at the preflowering stage in the early flowering Nagal (0.694 mg/g dw), which is similar with the late flowering Lulu variety (0.862 mg/g dw). However, Khalas variety showed significantly higher amount of AA content (7.494 mg/g dw) at the preflowering stage when compared to other varieties. In flowering stage, Nagal (0.814 mg/g dw) and Lulu (0.963 mg/g dw) were similar with respect to the production of AA, while the mid flowering variety showed significantly higher amount of AA (9.358 mg/g dw). The Khalas variety produced the highest tocopherol at 4.78 mg/g dw compared to Nagal and Lulu, at 1.997 and 1.908 mg/g dw, respectively, during the preflowering stage. In Nagal variety, the content of reduced glutathione (GSH) at the preflowering stage was 0.507 mg/g dw, which was not significantly different from the flowering and postflowering stages at 0.4 and 0.45 mg/g dw, respectively. The GSH was significantly higher in Khalas compared to Nagal and Lulu varieties, at 1.321 mg/g w in the preflowering phase followed by 3.347 mg/g dw and 2.349 mg/g dw at the flowering and postflowering phases, respectively. Catalase activity increased with different stages of growth. The lowest catalase activity was observed at the preflowering stage in Khalas (0.116), with similar observations noted during flowering (0.110) and postflowering stage. This study provides an insight into the possible roles of endogenous hormones and antioxidants and in the activities of antioxidant enzymes in the regulation of flower development in date palm varieties.

  7. Pheno-anomalies of sub-alpine Vaccinium heaths in response to climatic variations

    NASA Astrophysics Data System (ADS)

    Puppi, Giovanna; Monti, Alessandra; Bonafede, Fausto; Vignodelli, Michele; Zanotti, Anna Letizia

    2014-05-01

    A phenological survey on Vaccinium heaths was repeated thirty years after the first observations, in the Northern Apennines (Italy). In line with the sampling method adopted in the earliest phases of the study, the phenological monitoring was undertaken in the same sites, located above the tree line between 1600 and 1800 m asl. The phenology of each plant species was recorded in order to single out the flowering patterns of the plant communities and their variations. In the years with average weather conditions, flowerings begin at the end of May, after the melting of the last spring snow, and finish in September, showing a bimodal pattern. The first blooming peak occurs in mid June and the second in mid July, in coincidence with the annual maximum temperatures. The first peak is due to the dwarf shrubs and to other species typical of the Vaccinium heaths, while the second is due to herbs with a wider ecology. Among the years on study, we found that 1984 and 2012 diverged from the aforementioned pattern, in that flowerings showed strong pheno-anomalies and a lower phenological diversity. In 1984, a marked delay of the blooming start (1 month) and of the first peak (3 weeks) were observed, while the second peak and the flowering end were normal: the delay was due to a very cold and snowy spring in 1984. On the contrary, 2012 was characterized by the disappearance of the second flowering peak and by a dramatic advance of the blooming end: it is worth mentioning that summer 2012 was exceptionally dry, with temperatures above the average. In summary, while the very cold spring 1984 led simply to an initial shift and then to a compaction of the blooming rhythms, the xero-thermal stress of the summer 2012 caused a deep variation of the symphenological pattern and a fail of sexual reproduction in several late flowering species. Given that xero-thermal stress occurred often in the last decades, some sensible species, flowering in mid summer, could have undergone a reduction in seed production and could have therefore be disadvantaged in turn-over. This hypothesis is consistent with the results on vegetation changes: in fact, the comparison of the actual vegetation with the historical observations in the same sites, shows a reduction of herb (Hemicryptophytes) diversity and cover in time. It is noteworthy that many of the declining species flower in the driest and hottest weeks of the year. In a climate-warming scenario, the low extension of these sub-alpine islands of the Apennines leads to a high extinction risk of the most sensible species. So, the monitoring of this vulnerable vegetation type seems necessary in order to detect the current trends and should be continued in the future. Puppi and Speranza 1980, Arch. Bot. Biogeogr. Ital. 56(3/4) Puppi et al. 1994, Fitosociologia 26: 63-79

  8. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants

    PubMed Central

    Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  10. Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule?

    PubMed Central

    Stojanova, B.; Maurice, S.; Cheptou, P.-O.

    2016-01-01

    Background and aims Many angiosperms exhibit cleistogamy, the production of both cleistogamous flowers (CL), which remain closed and obligately self-pollinated, and chasmogamous flowers (CH), which are potentially open-pollinated. The CH proportion can be plastic. Plasticity is adaptive if environmental changes can be reliably assessed and responded to with an appropriate phenotype and if plastic genotypes have higher fitness in variable environments than non-plastic ones. Methods We studied the plastic response of four natural populations from northern and southern France of an annual cleistogamous plant, Lamium amplexicaule, to predictable seasonal variation. Plants were grown in a semi-controlled environment in spring and in autumn. We assessed the variation in flower number, phenology and cleistogamy-related traits, which were all plastic with respect to season. The CH proportion was higher in spring than in autumn in all four populations. Key Results We showed significant stabilizing selection for cleistogamy traits, with higher optimal CH proportions and more pronounced stabilizing selection in spring than in autumn. Observed CH proportions were close to the predicted optimal CH proportions in each season except in autumn for southern populations, which do not experience the autumnal growing season in nature. Conclusions These results are consistent with adaptive plasticity across seasons of cleistogamy in L. amplexicaule. We propose that adaptive plasticity of cleistogamy could be driven by pollination environment variation, with CL flowers providing reproductive assurance when pollinators are scarce and CH flowers reducing the inbreeding depression in offspring when pollinators are abundant. PMID:26995537

  11. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity.

    PubMed

    Yeang, Hoong-Yeet

    2007-01-01

    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.

  12. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    PubMed

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering.

  13. The promise of genomics in the study of plant-pollinator interactions

    PubMed Central

    2013-01-01

    Flowers exist in exceedingly complex fitness landscapes, in which subtle variation in each trait can affect the pollinators, herbivores and pleiotropically linked traits in other plant tissues. A whole-genome approach to flower evolution will help our understanding of plant-pollinator interactions. PMID:23796166

  14. How Do Trees Know When to Flower? Predicting Reproductive Phenology of Douglas-fir with Changing Winter and Spring Temperatures

    NASA Astrophysics Data System (ADS)

    Prevey, J.; St Clair, B.; Harrington, C.

    2016-12-01

    Flowering at the right time is one of the primary ways that plants are adapted to their environment. Trees that flower too early risk cold damage to vulnerable new tissues and those that flower too late miss peak resources or may mistime flowering to coincide with other trees, altering outcrossing rates and gene flow. Past observations indicate that temperature cues over winter and spring influence the timing of flowering in many tree species. Understanding these cues is important for predicting how flowering phenology of trees will change with a changing climate.We developed predictive models of flowering for Douglas-fir, an abundant and commercially important tree in the Pacific Northwest. We assembled over 10,000 flowering observations of trees from 11 sites across western Oregon and Washington. We modeled the dates of flowering using hourly temperature data; our models of flowering were adapted from previous models of vegetative budburst and height growth initiation developed for Douglas-fir. Preliminary results show that both chilling (cold) and forcing (warm) temperatures over winter and spring are important determinants of flowering time for Douglas-fir. This suggests that as spring temperatures warm in the future, Douglas-fir across the Pacific Northwest will flower earlier, unless plants experience insufficient chilling over winter, in which case it is possible that Douglas-fir may flower later than in the past, or not flower at all. At one site, Douglas-fir genotypes from different geographic regions flowered in the same order from year to year, indicating that both temperature and heredity influence flowering. Knowledge of the environmental and genetic cues that drive the timing of flowering can help predict how changes in temperature under various climate models could change flowering time across sites. These models may also indicate the geographic areas where future climate could enhance or reduce flowering of Douglas-fir in the future.

  15. Armament Imbalances: Match and Mismatch in Plant-Pollinator Traits of Highly Specialized Long-Spurred Orchids

    PubMed Central

    Moré, Marcela; Amorim, Felipe W.; Benitez-Vieyra, Santiago; Medina, A. Martin; Sazima, Marlies; Cocucci, Andrea A.

    2012-01-01

    Background Some species of long-spurred orchids achieve pollination by a close association with long-tongued hawkmoths. Among them, several Habenaria species present specialized mechanisms, where pollination success depends on the attachment of pollinaria onto the heads of hawkmoths with very long proboscises. However, in the Neotropical region such moths are less abundant than their shorter-tongued relatives and are also prone to population fluctuations. Both factors may give rise to differences in pollinator-mediated selection on floral traits through time and space. Methodology/Principal Findings We characterized hawkmoth assemblages and estimated phenotypic selection gradients on orchid spur lengths in populations of three South American Habenaria species. We examined the match between hawkmoth proboscis and flower spur lengths to determine whether pollinators may act as selective agents on flower morphology. We found significant directional selection on spur length only in Habenaria gourlieana, where most pollinators had proboscises longer than the mean of orchid spur length. Conclusions/Significance Phenotypic selection is dependent on the mutual match between pollinator and flower morphologies. However, our findings indicate that pollinator-mediated selection may vary through time and space according to local variations in pollinator assemblages. PMID:22848645

  16. The Genetic Architecture of Interspecific Variation in Mimulus

    PubMed Central

    Macnair, M. R.; Cumbes, Q. J.

    1989-01-01

    The genetic architecture of various floral and morphological differences between Mimulus cupriphilus and Mimulus guttatus is investigated. M. cupriphilus is believed to have speciated from M. guttatus in the recent past. The two parent species, the F(1) and F(2), and two backcrosses were grown and scored for 23 different characters. The analysis of means revealed significant epistasis for a number of the floral characters, particularly those involving the length of parts. Dominance was generally toward M. guttatus, except for the characters related to flowering time. Analysis of the genetic correlations between characters revealed that there were at least four different polygenic genetic systems, governing flowering time, size of flower, number of spots on the corolla, and general size. An analysis of minimum gene number suggested that there were at least 3-7 genes controlling floral size, and a different three controlling floral spot number. Two other characters, corolla lobe shape and stem color, were produced by independent major gene differences. Annuality was also shown to be heritable. The two species appear to utilize the same gene for copper tolerance. The results are discussed in the light of current theories of speciation. PMID:17246497

  17. Variation in floral morphology and plant reproductive success in four Ipomoea species (Convolvulaceae) with contrasting breeding systems.

    PubMed

    Delgado-Dávila, R; Martén-Rodríguez, S; Huerta-Ramos, G

    2016-11-01

    This study tested the hypothesis that self-compatibility would be associated with floral traits that facilitate autonomous self-pollination to ensure reproduction under low pollinator visitation. In a comparison of two pairs of Ipomoea species with contrasting breeding systems, we predicted that self-compatible (SC) species would have smaller, less variable flowers, reduced herkogamy, lower pollinator visitation and higher reproductive success than their self-incompatible (SI) congeners. We studied sympatric species pairs, I. hederacea (SC)- I. mitchellae (SI) and I. purpurea (SC)-I. indica (SI), in Mexico, over two years. We quantified variation in floral traits and nectar production, documented pollinator visitation, and determined natural fruit and seed set. Hand-pollination and bagging experiments were conducted to determine potential for autonomous self-pollination and apomixis. Self-compatible Ipomoea species had smaller flowers and lower nectar production than SI species; however, floral variation and integration did not vary according to breeding system. Bees were primary pollinators of all species, but visitation rates were seven times lower in SC than SI species. SC species had a high capacity for autonomous self-pollination due to reduced herkogamy at the highest anther levels. Self-compatible species had two to six times higher fruit set than SI species. Results generally support the hypothesis that self-compatibility and autonomous self-pollination ensure reproduction under low pollinator visitation. However, high variation in morphological traits of SC Ipomoea species suggests they maintain variation through outcrossing. Furthermore, reduced herkogamy was associated with high potential for autonomous self-pollination, providing a reproductive advantage that possibly underlies transitions to self-compatibility in Ipomoea. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Trait variations along a regenerative chronosequence in the herb layer of submediterranean forests

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Vitanzi, Alessandra; Tardella, Federico Maria; Hršak, Vladimir

    2012-08-01

    The aim of this paper is to assess the functional shifts of the herb layer in the submediterranean Ostrya carpinifolia coppiced forests (central Italy) along a coppicing rotation cycle. More specifically, the following questions were addressed: i) is there a pattern in functional trait composition of the herb layer along a regeneration chronosequence?; ii) which traits states differentiate each regeneration stage?; iii) are patterns of trait state variation related to the change of the environmental conditions? Species cover percentage was recorded in 54 plots (20 m × 20 m) with homogeneous ecological conditions. Relevés, ordered on the basis of the time since the last coppicing event and grouped into three age classes, were analysed with regard to trait variation, based on species absolute and relative abundance. Differences in light, temperature, soil moisture, and nutrients bioindicator values between consecutive regeneration stages were tested using the non-parametric Mann-Whitney U-test. Multi-response permutation procedures (MRPP) revealed statistically significant separation between young and intermediate-aged stands with regard to most traits. Indicator species analysis (ISA) highlighted indicator trait states, which were filtered, along the chronosequence, by changes in environmental conditions. Redundancy analysis (RDA) revealed that light intensity had the greatest effect on traits states variation from the first to the second regeneration stage, while variation from the second to the third age classes was affected by temperature. Young stands were differentiated by short cycle species with acquisitive strategies that only propagated by sexual reproduction, with light seeds, summer green and overwintering green leaves, and a long flowering duration. Intermediate-aged and mature stands were characterized by traits associated with early leaf and flower production, high persistence in time, and showing retentive strategies aimed at resource storage (e.g., geophytes, spring green leaves, rhizomes, and mesomorphic/hygromorphic leaves).

  19. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  20. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  1. Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences.

    PubMed

    Sabadin, P K; Malosetti, M; Boer, M P; Tardin, F D; Santos, F G; Guimarães, C T; Gomide, R L; Andrade, C L T; Albuquerque, P E P; Caniato, F F; Mollinari, M; Margarido, G R A; Oliveira, B F; Schaffert, R E; Garcia, A A F; van Eeuwijk, F A; Magalhaes, J V

    2012-05-01

    Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.

  2. Chilling and heat requirements for flowering in temperate fruit trees

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut ( Castanea mollissima Blume) and jujube ( Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing's cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  3. Chilling and heat requirements for flowering in temperate fruit trees.

    PubMed

    Guo, Liang; Dai, Junhu; Ranjitkar, Sailesh; Yu, Haiying; Xu, Jianchu; Luedeling, Eike

    2014-08-01

    Climate change has affected the rates of chilling and heat accumulation, which are vital for flowering and production, in temperate fruit trees, but few studies have been conducted in the cold-winter climates of East Asia. To evaluate tree responses to variation in chill and heat accumulation rates, partial least squares regression was used to correlate first flowering dates of chestnut (Castanea mollissima Blume) and jujube (Zizyphus jujube Mill.) in Beijing, China, with daily chill and heat accumulation between 1963 and 2008. The Dynamic Model and the Growing Degree Hour Model were used to convert daily records of minimum and maximum temperature into horticulturally meaningful metrics. Regression analyses identified the chilling and forcing periods for chestnut and jujube. The forcing periods started when half the chilling requirements were fulfilled. Over the past 50 years, heat accumulation during tree dormancy increased significantly, while chill accumulation remained relatively stable for both species. Heat accumulation was the main driver of bloom timing, with effects of variation in chill accumulation negligible in Beijing’s cold-winter climate. It does not seem likely that reductions in chill will have a major effect on the studied species in Beijing in the near future. Such problems are much more likely for trees grown in locations that are substantially warmer than their native habitats, such as temperate species in the subtropics and tropics.

  4. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    PubMed

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.

  5. Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars

    PubMed Central

    Zhu, Manlan; Zheng, Xuchen; Shu, Qingyan; Li, Hui; Zhong, Peixing; Zhang, Huijin; Xu, Yanjun; Wang, Lijin; Wang, Liangsheng

    2012-01-01

    Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2″-O-galloyl-6″-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6″-O-acetyl-β-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2″-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2′-O-galactoside (Chal2′Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1→2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1→2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1→2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1→2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3″-acetylrhamnoside) (Km3-3″acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3′-galactoside (Dp3′Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant. PMID:22485167

  6. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species

    PubMed Central

    Yuan, Yao-Wu; Rebocho, Alexandra B.; Sagawa, Janelle M.; Stanley, Lauren E.; Bradshaw, Harvey D.

    2016-01-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species. PMID:26884205

  7. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.

    PubMed

    Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D

    2016-03-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.

  8. The evolution of ovule number and flower size in wind-pollinated plants.

    PubMed

    Friedman, Jannice; Barrett, Spencer C H

    2011-02-01

    In angiosperms, ovules are "packaged" within individual flowers, and an optimal strategy should occur depending on pollination and resource conditions. In animal-pollinated species, wide variation in ovule number per flower occurs, and this contrasts with wind-pollinated plants, where most species possess uniovulate flowers. This pattern is usually explained as an adaptive response to low pollen receipt in wind-pollinated species. Here, we develop a phenotypic model for the evolution of ovule number per flower that incorporates the aerodynamics of pollen capture and a fixed resource pool for provisioning of flowers, ovules, and seeds. Our results challenge the prevailing explanation for the association between uniovulate flowers and wind pollination. We demonstrate that when flowers are small and inexpensive, as they are in wind-pollinated species, ovule number should be minimized and lower than the average number of pollen tubes per style, even under stochastic pollination and fertilization regimes. The model predicts that plants benefit from producing many small inexpensive flowers, even though some flowers capture too few pollen grains to fertilize their ovules. Wind-pollinated plants with numerous flowers distributed throughout the inflorescence, each with a single ovule or a few ovules, sample more of the airstream, and this should maximize pollen capture and seed production.

  9. Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    PubMed Central

    Samad, Samia; Kurokura, Takeshi; Koskela, Elli; Toivainen, Tuomas; Patel, Vipul; Mouhu, Katriina; Sargent, Daniel James; Hytönen, Timo

    2017-01-01

    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry. PMID:28580150

  10. Studies on the antifertility potentiality of Hibiscus rosa sinensis. Parts of medicinal value; selection of species and seasonal variations.

    PubMed

    Kholkute, S D; Mudgal, V; Udupa, K N

    1977-02-01

    The postcoital antifertility properties of benzene hot extracts of Hibiscus rosa sinensis flowers, leaves, and stembarks, collected during the winter, spring, rainy, and summer seasons, were investigated in female rats. Only extracts from the flowers of the plant were 100% effective in preventing pregnancy. Those flowers collected during the winter showed the greatest potency, followed by those collected in the spring, rainy season, and summer, in decreasing order. Benzene extracts of flowers collected from Hibiscus mutabilis, Hibiscus schizopetalus, and Malvasicus grandiflorus, plants resembling Hibiscus rosa sinensis in petaloid structure, did not markedly affect pregnancy.

  11. Water availability as an agent of selection in introduced populations of Arabidopsis thaliana: impacts on flowering time evolution

    PubMed Central

    Stock, Amanda J.; McGoey, Brechann V.

    2015-01-01

    Flowering is one of the most influential events in the life history of a plant and one of the main determinants of reproductive investment and lifetime fitness. It is also a highly complex trait controlled by dozens of genes. Understanding the selective pressures influencing time to flowering, and being able to reliably predict how it will evolve in novel environments, are unsolved challenges for plant evolutionary geneticists. Using the model plant species, Arabidopsis thaliana, we examined the impact of simulated high and low winter precipitation levels on the flowering time of naturalized lines from across the eastern portion of the introduced North American range, and the fitness consequences of early versus late flowering. Flowering time order was significantly correlated across two environments—in a previous common garden experiment and in environmental chambers set to mimic mid-range photoperiod and temperature conditions. Plants in low water flowered earlier, had fewer basal branches and produced fewer fruits. Selection in both treatments favored earlier flowering and more basal branches. Our analyses revealed an interaction between flowering time and water treatment for fitness, where flowering later was more deleterious for fitness in the low water treatment. Our results are consistent with the hypothesis that differences in winter precipitation levels are one of the selective agents underlying a flowering time cline in introduced A. thaliana populations. PMID:25909038

  12. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce1[W][OPEN

    PubMed Central

    Karlgren, Anna; Gyllenstrand, Niclas; Clapham, David; Lagercrantz, Ulf

    2013-01-01

    The timing of bud set, as one determinant of the annual growth rhythm, is critical for local adaptation of the conifer Norway spruce (Picea abies). Previous gene expression and population genetic studies have suggested a role for P. abies FLOWERING LOCUS T/TERMINAL FLOWER1-Like2 (PaFTL2) in the control of growth cessation and bud set in Norway spruce as well as in local adaptation resulting in clinal variation for timing of bud set. Using transgenic plants with PaFTL2 driven by an inducible promoter, we found that PaFTL2 indeed induces bud set and most probably also growth cessation. PaFTL2 shows high expression around the procambium and vascular tissue and in the crown region in buds of both seedlings and older trees. Furthermore, PaFTL2 expression is induced in vegetative shoots and all bud types in late summer, when growth cessation occurs. This supports the notion that PaFTL2 is involved in growth cessation. A close paralog to PaFTL2, PaFTL1, is strongly expressed in meristems during the summer, possibly to repress meristem activity and the formation of needle primordia during this period. The temporal and spatial expression of PaFTL1 and PaFTL2 largely complement each other, which suggests that they act in concert to control perennial growth in Norway spruce. PMID:23958861

  13. Metabolic Alterations in Two Cirsium Species Identified at Distinct Phenological Stages using UPLC-QTOF/MS.

    PubMed

    Kim, Min-Sun; Nam, Miso; Hwang, Geum-Sook

    2018-01-01

    Cirsium chanroenicum and C. setidens are commonly used both in traditional folk medicine and as a food source. The quality of different species of Cirsium at different harvest times is a function of their metabolite composition, which is determined by the phenological stage. We sought to determine the differences in the metabolite composition of two species of Cirsium during different phenological stages using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) mass spectrometry (MS). Cirsium chanroenicum and C. setidens plants were collected at the floral budding and full flowering stages. Metabolic profiles of Cirsium extracts were determined using UPLC-QTOF/MS to characterise the differences between phenological stages, and the major metabolites were quantified using UPLC-QTOF/MS-multiple reaction monitoring (MRM). At the full flowering stage, the levels of phenolic acids as well as components of the phenylpropanoid pathway were increased. Flavonoids predominated at the full flowering stage in both species. The levels of coumaric acid, kaempferol, and pectolinarigenin differed between the two species of Cirsium. Overall, these results suggest that components of the phenylpropanoid metabolic pathway are upregulated in the full flowering stage in Cirsium, although we did observe some variation between the species. These results will help elucidate the metabolic pathways related to the different phases of the vegetative cycle, and may help determine the optimal season for the harvest of Cirsium with the highest levels of bioactive compounds. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants

    PubMed Central

    Von Holle, Betsy; Wei, Yun; Nickerson, David

    2010-01-01

    Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765

  15. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  16. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae).

    PubMed

    Landis, Jacob B; Soltis, Douglas E; Soltis, Pamela S

    2017-06-23

    Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.

  17. Flower development and sex specification in wild grapevine.

    PubMed

    Ramos, Miguel Jesus Nunes; Coito, João Lucas; Silva, Helena Gomes; Cunha, Jorge; Costa, Maria Manuela Ribeiro; Rocheta, Margarida

    2014-12-12

    Wild plants of Vitis closely related to the cultivated grapevine (V. v. vinifera) are believed to have been first domesticated 10,000 years BC around the Caspian Sea. V. v. vinifera is hermaphrodite whereas V. v. sylvestris is a dioecious species. Male flowers show a reduced pistil without style or stigma and female flowers present reflexed stamens with infertile pollen. V. vinifera produce perfect flowers with all functional structures. The mechanism for flower sex determination and specification in grapevine is still unknown. To understand which genes are involved during the establishment of male, female and complete flowers, we analysed and compared the transcription profiles of four developmental stages of the three genders. We showed that sex determination is a late event during flower development and that the expression of genes from the ABCDE model is not directly correlated with the establishment of sexual dimorphism. We propose a temporal comprehensive model in which two mutations in two linked genes could be players in sex determination and indirectly establish the Vitis domestication process. Additionally, we also found clusters of genes differentially expressed between genders and between developmental stages that suggest a role involved in sex differentiation. Also, the detection of differentially transcribed regions that extended existing gene models (intergenic regions) between sexes suggests that they may account for some of the variation between the subspecies. There is no evidence of differences of expression levels in genes from the ABCDE model that could explain the shift from hermaphroditism to dioecy. We propose that sex specification occurs after floral organ identity has been established and therefore, sex determination genes might be having an effect downstream of the ABCDE model genes.For the first time a full transcriptomic analysis was performed in different flower developmental stages in the same individual. Our experimental approach enabled us to create a comprehensive catalogue of transcribed genes across developmental stages and genders that will contribute for future work in sex determination in seed plants.

  18. Record-Breaking Early Flowering in the Eastern United States

    PubMed Central

    Ellwood, Elizabeth R.; Temple, Stanley A.; Primack, Richard B.; Davis, Charles C.

    2013-01-01

    Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change. PMID:23342001

  19. Climate drives phenological reassembly of a mountain wildflower meadow community.

    PubMed

    Theobald, Elli J; Breckheimer, Ian; HilleRisLambers, Janneke

    2017-11-01

    Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts. © 2017 by the Ecological Society of America.

  20. Fluctuating selection across years and phenotypic variation in food-deceptive orchids.

    PubMed

    Scopece, Giovanni; Juillet, Nicolas; Lexer, Christian; Cozzolino, Salvatore

    2017-01-01

    Nectarless flowers that deceive pollinators offer an opportunity to study asymmetric plant-insect interactions. Orchids are a widely used model for studying these interactions because they encompass several thousand species adopting deceptive pollination systems. High levels of intra-specific phenotypic variation have been reported in deceptive orchids, suggesting a reduced consistency of pollinator-mediated selection on their floral traits. Nevertheless, several studies report on widespread directional selection mediated by pollinators even in these deceptive orchids. In this study we test the hypothesis that the observed selection can fluctuate across years in strength and direction thus likely contributing to the phenotypic variability of this orchid group. We performed a three-year study estimating selection differentials and selection gradients for nine phenotypic traits involved in insect attraction in two Mediterranean orchid species, namely Orchis mascula and O. pauciflora , both relying on a well-described food-deceptive pollination strategy. We found weak directional selection and marginally significant selection gradients in the two investigated species with significant intra-specific differences in selection differentials across years. Our data do not link this variation with a specific environmental cause, but our results suggest that pollinator-mediated selection in food-deceptive orchids can change in strength and in direction over time. In perennial plants, such as orchids, different selection differentials in the same populations in different flowering seasons can contribute to the maintenance of phenotypic variation often reported in deceptive orchids.

  1. Temporal variation in bird and resource abundance across an elevational gradient in Hawaii

    USGS Publications Warehouse

    Hart, Patrick J.; Woodworth, Bethany L.; Camp, Richard J.; Turner, Kathryn; McClure, Katherine; Goodall, Katherine; Henneman, Carlene; Spiegel, Caleb; Lebrun, Jaymi; Tweed, Erik; Samuel, Michael

    2011-01-01

    We documented patterns of nectar availability and nectarivorous bird abundance over ~3 years at nine study sites across an 1,800-m elevational gradient on Hawaii Island to investigate the relationship between resource variation and bird abundance. Flower density (flowers ha-1) and nectar energy content were measured across the gradient for the monodominant 'Ōhi'a (Metrosideros polymorpha). Four nectarivorous bird species were captured monthly in mist nets and surveyed quarterly with point-transect distance sampling at each site to examine patterns of density and relative abundance. Flowering peaks were associated with season but not rainfall or elevation. Bird densities peaked in the winter and spring of each year at high elevations, but patterns were less clear at middle and low elevations. Variability in bird abundance was generally best modeled as a function of elevation, season, and flower density, but the strength of the latter effect varied with species. The low elevations had the greatest density of flowers but contained far fewer individuals of the two most strongly nectarivorous species. There is little evidence of large-scale altitudinal movement of birds in response to 'Ōhi'a flowering peaks. The loose relationship between nectar and bird abundance may be explained by a number of potential mechanisms, including (1) demographic constraints to movement; (2) nonlimiting nectar resources; and (3) the presence of an "ecological trap," whereby birds are attracted by the high resource abundance of, but suffer increased mortality at, middle and low elevations as a result of disease.

  2. Nonrandom Composition of Flower Colors in a Plant Community: Mutually Different Co-Flowering Natives and Disturbance by Aliens

    PubMed Central

    Makino, Takashi T.; Yokoyama, Jun

    2015-01-01

    When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. PMID:26650121

  3. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus

    PubMed Central

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics. PMID:27015281

  4. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus.

    PubMed

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.

  5. Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production.

    PubMed

    Rincent, R; Nicolas, S; Bouchet, S; Altmann, T; Brunel, D; Revilla, P; Malvar, R A; Moreno-Gonzalez, J; Campo, L; Melchinger, A E; Schipprack, W; Bauer, E; Schoen, C-C; Meyer, N; Ouzunova, M; Dubreuil, P; Giauffret, C; Madur, D; Combes, V; Dumas, F; Bauland, C; Jamin, P; Laborde, J; Flament, P; Moreau, L; Charcosset, A

    2014-11-01

    Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels. The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40% with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.

  6. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. © 2015. Published by The Company of Biologists Ltd.

  7. How the ovules get enclosed in magnoliaceous carpels.

    PubMed

    Zhang, Xin; Liu, Wenzhe; Wang, Xin

    2017-01-01

    Angiosperms distinguish themselves from gymnosperms by their ovules that are enclosed before pollination. However, how the ovules get enclosed in angiosperms remains a mystery, especially for Magnoliaceae. The only key to this mystery is finding a series of carpels transitional from fully closed with enclosed ovules to open with naked ovules. We use routine paraffin section technology, LM, SEM to document the morphology and anatomy of carpel variation in Michelia figo (Magnoliaceae). A series of carpel variations within a single flower of Michelia figo (Magnoliaceae) are documented, in which the ovules are exposed in atypical carpels. These atypical and typical carpels for the first time demonstrate clearly how the naked ovule get enclosed. Each atypical carpel, with naked ovules, clearly comprises two parts, namely, subtending foliar part and branches bearing ovules, suggesting that a typical carpel is actually an end-product of the fusion between the ovuliferous branches and subtending foliar parts. The only difference among these carpels is the extent of fusion between these two parts. This generalization is in full agreement with the molecular genetic studies on angiosperm flowers.

  8. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus.

    PubMed

    Rieger, Gudrun; Müller, Maria; Guttenberger, Helmut; Bucar, Franz

    2008-10-08

    This study deals with the effect of altitudinal variation on the content of phenolic compounds in three traditional herbal plants, which are also consumed as food in Central Europe. Herbs of Calluna vulgaris (L.) HULL, flowers and fruits of Sambucus nigra L., and berries of Vaccinium myrtillus L. collected in the Naturpark Solktaler (Austria) were extracted using accelerated solvent extraction (ASE). Identification and quantification of the constituents in the polar extracts (methanol 80%, v/v) were achieved by means of RP-HPLC-PDA and/or LC-PDA-MS analysis with external standards. 3,5- O-Dicaffeoylquinic acid was identified in flowers of S. nigra for the first time. Rising concentrations of flavonoids and especially flavonol-3- O-glycosides with adjacent hydroxyl groups in ring B in C. vulgaris and S. nigra with increasing altitude were observed. Anthocyanins from the berries of both S. nigra and V. myrtillus occurred in decreasing amounts with rising altitude. C. vulgaris showed the best radical scavenging capacity based on the DPPH assay.

  9. Identification and Functional Analysis of Flowering Related microRNAs in Common Wild Rice (Oryza rufipogon Griff.)

    PubMed Central

    Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, XinWu

    2013-01-01

    Background MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Results Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5′-RACE in vivo, and were negatively regulated by miRNAs. Conclusions This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering. PMID:24386120

  10. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  11. Pollinator effectiveness varies with experimental shifts in flowering time.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  12. Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): Implications for plant and primate.

    PubMed

    Hogan, Jeremy D; Melin, Amanda D; Mosdossy, Krisztina N; Fedigan, Linda M

    2016-12-01

    Our goal is to investigate flower foraging by capuchin monkeys, a behavior rarely studied in wild primates. We ask what drives seasonal variation in florivory rates: flower quality and abundance or fluctuations in fruit and invertebrate abundances. We explore how capuchins affect the reproductive success of flower food species by quantifying the potential pollination rate. We followed capuchin groups from dawn to dusk and recorded all flower foraging bouts. Flower food nutritional composition was compared to fruit and invertebrate foods. We recorded overall flower, fruit, and invertebrate abundances and compared the rate of flower foraging to these. We estimated the likelihood of pollination from the proportion of flower patch visits to each plant species that satisfied minimum behavioral requirements. Flower eating was highly seasonal, and was significantly negatively related to overall fruit and invertebrate abundance but not flower abundance. Although smaller than most fruits, flowers were nutritionally comparable to fruit foods by dry mass and contained higher average concentrations of protein. Capuchins are likely pollinators for Luehea speciosa; most foraging visits to this species occurred in a manner that makes outcrossing or geitonogamous pollination likely. Flowers are an important seasonal resource for capuchins. Flowers likely act as fallback foods during periods of reduced fruit and invertebrate abundance, and may exert evolutionary pressure disproportionate to their consumption. Capuchin florivory likely affects the reproductive success of some plants, potentially shaping forest structure. Our study illustrates the value of assessing the importance of rare foods in the primate diet. © 2016 Wiley Periodicals, Inc.

  13. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Altered expression of CmNRRa changes flowering time of Chrysanthemum morifolium.

    PubMed

    Zhang, Yuman; Lian, Lijuan; Liu, Qing; Xiao, Na; Fang, Rongxiang; Liu, Qinglin; Chen, Xiaoying

    2013-04-01

    Flowering time is an important ornamental trait for chrysanthemum (Chrysanthemum morifolium, Dendranthema x grandiflorum) floricultural production. In this study, CmNRRa, an orthologous gene of OsNRRa that regulates root growth in response to nutrient stress in rice, was identified from Chrysanthemum and its role in flowering time was studied. The entire CmNRRa cDNA sequence was determined using a combinatorial PCR approach along with 5' and 3' RACE methods. CmNRRa expression levels in various tissues were monitored by real-time RT-PCR. CmNRRa was strongly expressed in flower buds and peduncles, suggesting that CmNRRa plays a regulatory role in floral development. To investigate the biological function of CmNRRa in chrysanthemums, overexpression and knockdown of CmNRRa were carried out using transgenic Chrysanthemum plants generated through Agrobacterium-mediated transformation. CmNRRa expression levels in the transgenic plants were assayed by real-time RT-PCR and Northern blot analysis. The transgenic plants showed altered flowering times compared with nontransgenic plants. CmNRRa-RNAi transgenic plants flowered 40-64 days earlier, while CmNRRa-overexpressing plants exhibited a delayed flowering phenotype. These results revealed a negative effect of CmNRRa on flowering time modulation. Alteration of CmNRRa expression levels might be an effective means of controlling flowering time in Chrysanthemum. These results possess potential application in molecular breeding of chrysanthemums that production year-round, and may improve commercial chrysanthemum production in the flower industry. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Is plasticity across seasons adaptive in the annual cleistogamous plant Lamium amplexicaule?

    PubMed

    Stojanova, B; Maurice, S; Cheptou, P-O

    2016-04-01

    Many angiosperms exhibit cleistogamy, the production of both cleistogamous flowers (CL), which remain closed and obligately self-pollinated, and chasmogamous flowers (CH), which are potentially open-pollinated. The CH proportion can be plastic. Plasticity is adaptive if environmental changes can be reliably assessed and responded to with an appropriate phenotype and if plastic genotypes have higher fitness in variable environments than non-plastic ones. We studied the plastic response of four natural populations from northern and southern France of an annual cleistogamous plant, Lamium amplexicaule, to predictable seasonal variation. Plants were grown in a semi-controlled environment in spring and in autumn. We assessed the variation in flower number, phenology and cleistogamy-related traits, which were all plastic with respect to season. The CH proportion was higher in spring than in autumn in all four populations. We showed significant stabilizing selection for cleistogamy traits, with higher optimal CH proportions and more pronounced stabilizing selection in spring than in autumn. Observed CH proportions were close to the predicted optimal CH proportions in each season except in autumn for southern populations, which do not experience the autumnal growing season in nature. These results are consistent with adaptive plasticity across seasons of cleistogamy in L. amplexicaule.We propose that adaptive plasticity of cleistogamy could be driven by pollination environment variation, with CL flowers providing reproductive assurance when pollinators are scarce and CH flowers reducing the inbreeding depression in offspring when pollinators are abundant. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The evolution of flowering strategies in US weedy rice

    USDA-ARS?s Scientific Manuscript database

    Local adaptation in plants often involves changes in flowering time in response to day length and temperature differences. Many crop varieties have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading ...

  17. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.

    PubMed

    Shimokawa, Satoshi; Iwashina, Tsukasa; Murakami, Noriaki

    2015-03-01

    One anthocyanin and four flavonols were detected from the petals of Hibiscus hamabo, H. tiliaceus and H. glaber. They were identified as cyanidin 3-0- sambubioside, gossypetin 3-O-glucuronide-8-O-glucoside, quercetin 7-O-rutinoside, gossypetin 3-O-glucoside and gossypetin 8-O-glucuronide by UV spectra, LC-MS, acid hydrolysis and HPLC. The flavonoid composition was essentially the same among the petals ofH. hamabo, H. tiliaceus and H. glaber, and there was little quantitative variation, except for cyanidin 3-O-sambubioside, the content of which in the petals ofH. tiliaceus and H. glaber was much higher than in that of H. hamabo. Flower colors of H. tiliaceus and H. glaber change from yellow to red, and that of H. hamabo changes from yellow to orange. These changes were caused by contents of anthocyanin and flavonols, which increased after flowering of H. hamabo, H. tiliaceus and H. glaber.

  18. Adaptation to the Local Environment by Modifications of the Photoperiod Response in Crops

    PubMed Central

    Nakamichi, Norihito

    2015-01-01

    Flowering plants produce a meristem at the shoot tip where specialized tissue generates shoot apical meristems at the appropriate time to differentiate into reproductive structures, pollinate and efficiently generate seeds. The complex set of molecular and phenological events culminating in development of a flowering meristem is referred to as ‘flowering time’. Flowering time affects plant productivity because plants dedicate energy to produce flowers and seeds rather than vegetative tissue once the molecular decision to initiate flowering has been taken. Thus, initiation of flowering time is an important decision in plants, especially in annual plants including crops. Humans have introduced crops into latitudes and climate areas far from their origin or natural ecosystem, requiring in many cases modification of native flowering times. Recent molecular–genetic studies shed light on the genetic basis related to such introductions. In this review, recent progress regarding crop introductions and their genetic bases are summarized, as well as the potential of other agricultural plants to be introduced into different climatic zones. PMID:25432974

  19. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    PubMed Central

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  20. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees

    PubMed Central

    Ye, Zhong-Ming; Jin, Xiao-Fang; Inouye, David W.

    2017-01-01

    Background and Aims It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Methods Plant–robber–pollinator interactions in an alpine plant, Salvia przewalskii, were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus, but robbed by B. friseanus. Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Key Results Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Conclusions Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. PMID:28158409

  1. Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems.

    PubMed

    Carruthers, Jonathan M; Cook, Samantha M; Wright, Geraldine A; Osborne, Juliet L; Clark, Suzanne J; Swain, Jennifer L; Haughton, Alison J

    2017-08-01

    Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield-enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse-grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.

  2. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides

    PubMed Central

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    ABSTRACT Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference. PMID:24585774

  3. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-03-15

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect visitation rates and pollinator preference.

  4. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    PubMed

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.

  5. Metabolomic profiling of the nectars of Aquilegia pubescens and A. Canadensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fattymore » acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. As a result, this network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).« less

  6. Metabolomic profiling of the nectars of Aquilegia pubescens and A. Canadensis

    DOE PAGES

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.; ...

    2015-05-01

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fattymore » acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. As a result, this network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).« less

  7. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.

    PubMed

    Sandring, Saskia; Agren, Jon

    2009-05-01

    The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.

  8. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  9. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa)

    PubMed Central

    Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23–26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes. PMID:26934377

  10. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force.

    PubMed

    Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J

    2018-03-01

    Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.

  11. Impacts of climate change on spring flower tourism in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Huanjiong

    2016-04-01

    The beauty of blooming flowers causes spring to be one of the most picturesque and pleasant seasons in which to travel. However, the blooming time of plant species are very sensitive to small changes in climate. Therefore, recent climate change may shift flowering time and, as a result, may affect timing of spring tourism for tourists. In order to prove this assumption, we gathered data of first flowering date and end of flowering date (1963-2014) for 49 common ornamental plants in Beijing, China. In addition, we used the number of messages (2010-2014) posted on Sina Weibo (one of the most popular microblogs sites in China, in use by well over 30% of internet users, with a market penetration similar to the United States' Twitter) to indicate the tourist numbers of five scenic spots in Beijing. These spots are most famous places for seeing spring flowers, including the Summer Palace, Yuyuantan Park, Beijing Botanical Garden, Jingshan Park, Dadu City Wall Relics Park. The results showed that the number of species in flower starts to increase in early spring and peaks in middle spring, and then begins to decrease from late spring. The date when the number of species in flower peaks can be defined as best date of spring flower tourism, because on this day people can see blooming flowers of most plant species. The best date of spring flower tourism varied from March 31 to May 1 among years with a mean of April 20. At above scenic spots characterized by the beauty of blooming flowers, tourist numbers also had a peak value during spring. Furthermore, peak time of tourist numbers derived from Weibo varied among different years and was related to best date of spring flower tour derived from phenological data. This suggests that the time of spring outing for tourists is remarkably attracted by flowering phenology. From 1963 to 2014, the best date of spring flower tour became earlier at a rate of 1.6 days decade-1, but the duration for spring flower tour (defined as width at midpoint of frequency distribution curve) kept stable. The best date of spring flower tourism was significantly correlated with spring temperature (R=-0.66, P<0.01), with an increase in spring temperature of 1 °C causing the best date earlier by 4.0 days. In the context of future global warming, it is crucial to enhance the ability to predict flowering time, so as to provide reference for tourism administrators and the tourists to make better tourism arrangements.

  12. Flower development: open questions and future directions.

    PubMed

    Wellmer, Frank; Bowman, John L; Davies, Brendan; Ferrándiz, Cristina; Fletcher, Jennifer C; Franks, Robert G; Graciet, Emmanuelle; Gregis, Veronica; Ito, Toshiro; Jack, Thomas P; Jiao, Yuling; Kater, Martin M; Ma, Hong; Meyerowitz, Elliot M; Prunet, Nathanaël; Riechmann, José Luis

    2014-01-01

    Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.

  13. Testing the influence of gravity on flower symmetry in five Saxifraga species.

    PubMed

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species-Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa-concerning six flower parameters-angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  14. Testing the influence of gravity on flower symmetry in five Saxifraga species

    NASA Astrophysics Data System (ADS)

    Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus

    2017-04-01

    Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species— Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.

  15. Female strobili incidence in a Minnesota population of black spruce: heritability and correlation with height growth

    Treesearch

    C. Dana Nelson; C. A. Mohn

    1989-01-01

    Significant family variation in female strobili incidence, ripeness-to-flower and production were found in a Minnesota black spruce (Picea mariana (Mill.) B.S.P.) population tested at four locations. Heritability estimates indicated that gain in early flowering from selection would be possible. Height growth through age 12 years was positively correlated (genetic and...

  16. Variation of L-DOPA in the leaf and flower tissues of seven faba bean accessions with different flower colors

    USDA-ARS?s Scientific Manuscript database

    Faba bean (Vicia faba L.) has been selected to adapt to a wide range of environments worldwide and is grown for different end-uses such as food, feed, forage and green manure. Particularly noteworthy in faba bean is the medicinally important component L-3,4-dihydroxy phenylalanine (L-DOPA), the majo...

  17. Variation of L-DOPA in the leaf and flower tissues of seven faba bean accessions with different flower colors.

    USDA-ARS?s Scientific Manuscript database

    Faba bean (Vicia faba L.) has been selected to adapt to a wide range of environments worldwide and is grown for different end-uses such as food, feed, forage and green manure. Particularly noteworthy in faba bean is the medicinally important component L-3,4-dihydroxy phenylalanine (L-DOPA), the majo...

  18. Quantifying temporal isolation: a modelling approach assessing the effect of flowering time differences on crop-to-weed pollen flow in sunflower

    PubMed Central

    Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène

    2015-01-01

    Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603

  19. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana.

    PubMed

    Gras, Diana E; Vidal, Elena A; Undurraga, Soledad F; Riveras, Eleodoro; Moreno, Sebastián; Dominguez-Figueroa, José; Alabadi, David; Blázquez, Miguel A; Medina, Joaquín; Gutiérrez, Rodrigo A

    2018-01-23

    The reproductive success of plants largely depends on the correct programming of developmental phase transitions, particularly the shift from vegetative to reproductive growth. The timing of this transition is finely regulated by the integration of an array of environmental and endogenous factors. Nitrogen is the mineral macronutrient that plants require in the largest amount, and as such its availability greatly impacts on many aspects of plant growth and development, including flowering time. We found that nitrate signaling interacts with the age-related and gibberellic acid pathways to control flowering time in Arabidopsis thaliana. We revealed that repressors of flowering time belonging to the AP2-type transcription factor family including SCHLAFMUTZE (SMZ) and SCHNARCHZAPFEN (SNZ) are important regulators of flowering time in response to nitrate. Our results support a model whereby nitrate activates SMZ and SNZ via the gibberellin pathway to repress flowering time in Arabidopsis thaliana. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Local shifts in floral biotic interactions in habitat edges and their effect on quantity and quality of plant offspring

    PubMed Central

    Fenu, Giuseppe; Bernardo, Liliana

    2017-01-01

    Abstract Spatial shifts in insect fauna due to ecological heterogeneity can severely constrain plant reproduction. Nonetheless, data showing effects of insect visit patterns and intensity of mutualistic and/or antagonistic plant–insect interactions on plant reproduction over structured ecological gradients remain scarce. We investigated how changes in flower-visitor abundance, identity and behaviour over a forest-open habitat gradient affect plant biotic interactions, and quantitative and qualitative fitness in the edge-specialist Dianthus balbisii. Composition and behaviour of the insects visiting flowers of D. balbisii strongly varied over the study gradient, influencing strength and patterns of plant biotic interactions (i.e. herbivory and pollination likelihood). Seed set comparison in free- and manually pollinated flowers suggested spatial variations in the extent of quantitative pollen limitation, which appeared more pronounced at the gradient extremes. Such variations were congruent to patterns of flower visit and plant biotic interactions. The analyses on seed and seedling viability evidenced that spatial variation in amount and type of pollinators, and frequency of herbivory affected qualitative fitness of D. balbisii by influencing selfing and outcrossing rates. Our work emphasizes the role of plant biotic interactions as a fine-scale mediator of plant fitness in ecotones, highlighting that optimal plant reproduction can take place into a restricted interval of the ecological gradients occurring at forest edges. Reducing the habitat complexity typical of such transition contexts can threat edge-adapted plants. PMID:28775831

  1. Stigma receptivity over the lifetime of the hermaphroditic flower of Elsholtzia rugulosa was negatively correlated with pollen viability.

    PubMed

    Zhang, Xin-Min; Wolfe, Lorne M

    2016-12-01

    Dichogamy is generally thought to be a mechanism that prevents self-fertilization in flowering plants. This study aims to investigate the relationships between floral age and stigma receptivity, style length and pollen viability, and define how floral characters avoid self-pollination in a gynodioecious Chinese plant, Elsholtzia rugulosa. We assessed the relationships between flower age and style length, stigma receptivity, and pollen viability in E. rugulosa. This species produces 2 forms with plants bearing either hermaphrodite flowers (H) or female flowers (F). Corolla length in F flowers was shorter than the corolla length of H flowers and produced no pollen. H flowers were protandrous, pollen release of H flowers occurred before stigma receptivity. Stigma receptivity was significantly positively correlated with style length in both F flowers and H flowers. Pollen viability in H flowers declined significantly with floral age. Our results suggest that self-pollination in H flowers is likely reduced by dichogamy because stigma receptivity and pollen viability were effectively separated in time. However, because H inflorescences typically have multiple flowers open at the same time means that geitonogamous selfing is not avoided.

  2. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background

    PubMed Central

    Corcobado, Guadalupe; Trillo, Alejandro

    2017-01-01

    Our understanding of how floral visitors integrate visual and olfactory cues when seeking food, and how background complexity affects flower detection is limited. Here, we aimed to understand the use of visual and olfactory information for bumblebees (Bombus terrestris terrestris L.) when seeking flowers in a visually complex background. To explore this issue, we first evaluated the effect of flower colour (red and blue), size (8, 16 and 32 mm), scent (presence or absence) and the amount of training on the foraging strategy of bumblebees (accuracy, search time and flight behaviour), considering the visual complexity of our background, to later explore whether experienced bumblebees, previously trained in the presence of scent, can recall and make use of odour information when foraging in the presence of novel visual stimuli carrying a familiar scent. Of all the variables analysed, flower colour had the strongest effect on the foraging strategy. Bumblebees searching for blue flowers were more accurate, flew faster, followed more direct paths between flowers and needed less time to find them, than bumblebees searching for red flowers. In turn, training and the presence of odour helped bees to find inconspicuous (red) flowers. When bees foraged on red flowers, search time increased with flower size; but search time was independent of flower size when bees foraged on blue flowers. Previous experience with floral scent enhances the capacity of detection of a novel colour carrying a familiar scent, probably by elemental association influencing attention. PMID:28898287

  3. QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt.

    PubMed

    Kushanov, Fakhriddin N; Buriev, Zabardast T; Shermatov, Shukhrat E; Turaev, Ozod S; Norov, Tokhir M; Pepper, Alan E; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Jenkins, Johnie N; Abdukarimov, Abdusattor; Abdurakhmonov, Ibrokhim Y

    2017-01-01

    Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.

  4. Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.

    PubMed

    Chen, Zhong; Ye, Meixia; Su, Xiaoxing; Liao, Weihua; Ma, Huandi; Gao, Kai; Lei, Bingqi; An, Xinmin

    2015-08-01

    APETALA1 plays a crucial role in the transition from vegetative to reproductive phase and in floral development. In this study, to determine the effect of AP1 expression on flowering time and floral organ development, transgenic Arabidopsis and poplar overexpressing of AtAP1M3 (Arabidopsis AP1 mutant by dominant negative mutation) were generated. Transgenic Arabidopsis with e35Spro::AtAP1M3 displayed phenotypes with delayed-flowering compared to wild-type and flowers with abnormal sepals, petals and stamens. In addition, transgenic Arabidopsis plants exhibited reduced growth vigor compared to the wild-type plants. Ectopic expression of AtAP1M3 in poplar resulted in up- or down-regulation of some endogenous key flowering-related genes, including floral meristems identity gene LFY, B-class floral organ identity genes AP3 and PI, flowering pathway integrator FT1 and flower repressors TFL1 and SVP. These results suggest that AtAP1M3 regulates flowering time and floral development in plants.

  5. Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism

    USGS Publications Warehouse

    DeAngelis, Donald L.; Holland, J. Nathaniel

    2006-01-01

    Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.

  6. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    USGS Publications Warehouse

    Kellermann, Jherime L.; van Riper, Charles

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  7. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.

    PubMed

    Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon

    2007-07-25

    Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.

  9. Stable Epigenetic Variants Selected from an Induced Hypomethylated Fragaria vesca Population.

    PubMed

    Xu, Jihua; Tanino, Karen K; Robinson, Stephen J

    2016-01-01

    Epigenetic inheritance was transmitted through selection over five generations of extreme early, but not late flowering time phenotypic lines in Fragaria vesca . Epigenetic variation was initially artificially induced using the DNA demethylation reagent 5-azacytidine (5-azaC). It is the first report to explore epigenetic variant selection and phenotypic trait inheritance in strawberry. Transmission frequency of these traits was determined across generations. The early flowering (EF4) and late stolon (LS) phenotypic traits were successfully transmitted across five and three generations through meiosis, respectively. Stable mitotic transmission of the early flowering phenotype was also demonstrated using clonal daughters derived from the 4th Generation (S4) mother plant. In order to further explore the DNA methylation patterns underlying the early flowering trait, the standard MSAP method using isoschizomers Hpa II/Msp I, and newly modified MSAP method using isoschizomers Tfi I/Pfe I which detected DNA methylation at CG, CHG, CHH sites were used in two early flowering lines, EF lines 1 (P2) and EF lines 2 (P3), and control lines (P1). A significant reduction in the number of fully-methylated bands was detected in P2 and P3 when compared to P1 using the novel MSAP method. In the standard MSAP, the symmetric CG and CHG methylation was maintained over generations in the early flowering lines based on the clustering in P2 and P3, the novel MSAP approach revealed the asymmetric CHH methylation pattern was not maintained over generations. This study provides evidence of stable selection of phenotypic traits, particularly early flowering through both meiosis and mitosis, which is meaningful to both breeding programs and commercial horticulture. The maintenance in CG and CHG methylation over generations suggests the early flowering phenotype might be related to DNA methylation alterations at the CG or CHG sites. Finally, this work provides a new approach for studying the role of epigenetics on complex quantitative trait improvement in strawberry, as well as providing a tool to expand phenotypic diversity and expedite potential new horticulture cultivar releases through either seed or vegetative propagation.

  10. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    PubMed

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the observation period, influenced for instance by solar irradiance. As Ecuador suffers the highest rate of deforestation in South America, there is an urgent need for indigenous plant material for reforestation. A detailed knowledge of the biology of reproduction in relation to governing external factors (mainly climate) is thus required.

  11. Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod.

    PubMed

    Ben-Attia, Mossadok; Reinberg, Alain; Smolensky, Michael H; Gadacha, Wafa; Khedaier, Achraf; Sani, Mamane; Touitou, Yvan; Boughamni, Néziha Ghanem

    2016-01-01

    Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as "waves" with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a "gating" 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) "gated" by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.

  12. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.

    PubMed

    Anderson, Jill T; Eckhart, Vincent M; Geber, Monica A

    2015-09-01

    Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling.

    PubMed

    Dong, Zhanshan; Danilevskaya, Olga; Abadie, Tabare; Messina, Carlos; Coles, Nathan; Cooper, Mark

    2012-01-01

    The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.

  14. Flower thermoregulation facilitates fertilization in Asian sacred lotus

    PubMed Central

    Li, Jiao-Kun; Huang, Shuang-Quan

    2009-01-01

    Background and Aims The thermoregulatory flower of the Asian sacred lotus (Nelumbo nucifera) can maintain a relatively stable temperature despite great variations in ambient temperature during anthesis. The thermoregulation has been hypothesized to offer a direct energy reward for pollinators in lotus flowers. This study aims to examine whether the stable temperature maintained in the floral chamber influences the fertilization process and seed development. Methods An artificial refrigeration instrument was employed to cool flowers during the fertilization process and post-fertilization period in an experimental population. The effect of temperature on post-pollination events was also examined by removing petals in two field populations. Key Results Treatments with low floral temperature did not reduce stigma receptivity or pollen viability in undehisced anthers. Low temperature during the fertilization period significantly decreased seed set per flower but low temperature during the phase of seed development had no effect, suggesting that temperature regulation by lotus flowers facilitated fertilization success. Hand-pollination treatments in two field populations indicated that seed set of flowers with petals removed was lower than that of intact flowers in north China, where ambient temperatures are low, but not in south China, confirming that reducing the temperature of carpels did influence post-pollination events. Conclusions The experiments suggest that floral thermoregulation in lotus could enhance female reproductive success by facilitating fertilization. PMID:19282320

  15. Flower thermoregulation facilitates fertilization in Asian sacred lotus.

    PubMed

    Li, Jiao-Kun; Huang, Shuang-Quan

    2009-05-01

    The thermoregulatory flower of the Asian sacred lotus (Nelumbo nucifera) can maintain a relatively stable temperature despite great variations in ambient temperature during anthesis. The thermoregulation has been hypothesized to offer a direct energy reward for pollinators in lotus flowers. This study aims to examine whether the stable temperature maintained in the floral chamber influences the fertilization process and seed development. An artificial refrigeration instrument was employed to cool flowers during the fertilization process and post-fertilization period in an experimental population. The effect of temperature on post-pollination events was also examined by removing petals in two field populations. Treatments with low floral temperature did not reduce stigma receptivity or pollen viability in undehisced anthers. Low temperature during the fertilization period significantly decreased seed set per flower but low temperature during the phase of seed development had no effect, suggesting that temperature regulation by lotus flowers facilitated fertilization success. Hand-pollination treatments in two field populations indicated that seed set of flowers with petals removed was lower than that of intact flowers in north China, where ambient temperatures are low, but not in south China, confirming that reducing the temperature of carpels did influence post-pollination events. The experiments suggest that floral thermoregulation in lotus could enhance female reproductive success by facilitating fertilization.

  16. The effect of hummingbird flower mites on nectar availability of two sympatric Heliconia species in a Brazilian Atlantic forest.

    PubMed

    Da Cruz, Denise Dias; Righetti De Abreu, Vanessa Holanda; Van Sluys, Monique

    2007-09-01

    Hummingbird flower mites feed and reproduce in flowers of host plants pollinated by hummingbirds, and use the nostrils and bill of the hummingbird to move from plant to plant. These mites compete with the pollinator for the nectar produced by flowers. An investigation was made of the relationship between the pattern of nectar production and the effects of hummingbird flower mites in the flowers of two sympatric species of Heliconia (Heliconiaceae). Nectar production was sampled by carrying out two experiments: 2-hour intervals and accumulated nectar. Flowers with and without mites were used in both experiments. Exclusion of mites increased nectar production, especially in accumulated daily production (a maximum of 49 % more nectar). Both Heliconia species had the same pattern of nectar production: a high concentration in the morning, which was progressively reduced as the day passed. This pattern of nectar production coincides with the behaviour of the pollinator, which makes more frequent visits in the morning, as observed in a previous study. The results suggest that the impact of mites on nectar availability of Heliconia is more important with regard to total volume of nectar produced irrespective of flower longevity. A high variation among individuals in nectar produced in the populations was also observed. Hummingbird flower mites strongly affect availability of nectar for hummingbirds.

  17. The Effect of Hummingbird Flower Mites on Nectar Availability of Two Sympatric Heliconia Species in a Brazilian Atlantic Forest

    PubMed Central

    Da Cruz, Denise Dias; Righetti De Abreu, Vanessa Holanda; Van Sluys, Monique

    2007-01-01

    Background and Aims Hummingbird flower mites feed and reproduce in flowers of host plants pollinated by hummingbirds, and use the nostrils and bill of the hummingbird to move from plant to plant. These mites compete with the pollinator for the nectar produced by flowers. An investigation was made of the relationship between the pattern of nectar production and the effects of hummingbird flower mites in the flowers of two sympatric species of Heliconia (Heliconiaceae). Methods Nectar production was sampled by carrying out two experiments: 2-hour intervals and accumulated nectar. Flowers with and without mites were used in both experiments. Key Results Exclusion of mites increased nectar production, especially in accumulated daily production (a maximum of 49 % more nectar). Both Heliconia species had the same pattern of nectar production: a high concentration in the morning, which was progressively reduced as the day passed. This pattern of nectar production coincides with the behaviour of the pollinator, which makes more frequent visits in the morning, as observed in a previous study. Conclusions The results suggest that the impact of mites on nectar availability of Heliconia is more important with regard to total volume of nectar producted irrespective of flower longevity. A high variation among individuals in nectar produced in the populations was also observed. Hummingbird flower mites strongly affect availability of nectar for hummingbirds. PMID:17638712

  18. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    PubMed Central

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  19. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus.

    PubMed

    Zhang, Huanling; Harry, David E; Ma, Cathleen; Yuceer, Cetin; Hsu, Chuan-Yu; Vikram, Vikas; Shevchenko, Olga; Etherington, Elizabeth; Strauss, Steven H

    2010-06-01

    Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.

  20. Sex allocation and functional bias of quaternary and quinary flowers on same inflorescence in the hermaphrodite Ruta graveolens

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Yu; Ren, Ming-Xun

    2011-09-01

    Intra-inflorescence variation in floral traits is important to understand the pollination function of an inflorescence and the real reproductive outputs of a plant. Ruta graveolens (Rutaceae) produce both quaternary (four petals and eight stamens) and quinary (five petals and ten stamens) flowers on the same cymes, while their pollination roles and the effects on the reproductive success remained unexplored. We experimentally examined the biomass of female versus male organs and pollen viability and stigma receptivity to explore the sex allocation patterns between the flowers. The breeding systems and reproductive outputs through either female function (seed set) or male function (pollen dispersal) were also studied for quinary and quaternary flowers to determine whether there was functional bias. The results showed that R. graveolens was protandrous, with a mixed mating system. Its stamens could slowly move one by one and only dehisce when positioning at the flower center, which could greatly enhance pollen dispersal. The first-opened quinary flower allocated significantly higher resources (dry biomass) in female organs while quaternary flowers allocated more resource in male organs. The quaternary flowers experienced higher pollen limitation in seed production but were more successful in pollen dispersal and the quinary flowers reproduced both through female and male functions. Our data suggested that quinary and quaternary flower on same inflorescence in R. graveolens functioned mainly as the sex role that most resources were allocated, which probably reflect an adaptation for floral phenology and pollination process in this plant.

  1. L-DOPA concentration variation in the leaf and flower tissues of six faba bean lines with common and rare flower colors

    USDA-ARS?s Scientific Manuscript database

    Faba bean is one of the a few plant species that can produce the medicinally important molecule, L-3,4-dihydroxy phenylalanine (L-DOPA), the major ingredient of several prescription drugs used to treat Parkinson’s disease. L-DOPA can cross the blood-brain barrier, where it is converted to dopamine, ...

  2. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Recent advancements to study flowering time in almond and other Prunus species

    PubMed Central

    Sánchez-Pérez, Raquel; Del Cueto, Jorge; Dicenta, Federico; Martínez-Gómez, Pedro

    2014-01-01

    Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering. PMID:25071812

  4. Plasticity of floral longevity and floral display in the self-compatible biennial Sabatia angularis (Gentianaceae): untangling the role of multiple components of pollination.

    PubMed

    Spigler, Rachel B

    2017-01-01

    Plasticity of floral traits in response to pollination can enable plants to maximize opportunities for pollen import and export under poor pollination conditions, while minimizing costs under favourable ones. Both floral longevity and display are key traits influencing pollination. While pollination-induced flower wilting is widely documented, we lack an understanding of the multifactorial complexity of this response, including the influence of other pollination components, costs of extended longevity and subsequent impacts on floral display. Plasticity of floral longevity was experimentally evaluated in Sabatia angularis in response to multiple pollination factors: pollen addition, removal, and source (self, single-donor outcross, multiple-donor outcross) and timing of pollination. Effects of pollen quantity were further evaluated by exploiting variation in autonomous self-pollen deposition. Delayed pollination costs were tested comparing seed set from early versus late pollinations. Finally, I compared floral display metrics (peak floral display, time to peak flower, flowering duration, mean flowering rate) between experimentally pollinated and control plants. Floral longevity was highly plastic in response to pollen addition and its timing, and the response was dose-dependent but insensitive to pollen source. Pollen removal tended to extend floral longevity, but only insofar as it precluded pollination-induced wilting via autonomous self-pollination. Under delayed pollination, the wilting response was faster and no cost was detected. Pollination further led to reduced peak floral displays and condensed flowering periods. Floral longevity and display plasticity could optimize fitness in S. angularis, a species prone to pollen limitation and high inbreeding depression. Under pollinator scarcity, extended floral longevities offer greater opportunities for pollen receipt and export at no cost to seed set, reproductive assurance via autonomous self-pollination and larger, more attractive floral displays. Under high pollinator availability, shortened longevities lead to smaller displays that should lower the risk of geitonogamy. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Insect-Flower Interaction Network Structure Is Resilient to a Temporary Pulse of Floral Resources from Invasive Rhododendron ponticum

    PubMed Central

    Tiedeken, Erin Jo; Stout, Jane C.

    2015-01-01

    Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community. PMID:25764085

  6. Morphological and chemical variation of Stemona tuberosa from southern China - Evidence for heterogeneity of this medicinal plant species.

    PubMed

    Chen, G; Brecker, L; Felsinger, S; Cai, X-H; Kongkiatpaiboon, S; Schinnerl, J

    2017-09-01

    The occurrence of bioactive alkaloids and tocopherols was studied in 15 different provenances of Stemona tuberosa Lour. collected in southern China, to examine chemical variation of individuals that show notable differences in flower characteristics. Morphological variations stimulated examination of chemical characteristics of these individuals. Methanolic root extracts of 15 individuals of S. tuberosa were comparatively assessed with HPLC-UV-DAD/ELSD. Five of seven compounds were co-chromatographically identified. Two compounds were isolated and their structure elucidated using NMR and MS. Amounts of alkaloids and tocopherols were determined using HPLC-UV-DAD/ELSD with the external standard method. Five alkaloids, tuberostemonine (1), tuberostemonine A (2), neotuberostemonine (3), tuberostemonine N (4), stemoninine (5) and two 3,4-dehydrotocopherol derivatives were identified. Within S. tuberosa alkaloid accumulation tends either towards tuberostemonine (1) or stemoninine (5). All individuals show a notable co-occurrence of compounds 1 or 5 and 3,4-dehydro-δ-tocopherol (6). These results coincide with differences in flower morphology of S. tuberosa. Stemona tuberosa, as defined in the Flora of China, shows a remarkable variation in flower morphology and additionally in the accumulation of alkaloids. The obtained data show the need for future species delimitation to either species or subspecies level. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Expression of the poplar Flowering Locus T1 (FT1) gene reduces the generation time in plum (Prunus domestica L.)

    USDA-ARS?s Scientific Manuscript database

    Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...

  8. Variation in Nectar Volume and Sugar Concentration of Allium ursinum L. ssp. ucrainicum in Three Habitats

    PubMed Central

    Farkas, Ágnes; Molnár, Réka; Morschhauser, Tamás; Hahn, István

    2012-01-01

    Floral nectar volume and concentration of ramson (Allium ursinum L. ssp. ucrainicum) were investigated in three different habitats, including two types of sessile oak-hornbeam association on brown forest soil with clay illuviation and a silver lime-flowering ash rock forest association on rendzina. Daily nectar production ranged from 0.1 to 3.8 μL per flower with sugar concentrations of 25 to 50%. Mean nectar volumes and concentrations showed significant differences between freely exposed flowers and covered flowers, which had been isolated from flower visitors 24 h prior to nectar studies. Both the amount and quality of nectar were affected by microclimatic conditions and soil properties and varied between populations at different habitats. In the silver lime-flowering ash rock-forest association mean nectar volumes and concentrations were lower than in a typical sessile oak-hornbeam association on three occasions, the difference being significant in two cases. During full bloom, the date of sampling did not have a profound effect on either nectar volume or concentration. PMID:22619588

  9. Qualitative and Quantitative Analysis of Flower Pigments in Chocolate Cosmos, Cosmos atrosanguineus, and its Hybrids.

    PubMed

    Amamiya, Kotarou; Iwashina, Tsukasa

    2016-01-01

    Two major anthocyanins, cyanidin 3-O-glucoside and 3-O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar 'Choco Mocha', together with three minor anthocyanins, cyanidin 3-O-malonylglucoside, pelargonidin 3-O-glucoside and 3-O-rutinoside. A chalcone, butein 4'-O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineis x C. sulphureus cultivar 'Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar 'Choco Mocha' and its hybrid cultivars 'Brown Rouge', 'Forte Rouge', 'Rouge Rouge' and 'Noel Rouge' was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars 'Choco Mocha' and 'Brown Rouge' were 3-4-folds higher than that of the red flower cultivar 'Noel Rouge'. On the other hand, total chalcone of 'Noel Rouge' was 10-77-folds higher compared with those of other cultivars, 'Brown Rouge', 'Forte Rouge' and 'Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone.

  10. Water relations and plant size aspects of flowering for Agave deserti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    1987-03-01

    The percentage of rosettes of the monocarpic perennial Agave deserti that flowered annually in the north-western Sonoran Desert varied ca. 50-fold for the 8 yr considered. The number of days when the soil water potential in the root zone was above -0.5 MPa, enabling A. deserti to take up water, was approximately linearly related to the annual precipitation, which also varied considerably year-to-year. The percentage of flowering in a particular year could not be predicted from the number of wet days in that year, the year before, or 3 yr before (r/sup 2/ less than or equal to .10, Pmore » > .5), but there was a positive correlation between percentage of flowering and the number of wet days 2 yr previously (r/sup 2/ = .33, P = .1). Also, years with much flowering tended to alternate with those of little flowering (r/sup 2/ = .64, P = .05). Indeed, 95% of the annual variation in the percentage of the rosettes that flowered could be accounted for by the year-to-year alternations together with the number of wet days 2 yr before the flowering (P = .01). Although over 90% of the rosettes with inflorescences were large, averaging 66 leaves and inflorescences 4 m tall, flowering also occurred for a few small rosettes, averaging only nine leaves and inflorescences only 0.8 m tall. The small flowering rosettes were all attached to large flowering rosettes by rhizomes with living cortical cells, suggesting that a hormone or other chemical signal/condition could be passed to the small rosettes leading to their precocious flowering.« less

  11. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).

    PubMed

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2016-12-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

  12. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)

    PubMed Central

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2018-01-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803

  13. Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis

    NASA Astrophysics Data System (ADS)

    Garcia-Mozo, H.; Orlandi, F.; Galan, C.; Fornaciari, M.; Romano, B.; Ruiz, L.; Diaz de La Guardia, C.; Trigo, M. M.; Chuine, I.

    2009-03-01

    Phenology data are sensitive data to identify how plants are adapted to local climate and how they respond to climatic changes. Modeling flowering phenology allows us to identify the meteorological variables determining the reproductive cycle. Phenology of temperate of woody plants is assumed to be locally adapted to climate. Nevertheless, recent research shows that local adaptation may not be an important constraint in predicting phenological responses. We analyzed variations in flowering dates of Olea europaea L. at different sites of Spain and Italy, testing for a genetic differentiation of flowering phenology among olive varieties to estimate whether local modeling is necessary for olive or not. We build models for the onset and peak dates flowering in different sites of Andalusia and Puglia. Process-based phenological models using temperature as input variable and photoperiod as the threshold date to start temperature accumulation were developed to predict both dates. Our results confirm and update previous results that indicated an advance in olive onset dates. The results indicate that both internal and external validity were higher in the models that used the photoperiod as an indicator to start to cumulate temperature. The use of the unified model for modeling the start and peak dates in the different localities provides standardized results for the comparative study. The use of regional models grouping localities by varieties and climate similarities indicate that local adaptation would not be an important factor in predicting olive phenological responses face to the global temperature increase.

  14. Annual Variation in Flowering Phenology, Pollination, Mating System, and Pollen Yield in Two Natural Populations of Schima wallichii (DC.) Korth

    PubMed Central

    Khanduri, Vinod Prasad; Sharma, C. M.; Kumar, K. S.; Ghildiyal, S. K.

    2013-01-01

    Background. Schima wallichii is a highly valuable tree of tropical forest in north-east Himalaya region that grows naturally in a wide range of altitudes between 750 and 2400 m asl with varying environments. Flowering phenology of tropical tree species at population level is generally ignored and therefore a detailed knowledge of flowering and fruiting patterns of important multipurpose tree species is critical to the successful management of forest genetic resources. Materials and Methods. The study was conducted at two different altitudes (i.e., 750 m and 900 m asl) in the tropical semideciduous forest of north-east Himalaya. The floral phenology including flowering synchrony in the populations, anthesis, anther dehiscence, stigma receptivity, pollinators visitation frequency, and mating system including index of self-incompatibility were worked out in Schima wallichii according to the ear-marked standard methods given by various scientists for each parameter. Results. The flowering period in Schima wallichii varied from 33 to 42 days with mean synchrony of 0.54 to 0.68 between the populations. The stigma was receptive up to 2.5 days only and showed slightly protandrous type of dichogamy. Average pollen production ranged between 6.90 × 107 pollen per tree in 2007 and 15.49 × 108 pollen per tree in 2011. A three-year masting cycle was noticed in this species. The frequency of visitation of honey bees was fairly high (5.2 ± 1.12 visits/flower/hour) as compared to other pollinators. The hand pollination revealed maximum fruit (74.2 ± 5.72%) and seed (70.8 ± 7.46%) settings. Conclusions. The variation in flowering phenology and pollen yield individually and annually along with temporal separation in anther dehiscence and pollinator's visitation cause pollen limited reproduction, which ultimately influences the reproductive success in Schima wallichii. PMID:24501577

  15. Say it with flowers: flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  16. Say it with flowers: Flowering acceleration by root communication.

    PubMed

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings.

  17. Effects of natural gas on Cattleyas, Cymbidiums and Phalaenopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessel, W.H. Jr.

    1966-01-01

    Greenhouse plants were accidentally exposed to pure natural gas for about 3 hours. No permanent damage was done to any of the plants. Flowers and buds were the only things seriously affected. Flowers which were open and mature at the time were not affected. Those flowers just opening and all the Cattleya buds yellowed and dropped, however. The exception to this was a plant of Laelicattleya Buccaneer, which was in bud at the time. It flowered two weeks later with all flowers completely normal. The Cymbidiums had buds still enclosed by the bracts, and they flowered with no injury. Allmore » of the white Phalaenopsis immediately dropped their buds, but some pink P. Clara I. Knight seemed to tolerate the situation better and flowered. The flowers were not as long-lived as they normally would have been.« less

  18. Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.).

    PubMed

    Feng, Guangyan; Huang, Linkai; Li, Ji; Wang, Jianping; Xu, Lei; Pan, Ling; Zhao, Xinxin; Wang, Xia; Huang, Ting; Zhang, Xinquan

    2017-11-22

    Vernalization and the transition from vegetative to reproductive growth involve multiple pathways, vital for controlling floral organ formation and flowering time. However, little transcription information is available about the mechanisms behind environmental adaption and growth regulation. Here, we used high-throughput sequencing to analyze the comprehensive transcriptome of Dactylis glomerata L. during six different growth periods. During vernalization, 4689 differentially expressed genes (DEGs) significantly increased in abundance, while 3841 decreased. Furthermore, 12,967 DEGs were identified during booting stage and flowering stage, including 7750 up-regulated and 5219 down-regulated DEGs. Pathway analysis indicated that transcripts related to circadian rhythm, photoperiod, photosynthesis, flavonoid biosynthesis, starch, and sucrose metabolism changed significantly at different stages. Coexpression and weighted correlation network analysis (WGCNA) analysis linked different stages to transcriptional changes and provided evidence of inner relation modules associated with signal transduction, stress responses, cell division, and hormonal transport. We found enrichment in transcription factors (TFs) related to WRKY, NAC, AP2/EREBP, AUX/IAA, MADS-BOX, ABI3/VP1, bHLH, and the CCAAT family during vernalization and floral bud development. TFs expression patterns revealed intricate temporal variations, suggesting relatively separate regulatory programs of TF modules. Further study will unlock insights into the ability of the circadian rhythm and photoperiod to regulate vernalization and flowering time in perennial grass.

  19. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    PubMed

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  1. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE PAGES

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...

    2017-04-27

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  2. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.).

    PubMed

    Ikegami, Hidetoshi; Nogata, Hitoshi; Inoue, Yoshiaki; Himeno, Shuichi; Yakushiji, Hiroshi; Hirata, Chiharu; Hirashima, Keita; Mori, Masashi; Awamura, Mitsuo; Nakahara, Takao

    2013-12-16

    Because the floral induction occurs in many plants when specific environmental conditions are satisfied, most plants bloom and bear fruit during the same season each year. In fig, by contrast, the time interval during which inflorescence (flower bud, fruit) differentiation occurs corresponds to the shoot elongation period. Fig trees thus differ from many species in their reproductive growth characteristics. To date, however, the molecular mechanisms underlying this unorthodox physiology of floral induction and fruit setting in fig trees have not been elucidated. We isolated a FLOWERING LOCUS T (FT)-like gene from fig and examined its function, characteristics, and expression patterns. The isolated gene, F. carica FT (FcFT1), is single copy in fig and shows the highest similarity at the amino acid level (93.1%) to apple MdFT2. We sequenced its upstream region (1,644 bp) and identified many light-responsive elements. FcFT1 was mainly expressed in leaves and induced early flowering in transgenic tobacco, suggesting that FcFT1 is a fig FT ortholog. Real-time reverse-transcription PCR analysis revealed that FcFT1 mRNA expression occurred only in leaves at the lower nodes, the early fruit setting positions. mRNA levels remained a constant for approximately 5 months from spring to autumn, corresponding almost exactly to the inflorescence differentiation season. Diurnal variation analysis revealed that FcFT1 mRNA expression increased under relative long-day and short-day conditions, but not under continuous darkness. These results suggest that FcFT1 activation is regulated by light conditions and may contribute to fig's unique fruit-setting characteristics.

  3. Floral nectary, nectar production dynamics, and floral reproductive isolation among closely related species of Pedicularis.

    PubMed

    Liu, Ya-Nan; Li, Yan; Yang, Fu-Sheng; Wang, Xiao-Quan

    2016-02-01

    Floral nectar is thought to be one of the most important rewards that attract pollinators in Pedicularis; however, few studies have examined variation of nectary structure and/or nectar secretion in the genus, particularly among closely related species. Here we investigated nectary morphology, nectar quality, and nectar production dynamics in flowers of Pedicularis section Cyathophora. We found a conical floral nectary at the base of the ovary in species of the rex-thamnophila clade. Stomata were found on the surface of the nectary, and copious starch grains were detected in the nectary tissues. In contrast, a semi-annular nectary was found in flowers of the species of the superba clade. Only a few starch grains were observed in tissues of the semi-annular nectary, and the nectar sugar concentration in these flowers was much lower than that in the flowers of the rex-thamnophila clade. Our results indicate that the floral nectary has experienced considerable morphological, structural, and functional differentiation among closely related species of Pedicularis. This could have affected nectar production, leading to a shift of the pollination mode. Our results also imply that variation of the nectary morphology and nectar production may have played an important role in the speciation of sect. Cyathophora. © 2015 Institute of Botany, Chinese Academy of Sciences.

  4. How to be a dioecious fig: Chemical mimicry between sexes matters only when both sexes flower synchronously

    PubMed Central

    Hossaert-McKey, M.; Proffit, M.; Soler, C. C. L.; Chen, C.; Bessière, J.-M.; Schatz, B.; Borges, R. M.

    2016-01-01

    In nursery pollination mutualisms, which are usually obligate interactions, olfactory attraction of pollinators by floral volatile organic compounds (VOCs) is the main step in guaranteeing partner encounter. However, mechanisms ensuring the evolutionary stability of dioecious fig–pollinator mutualisms, in which female fig trees engage in pollination by deceit resulting in zero reproductive success of pollinators that visit them, are poorly understood. In dioecious figs, individuals of each sex should be selected to produce odours that their pollinating wasps cannot distinguish, especially since pollinators have usually only one choice of a nursery during their lifetime. To test the hypothesis of intersexual chemical mimicry, VOCs emitted by pollen-receptive figs of seven dioecious species were compared using headspace collection and gas chromatography-mass spectrometry analysis. First, fig-flower scents varied significantly among species, allowing host-species recognition. Second, in species in which male and female figs are synchronous, intersexual VOC variation was not significant. However, in species where figs of both sexes flower asynchronously, intersexual variation of VOCs was detectable. Finally, with one exception, there was no sexual dimorphism in scent quantity. We show that there are two ways to use scent to be a dioecious fig based on differences in flowering synchrony between the sexes. PMID:26888579

  5. How to be a dioecious fig: Chemical mimicry between sexes matters only when both sexes flower synchronously.

    PubMed

    Hossaert-McKey, M; Proffit, M; Soler, C C L; Chen, C; Bessière, J-M; Schatz, B; Borges, R M

    2016-02-18

    In nursery pollination mutualisms, which are usually obligate interactions, olfactory attraction of pollinators by floral volatile organic compounds (VOCs) is the main step in guaranteeing partner encounter. However, mechanisms ensuring the evolutionary stability of dioecious fig-pollinator mutualisms, in which female fig trees engage in pollination by deceit resulting in zero reproductive success of pollinators that visit them, are poorly understood. In dioecious figs, individuals of each sex should be selected to produce odours that their pollinating wasps cannot distinguish, especially since pollinators have usually only one choice of a nursery during their lifetime. To test the hypothesis of intersexual chemical mimicry, VOCs emitted by pollen-receptive figs of seven dioecious species were compared using headspace collection and gas chromatography-mass spectrometry analysis. First, fig-flower scents varied significantly among species, allowing host-species recognition. Second, in species in which male and female figs are synchronous, intersexual VOC variation was not significant. However, in species where figs of both sexes flower asynchronously, intersexual variation of VOCs was detectable. Finally, with one exception, there was no sexual dimorphism in scent quantity. We show that there are two ways to use scent to be a dioecious fig based on differences in flowering synchrony between the sexes.

  6. The timing of GIGANTEA expression during day/night cycles varies with the geographical origin of Arabidopsis accessions.

    PubMed

    de Montaigu, Amaury; Coupland, George

    2017-07-03

    Latitudinal clines in circadian rhythms have consistently been described in various plant species, with the most recent examples appearing in soybean cultivars and in monkey flower natural populations. These latitudinal clines provide evidence that natural variation in circadian rhythms is adaptive, but it is still unclear what adaptive benefits this variation confers, particularly because circadian rhythms are not usually measured in day/night conditions that reflect those experienced by organisms in nature. Here, we report that daily rhythms of GIGANTEA expression respond to day length in a way that depends on the latitude of origin of Arabidopsis accessions. We additionally extend previous findings by confirming that natural variation in GI expression affects growth related traits, and alters the expression of different target genes. The results support the idea that natural variation in daily rhythms of expression have broad effects on plant development and are of potential adaptive value.

  7. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  8. Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model.

    PubMed

    Jiang, Yirong; Mao, Shuqin; Huang, Weisu; Lu, Baiyi; Cai, Zengxuan; Zhou, Fei; Li, Maiquan; Lou, Tiantian; Zhao, Yajing

    2016-03-30

    Variations of phenylethanoid glycoside profiles and antioxidant activities in Osmanthus fragrans flowers through the digestive tract were evaluated by a simulated digestion model and UPLC/PDA/MS. Major phenylethanoid glycosides and phenolic acids, namely, salidroside, acteoside, isoacteoside, chlorogenic acid, and caffeic acid, were identified in four cultivars of O. fragrans flowers, and the concentration of acteoside was the highest, being up to 71.79 mg/g dry weight. After simulated digestion, total phenylethanoid glycoside contents and antioxidant activities were significantly decreased. Acteoside was identified as decomposing into caffeic acid, whereas salidroside was found to be stable during simulated digestion. According to Pearson's correlation analysis, acteoside contents showed good correlations with antioxidant activities during simulated digestion (R(2) = 0.994, P < 0.01). In conclusion, acteoside was the major contributor to the antioxidant activity of O. fragrans flowers, and salidroside was considered as the major antioxidant compound of O. fragrans flowers in vivo.

  9. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    PubMed

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  10. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5

    PubMed Central

    Thines, Bryan C.; Duarte, Maritza I.; Harmon, Frank G.

    2014-01-01

    Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD. PMID:24574484

  11. Implementing a U.S. national phenology network

    USGS Publications Warehouse

    Betancourt, J.L.; Schwartz, M.D.; Breshears, D.D.; Cayan, D.R.; Dettinger, M.D.; Inouye, D.W.; Post, E.; Reed, B.C.

    2005-01-01

    The passing of seasons, as gauged by annual events or phenophases in organisms' life cycles, is arguably one of the most pervasive environmental variations on Earth. Shifts in seasonal timing, or phenology, are observed in flowering and other stages of plant development, animal migration and reproduction, hibernation, and the seasonal activity of cold-blooded animals [e.g., Schwartz, 2003; Root et al., 2005]. As an important life history trait, phenology is an object of natural selection; depending on timescales, shifts in phenology can lead to evolutionary change. Thus, phenology is not only an indicator of pattern in environmental science, but also its variation has fitness consequences for individuals, and these can scale up to broader ecological dynamics.

  12. Flowering phenology shifts in response to biodiversity loss

    USGS Publications Warehouse

    Wolf, Amelia A.; Zavaleta, Erika S; Selmants, Paul C.

    2017-01-01

    Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology—the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.

  13. Flowering phenology shifts in response to biodiversity loss.

    PubMed

    Wolf, Amelia A; Zavaleta, Erika S; Selmants, Paul C

    2017-03-28

    Observational studies and experimental evidence agree that rising global temperatures have altered plant phenology-the timing of life events, such as flowering, germination, and leaf-out. Other large-scale global environmental changes, such as nitrogen deposition and altered precipitation regimes, have also been linked to changes in flowering times. Despite our increased understanding of how abiotic factors influence plant phenology, we know very little about how biotic interactions can affect flowering times, a significant knowledge gap given ongoing human-caused alteration of biodiversity and plant community structure at the global scale. We experimentally manipulated plant diversity in a California serpentine grassland and found that many plant species flowered earlier in response to reductions in diversity, with peak flowering date advancing an average of 0.6 days per species lost. These changes in phenology were mediated by the effects of plant diversity on soil surface temperature, available soil N, and soil moisture. Peak flowering dates were also more dispersed among species in high-diversity plots than expected based on monocultures. Our findings illustrate that shifts in plant species composition and diversity can alter the timing and distribution of flowering events, and that these changes to phenology are similar in magnitude to effects induced by climate change. Declining diversity could thus contribute to or exacerbate phenological changes attributed to rising global temperatures.

  14. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow temperature rise in early spring immediately after dormancy release, likely brought forward the flowering date of cherry blossom. We derived a thermal time-based flowering model from this analysis and used it to predict the flowering dates of forsythia and cherry blossom in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species, showing a feasibility of prediction under the changing climate.

  15. Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2012-01-01

    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes. PMID:22915579

  16. 'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).

    PubMed Central

    Meagher, Thomas R; Costich, Denise E

    2004-01-01

    Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614

  17. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    PubMed Central

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  18. [Investigation of potential toxic factors for fleece-flower root: from perspective of processing methods evolution].

    PubMed

    Cui, He-Rong; Bai, Zhao-Fang; Song, Hai-Bo; Jia, Tian-Zhu; Wang, Jia-Bo; Xiao, Xiao-He

    2016-01-01

    In recent years, the rapid growth of reports on fleece-flower root-caused liver damages has drawn wide attention of both at home and abroad, however, there were rare literature on toxicology of fleece-flower root in ancient Chinese medicine. But why there are so many reports on toxicology of fleece-flower root now compared with the ancient literature? As a typical tonic medicine, the clinical utility of fleece-flower root was largely limited by its standardization and reliability of processing methods in ancient Chinese medicine. The ancient processing methods of fleece-flower root emphasized nine times of steaming and nine times of drying, while the modern processes have been simplified into one time of steaming. Whether the differences between ancient and modern processing methods are the potential cause of the increased events of fleece-flower root-caused liver damages. We will make deep analysis and provide new clues and perspectives for the research on its toxicity. This article, therefore, would discuss the affecting factors and key problems in toxicity attenuation of fleece-flower root on the basis of sorting out the processing methods of fleece-flower root in ancient medical books and modern standards, in order to provide the reference for establishing specification for toxicity attenuation of fleece-flower root. Copyright© by the Chinese Pharmaceutical Association.

  19. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    PubMed

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.

  20. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[W

    PubMed Central

    Hsu, Chuan-Yu; Liu, Yunxia; Luthe, Dawn S.; Yuceer, Cetin

    2006-01-01

    Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit. PMID:16844908

  1. Shielding Flowers Developing under Stress: Translating Theory to Field Application

    PubMed Central

    Chayut, Noam; Sobol, Shiri; Nave, Nahum; Samach, Alon

    2014-01-01

    Developing reproductive organs within a flower are sensitive to environmental stress. A higher incidence of environmental stress during this stage of a crop plants’ developmental cycle will lead to major breaches in food security. Clearly, we need to understand this sensitivity and try and overcome it, by agricultural practices and/or the breeding of more tolerant cultivars. Although passion fruit vines initiate flowers all year round, flower primordia abort during warm summers. This restricts the season of fruit production in regions with warm summers. Previously, using controlled chambers, stages in flower development that are sensitive to heat were identified. Based on genetic analysis and physiological experiments in controlled environments, gibberellin activity appeared to be a possible point of horticultural intervention. Here, we aimed to shield flowers of a commercial cultivar from end of summer conditions, thus allowing fruit production in new seasons. We conducted experiments over three years in different settings, and our findings consistently show that a single application of an inhibitor of gibberellin biosynthesis to vines in mid-August can cause precocious flowering of ~2–4 weeks, leading to earlier fruit production of ~1 month. In this case, knowledge obtained on phenology, environmental constraints and genetic variation, allowed us to reach a practical solution. PMID:27135506

  2. Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen.

    PubMed

    Mao, Yun-Yun; Huang, Shuang-Quan

    2009-08-01

    Flowers exhibit adaptive responses to biotic and abiotic factors. It remains unclear whether pollen susceptibility to rain damage plays a role in the evolution of floral form. We investigated flower performance in rain and compared pollen longevity in dry conditions, pure water and solutions with different sucrose concentrations in 80 flowering species from 46 families with diverse floral shapes and pollination modes. A pollen viability test showed that pollen longevity in all studied species was greatly reduced by wetting. We found that pollen of species with complete protection by flower structures was susceptible to water damage and a high proportion of resistant pollen occurred in unprotected species. Flowers whose structures expose pollen to rain may also reduce rain damage through temporal patterns of pollen presentation. This prediction was supported by our direct measurement of pollen presentation duration on rainy days. Our observations showed that variation in pollen performance in water was associated with differences in floral forms. Water-resistant pollen and extended pollen presentation duration were favored by selection via rain contact in species in which pollen was not protected from rain. These findings support the functional hypothesis that flower structures protect susceptible pollen from rain, demonstrating that rain acts as a force shaping floral form.

  3. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry

    PubMed Central

    Dirlewanger, E; Quero-García, J; Le Dantec, L; Lambert, P; Ruiz, D; Dondini, L; Illa, E; Quilot-Turion, B; Audergon, J-M; Tartarini, S; Letourmy, P; Arús, P

    2012-01-01

    The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3–8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions. PMID:22828898

  4. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry.

    PubMed

    Dirlewanger, E; Quero-García, J; Le Dantec, L; Lambert, P; Ruiz, D; Dondini, L; Illa, E; Quilot-Turion, B; Audergon, J-M; Tartarini, S; Letourmy, P; Arús, P

    2012-11-01

    The present study investigates the genetic determinism of flowering and maturity dates, two traits highly affected by global climate change. Flowering and maturity dates were evaluated on five progenies from three Prunus species, peach, apricot and sweet cherry, during 3-8 years. Quantitative trait locus (QTL) detection was performed separately for each year and also by integrating data from all years together. High heritability estimates were obtained for flowering and maturity dates. Several QTLs for flowering and maturity dates were highly stable, detected each year of evaluation, suggesting that they were not affected by climatic variations. For flowering date, major QTLs were detected on linkage groups (LG) 4 for apricot and sweet cherry and on LG6 for peach. QTLs were identified on LG2, LG3, LG4 and LG7 for the three species. For maturity date, a major QTL was detected on LG4 in the three species. Using the peach genome sequence data, candidate genes underlying the major QTLs on LG4 and LG6 were investigated and key genes were identified. Our results provide a basis for the identification of genes involved in flowering and maturity dates that could be used to develop cultivar ideotypes adapted to future climatic conditions.

  5. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees.

    PubMed

    Ye, Zhong-Ming; Jin, Xiao-Fang; Wang, Qing-Feng; Yang, Chun-Feng; Inouye, David W

    2017-04-01

    It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Field methods for sampling and storing nectar from flowers with low nectar volumes.

    PubMed

    Morrant, D S; Schumann, R; Petit, S

    2009-02-01

    Although several methods of sampling and storing floral nectar are available, little information exists on sampling and storing nectar from flowers with low nectar volumes. Methods for sampling and storing nectar from the flowers of species with low floral nectar volumes (<1 microL) were investigated using the flowers of Eucalyptus species. Sampling with microcapillary tubes, blotting up with filter paper, washing and rinsing were compared to determine masses of sugars recovered and differences in sugar ratios. Storage methods included room temperature, refrigeration and freezing treatments; the addition of antimicrobial agents benzyl alcohol or methanol to some of these treatments was also evaluated. Nectar samples were analysed using high-performance liquid chromatography and the masses of sucrose, glucose and fructose in each sample were determined. Masses of sugars varied significantly among sampling treatments, but the highest yielding methods, rinsing and washing, were not significantly different. A washing time of 1 min was as effective as one of 20 min. Storage trials showed that the sugar concentration measurements of nectar solutions changed rapidly, with the best results achieved for refrigeration with no additive (sucrose and fructose were stable for at least 2 weeks). Sugar ratios, however, remained relatively stable in most treatments and did not change significantly across 4 weeks for the methanol plus refrigerator and freezing treatments, and 2 weeks for the refrigeration treatment with no additive. Washing is recommended for nectar collection from flowers with low nectar volumes in the field (with the understanding that one wash underestimates the amounts of sugars present in a flower), as is immediate analysis of sugar mass. In view of the great variation in results depending on nectar collection and storage methods, caution should be exercised in their choice, and their accuracy should be evaluated. The use of pulsed amperometric detection, more specific than refractive index detection, may improve the accuracy of nectar sugar analysis.

  7. Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions.

    PubMed

    Li, Wei; Wang, Houping; Yu, Diqiu

    2016-11-07

    In plants, photoperiod is an important cue for determining flowering. The floral transition in Arabidopsis thaliana is earlier under long-day (LD) than under short-day (SD) conditions. Flowering of Arabidopsis plants under SD conditions is mainly regulated by the plant hormone gibberellin (GA). Here, we report two WRKY transcription factors function oppositely in controlling flowering time under SD conditions. Phenotypic analysis showed that disruption of WRKY12 caused a delay in flowering, while loss of WRKY13 function promoted flowering. WRKY12 and WRKY13 displayed negatively correlated expression profiles and function successively to regulate flowering. Molecular and genetic analyses demonstrated that FRUITFULL (FUL) is a direct downstream target gene of WRKY12 and WRKY13. Interestingly, we found that DELLA proteins GIBBERELLIN INSENSITIVE (GAI) and RGA-LIKE1 (RGL1) interacted with WRKY12 and WRKY13, and their interactions interfered with the transcriptional activity of the WRKY12 and WRKY13. Further studies suggested thatWRKY12 and WRKY13 partly mediated the effect of GA 3 on controlling flowering time. Taken together, our results indicate that WRKY12 and WRKY13 oppositely modulate flowering time under SD conditions, which at least partially involves the action of GA. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  8. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    PubMed

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  9. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

    PubMed Central

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene. PMID:28846721

  10. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.

    PubMed

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-13

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  11. Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change.

    PubMed

    Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E

    2012-04-01

    The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.

  12. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).

    PubMed

    Anderson, Jill T; Gezon, Zachariah J

    2015-04-01

    Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low-elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2-3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco-evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates. © 2014 John Wiley & Sons Ltd.

  13. Perianth organization and intra-specific floral variability.

    PubMed

    Herrera, J; Arista, M; Ortiz, P L

    2008-11-01

    Floral symmetry and fusion of perianth parts are factors that contribute to fine-tune the match between flowers and their animal pollination vectors. In the present study, we investigated whether the possession of a sympetalous (fused) corolla and bilateral symmetry of flowers translate into decreased intra-specific variability as a result of natural stabilizing selection exerted by pollinators. Average size of the corolla and intra-specific variability were determined in two sets of southern Spanish entomophilous plant species. In the first set, taxa were paired by family to control for the effect of phylogeny (phylogenetically independent contrasts), whereas in the second set species were selected at random. Flower size data from a previous study (with different species) were also used to test the hypothesis that petal fusion contributes to decrease intra-specific variability. In the phylogenetically independent contrasts, floral symmetry was a significant correlate of intra-specific variation, with bilaterally symmetrical flowers showing more constancy than radially symmetrical flowers (i.e. unsophisticated from a functional perspective). As regards petal fusion, species with fused petals were on average more constant than choripetalous species, but the difference was not statistically significant. The reanalysis of data from a previous study yielded largely similar results, with a distinct effect of symmetry on variability, but no effect of petal fusion. The randomly-chosen species sample, on the other hand, failed to reveal any significant effect of either symmetry or petal fusion on intra-specific variation. The problem of low-statistical power in this kind of analysis, and the difficulty of testing an evolutionary hypothesis that involves phenotypic traits with a high degree of morphological correlation is discussed.

  14. Pollination ecology of Silene acutifolia (Caryophyllaceae): floral traits variation and pollinator attraction.

    PubMed

    Buide, María Luisa

    2006-02-01

    The floral display influences the composition of pollinators interacting with a plant species. Geographic and temporal variation in pollinator composition complicates the understanding of the evolutionary consequences of floral display variation. This paper analyses the relationships between Silene acutifolia, a hermaphroditic perennial herb, and its pollinators, based on field studies in the north-west of Spain. Studies were conducted over three years (1997-1999). Firstly, the main pollinators of this species were determined for two years in one population. Secondly, pollen limitation in fruit and seed production was analysed by supplementary hand pollinations, and counting the pollen grains and tubes growing in styles for two different-sized populations. Finally, the effect of flower size and number on the rate of visitation and total seed number was examined for 15 marked plants. The primary pollinators were long-tongued insects, including Hymenoptera, Lepidoptera and Diptera, but the composition and visitation frequencies differed between years. Pollen limitation occurred in one of the years of study. There was between-population variation in the number of pollen grains and pollen tubes found in styles, suggesting pollen limitation in one population. Overall, pollinators visited plants with more open flowers more frequently, and pollinated more flowers within these plants. Conversely, petal and calyx sizes had no effect on insect visitation. Plants with higher rates of visits produced higher number of seeds, suggesting that pollinator-mediated limitation of seed and fruit production may be important in some years.

  15. Say it with flowers

    PubMed Central

    Falik, Omer; Hoffmann, Ishay; Novoplansky, Ariel

    2014-01-01

    The timing of reproduction is a critical determinant of fitness, especially in organisms inhabiting seasonal environments. Increasing evidence suggests that inter-plant communication plays important roles in plant functioning. Here, we tested the hypothesis that flowering coordination can involve communication between neighboring plants. We show that soil leachates from Brassica rapa plants growing under long-day conditions accelerated flowering and decreased allocation to vegetative organs in target plants growing under non-inductive short-day conditions. The results suggest that besides endogenous signaling and external abiotic cues, flowering timing may involve inter-plant communication, mediated by root exudates. The study of flowering communication is expected to illuminate neglected aspects of plant reproductive interactions and to provide novel opportunities for controlling the timing of plant reproduction in agricultural settings. PMID:24598343

  16. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency

    PubMed Central

    Taweesak, Viyachai; Lee Abdullah, Thohirah; Hassan, Siti Aishah; Kamarulzaman, Nitty Hirawaty; Wan Yusoff, Wan Abdullah

    2014-01-01

    Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White”) were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes. PMID:25478586

  17. Unexpected diversity during community succession in the apple flower microbiome.

    PubMed

    Shade, Ashley; McManus, Patricia S; Handelsman, Jo

    2013-02-26

    Despite its importance to the host, the flower microbiome is poorly understood. We report a culture-independent, community-level assessment of apple flower microbial diversity and dynamics. We collected flowers from six apple trees at five time points, starting before flowers opened and ending at petal fall. We applied streptomycin to half of the trees when flowers opened. Assessment of microbial diversity using tag pyrosequencing of 16S rRNA genes revealed that the apple flower communities were rich and diverse and dominated by members of TM7 and Deinococcus-Thermus, phyla about which relatively little is known. From thousands of taxa, we identified six successional groups with coherent dynamics whose abundances peaked at different times before and after bud opening. We designated the groups Pioneer, Early, Mid, Late, Climax, and Generalist communities. The successional pattern was attributed to a set of prevalent taxa that were persistent and gradually changing in abundance. These taxa had significant associations with other community members, as demonstrated with a cooccurrence network based on local similarity analysis. We also detected a set of less-abundant, transient taxa that contributed to general tree-to-tree variability but not to the successional pattern. Communities on trees sprayed with streptomycin had slightly lower phylogenetic diversity than those on unsprayed trees but did not differ in structure or succession. Our results suggest that changes in apple flower microbial community structure are predictable over the life of the flower, providing a basis for ecological understanding and disease management. Flowering plants (angiosperms) represent a diverse group of an estimated 400,000 species, and their successful cultivation is essential to agriculture. Yet fundamental knowledge of flower-associated microbiotas remains largely unknown. Even less well understood are the changes that flower microbial communities experience through time. Flowers are particularly conducive to comprehensive temporal studies because they are, by nature, ephemeral organs. Here, we present the first culture-independent time series of bacterial and archaeal communities associated with the flowers of apple, an economically important crop. We found unexpected diversity on apple flowers, including a preponderance of taxa affiliated with Deinococcus-Thermus and TM7, phyla that are understudied but thought to be tolerant to an array of environmental stresses. Our results also suggest that changes in microbial community structure on the apple flower may be predictable over the life of the flower, providing the basis for ecological understanding and disease management.

  18. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability.

    PubMed

    de Vere, Natasha; Jones, Laura E; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J; Creer, Simon; Ford, Col R

    2017-02-16

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet.

  19. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.

    PubMed

    Du, Yanjun; Chen, Jingru; Willis, Charles G; Zhou, Zhiqiang; Liu, Tong; Dai, Wujun; Zhao, Yuan; Ma, Keping

    2017-09-01

    Climate change has resulted in major changes in plant phenology across the globe that includes leaf-out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf-out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf-out date to climate factors exhibits phylogenetic signal. We used a 52-year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf-out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf-out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf-out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf-out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non-native species. Earlier leaf-out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf-out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf-out sensitivity.

  20. Anthocyanin Profiles in Flowers of Grape Hyacinth.

    PubMed

    Lou, Qian; Wang, Lin; Liu, Hongli; Liu, Yali

    2017-04-26

    Grape hyacinth ( Muscari spp.) is a popular ornamental bulbous perennial famous for its blue flowers. To understand the chemical basis of the rich blue colors in this plant, anthocyanin profiles of six blue flowering grape hyacinths as well as one pink and one white cultivar were determined using high-performance liquid chromatography and mass spectrometry. Along with two known compounds, eight putative anthocyanins were identified in the tepals of grape hyacinth for the first time. The accumulation and distribution of anthocyanins in the plant showed significant cultivar and flower development specificity. Violet-blue flowers mainly contained simple delphinidin-type anthocyanins bearing one or two methyl-groups but no acyl groups, whereas white and pink flowers synthesised more complex pelargonidin/cyanidin-derivatives with acyl-moieties but no methyl-groups. The results partially reveal why solid blue, orange or red flowers are rare in this plant in nature. In addition, pelargonidin-type anthocyanins were found for the first time in the genus, bringing more opportunities in terms of breeding of flower color in grape hyacinth.

  1. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2.

    PubMed

    Yan, Fan; Di, Shaokang; Rojas Rodas, Felipe; Rodriguez Torrico, Tito; Murai, Yoshinori; Iwashina, Tsukasa; Anai, Toyoaki; Takahashi, Ryoji

    2014-03-06

    Flower color of soybean is primarily controlled by six genes, viz., W1, W2, W3, W4, Wm and Wp. This study was conducted to investigate the genetic and chemical basis of newly-identified flower color variants including two soybean mutant lines, 222-A-3 (near white flower) and E30-D-1 (light purple flower), a near-isogenic line (Clark-w4), flower color variants (T321 and T369) descended from the w4-mutable line and kw4 (near white flower, Glycine soja). Complementation tests revealed that the flower color of 222-A-3 and kw4 was controlled by the recessive allele (w4) of the W4 locus encoding dihydroflavonol 4-reductase 2 (DFR2). In 222-A-3, a single base was deleted in the first exon resulting in a truncated polypeptide consisting of 24 amino acids. In Clark-w4, base substitution of the first nucleotide of the fourth intron abolished the 5' splice site, resulting in the retention of the intron. The DFR2 gene of kw4 was not expressed. The above results suggest that complete loss-of-function of DFR2 gene leads to near white flowers. Light purple flower of E30-D-1 was controlled by a new allele at the W4 locus, w4-lp. The gene symbol was approved by the Soybean Genetics Committee. In E30-D-1, a single-base substitution changed an amino acid at position 39 from arginine to histidine. Pale flowers of T369 had higher expression levels of the DFR2 gene. These flower petals contained unique dihydroflavonols that have not yet been reported to occur in soybean and G. soja. Complete loss-of-function of DFR2 gene leads to near white flowers. A new allele of the W4 locus, w4-lp regulates light purple flowers. Single amino acid substitution was associated with light purple flowers. Flower petals of T369 had higher levels of DFR2 gene expression and contained unique dihydroflavonols that are absent in soybean and G. soja. Thus, mutants of the DFR2 gene have unique flavonoid compositions and display a wide variety of flower color patterns in soybean, from near white, light purple, dilute purple to pale.

  2. Variation and BLUPs in a novel source of orchardgrass germplasm with increased winter hardiness

    USDA-ARS?s Scientific Manuscript database

    The production potential of orchardgrass (Dactylis glomerata L.) is limited by winter injury at high latitudes and elevations. Evaluation of orchardgrass families at two Utah (US) locations identified significant genetic variation for two measures of tolerance to winter injury, but not for flowering...

  3. Changes of Polyphenolic Substances in the Anatomical Parts of Buckwheat (Fagopyrum esculentum Moench.) during Its Growth Phases

    PubMed Central

    Bystricka, Judita; Musilova, Janette; Tomas, Jan; Vollmannova, Alena; Lachman, Jaromir; Kavalcova, Petra

    2014-01-01

    In this study the changes of total polyphenolics in different anatomical parts (stems, leaves, flowers and seeds) of common buckwheat (Fagopyrum esculentum Moench.) during vegetation period were analysed. The content of total polyphenolics was evaluated in growth phase I (formation of buds), phase II (at the beginning of flowering), phase III (full blossoming) and phase IV (full ripeness). In all growth phases (GP) the stems and leaves were evaluated and statistically significant differences in polyphenolics content between the two parts were confirmed. Statistically significant differences (p < 0.01) in polyphenolics content (in GP II and III) between stems and leaves; and between stems and flowers were found. In flowers an average of 13.8 times higher and in leaves 6 times higher concentration of polyphenolics in comparison with stems was measured. In GP III the content of polyphenolics in common buckwheat was following: flowers > leaves > achene > stems. In flowers an average of 11.9 times higher, in leaves 8.3 times higher and in achenes 5.9 times higher contents of polyphenolics compared with stems were found. In GP III and IV (leaves, achenes, stems) the leaves contained in average 20 times higher and achenes 5.6 times higher polyphenolics than stems. PMID:28234337

  4. Variable response of three Trifolium repens ecotypes to soil flooding by seawater.

    PubMed

    White, Anissia C; Colmer, Timothy D; Cawthray, Greg R; Hanley, Mick E

    2014-08-01

    Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Spatial variation in reproductive effort of a southern Australian seagrass.

    PubMed

    Smith, Timothy M; York, Paul H; Macreadie, Peter I; Keough, Michael J; Ross, D Jeff; Sherman, Craig D H

    2016-09-01

    In marine environments characterised by habitat-forming plants, the relative allocation of resources into vegetative growth and flowering is an important indicator of plant condition and hence ecosystem health. In addition, the production and abundance of seeds can give clues to local resilience. Flowering density, seed bank, biomass and epiphyte levels were recorded for the temperate seagrass Zostera nigricaulis in Port Phillip Bay, south east Australia at 14 sites chosen to represent several regions with different physicochemical conditions. Strong regional differences were found within the large bay. Spathe and seed density were very low in the north of the bay (3 sites), low in the centre of the bay (2 sites) intermediate in the Outer Geelong Arm (2 sites), high in Swan Bay (2 sites) and very high in the Inner Geelong Arm (3 sites). In the south (2 sites) seed density was low and spathe density was high. These regional patterns were largely consistent for the 5 sites sampled over the three year period. Timing of flowering was consistent across sites, occurring from August until December with peak production in October, except during the third year of monitoring when overall densities were lower and peaked in November. Seagrass biomass, epiphyte load, canopy height and stem density showed few consistent spatial and temporal patterns. Variation in spathe and seed density and morphology across Port Phillip Bay reflects varying environmental conditions and suggests that northern sites may be restricted in their ability to recover from disturbance through sexual reproduction. In contrast, sites in the west and south of the bay have greater potential to recover from disturbances due to a larger seed bank and these sites could act as source populations for sites where seed production is low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Flowering time and seed dormancy control use external coincidence to generate life history strategy.

    PubMed

    Springthorpe, Vicki; Penfield, Steven

    2015-03-31

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features.

  7. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate.

    PubMed

    Akter, Asma; Biella, Paolo; Klecka, Jan

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.

  8. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate

    PubMed Central

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction. PMID:29136042

  9. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations.

    PubMed

    Field, David L; Pickup, Melinda; Barrett, Spencer C H

    2013-05-01

    Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants.

  10. Competition for hummingbird pollination shapes flower color variation in Andean solanaceae.

    PubMed

    Muchhala, Nathan; Johnsen, Sönke; Smith, Stacey Dewitt

    2014-08-01

    One classic explanation for the remarkable diversity of flower colors across angiosperms involves evolutionary shifts among different types of pollinators with different color preferences. However, the pollinator shift model fails to account for the many examples of color variation within clades that share the same pollination system. An alternate explanation is the competition model, which suggests that color divergence evolves in response to interspecific competition for pollinators, as a means to decrease interspecific pollinator movements. This model predicts color overdispersion within communities relative to null assemblages. Here, we combine morphometric analyses, field surveys, and models of pollinator vision with a species-level phylogeny to test the competition model in the primarily hummingbird-pollinated clade Iochrominae (Solanaceae). Results show that flower color as perceived by pollinators is significantly overdispersed within sites. This pattern is not simply due to phylogenetic history: phylogenetic community structure does not deviate from random expectations, and flower color lacks phylogenetic signal. Moreover, taxa that occur in sympatry occupy a significantly larger volume of color space than those in allopatry, supporting the hypothesis that competition in sympatry drove the evolution of novel colors. We suggest that competition among close relatives may commonly underlie floral divergence, especially in species-rich habitats where congeners frequently co-occur. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  11. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community.

    PubMed

    Canto, A; Herrera, C M

    2012-11-01

    Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.

  12. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New species of mammals, birds, and insects have begun to reproduce and overwinter at our field site in the past decade, and hibernators have changed the phenology of emergence from hibernation. Marmots now put on much more fat before entering hibernation. Interactions among species such as pollination and seed predation have also been affected by the changes in snowpack and phenology. For example, although both migratory hummingbirds and their floral resources are changing phenology, they are not changing at the same rate, leading to mismatches in their historical synchrony; hummingbirds now arrive well after their earliest food plant has begun to flower. A similar loss of synchrony appears to be affecting bumble bees as they emerge from overwintering underground, and one of their earliest nectar sources. Seed predator flies and moths, and their parasitoids, are probably being affected by the absence of seeds from species sensitive to frost. Thus many aspects of high-altitude ecological communities are being affected by the ongoing changes in depth of winter snowpack and the timing of its melting.

  13. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of mānuka (Leptospermum scoparium).

    PubMed

    Clearwater, Michael J; Revell, Maria; Noe, Stevie; Manley-Harris, Merilyn

    2018-03-05

    Floral nectar can be variable in composition, influencing pollinator behaviour and the composition of honey derived from it. The non-peroxide antibacterial activity of mānuka (Leptospermum scoparium, Myrtaceae) honey results from the chemical conversion of the triose sugar dihydroxyacetone (DHA), after DHA accumulates for an unknown reason in the nectar. This study examined variation in nectar DHA, glucose, fructose and sucrose content with floral stage of development, between mānuka genotypes with differing flower morphology, and in response to water stress. Six mānuka genotypes were grown without nectar-feeding insects. Stages of flower development were defined, nectar was harvested and its composition was compared between stages and genotypes, and with floral morphology. Water stress was imposed and its effect on nectar composition was examined. Nectar was present from soon after flower opening until the end of petal abscission, with the quantity of accumulated nectar sugars rising, then stabilizing or falling, indicating nectar secretion followed by reabsorption in some genotypes. The quantity of DHA, the ratio of DHA to other nectar sugars and the fructose to glucose ratio also varied with stage of development, indicating differences in rates of production and reabsorption between nectar components. Nectar composition and yield per flower also differed between genotypes, although neither was positively related to nectary area or stomatal density. Drying soil had no effect on nectar composition or yield, but variation in nectar yield was correlated with temperature prior to nectar sampling. Mānuka nectar yield and composition are strongly influenced by plant genotype, flower age and the environment. There were clear stoichiometric relationships between glucose, fructose and sucrose per flower, but DHA per flower was only weakly correlated with the amount of other sugars, suggesting that accumulation of the triose sugar is indirectly coupled to secretion of the larger sugars by the nectary parenchyma. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.)

    PubMed Central

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-01-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to ‘pollen development genes’ from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7–10 years, can now be shortened to 6–10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. PMID:27052434

  15. Genetic control of flowering and biomass in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Early flowering can negatively affect biomass yield of switchgrass. In temperate regions of the USA, flowering occurs in switchgrass around the time of peak biomass yield (about 5 to 8 weeks prior to killing frost), effectively reducing the length of the growing season. The use of late-flowering swi...

  16. Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil.

    PubMed

    Ammar, Imène; BenAmira, Amal; Khemakem, Ibtihel; Attia, Hamadi; Ennouri, Monia

    2017-05-01

    This study was focused on the evaluation of the quality and the oxidative stability of olive oil added with Opuntia ficus - indica flowers. Two different amounts of O. ficus - indica flowers were considered 5 and 15% (w/w). The olive oils were evaluated towards their quality, fatty acids profile, total phenol contents and thermal properties by differential scanning calorimetry. The oxidative stability was also monitored by employing the Rancimat and the oven test based on accelerating the oxidation process during storage. The addition of O. ficus - indica flowers induced an increase in free acidity values and a variation in fatty acids profile of olive oils but values remained under the limits required for an extra-virgin olive oil. The obtained olive oils were nutritionally enriched due to the increase in their phenols content. The oxidative stability was generally improved, mainly in olive oil enriched with 5% Opuntia ficus - indica flowers. These findings proved that this enriched olive oil could be considered as a product with a greater added value.

  17. Timing of the inhibitory effect of fruit on return bloom of 'Valencia' sweet orange (Citrus sinensis (L.) Osbeck).

    PubMed

    Martínez-Fuentes, Amparo; Mesejo, Carlos; Reig, Carmina; Agustí, Manuel

    2010-08-30

    In Citrus the inhibitory effect of fruit on flower formation is the main cause of alternate bearing. Although there are some studies reporting the effect on flowering of the time of fruit removal in a well-defined stage of fruit development, few have investigated the effect throughout the entire fruit growth stage from early fruitlet growth to fruit maturity. The objective of this study was to determine the phenological fruit developmental stage at which the fruit begins its inhibitory effect on flowering in sweet orange by manual removal of fruits, and the role of carbohydrates and nitrogen in the process. Fruit exerted its inhibitory effect from the time it was close to reaching its maximum weight, namely 90% of its final size (November) in the present experiments, to bud sprouting (April). The reduction in flowering paralleled the reduction in bud sprouting. This reduction was due to a decrease in the number of generative sprouted buds, whereas mixed-typed shoots were largely independent of the time of fruit removal, and vegetative shoots increased in frequency. The number of leaves and/or flowers per sprouted shoot was not significantly modified by fruit load. In 'Valencia' sweet orange, fruit inhibits flowering from the time it completes its growth. Neither soluble sugar content nor starch accumulation in leaves due to fruit removal was related to flowering intensity, but some kind of imbalance in nitrogen metabolism was observed in trees tending to flower scarcely. Copyright (c) 2010 Society of Chemical Industry.

  18. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    PubMed

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  19. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions

    PubMed Central

    Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth. PMID:26371882

  20. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation.

    PubMed

    Gao, M; Qu, H; Gao, L; Chen, L; Sebastian, R S J; Zhao, L

    2015-01-01

    Flowers are the defining feature of angiosperms, and function as indispensable organs for sexual reproduction. Flower colour typically plays an important role in attracting pollinators, and can show considerable variation, even between closely related species. For example, domesticated tomato (S. lycopersicum) has orange/yellow flowers, while the wild relative S. chilense (accession LA2405) has bright yellow flowers. In this study, the mechanism of flower colour formation in these two species was compared by evaluating the accumulation of carotenoids, assessing the expression genes related to carotenoid biosynthetic pathways and observing chromoplast ultrastructure. In S. chilense petals, genes associated with the lutein branch of the carotenoid biosynthetic pathway, phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), lycopene β-cyclase (LCY-B), β-ring hydroxylase (CRTR-B) and ε-ring hydroxylase (CRTR-E), were highly expressed, and this was correlated with high levels of lutein accumulation. In contrast, PDS, ZDS and CYC-B from the neoxanthin biosynthetic branch were highly expressed in S. lycopersicum anthers, leading to increased β-carotene accumulation and hence an orange/yellow colour. Changes in the size, amount and electron density of plastoglobules in chromoplasts provided further evidence of carotenoid accumulation and flower colour formation. Taken together, these results reveal the biochemical basis of differences in carotenoid pigment accumulation and colour between petals and anthers in tomato. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    PubMed

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Cranberry flowering times and climate change in southern Massachusetts

    NASA Astrophysics Data System (ADS)

    Ellwood, Elizabeth R.; Playfair, Susan R.; Polgar, Caroline A.; Primack, Richard B.

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe—a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  3. Cranberry flowering times and climate change in southern Massachusetts.

    PubMed

    Ellwood, Elizabeth R; Playfair, Susan R; Polgar, Caroline A; Primack, Richard B

    2014-09-01

    Plants in wild and agricultural settings are being affected by the warmer temperatures associated with climate change. Here we examine the degree to which the iconic New England cranberry, Vaccinium macrocarpon, is exhibiting signs of altered flowering phenology. Using contemporary records from commercial cranberry bogs in southeastern Massachusetts in the United States, we found that cranberry plants are responsive to temperature. Flowering is approximately 2 days earlier for each 1 °C increase in May temperature. We also investigated the relationship between cranberry flowering and flight dates of the bog copper, Lycaena epixanthe-a butterfly dependent upon cranberry plants in its larval stage. Cranberry flowering and bog copper emergence were found to be changing disproportionately over time, suggesting a potential ecological mismatch. The pattern of advanced cranberry flowering over time coupled with increased temperature has implications not only for the relationship between cranberry plants and their insect associates but also for agricultural crops in general and for the commercial cranberry industry.

  4. Change of plant phenophases explained by survival modeling

    NASA Astrophysics Data System (ADS)

    Templ, Barbara; Fleck, Stefan; Templ, Matthias

    2017-05-01

    It is known from many studies that plant species show a delay in the timing of flowering events with an increase in latitude and altitude, and an advance with an increase in temperature. Furthermore, in many locations and for many species, flowering dates have advanced over the long-term. New insights using survival modeling are given based on data collected (1970-2010) along a 3000-km long transect from northern to eastern central Europe. We could clearly observe that in the case of dandelion ( Taraxacum officinale) the risk of flowering time, in other words the probability that flowering occurs, is higher for an earlier day of year in later decades. Our approach assume that temperature has greater influence than precipitation on the timing of flowering. Evaluation of the predictive power of tested models suggests that Cox models may be used in plant phenological research. The applied Cox model provides improved predictions of flowering dates compared to traditional regression methods and gives further insights into drivers of phenological events.

  5. Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.

    2008-01-01

    Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169

  6. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines.

    PubMed

    Tyler, Ludmila; Fangel, Jonatan U; Fagerström, Alexandra Dotson; Steinwand, Michael A; Raab, Theodore K; Willats, William Gt; Vogel, John P

    2014-01-14

    The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.

  7. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants

    PubMed Central

    Kim, Yong-Min; Kim, Seungill; Koo, Namjin; Shin, Ah-Young; Yeom, Seon-In; Seo, Eunyoung; Park, Seong-Jin; Kang, Won-Hee; Kim, Myung-Shin; Park, Jieun; Jang, Insu; Kim, Pan-Gyu; Byeon, Iksu; Kim, Min-Seo; Choi, JinHyuk; Ko, Gunhwan; Hwang, JiHye; Yang, Tae-Jin; Choi, Sang-Bong; Lee, Je Min; Lim, Ki-Byung; Lee, Jungho; Choi, Ik-Young; Park, Beom-Seok; Kwon, Suk-Yoon; Choi, Doil

    2017-01-01

    Abstract Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H. syriacus genome comprised of a 1.75 Gb assembly that covers 92% of the genome with only 1.7% (33 Mb) gap sequences. Predicted gene modeling detected 87,603 genes, mostly supported by deep RNA sequencing data. To define gene family distribution among relatives of H. syriacus, orthologous gene sets containing 164,660 genes in 21,472 clusters were identified by OrthoMCL analysis of five plant species, including H. syriacus, Arabidopsis thaliana, Gossypium raimondii, Theobroma cacao and Amborella trichopoda. We inferred their evolutionary relationships based on divergence times among Malvaceae plant genes and found that gene families involved in flowering regulation and disease resistance were more highly divergent and expanded in H. syriacus than in its close relatives, G. raimondii (DD) and T. cacao. Clustered gene families and gene collinearity analysis revealed that two recent rounds of whole-genome duplication were followed by diploidization of the H. syriacus genome after speciation. Copy number variation and phylogenetic divergence indicates that WGDs and subsequent diploidization led to unequal duplication and deletion of flowering-related genes in H. syriacus and may affect its unique floral morphology. PMID:28011721

  8. Floral structure and ontogeny of Syndiclis (Lauraceae)

    PubMed Central

    Zeng, Gang; Liu, Bing; Ferguson, David K.; Rohwer, Jens G.

    2017-01-01

    Generic delimitation in the Beilschmiedia group of the Lauraceae remains ambiguous because flowering specimens of a few genera with confined distribution are poorly represented in herbaria, and a few floral characters important for taxonomy are still poorly known. Syndiclis is sporadically distributed in southwestern China, and is represented in the herbaria by only a few flowering specimens. We conducted field investigations to collect floral materials of four species and observed structures and ontogeny of the tiny flowers using both light microscopy (LM) and scanning electron microscopy (SEM). The results show that the genus Syndiclis possesses flowers with huge variation in both merosity and organ number. Flowers of the genus are dimerous, trimerous, or tetramerous, or have mixed merosity with monomerous and dimerous, or dimerous and trimerous, or trimerous and tetramerous whorls. The number of staminodes ranges from two to eight, depending on floral merosity, and on how many stamens of the third androecial whorl are reduced to staminodes. The staminodes of the fourth androecial whorl are comparable to the staminodes in Potameia, but the staminodes of the third androecial whorl of Syndiclis are relatively larger than the staminodes in Potameia. They are erect or curved inwards, covering the ovary. The anthers are usually two-locular, but rarely one-locular or three-locular. Each stamen of the third androecial whorl bears two conspicuous and enlarged glands at the base. The lability of floral merosity and organ number of Syndiclis may have been caused by changes of pollination system and loss of special selective pressures that are present in most Lauraceous plants with fixed floral organ number. This study furthers our understanding of variation and evolution of a few important characters of the Beilschmiedia group and provides essential data for a revised generic classification of the group. PMID:29028818

  9. Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia)

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Msallem, M.; Bonofiglio, T.; Ben Dhiab, A.; Sgromo, C.; Romano, B.; Fornaciari, M.

    2010-11-01

    In phenological studies, the plant developments are analysed considering their relationships with seasonal meteorological conditions; moreover, the influences of geographical features on biological responses have to be also considered. Different studies analysed the influence of latitude on phenological phases to investigate the possible different magnitude of biological response. In our experience, this type of geographic evaluation was conducted considering one of the more important plant species of Mediterranean shrub, the olive ( Olea europaea L.) in fifteen olive monitoring stations, four located in Tunisia and eleven in Italy, from the southern Zarzis area at 33° to the northern Perugia area at 43° of latitude. The olive flowering phenomenon was studied, utilising an aerobiological monitoring method through appropriate pollen traps located inside olive groves from 1999 to 2008. The olive monitored pollen grains were recognised and evaluated to obtain daily pollen concentrations to define the flowering dates in the different study areas. The biometeorological statistical analysis showed the 7°C threshold temperature and the single triangle method for growing degree days (GDD) yearly computing as the better ones in comparison to others. Moreover, the regression analysis between the dates of full flowering and the GDD amounts at the different monitoring latitudes permitted us to evidence the biological response of olive species in geographic regions with different climate patterns. The specific biological response at different latitude was investigated, the slope results, as flowering days per heat amounts, evidenced that olive species behaviours are very constant in consequence to similar meteorological conditions independently to latitude variations. Averagely, the relationships between plant’s phenology, temperature trends and geographical features are very close, even if the yearly mesoscale meteorological variations force to consider, year by year, phenological advances or delays as local events.

  10. Variation in Onset of Summer Dormancy and Flowering Capacity Along an Aridity Gradient in Poa bulbosa L., a Geophytic Perennial Grass

    PubMed Central

    OFIR, MICHA; KIGEL, JAIME

    2003-01-01

    Variation in the onset of summer dormancy and flowering capacity of 16 populations of Poa bulbosa, collected along a steep north–south aridity gradient in Israel (810–110 mm rain year–1), was studied under controlled conditions in a phytotron (16 h daylength, 22/16 °C day/night) and under natural conditions in a garden experiment in a net‐house. Plant age at the onset of dormancy varied markedly amongst populations (7–16 weeks under controlled conditions) and was positively correlated with mean annual precipitation at the site of origin of the population, i.e. dormancy was earlier as aridity increased. Flowering capacity in the different populations was negatively correlated with rainfall in the original habitat and, consequently, also with the age at onset of dormancy, i.e. the lower the mean annual precipitation, the earlier the onset of dormancy and the higher the proportion of flowering plants and panicles per plant. Differences in xeromorphic leaf traits were also observed among populations from locations differing in aridity. Plants from the more arid sites (110–310 mm year–1) generally had greyish and curved leaves, whereas plants from more humid sites (500–810 mm year–1) tended to have green and straight leaves. Thus, plants with curved and/or greyish leaves generally had a higher flowering capacity and entered dormancy earlier than plants with straight and/or green leaves. The significance of the association among these traits for the adaptation of P. bulbosa to increasing aridity is discussed. PMID:12547692

  11. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.

    PubMed

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.

  12. The Role of Staminate Flowers in the Breeding System of Olea europaea (Oleaceae): an Andromonoecious, Wind‐pollinated Taxon

    PubMed Central

    CUEVAS, JULIÁN; POLITO, VITO S.

    2004-01-01

    • Background and Aims Andromonoecy, as a breeding system, has generated a considerable body of theory in terms of sexual selection, but extended records comparing the performance of pollen grains from staminate versus hermaphrodite flowers are still sparse. The objective in this study was to elucidate the role of staminate flowers in the andromonoecious breeding system of olive (Olea europaea). • Methods To determine the meaning of staminate flowers, an evaluation was made of resource allocation to, and phenology of, staminate and hermaphrodite flowers in the cultivar ‘Mission’, and a comparison was made of the male function between both kinds of flowers. • Key Results Dry weight of hermaphrodite flowers was 19 % greater than dry weight of staminate flowers arising in comparable positions of the panicle. This difference was mainly due to pistil and petal weight; there were no significant differences in stamen weight. There were no significant differences between staminate and hermaphrodite flowers in either amount of pollen per anther, or pollen quality as determined by pollen viability, germinability or ability to fertilize other flowers. There was no significant link between gender and time of anthesis. However, position of the flower within the panicle correlated with time of anthesis and gender. Flowers at the apex and at primary pedicels tended to be hermaphrodite and open earlier, whereas flowers arising in secondary pedicels were mainly staminate and were commonly the last to reach anthesis. • Conclusions It is proposed that the main advantage provided by production of staminate flowers in olive is to enhance male fitness by increasing pollen output at the whole plant level, although a relict function of attracting pollinators cannot be completely discarded. PMID:15037451

  13. Regional, annual, and individual variations in the dihydroxyacetone content of the nectar of ma̅nuka (Leptospermum scoparium) in New Zealand.

    PubMed

    Williams, Simon; King, Jessica; Revell, Maria; Manley-Harris, Merilyn; Balks, Megan; Janusch, Franziska; Kiefer, Michael; Clearwater, Michael; Brooks, Peter; Dawson, Murray

    2014-10-22

    A method was designed and validated for the analysis of dihydroxyacetone in the floral nectar of ma̅nuka (Leptospermum scoparium). The method was applied to samples collected from different regions of the North Island and the Nelson region of the upper South Island of New Zealand during the period 2009-2012 as well as to nectar samples from some Australian Leptospermum species. The ratio of dihydroxyacetone to total sugar (DHA/Tsugar) was classified as low (<0.001 mg/mg), moderate (0.001-0.002 mg/mg), or high (>0.002 mg/mg). Inter- and intraregional variation were observed as well as interannual variation with variation from low to high classification occurring within one region and from low to moderate between years. Australian species also demonstrated elevated levels of dihydroxyacetone in the nectar. Some garden cultivars were shown to produce very high nectar DHA/Tsugar, and a survey of cultivars was undertaken; cultivars with single-flowered red or pink flowers were the most common producers of very high nectar DHA/Tsugar.

  14. Has climatic warming altered spring flowering date of Sonoran Desert shrubs?

    USGS Publications Warehouse

    Bowers, Janice E.

    2007-01-01

    With global warming, flowering at many locations has shifted toward earlier dates of bloom. A steady increase in average annual temperature since the late 1890s makes it likely that flowering also has advanced in the northern Sonoran Desert of the southwestern United States and northwestern Mexico. In this study, phenological models were used to predict annual date of spring bloom in the northern Sonoran Desert from 1894 to 2004; then, herbarium specimens were assessed for objective evidence of the predicted shift in flowering time. The phenological models were derived from known flowering requirements (triggers and heat sums) of Sonoran Desert shrubs. According to the models, flowering might have advanced by 20-41 d from 1894 to 2004. Analysis of herbarium specimens collected during the 20th century supported the model predictions. Over time, there was a significant increase in the proportion of shrub specimens collected in flower in March and a significant decrease in the proportion collected in May. Thus, the flowering curve - the proportion of individuals in flower in each spring month - shifted toward the start of the calendar year between 1900 and 1999. This shift could not be explained by collection activity: collectors showed no tendency to be active earlier in the year as time went on, nor did activity toward the end of spring decline in recent decades. Earlier bloom eventually could have substantial impacts on plant and animal communities in the Sonoran Desert, especially on migratory hummingbirds and population dynamics of shrubs.

  15. Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior

    PubMed Central

    Schaeffer, Robert N.; Phillips, Cody R.; Duryea, M. Catherine; Andicoechea, Jonathan; Irwin, Rebecca E.

    2014-01-01

    Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54–77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness. PMID:25272164

  16. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    PubMed Central

    de Vere, Natasha; Jones, Laura E.; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J.; Creer, Simon; Ford, Col R.

    2017-01-01

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet. PMID:28205632

  17. Genetic variation in yield under hot ambient temperatures spotlights a role for cytokinin in protection of developing floral primordia.

    PubMed

    Sobol, Shiri; Chayut, Noam; Nave, Nahum; Kafle, Dinesh; Hegele, Martin; Kaminetsky, Rina; Wünsche, Jens N; Samach, Alon

    2014-03-01

    Unusually hot ambient temperatures (HAT) can cause pre-anthesis abortion of flowers in many diverse species, limiting crop production. This limitation is becoming more substantial with climate change. Flower primordia of passion fruit (Passiflora edulis Sims) vines exposed to HAT summers, normally abort. Flower abortion can also be triggered by gibberellin application. We screened for, and identified a genotype capable of reaching anthesis during summer as well as controlled HAT conditions, and also more resistant to gibberellin. Leaves of this genotype contained higher levels of endogenous cytokinin. We investigated a possible connection between higher cytokinin levels and response to gibberellin. Indeed, the effects of gibberellin application were partially suppressed in plants pretreated with cytokinin. Can higher cytokinin levels protect flowers from aborting under HAT conditions? In passion fruit, flowers at a specific stage showed more resistance in response to HAT after cytokinin application. We further tested this hypothesis in Arabidopsis. Transgenic lines with high or low cytokinin levels and cytokinin applications to wild-type plants supported a protective role for cytokinin on developing flowers exposed to HAT. Such findings may have important implications in future breeding programmes as well as field application of growth regulators. © 2013 John Wiley & Sons Ltd.

  18. Evaluation of antibacterial, antifungal, and antioxidant activities of safflower natural dyes during flowering.

    PubMed

    Salem, Nidhal; Msaada, Kamel; Elkahoui, Salem; Mangano, Giuseppe; Azaeiz, Sana; Ben Slimen, Imen; Kefi, Sarra; Pintore, Giorgio; Limam, Ferid; Marzouk, Brahim

    2014-01-01

    Two Carthamus tinctorius varieties (Jawhara and 104) were studied in order to investigate their natural dyes contents and biological activities. Obtained results showed that quinochalcone contents and antioxidant activities varied considerably as function of flowering stages. So flowers at fructification stage contained the highest carthamin content with the strongest antioxidant capacity with all assays (FRAP, DPPH, and chelating power methods). In parallel, we showed a decrease in the content of precarthamin. The quantitative variation of these molecules could be due to colour change of C. tinctorius flowers. Correlation analysis indicated that the ABTS method showed the highest correlation coefficients with carthamin and precarthamin contents, that is, 0.886 and 0.973, respectively. Concerning the regional effect, the contents of precarthamin and carthamin varied significantly (P < 0.05) at studied regions with the optimum production given by samples of Beja (902.41 μg/g DW and 42.05 μg/g DW, respectively, at flowering stage). During flowering, the antimicrobial activity of these two natural dyes increased where the maximum inhibitory effect mentioned with carthamin mainly against E. coli (iz = 25.89 mm) at fructification stage. Therefore, the increased frequency of resistance to commonly used antibiotics leads to the search for new effective natural drugs at food and pharmaceutical industries.

  19. Pollen limitation in a narrow endemic plant: geographical variation and driving factors.

    PubMed

    Fernández, Juande D; Bosch, Jordi; Nieto-Ariza, Beatriz; Gómez, José M

    2012-10-01

    Pollen limitation may have important consequences for the reproduction and abundance of plant species. It may be especially harmful to endangered and endemic plants with small populations. In this study, we quantify the effect of pollen limitation on seed production and seedling emergence in an endangered narrow endemic crucifer, Erysimum popovii. We conducted a pollen addition experiment across the entire geographic distribution of the species, and explored the effect of pollinator assemblage, plant population size and density, and other habitat variables on pollen limitation intensity in 13 populations. We supplemented flowers in 20 plants per population with allogamous pollen. To account for potential resource reallocation, we used two types of control untreated flowers: internal control flowers from the same individual as the supplemented flowers, and external control flowers from other individuals. Our results indicate that E. popovii is pollen-limited in most of the populations studied, but only through seed production, since pollen supplementation did not enhance seedling emergence. Beefly abundance was associated with among-population differences in pollen limitation intensity. Populations in which beeflies were more abundant were less pollen-limited. In contrast, the abundance of other flower visitors, such as large bees or butterflies, was not associated with pollen limitation. Annual rainfall and bare soil cover were associated with the intensity of pollen limitation across populations.

  20. Interaction between visiting bees (Hymenoptera, Apoidea) and flowers of Ludwigia elegans (Camb.) hara (Onagraceae) during the year in two different areas in São Paulo, Brazil.

    PubMed

    Gimenes, M

    2003-11-01

    This study was designed to characterize the interactions between Ludwigia elegans flowers and visiting bees during two years in two areas 200 km apart, at the same latitude (approximately 22 masculine 48'S) but at different altitudes (Alumínio, 600 m, and Campos do Jordão, 1500 m), in the State of São Paulo, Brazil. As these flowers open simultaneously in the morning and lose their petals by sunset, interaction with bees occurs only during the photophase. Flowers of L. elegans were mainly visited by bees, the most frequent species being: Tetraglossula anthracina (Michener, 1989) (Colletidae), Rhophitulus sp. (Andrenidae), and Pseudagapostemon spp. (Halictidae), all considered specialized bees for collecting pollen and nectar from these flowers, as well as the generalist bee Apis mellifera Linnaeus, 1758 (Apidae). The specialist bees were temporally adjusted to the opening schedule of the flower, which occurs primarily in the morning, but shows a circannual variation. T. anthracina appears in both study areas, but only between December and April. The annual activity patterns of these specialist bees are synchronized to the phenology of L. elegans. Photoperiod and temperature cycles are suggested as the main synchronizers of both bees and plants.

  1. A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.

    PubMed

    Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A

    2013-04-25

    Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.

  2. Evolutionary and ecological consequences of multiscale variation in pollen receipt for seed production.

    PubMed

    Schreiber, Sebastian J; Rosenheim, Jay A; Williams, Neal W; Harder, Lawrence D

    2015-01-01

    Variation in resource availability can select for traits that reduce the negative impacts of this variability on mean fitness. Such selection may be particularly potent for seed production in flowering plants, as they often experience variation in pollen receipt among individuals and among flowers within individuals. Using analytically tractable models, we examine the optimal allocations for producing ovules, attracting pollen, and maturing seeds in deterministic and stochastic pollen environments. In deterministic environments, the optimal strategy attracts sufficient pollen to fertilize every ovule and mature every zygote into a seed. Stochastic environments select for allocations proportional to the risk of seed production being limited by zygotes or seed maturation. When producing an ovule is cheap and maturing a seed is expensive, among-plant variation selects for attracting more pollen at the expense of producing fewer ovules and having fewer resources for seed maturation. Despite this increased allocation, such populations are likely to be pollen limited. In contrast, within-plant variation generally selects for an overproduction of ovules and, to a lesser extent, pollen attraction. Such populations are likely to be resource limited and exhibit low seed-to-ovule ratios. These results highlight the importance of multiscale variation in the evolution and ecology of resource allocations.

  3. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus.

    PubMed

    Li, Jinhong; Webster, Margaret; Furuya, Masaki; Gilmartin, Philip M

    2007-07-01

    The study of heteromorphy in Primula over the past 140 years has established the reproductive significance of this breeding system. Plants produce either thrum or pin flowers that demonstrate reciprocal herkogamy. Thrums have short styles and produce large pollen from anthers at the mouth of the flower; pins have long styles and produce small pollen from anthers located within the corolla tube. The control of heteromorphy is orchestrated by the S locus with dominant (S) and recessive (s) alleles that comprise a co-adapted linkage group of genes. Thrum plants are heterozygous (Ss) and pin plants are homozygous (ss). Reciprocal crosses between the two forms are required for fertilization; within-morph crosses are impeded by a sporophytic self-incompatibility system. Rare recombination events within the S locus produce self-fertile homostyles. As a first step towards identifying genes located at the S locus, we used fluorescent differential display to screen for differential gene expression in pin and thrum flowers. Rather than only detecting differentially regulated genes, we identified two S locus linked genes by virtue of allelic variation between pin and thrum transcripts. Analysis of pin and thrum plants together with homostyle recombinant reveals that one gene flanks the locus, whereas the other shows complete linkage. One gene is related to Arabidopsis flower-timing genes Col9 and Col10; the other encodes a small predicted membrane protein of unknown function. Notwithstanding the diallelic behaviour of the Primula S locus, analysis of pin and thrum plants reveal three alleles for each gene: two pin and one thrum.

  4. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time

    PubMed Central

    Austen, Emily J.; Weis, Arthur E.

    2016-01-01

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  5. Constrained growth flips the direction of optimal phenological responses among annual plants.

    PubMed

    Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundström, Niklas L P; Brännström, Åke; Jonzén, Niclas

    2016-03-01

    Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. 16 CFR 18.5 - Deception as to blooming, fruiting, or growing ability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... purchasers the ability of such products: (a) To bloom, flower, or fruit within a specified period of time; or... section, when flower bulbs are of such immaturity as not reasonably to be expected to bloom and flower the... flowers, they shall be tagged or labeled so as to clearly, adequately and conspicuously disclose such fact...

  7. 16 CFR 18.5 - Deception as to blooming, fruiting, or growing ability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... purchasers the ability of such products: (a) To bloom, flower, or fruit within a specified period of time; or... section, when flower bulbs are of such immaturity as not reasonably to be expected to bloom and flower the... flowers, they shall be tagged or labeled so as to clearly, adequately and conspicuously disclose such fact...

  8. 16 CFR 18.5 - Deception as to blooming, fruiting, or growing ability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... purchasers the ability of such products: (a) To bloom, flower, or fruit within a specified period of time; or... section, when flower bulbs are of such immaturity as not reasonably to be expected to bloom and flower the... flowers, they shall be tagged or labeled so as to clearly, adequately and conspicuously disclose such fact...

  9. 16 CFR 18.5 - Deception as to blooming, fruiting, or growing ability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... purchasers the ability of such products: (a) To bloom, flower, or fruit within a specified period of time; or... section, when flower bulbs are of such immaturity as not reasonably to be expected to bloom and flower the... flowers, they shall be tagged or labeled so as to clearly, adequately and conspicuously disclose such fact...

  10. 16 CFR 18.5 - Deception as to blooming, fruiting, or growing ability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... purchasers the ability of such products: (a) To bloom, flower, or fruit within a specified period of time; or... section, when flower bulbs are of such immaturity as not reasonably to be expected to bloom and flower the... flowers, they shall be tagged or labeled so as to clearly, adequately and conspicuously disclose such fact...

  11. Functional characterization of a putative glycine max ELF4 transgenic aradopsis and its role during flowering control

    USDA-ARS?s Scientific Manuscript database

    Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Ar...

  12. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon.

    PubMed

    Kapp, Nikki; Barnes, William J; Richard, Tom L; Anderson, Charles T

    2015-07-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Imaging with the fluorogenic dye Basic Fuchsin reveals subcellular patterning and ecotype variation of lignification in Brachypodium distachyon

    PubMed Central

    Kapp, Nikki; Barnes, William J.; Richard, Tom L.; Anderson, Charles T.

    2015-01-01

    Lignin is a complex polyphenolic heteropolymer that is abundant in the secondary cell walls of plants and functions in growth and defence. It is also a major barrier to the deconstruction of plant biomass for bioenergy production, but the spatiotemporal details of how lignin is deposited in actively lignifying tissues and the precise relationships between wall lignification in different cell types and developmental events, such as flowering, are incompletely understood. Here, the lignin-detecting fluorogenic dye, Basic Fuchsin, was adapted to enable comparative fluorescence-based imaging of lignin in the basal internodes of three Brachypodium distachyon ecotypes that display divergent flowering times. It was found that the extent and intensity of Basic Fuchsin fluorescence increase over time in the Bd21-3 ecotype, that Basic Fuchsin staining is more widespread and intense in 4-week-old Bd21-3 and Adi-10 basal internodes than in Bd1-1 internodes, and that Basic Fuchsin staining reveals subcellular patterns of lignin in vascular and interfascicular fibre cell walls. Basic Fuchsin fluorescence did not correlate with lignin quantification by acetyl bromide analysis, indicating that whole-plant and subcellular lignin analyses provide distinct information about the extent and patterns of lignification in B. distachyon. Finally, it was found that flowering time correlated with a transient increase in total lignin, but did not correlate strongly with the patterning of stem lignification, suggesting that additional developmental pathways might regulate secondary wall formation in grasses. This study provides a new comparative tool for imaging lignin in plants and helps inform our views of how lignification proceeds in grasses. PMID:25922482

  14. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  15. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants.

  16. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity.

    PubMed

    Chen, Zhenchun; Mei, Xin; Jin, Yuxia; Kim, Eun-Hye; Yang, Ziyin; Tu, Youying

    2014-01-30

    To extract natural volatile compounds from tea (Camellia sinensis) flowers without thermal degradation and residue of organic solvents, supercritical fluid extraction (SFE) using carbon dioxide was employed to prepare essential oil of tea flowers in the present study. Four important parameters--pressure, temperature, static extraction time, and dynamic extraction time--were selected as independent variables in the SFE. The optimum extraction conditions were the pressure of 30 MPa, temperature of 50°C, static time of 10 min, and dynamic time of 90 min. Based on gas chromatography-mass spectrometry analysis, 59 compounds, including alkanes (45.4%), esters (10.5%), ketones (7.1%), aldehydes (3.7%), terpenes (3.7%), acids (2.1%), alcohols (1.6%), ethers (1.3%) and others (10.3%) were identified in the essential oil of tea flowers. Moreover, the essential oil of tea flowers showed relatively stronger DPPH radical scavenging activity than essential oils of geranium and peppermint, although its antioxidative activity was weaker than those of essential oil of clove, ascorbic acid, tert-butylhydroquinone, and butylated hydroxyanisole. Essential oil of tea flowers using SFE contained many types of volatile compounds and showed considerable DPPH scavenging activity. The information will contribute to the future application of tea flowers as raw materials in health-care food and food flavour industries. © 2013 Society of Chemical Industry.

  17. Flowering time and seed dormancy control use external coincidence to generate life history strategy

    PubMed Central

    Springthorpe, Vicki; Penfield, Steven

    2015-01-01

    Climate change is accelerating plant developmental transitions coordinated with the seasons in temperate environments. To understand the importance of these timing advances for a stable life history strategy, we constructed a full life cycle model of Arabidopsis thaliana. Modelling and field data reveal that a cryptic function of flowering time control is to limit seed set of winter annuals to an ambient temperature window which coincides with a temperature-sensitive switch in seed dormancy state. This coincidence is predicted to be conserved independent of climate at the expense of flowering date, suggesting that temperature control of flowering time has evolved to constrain seed set environment and therefore frequency of dormant and non-dormant seed states. We show that late flowering can disrupt this bet-hedging germination strategy. Our analysis shows that life history modelling can reveal hidden fitness constraints and identify non-obvious selection pressures as emergent features. DOI: http://dx.doi.org/10.7554/eLife.05557.001 PMID:25824056

  18. Effects of ungulate disturbance and weather variation on Pediocactus winkleri: insights from long-term monitoring

    USGS Publications Warehouse

    Clark, Deborah J.; Clark, Thomas O.; Duniway, Michael C.; Flagg, Cody B.

    2015-01-01

    Population dynamics and effects of large ungulate disturbances on Winkler cactus (Pediocactus winkleri K.D. Heil) were documented annually over a 20-year time span at one plot within Capitol Reef National Park, Utah. This cactus species was federally listed as threatened in 1998. The study began in 1995 to gain a better understanding of life history aspects and threats to this species. Data were collected annually in early spring and included diameter, condition, reproductive structures, mortality, recruitment, and disturbance by large ungulates. We used odds ratio and probability model analyses to determine effects of large ungulate trampling and weather on these cacti. During the study, plot population declined by 18%, with trampling of cactus, low precipitation, and cold spring temperatures implicated as causal factors. Precipitation and temperature affected flowering, mortality, and recruitment. Large ungulate disturbances increased mortality and reduced the probability of flowering. These results suggest that large ungulate disturbances and recent climate regimes have had an adverse impact on long-term persistence of this cactus.

  19. Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time

    PubMed Central

    Celesnik, Helena; Ali, Gul S.; Robison, Faith M.; Reddy, Anireddy S. N.

    2013-01-01

    Summary Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2. PMID:23616927

  20. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming

    NASA Astrophysics Data System (ADS)

    Gillespie, Mark A. K.; Baggesen, Nanna; Cooper, Elisabeth J.

    2016-11-01

    The projected alterations to climate in the High Arctic are likely to result in changes to the short growing season, particularly with varying predicted effects on winter snowfall, the timing of summer snowmelt and air temperatures. These changes are likely to affect the phenology of interacting species in a variety of ways, but few studies have investigated the effects of combined climate drivers on plant-pollinator interactions in the High Arctic. In this study, we alter the timing of flowering phenology using a field manipulation experiment in which snow depth is increased using snow fences and temperatures are enhanced by open-top chambers (OTCs). We used this experiment to quantify the combined effects of treatments on the flowering phenology of six dominant plant species (Dryas octopetala, Cassiope tetragona, Bistorta vivipara, Saxifraga oppositifolia, Stellaria crassipes and Pedicularis hirsuita), and to simulate differing responses to climate between plants and pollinators in a subset of plots. Flowers were counted regularly throughout the growing season of 2015, and insect visitors were caught on flowers during standardised observation sessions. As expected, deep snow plots had delayed snow melt timing and this in turn delayed the first and peak flowering dates of the plants and shortened the prefloration period overall. The OTCs counteracted the delay in first and peak flowering to some extent. There was no effect of treatment on length of flowering season, although for all variables there were species-specific responses. The insect flower-visitor community was species poor, and although evidence of disruption to phenological overlaps was not found, the results do highlight the vulnerability of the plant-pollinator network in this system with differing phenological shifts between insects and plants and reduced visitation rates to flowers in plots with deep snow.

  1. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-05-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry

    PubMed Central

    Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice

    2016-01-01

    The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957

  3. Flowering in space

    NASA Astrophysics Data System (ADS)

    Zheng, Hui Qiong

    2018-05-01

    The reproductive success of plants is often dependent on their flowering time being adapted to the terrestrial environment, in which gravity remain constant. Whether plants can follow the same rule to determine their flowering time under microgravity in space is unknown. Although numerous attempts have been made to grow a plant through a complete life cycle in space, apparently no published information exists concerning the flowering control of plants under microgravity in space. Here, we focused on two aspects. Firstly the environmental and intrinsic factors under microgravity related to flowering control. Secondly, the plant-derived regulators are involved in flowering control under microgravity condition. The potential environmental and intrinsic factors affect plant flowering under microgravity may include light, biological circadian clock as well as long-distance signaling, while the plant-derived flowering regulators in response to microgravity could include gibberellic acid, ethylene, microRNA and sugar. The results we have obtained from the space experiments on board the Chinese recoverable satellites (the SJ-8 and the SJ-10) and the experiment on the Chinese space lab TG-2 are also introduced. We conclude by suggesting that long-term space experiments from successive generations and a systematic analysis of regulatory networks at the molecular level is needed to understand the mechanism of plant flowering control under microgravity conditions in space.

  4. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper (Capsicum spp.).

    PubMed

    Tan, Shu; Cheng, Jiao-Wen; Zhang, Li; Qin, Cheng; Nong, Ding-Guo; Li, Wei-Peng; Tang, Xin; Wu, Zhi-Ming; Hu, Kai-Lin

    2015-01-01

    Re-sequencing permits the mining of genome-wide variations on a large scale and provides excellent resources for the research community. To accelerate the development and application of molecular markers and identify the QTLs affecting the flowering time-related trait in pepper, a total of 1,038 pairs of InDel and 674 SSR primers from different sources were used for genetic mapping using the F2 population (n = 154) derived from a cross between BA3 (C. annuum) and YNXML (C. frutescens). Of these, a total of 224 simple PCR-based markers, including 129 InDels and 95 SSRs, were validated and integrated into a map, which was designated as the BY map. The BY map consisted of 13 linkage groups (LGs) and spanned a total genetic distance of 1,249.77 cM with an average marker distance of 5.60 cM. Comparative analysis of the genetic and physical map based on the anchored markers showed that the BY map covered nearly the whole pepper genome. Based on the BY map, one major and five minor QTLs affecting the number of leaves on the primary axis (Nle) were detected on chromosomes P2, P7, P10 and P11 in 2012. The major QTL on P2 was confirmed based on another subset of the same F2 population (n = 147) in 2014 with selective genotyping of markers from the BY map. With the accomplishment of pepper whole genome sequencing and annotations (release 2.0), 153 candidate genes were predicted to embed in the Nle2.2 region, of which 12 important flowering related genes were obtained. The InDel/SSR-based interspecific genetic map, QTLs and candidate genes obtained by the present study will be useful for the downstream isolation of flowering time-related gene and other genetic applications for pepper.

  5. Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon[C][W

    PubMed Central

    Wu, Liang; Liu, Dongfeng; Wu, Jiajie; Zhang, Rongzhi; Qin, Zhengrui; Liu, Danmei; Li, Aili; Fu, Daolin; Zhai, Wenxue; Mao, Long

    2013-01-01

    The highly conserved florigen gene FLOWERING LOCUS T (FT) functions at the core of the flowering pathways. Extensive studies have examined the transcriptional regulation of FT; however, other layers of FT regulation remain unclear. Here, we identified miR5200 a Pooideae-specific microRNA that is expressed in leaves and targets Brachypodium distachyon FT orthologs for mRNA cleavage. miR5200 was abundantly expressed in plants grown under short-day (SD) conditions but was dramatically repressed in plants transferred to long-day (LD) conditions. We also found that the epigenetic chromatin status, specifically the levels of histone methylation marks, at miR5200 precursor loci changed in response to daylength. Moreover, artificial interruption of miR5200 activity by target mimicry in B. distachyon altered flowering time in SD but not in LD conditions, suggesting that miR5200 functions in photoperiod-mediated flowering time regulation. Together, these findings illustrate a posttranscriptional regulation mechanism of FT and provide insights into understanding of the multiple concerted pathways for flowering time control in plants. PMID:24285787

  6. Variation of Chemical Composition in Flowers and Leaves Essential Oils Among Natural Population of Tunisian Glebionis coronaria (L.) Tzvelev (Asteraceae).

    PubMed

    Haouas, Dalila; Cioni, Pier Luigi; Flamini, Guido; Ben Halima-Kamel, Monia; Ben Hamouda, Mohamed Habib

    2016-10-01

    The aim of this study was to assess the percentage and constituents variations in flowers and leaves essential oil of three Glebionis coronaria (L.) Tzvelev population, growing wildly in three different ecotypes (Utique, M'saken, and Sahara Lektar) in Tunisia. The chemical compositions of these essential oils were analyzed by the GC and GC/MS systems. Qualitative and quantitative differences were recorded between essential oils extracted from plants collected from the three geographical provinces and between organs of the same plant (leaves and flowers). In fact, 161 components representing 87.2 - 96.5% of the whole oils were identified. Myrcene (3.2 - 35.7%), (Z)-β-ocimene (0.6 - 23.0%), camphor (0.6 - 17.2%), cis-chrysanthenol (0 - 6.9%), cis-chrysanthenyl acetate (1.1 - 17.9%), isobornyl acetate (1.6 - 3.5%), (E)-β-farnesene (0 - 6.0%), germacrene D (0 - 8.7%), and (E,E)-α-farnesene (0.7 - 12.4%) were the predominant components in the oils. These major constituents occur in different amounts depending on the organs (leaves or flowers) and the geographical origin of the plant. The chemotaxonomic usefulness of these data was discussed according to results of principal component analysis (PCA). The scores, together with the loadings, revealed a different chemical pattern for each population. © 2016 Wiley-VHCA AG, Zürich.

  7. Thermogenesis, Flowering and the Association with Variation in Floral Odour Attractants in Magnolia sprengeri (Magnoliaceae)

    PubMed Central

    Wang, Ruohan; Xu, Sai; Liu, Xiangyu; Zhang, Yiyuan; Wang, Jianzhong; Zhang, Zhixiang

    2014-01-01

    Magnolia sprengeri Pamp. is an ornamentally and ecologically important tree that blooms at cold temperatures in early spring. In this study, thermogenesis and variation in the chemical compounds of floral odours and insect visitation in relation to flowering cycles were studied to increase our understanding of the role of floral thermogenesis in the pollination biology of M. sprengeri. There were five distinct floral stages across the floral cycle of this species: pre-pistillate, pistillate, pre-staminate, staminate and post-staminate. Floral thermogenesis during anthesis and consisted of two distinct peaks: one at the pistillate stage and the other at the staminate stage. Insects of five families visited M. sprengeri during the floral cycle, and sap beetles (Epuraea sp., Nitidulidae) were determined to be the most effective pollinators, whereas bees (Apis cerana, Apidae) were considered to be occasional pollinators. A strong fragrance was released during thermogenesis, consisting of 18 chemical compounds. Although the relative proportions of these compounds varied at different floral stages across anthesis, linalool, 1-iodo-2-methylundecane and 2,2,6-trimethyl-6-vinyltetrahydro-2H-pyran-3-ol were dominant. Importantly, we found that the floral blends released during the pistillate and staminate stages were very similar, and coincided with flower visitation by sap beetles and the two thermogenic episodes. Based on these results, we propose that odour acts as a signal for a reward (pollen) and that an odour mimicry of staminate-stage flowers occurs during the pistillate stage. PMID:24922537

  8. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.

    PubMed

    Swoboda, I; Bhalla, P L

    1997-10-01

    The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.

  9. Florivory and nectar-robbing perforations in flowers of pointleaf manzanita Arctostaphylos pungens (Ericaceae) and their effects on plant reproductive success

    PubMed Central

    Eliyahu, Dorit; McCall, Andrew C.; Lauck, Marina; Trakhtenbrot, Ana

    2015-01-01

    Damage to petals may have varying effects on the reproductive success of the plant. The variation may depend on the kind of damage to the corolla. Whether the damage is limited to the corolla, as is usually the case with nectar-robbing perforations, or extending to the reproductive parts of the flower, as in the case of florivory holes, might determine the extent of the effect on the plant's reproduction. We examined the various perforations in the flowers of Arctostaphylos pungens and correlated their presence with fruiting success. We found that though florivory holes were highly associated with damage to reproductive parts, fruiting success did not differ significantly between flowers with the two kinds of damage. Although nectar-robbing perforations were not associated with reduced number of fruit produced, they were significantly correlated with reduced number of fruit that contained seemingly viable seeds. The implications of our findings are discussed in the context of pollination and antagonism. PMID:26811740

  10. Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition.

    PubMed

    Pombal, Sofia; Rodrigues, Cleide F; Araújo, João P; Rocha, Pedro M; Rodilla, Jesus M; Diez, David; Granja, Ángela P; Gomes, Arlindo C; Silva, Lúcia A

    2016-01-01

    Lavandula luisieri (Rozeira) Rivas-Martinez is an endemic aromatic Labiatae the Iberian Peninsula, common in semi-arid regions of southern Portugal and southwestern Spain, that produces an active antibacterial essential oil from the leaves and flowers. This work presents the study of the chemical variation in various stages of growth of leaves and flowers of L. luisieri. It has been found that the essential oils are mainly constituted by 1,8-cineol, camphor, linalool and trans-α-necrodil acetate. It was also studied the total phenol content and the antioxidant activity on leaves and flowers. The ethanol extraction from de leaves contents the highest total phenol, important factor for the antioxidant activity of the plant, extract. It has been studied too, the antibacterial activity against Escherichia coli, Salmonella spp . and Staphylococcus aureus . In accordance with the obtained results, the antibacterial activities stand out against Staphylococcus , of the oil of L. luisieri (leaves and flowers).

  11. Florivory and nectar-robbing perforations in flowers of pointleaf manzanita Arctostaphylos pungens (Ericaceae) and their effects on plant reproductive success.

    PubMed

    Eliyahu, Dorit; McCall, Andrew C; Lauck, Marina; Trakhtenbrot, Ana

    2015-12-01

    Damage to petals may have varying effects on the reproductive success of the plant. The variation may depend on the kind of damage to the corolla. Whether the damage is limited to the corolla, as is usually the case with nectar-robbing perforations, or extending to the reproductive parts of the flower, as in the case of florivory holes, might determine the extent of the effect on the plant's reproduction. We examined the various perforations in the flowers of Arctostaphylos pungens and correlated their presence with fruiting success. We found that though florivory holes were highly associated with damage to reproductive parts, fruiting success did not differ significantly between flowers with the two kinds of damage. Although nectar-robbing perforations were not associated with reduced number of fruit produced, they were significantly correlated with reduced number of fruit that contained seemingly viable seeds. The implications of our findings are discussed in the context of pollination and antagonism.

  12. Comparative Study of the Volatile Components of Fresh and Fermented Flowers of Alnus sieboldiana (Betulaceae).

    PubMed

    Ab Ghani, Nurunajah; Ismail, Nor Hadiani; Asakawa, Yoshinori

    2016-02-01

    Analysis of the volatile components present in the fresh male and female flowers and young leaves shows that 2-phenylethanol is the major component in all these three organs, which play a significant role in the strong resinous aromatic odor. The male flowers contained styrene as a second major compound. The level of styrene does not affect the male flowers odor concentration. The level of β-phenylethyl cinnamate and trans-methyl cinnamate in the fermented male flowers decreased as the fermentation time increased. This was due to the Penicillium enzymatic action on the fermented male flowers.

  13. Sex expression and breeding strategy in Commelina benghalensis L.

    PubMed

    Kaul, Veenu; Koul, Awtar Kishen

    2009-12-01

    This paper describes the results of a series of experiments conducted to unravel the patterns of sex expression and reproductive output in a fascinating species with high variation in sexuality. Commelina benghalensis L., an andromonoecious rainy season weed, bears male and bisexual flowers in axillary spathes of all the plants investigated. Bisexual flowers are of two types; chasmogamous (CH) and cleistogamous (CL). The former are borne on subaerial and the latter on subterranean shoots, in addition to those on aerial spathes. Three populations of the species, designated JU1, JU2 and JU3, were scanned for three consecutive years from 1996 to 1998, and the number and distribution of male, CH and CL flowers per plant were found to vary. The mere number of CH/CL flowers per plant is by itself not an accurate measure of mixed mating. It is necessary to confirm that CH flowers actually outcross and, if they do so, to what extent. Comparison of the pollen/ovule (P/O) ratio and percentage pollen germination on the stigmas of the CH and CL flowers have been used as indices of the pollination system. Confirmation of this was sought from the fruit and seed sets obtained after manual pollination of emasculated flowers with self- and cross-pollen. Results so obtained were compared with those of natural pollination. In the majority of CH flowers, the male and female reproductive phases (i.e. anther dehiscence and stigma receptivity) overlap, providing for self-pollination. However, two exceptions to this general behaviour were found in some plants of all the three populations. In some CH flowers, the female phase matures prior to anther dehiscence while in others, the anthers are sterile. Such plants, designated as variants 1 and 2, respectively, facilitate cross-pollination. While the CL flowers contribute to the production of selfed progeny, the variants of CH ones permit formation of outcrossed progeny, indicating a mixed mating strategy in C. benghalensis.

  14. Ability of Bumblebees to Discriminate Differences in the Shape of Artificial Flowers of Primula sieboldii (Primulaceae)

    PubMed Central

    Yoshioka, Yosuke; Ohashi, Kazuharu; Konuma, Akihiro; Iwata, Hiroyoshi; Ohsawa, Ryo; Ninomiya, Seishi

    2007-01-01

    Background and Aims Flower shapes are important visual cues for pollinators. However, the ability of pollinators to discriminate between flower shapes under natural conditions is poorly understood. This study focused on the diversity of flower shape in Primula sieboldii and investigated the ability of bumblebees to discriminate between flowers by combining computer graphics with a traditional behavioural experiment. Methods Elliptic Fourier descriptors described shapes by transforming coordinate information for the contours into coefficients, and principal components analysis summarized these coefficients. Using these methods, artificial flowers were created based on the natural diversity of petal shape in P. sieboldii. Dual-choice tests were then performed to investigate the ability of the bumblebees to detect differences in the aspect ratio of petals and the depth of their head notch. Key Results The insects showed no significant ability to detect differences in the aspect ratio of the petals under natural conditions unless the morphological distance increased to an unrealistic level. These results suggest the existence of a perception threshold for distances in this parameter. The bumblebees showed a significant preference for narrow petals even after training using flowers with wide petals. The bumblebees showed a significant ability to discriminate based on the depth of the petal head notch after training using artificial flowers with a deep head notch. However, they showed no discrimination in tests with training using extreme distances between flowers in this parameter. Conclusions A new type of behavioural experiment was demonstrated using real variation in flower corolla shape in P. sieboldii. If the range in aspect ratios of petals expands much further, bumblebees may learn to exhibit selective behaviour. However, because discrimination by bumblebees under natural conditions was low, there may be no strong selective behaviour based on innate or learned preferences under natural conditions. PMID:17553825

  15. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

    PubMed Central

    Del Cueto, Jorge; Ionescu, Irina A.; Pičmanová, Martina; Gericke, Oliver; Motawia, Mohammed S.; Olsen, Carl E.; Campoy, José A.; Dicenta, Federico; Møller, Birger L.; Sánchez-Pérez, Raquel

    2017-01-01

    Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species. PMID:28579996

  16. Current and previous spatial distributions of oilseed rape fields influence the abundance and the body size of a solitary wild bee, Andrena cineraria, in permanent grasslands.

    PubMed

    Van Reeth, Colin; Caro, Gaël; Bockstaller, Christian; Michel, Nadia

    2018-01-01

    Wild bees are essential pollinators whose survival partly depends on the capacity of their environment to offer a sufficient amount of nectar and pollen. Semi-natural habitats and mass-flowering crops such as oilseed rape provide abundant floristic resources for bees. The aim of this study was to evaluate the influences of the spatial distribution of semi-natural habitats and oilseed rape fields on the abundance and the mean body size of a solitary bee in grasslands. We focused on a generalist mining bee, Andrena cineraria, that forages and reproduces during oilseed rape flowering. In 21 permanent grasslands of Eastern France, we captured 1 287 individuals (1 205 males and 82 females) and measured the body size of male individuals. The flower density in grasslands was quantified during bee captures (2016) and the landscape surrounding grasslands was characterized during two consecutive years (2015 and 2016). The influence of oilseed rape was tested through its distribution in the landscape during both the current year of bee sampling and the previous year. Bee abundance was positively influenced by the flower density in grasslands and by the area covered by oilseed rape around grasslands in the previous year. The mean body size of A. cineraria was explained by the interaction between flower density in the grassland and the distance to the nearest oilseed rape field in the current year: the flower density positively influenced the mean body size only in grasslands distant from oilseed rape. A. cineraria abundance and body size distribution were not affected by the area of semi-natural habitats in the landscape. The spatial distribution of oilseed rape fields (during both the current and the previous year) as well as the local density of grassland flowers drive both bee abundance and the mean value of an intraspecific trait (body size) in permanent grasslands. Space-time variations of bee abundance and mean body size in grasslands may have important ecological implications on plant pollination and on interspecific interactions between pollinators. Specifically, a competition between bee species for nesting sites might occur in oilseed rape rich landscapes, thus raising important conservation issues for bee species that do not benefit from oilseed rape resources.

  17. Identification of Regulatory Genes Implicated in Continuous Flowering of Longan (Dimocarpus longan L.)

    PubMed Central

    Jia, Tianqi; Wei, Danfeng; Meng, Shan; Allan, Andrew C.; Zeng, Lihui

    2014-01-01

    Longan (Dimocarpus longan L.) is a tropical/subtropical fruit tree of significant economic importance in Southeast Asia. However, a lack of transcriptomic and genomic information hinders research on longan traits, such as the control of flowering. In this study, high-throughput RNA sequencing (RNA-Seq) was used to investigate differentially expressed genes between a unique longan cultivar ‘Sijimi’(S) which flowers throughout the year and a more typical cultivar ‘Lidongben’(L) which flowers only once in the season, with the aim of identifying candidate genes associated with continuous flowering. 36,527 and 40,982 unigenes were obtained by de novo assembly of the clean reads from cDNA libraries of L and S cultivars. Additionally 40,513 unigenes were assembled from combined reads of these libraries. A total of 32,475 unigenes were annotated by BLAST search to NCBI non-redundant protein (NR), Swiss-Prot, Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Of these, almost fifteen thousand unigenes were identified as significantly differentially expressed genes (DEGs) by using Reads Per kb per Million reads (RPKM) method. A total of 6,415 DEGs were mapped to 128 KEGG pathways, and 8,743 DEGs were assigned to 54 Gene Ontology categories. After blasting the DEGs to public sequence databases, 539 potential flowering-related DEGs were identified. In addition, 107 flowering-time genes were identified in longan, their expression levels between two longan samples were compared by RPKM method, of which the expression levels of 15 were confirmed by real-time quantitative PCR. Our results suggest longan homologues of SHORT VEGETATIVE PHASE (SVP), GIGANTEA (GI), F-BOX 1 (FKF1) and EARLY FLOWERING 4 (ELF4) may be involved this flowering trait and ELF4 may be a key gene. The identification of candidate genes related to continuous flowering will provide new insight into the molecular process of regulating flowering time in woody plants. PMID:25479005

  18. Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.

    PubMed

    Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J

    2009-01-01

    Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.

  19. Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time

    PubMed Central

    Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela

    2016-01-01

    In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058

  20. FLOWER IPv4/IPv6 Network Flow Summarization software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickless, Bill; Curtis, Darren; Christy, Jason

    FLOWER was written as a refactoring/reimplementation of the existing Flo software used by the Cooperative Protection Program (CPP) to provide network flow summaries for analysis by the Operational Analysis Center (OAC) and other US Department of Energy cyber security elements. FLOWER is designed and tested to operate at 10 gigabits/second, nearly 10 times faster than competing solutions. FLOWER output is optimized for importation into SQL databases for categorization and analysis. FLOWER is written in C++ using current best software engineering practices.

  1. Heterochrony underpins natural variation in Cardamine hirsuta leaf form

    PubMed Central

    Cartolano, Maria; Pieper, Bjorn; Lempe, Janne; Tattersall, Alex; Huijser, Peter; Tresch, Achim; Darrah, Peter R.; Hay, Angela; Tsiantis, Miltos

    2015-01-01

    A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation. PMID:26243877

  2. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.

    PubMed

    Chen, Qian; Zheng, Yan; Luo, Landi; Yang, Yongping; Hu, Xiangyang; Kong, Xiangxiang

    2018-01-01

    Flowering at the right time is important for the reproductive success of plants and their response to environmental stress. In Arabidopsis, a major determinant of natural variation in flowering time is FRIGIDA (FRI). In the present study, we show that overexpression of the functional FRIGIDA gene in wild-type Col background (ColFRI) positively enhances the drought tolerance by activating P5CS1 expression and promoting proline accumulation during water stress. Furthermore, no significant changes in FRI gene and protein expression levels were observed with drought treatment, whereas P5CS1 protein expression significantly increased. In contrast, vernalization treatment efficiently reduced P5CS1 expression levels and resulted in a decrease in drought tolerance in the ColFRI plants. The flc mutants with a functional FRI background also relieved FRI-mediated activation of P5CS1 during drought tolerance. Taken together, our findings reveal the novel function of FRI in enhancing drought resistance through its downstream P5CS1 pathway during water-deficit stress, which is dependent on its target, the FLC gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  4. Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus.

    PubMed

    Fambrini, Marco; Basile, Alice; Salvini, Mariangela; Pugliesi, Claudio

    2014-10-01

    Tubular ray flower (turf) is a sunflower mutant that caught attention because it bears actinomorphic ray flowers, due to the presence of an active, although non-autonomous CACTA transposon (Tetu1) in the TCP domain of a CYCLOIDEA-like gene, HaCYC2c, a major regulator of sunflower floral symmetry. Here, we analyzed its excision rates in F3 population deriving from independent crosses of turf with common sunflower accessions. Our results suggest that the excision rate, ranging from 1.21 to 6.29%, depends on genetic background; moreover, the absence of somatic sectors in inflorescences of revertant individuals analyzed (182) and genetic analyses suggests a tight developmental control of Tetu1 excision, likely restricted to germinal cells. We individuate events of Tetu1 excision through molecular analysis that restore the wild type (WT) HaCYC2c allele, but even transposon excisions during which footprints are left. All mutations we detected occurred at the TCP basic motif and cause a change in ray flower phenotype. In particular, we selected five mutants with a one-to-four amino acid change that influence the capacity of reproductive organ development and ray flower corolla shaping (MUT-1, -2, -3, -4, -5). Revertant alleles not affecting turf phenotype (i.e. reading frame mutations) have also been identified (MUT-6). In all mutants, Real-time quantitative PCR (qPCR) experiments revealed variations of the steady state level of HaCYC2c mRNA. MUT-1 and MUT-4 showed a significant HaCYC2c down-regulation with respect to WT. A large variation within the biological replicates of MUT-2, MUT-3 and MUT-5 was detected and not significant differences in transcription levels between mutants and WT were observed. We detected low steady state level of HaCYC2c mRNA both in turf as in MUT-6. A three dimensional (3D) structure prediction tool let us predict an incorrect folding of the TCP protein already after a single amino acid deletion. This in turn is detectable as the restore of traits that are not peculiar of WT ray flowers, such as male fertility. Our analysis of an active TE sheds light on the TCP motif of the HaCYC2c gene and suggests that Tetu1 may be useful to obtain new natural mutants and for transposon tagging in different inbred lines of sunflower. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology

    NASA Astrophysics Data System (ADS)

    Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng

    2018-03-01

    The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P < 0.01), but remained stable from 1963-1987 to 1989-2013. The strength of FBD and temperature relationship, the spring temperature variance, and winter chill all impact ST in an expected way at most stations. No consistent responses of ST on photoperiod were found. Our results imply that the trends and variability in ST of flowering phenology are driving by multiple factors and impacted by time scales. Continued efforts are still needed to further examine the flowering-temperature relationship for other plant species in other climates and environments using similar methods to our study.

  6. A new approach to generating research-quality phenology data: The USA National Phenology Monitoring System

    NASA Astrophysics Data System (ADS)

    Denny, E. G.; Miller-Rushing, A. J.; Haggerty, B. P.; Wilson, B. E.

    2009-12-01

    The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change. Traditional phenological observation protocols identify specific single dates at which individual phenological events are observed, but the scientific usefulness of long-term phenological observations can be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. “Do you see open flowers?”), which makes it very appropriate for a broad audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. The system also includes a mechanism for translation of phenophase start and end points into standard traditional phenological events to facilitate comparison of contemporary data collected with this new “phenophase status” monitoring approach to historical datasets collected with the “phenological event” monitoring approach. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change.

  7. A new approach to generating research-quality phenology data: The USA National Phenology Monitoring System

    NASA Astrophysics Data System (ADS)

    Denny, Ellen; Miller-Rushing, Abraham; Haggerty, Brian; Wilson, Bruce; Weltzin, Jake

    2010-05-01

    The USA National Phenology Network (www.usanpn.org) has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change. Traditional phenological observation protocols identify specific single dates at which individual phenological events are observed, but the scientific usefulness of long-term phenological observations can be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. "Do you see open flowers?"), which makes it very appropriate for a broad audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. The system also includes a mechanism for translation of phenophase start and end points into standard traditional phenological events to facilitate comparison of contemporary data collected with this new "phenophase status" monitoring approach to historical datasets collected with the "phenological event" monitoring approach. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change.

  8. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Avolio, Elenio; Orlandi, Fabio; Bellecci, Carlo; Fornaciari, Marco; Federico, Stefano

    2012-02-01

    In phenological studies, plant development and its relationship with meteorological conditions are considered in order to investigate the influence of climatic changes on the characteristics of many crop species. In this work, the impact of climate change on the flowering of the olive tree ( Olea europaea L.) in Calabria, southern Italy, has been studied. Olive is one of the most important plant species in the Mediterranean area and, at the same time, Calabria is one of the most representative regions of this area, both geographically and climatically. The work is divided into two main research activities. First, the behaviour of olive tree in Calabria and the influence of temperature on phenological phases of this crop are investigated. An aerobiological method is used to determine the olive flowering dates through the analysis of pollen data collected in three experimental fields for an 11-year study period (1999-2009). Second, the study of climate change in Calabria at high spatial and temporal resolution is performed. A dynamical downscaling procedure is applied for the regionalization of large-scale climate analysis derived from general circulation models for two representative climatic periods (1981-2000 and 2081-2100); the A2 IPCC scenario is used for future climate projections. The final part of this work is the integration of the results of the two research activities to predict the olive flowering variation for the future climatic conditions. In agreement with our previous works, we found a significant correlation between the phenological phases and temperature. For the twenty-first century, an advance of pollen season in Calabria of about 9 days, on average, is expected for each degree of temperature rise. From phenological model results, on the basis of future climate predictions over Calabria, an anticipation of maximum olive flowering between 10 and 34 days is expected, depending on the area. The results of this work are useful for adaptation and mitigation strategies, and for making concrete assessments about biological and environmental changes.

  9. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering.

    PubMed

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Dörmann, Peter; Coupland, George

    2014-04-04

    Arabidopsis FT protein is a component of florigen, which transmits photoperiodic flowering signals from leaf companion cells to the shoot apex. Here, we show that FT specifically binds phosphatidylcholine (PC) in vitro. A transgenic approach to increase PC levels in vivo in the shoot meristem accelerates flowering whereas reduced PC levels delay flowering, demonstrating that PC levels are correlated with flowering time. The early flowering is related to FT activity, because expression of FT-effector genes is increased in these plants. Simultaneous increase of FT and PC in the shoot apical meristem further stimulates flowering, whereas a loss of FT function leads to an attenuation of the effect of increased PC. Specific molecular species of PC oscillate diurnally, and night-dominant species are not the preferred ligands of FT. Elevating night-dominant species during the day delays flowering. We suggest that FT binds to diurnally changing molecular species of PC to promote flowering.

  10. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Wang, Mengye; Xie, Kunpeng; Wu, Qi; Sun, Lan; Lin, Zhiqun; Lin, Changjian

    2011-07-01

    Microarrays of N-doped flower-like TiO2 composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH4F aqueous solution. The TiO2 flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH4F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH4F concentration. The size and density of the TiO2 flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO2 microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO2 microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO2 film.

  11. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization.

    PubMed

    Wang, Chenglin; Wang, Mengye; Xie, Kunpeng; Wu, Qi; Sun, Lan; Lin, Zhiqun; Lin, Changjian

    2011-07-29

    Microarrays of N-doped flower-like TiO(2) composed of well-defined multilayer nanoflakes were synthesized at room temperature by electrochemical anodization of Ti in NH(4)F aqueous solution. The TiO(2) flowers were of good anatase crystallinity. The effects of anodizing time, applied voltage and NH(4)F concentration on the flower-like morphology were systematically examined. It was found that the morphologies of the anodized Ti were related to the anodizing time and NH(4)F concentration. The size and density of the TiO(2) flowers could be tuned by changing the applied voltage. The obtained N-doped flower-like TiO(2) microarrays exhibited intense absorption in wavelengths ranging from 320 to 800 nm. Under both UV and visible light irradiation, the photocatalytic activity of the N-doped flower-like TiO(2) microarrays in the oxidation of methyl orange showed a significant increase compared with that of commercial P25 TiO(2) film.

  12. An Ecoinformatic Analysis of the Effect of Seasonal and Annual Variation in Temperature, Precipitation, and Solar Irradiance on Pollen Productivity in Two Neotropical Forests

    NASA Astrophysics Data System (ADS)

    Haselhorst, D. S.; Tcheng, D. K.; Moreno, J. E.; Punyasena, S. W.

    2014-12-01

    Observational data provide a powerful source of information for understanding the phenological response of tropical forests to a changing climate. Annual changes in mean temperature, precipitation, and solar irradiance, in part driven by ENSO cycles, provide a natural experiment. However, these time series are often relatively short (several years to several decades), the average climatic variability experienced in that timeframe is relatively small, and the corresponding response is therefore often very weak. As a result, standard statistical approaches may fail in detecting a biological response. We present an alternative ecoinformatic analysis that demonstrates the power of weak models in the discovery and interpretation of statistically significant signals in short, noisy, ecological time series. We developed a simple response prediction model that uses cross-validation to explore a landscape of models that correlate the phenological behavior of individual taxa (pollen production, flowering, fruiting) to seasonal and annual mean temperature, precipitation, and solar irradiance using multivariate linear regression. We use a sign slope sensitivity analysis of each linear model that tallies positive and negative slope counts of a taxon's phenological behavior to our environmental and null variables. We applied this analysis to pollen trap data collected from 1996 to 2006 from two lowland Panamanian forests, Barro Colorado Island and Parque National San Lorenzo. We also tested the performance of our predictive model using published data of annual flowering and fruiting from BCI to corroborate that our approach could reproduce previously published results on tropical phenology. Our results indicate that although the overall variation in temperature was 3.28 °C over the ten year period, pollen productivity at both sites was most consistently affected by changes in temperature. This result was replicated by the published BCI flower and fruit data, which also increased with increased temperatures, highlighting the significant influence of even subtle changes in temperature for tropical forest communities. We also observed that both pollen and fruit production were negatively correlated with precipitation, suggesting a mechanism for how climate may interfere with pollination success.

  13. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities.

    PubMed

    Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel

    2017-11-19

    The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  14. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population.

    PubMed

    Kamran, A; Iqbal, M; Navabi, A; Randhawa, H; Pozniak, C; Spaner, D

    2013-08-01

    Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.

  16. Floral scent emitted by white and coloured morphs in orchids.

    PubMed

    Dormont, L; Delle-Vedove, R; Bessière, J-M; Schatz, B

    2014-04-01

    Polymorphism of floral signals, such as colour and odour, is widespread in flowering plants and often considered to be adaptive, reflecting various pollinator preferences for particular floral traits. Several authors have recently hypothesized that particular associations exist between floral colour and scent, which would result from shared biochemistry between these two floral traits. In this study, we compared the chemical composition of floral volatiles emitted by white- and purple-flowered morphs of three different orchid species, including two food-deceptive species (Orchis mascula and Orchis simia) and a food-rewarding species (Anacamptis coriophora fragrans). We found clear interspecific differences in floral odours. As expected from their pollination strategy, the two deceptive orchids showed high inter-individual variation of floral volatiles, whereas the food-rewarding A. c. fragrans showed low variation of floral scent. Floral volatiles did not differ overall between white- and coloured-flowered morphs in O. mascula and A. c. fragrans, while O. simia exhibited different volatile profiles between the two colour morphs. However, a detailed analysis restricted to benzenoid compounds (which are associated with the production of floral anthocyanin pigments) showed that white inflorescences emitted more volatiles of the shikimic pathway than coloured ones, both for O. mascula and O. simia. These results are consistent with the current hypothesis that shared biochemistry creates pleiotropic links between floral colour and scent. Whether intraspecific variation of floral signals actually affects pollinator attraction and influences the reproductive success of these orchids remains to be determined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Exposure of a diurnal mosquito vector to floral mimics: foraging responses, feeding patterns, and significance for sugar bait technology.

    PubMed

    Dieng, Hamady; Satho, Tomomitsu; Arzemi, Nurul Atieqah Binti; Aliasan, Nur Ezzati; Abang, Fatimah; Wydiamala, Erida; Miake, Fumio; Zuharah, Wan Fatma; Kassim, Nur Faeza A; Vargas, Ronald E Morales; Morales, Noppawan P; Noweg, Gabriel Tonga

    2018-05-29

    Food location by mosquitoes is mediated by resource-derived olfactory and visual signals. Smell sensation is intermittent and dependent on the environment, whereas visual signals are continual and precede olfactory cues. Success of mosquito bait technology, where olfactory cues are used for attraction, is being impeded by reduced attractiveness. Despite proof that mosquitoes respond to colored objects, including those mimicking floral shape, and that they can discriminate among flowers, the impacts of artificial flowers on foraging remain unexplored. Using artificial flowers with sugar rewards, we examined the foraging responses of Aedes aegypti to various colors in equal choice bioassays. Starved adults were exposed to single flowers with petals of a given color (Single Blue Flowers [SBFs]; Single Red Flowers [SRFs]; Single Yellow Flowers [SYFs]; Single Pink Flowers [SPIFs]; and Single Purple Flowers [SPFs]) and two others with white petals (SWFs). Discrepancies in response time, visitation, feeding, and resting of both sexes were compared between colored flowers and SWFs. Ae. aegypti exhibited shorter response times to colored flowers compared to SWFs, but this behavior was mostly seen for SBFs or SYFs in females, and SRFs, SYFs, SPIFs, or SPFs in males. When provided an option to land on colored flowers and SWFs, female visitation occurred at high rates on SBFs, SRFs, SYFs, SPIFs, and SPFs; for males, this preference for colored flowers was seen to a lesser degree on SBF and SPIFs. Both sexes exhibited preference for colored flowers as sugar sources, but with different patterns: SPIFs, SRFs, SYFs, and SPFs for females; SYFs, SPFs, SPIFs and SRFs for males. Females preferentially rested on colored flowers when in competition with SWFs, but this preference was more pronounced for SPFs, SRFs, and SBFs. Males exhibited an increased preference for SRFs, SPFs, and SYFs as resting sites. Our results indicated the attraction of Ae. aegypti to rewarding artificial flowers, in some cases in ways similar to live flowering plants. The discovery that both male and female Ae. aegypti can feed on nectar mimics held by artificial flowers opens new avenues for improving sugar bait technology and for developing new attract-and-kill devices. Copyright © 2018. Published by Elsevier B.V.

  18. Resource reallocation does not influence estimates of pollen limitation or reproductive assurance in Clarkia xantiana subsp. parviflora (Onagraceae).

    PubMed

    Runquist, Ryan D Briscoe; Moeller, David A

    2013-09-01

    Studies of pollen limitation and the reproductive assurance value of selfing are important for examining the process of floral and mating system evolution in flowering plants. Recent meta-analyses have shown that common methods for measuring pollen limitation may often lead to biased estimates. Specifically, experiments involving single- or few-flower manipulations per plant tend to overestimate pollen limitation compared to those involving manipulations on most or all flowers per plant. Little previous work has explicitly tested for reallocation within individual systems using alternative methods and response variables. • We performed single-flower and whole-plant pollen supplementation and emasculation of flowers of Clarkia xantiana subsp. parviflora to estimate pollen limitation (PL) and reproductive assurance (RA). We compared levels of PL and RA using the following response variables: fruit set, seeds/flower, and seeds/plant. We also assessed the germination and viability of seeds to evaluate potential variation in pollen quality among treatments. • Autonomous selfing in Clarkia xantiana subsp. parviflora eliminates pollen limitation and provides reproductive assurance. Estimates from single-flower manipulations were not biased, closely resembling those from whole-plant manipulations. All three response variables followed the same pattern, but treatments were only significantly different for seeds/flower. Pollen quality, as indicated by seed viability, did not differ among treatments. • Partial plant manipulations provided reliable estimates of pollen limitation and reproductive assurance. These estimates were also unaffected by accounting for pollen quality. Although whole plant manipulations are desirable, this experiment demonstrates that in some systems partial plant manipulations can be used in studies where whole-plant manipulations are not feasible.

  19. Tulipa gesneriana and Lilium longiflorum PEBP Genes and Their Putative Roles in Flowering Time Control.

    PubMed

    Leeggangers, Hendrika A C F; Rosilio-Brami, Tamar; Bigas-Nadal, Judit; Rubin, Noam; van Dijk, Aalt D J; Nunez de Caceres Gonzalez, Francisco F; Saadon-Shitrit, Shani; Nijveen, Harm; Hilhorst, Henk W M; Immink, Richard G H; Zaccai, Michele

    2018-01-01

    Floral induction in Tulipa gesneriana and Lilium longiflorum is triggered by contrasting temperature conditions, high and low temperature, respectively. In Arabidopsis, the floral integrator FLOWERING LOCUS T (FT), a member of the PEBP (phosphatidyl ethanolamine-binding protein) gene family, is a key player in flowering time control. In this study, one PEBP gene was identified and characterized in lily (LlFT) and three PEBP genes were isolated from tulip (TgFT1, TgFT2 and TgFT3). Overexpression of these genes in Arabidopsis thaliana resulted in an early flowering phenotype for LlFT and TgFT2, but a late flowering phenotype for TgFT1 and TgFT3. Overexpression of LlFT in L. longiflorum also resulted in an early flowering phenotype, confirming its proposed role as a flowering time-controlling gene. The tulip PEBP genes TgFT2 and TgFT3 have a similar expression pattern in tulip, but show opposite effects on the timing of flowering in Arabidopsis. Therefore, the difference between these two proteins was further investigated by interchanging amino acids thought to be important for the FT function. This resulted in the conversion of phenotypes in Arabidopsis upon overexpressing the substituted TgFT2 and TgFT3 genes, revealing the importance of these interchanged amino acid residues. Based on all obtained results, we hypothesize that LlFT is involved in creating meristem competence to flowering-related cues in lily, and TgFT2 is considered to act as a florigen involved in the floral induction in tulip. The function of TgFT3 remains unclear, but, based on our observations and phylogenetic analysis, we propose a bulb-specific function for this gene. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  1. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  2. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  3. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146

  4. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.

  5. Niche construction through phenological plasticity: life history dynamics and ecological consequences.

    PubMed

    Donohue, Kathleen

    2005-04-01

    The ability of an organism to alter the environment that it experiences has been termed 'niche construction'. Plants have several ways whereby they can determine the environment to which they are exposed at different life stages. This paper discusses three of these: plasticity in dispersal, flowering timing and germination timing. It reviews pathways through which niche construction alters evolutionary and ecological trajectories by altering the selective environment to which organisms are exposed, the phenotypic expression of plastic characters, and the expression of genetic variation. It provides examples whereby niche construction creates positive or negative feedbacks between phenotypes and environments, which in turn cause novel evolutionary constraints and novel life-history expression. Copyright New Phytologist (2005).

  6. A perfect flower from the Jurassic of China

    PubMed Central

    Liu, Zhong-Jian; Wang, Xin

    2016-01-01

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers. PMID:27134345

  7. A perfect flower from the Jurassic of China.

    PubMed

    Liu, Zhong-Jian; Wang, Xin

    2016-07-03

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov. , from the Middle-Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.

  8. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.

    PubMed

    Liu, Hao; Gu, Fengwei; Dong, Shuangyu; Liu, Wei; Wang, Hui; Chen, Zhiqiang; Wang, Jiafeng

    2016-10-14

    Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Timing of population peaks of Norway lemming in relation to atmospheric pressure: A hypothesis to explain the spatial synchrony.

    PubMed

    Selås, Vidar

    2016-06-01

    Herbivore cycles are often synchronized over larger areas than what could be explained by dispersal. In Norway, the 3-4 year lemming cycle usually show no more than a one-year time lag between different regions, despite distances of up to 1000 km. If important food plants are forced to reallocate defensive proteins in years with high seed production, spatially synchronized herbivore outbreaks may be due to climate-synchronized peaks in flowering. Because lemming peaks are expected to occur one year after a flowering peak, and the formation of flower buds is induced in the year before flowering, a two-year time lag between flower-inducing climate events and lemming peaks is predicted. At Hardangervidda, South Norway, the probability that a year was a population peak year of lemming during 1920-2014 increased with increasing midsummer atmospheric pressure two years earlier, even when the number of years since the previous peak was accounted for.

  10. Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants.

    PubMed

    Kim, Yong-Min; Kim, Seungill; Koo, Namjin; Shin, Ah-Young; Yeom, Seon-In; Seo, Eunyoung; Park, Seong-Jin; Kang, Won-Hee; Kim, Myung-Shin; Park, Jieun; Jang, Insu; Kim, Pan-Gyu; Byeon, Iksu; Kim, Min-Seo; Choi, JinHyuk; Ko, Gunhwan; Hwang, JiHye; Yang, Tae-Jin; Choi, Sang-Bong; Lee, Je Min; Lim, Ki-Byung; Lee, Jungho; Choi, Ik-Young; Park, Beom-Seok; Kwon, Suk-Yoon; Choi, Doil; Kim, Ryan W

    2017-02-01

    Hibiscus syriacus (L.) (rose of Sharon) is one of the most widespread garden shrubs in the world. We report a draft of the H. syriacus genome comprised of a 1.75 Gb assembly that covers 92% of the genome with only 1.7% (33 Mb) gap sequences. Predicted gene modeling detected 87,603 genes, mostly supported by deep RNA sequencing data. To define gene family distribution among relatives of H. syriacus, orthologous gene sets containing 164,660 genes in 21,472 clusters were identified by OrthoMCL analysis of five plant species, including H. syriacus, Arabidopsis thaliana, Gossypium raimondii, Theobroma cacao and Amborella trichopoda. We inferred their evolutionary relationships based on divergence times among Malvaceae plant genes and found that gene families involved in flowering regulation and disease resistance were more highly divergent and expanded in H. syriacus than in its close relatives, G. raimondii (DD) and T. cacao. Clustered gene families and gene collinearity analysis revealed that two recent rounds of whole-genome duplication were followed by diploidization of the H. syriacus genome after speciation. Copy number variation and phylogenetic divergence indicates that WGDs and subsequent diploidization led to unequal duplication and deletion of flowering-related genes in H. syriacus and may affect its unique floral morphology. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. Seeing is believing: information content and behavioural response to visual and chemical cues

    PubMed Central

    Gonzálvez, Francisco G.; Rodríguez-Gironés, Miguel A.

    2013-01-01

    Predator avoidance and foraging often pose conflicting demands. Animals can decrease mortality risk searching for predators, but searching decreases foraging time and hence intake. We used this principle to investigate how prey should use information to detect, assess and respond to predation risk from an optimal foraging perspective. A mathematical model showed that solitary bees should increase flower examination time in response to predator cues and that the rate of false alarms should be negatively correlated with the relative value of the flower explored. The predatory ant, Oecophylla smaragdina, and the harmless ant, Polyrhachis dives, differ in the profile of volatiles they emit and in their visual appearance. As predicted, the solitary bee Nomia strigata spent more time examining virgin flowers in presence of predator cues than in their absence. Furthermore, the proportion of flowers rejected decreased from morning to noon, as the relative value of virgin flowers increased. In addition, bees responded differently to visual and chemical cues. While chemical cues induced bees to search around flowers, bees detecting visual cues hovered in front of them. These strategies may allow prey to identify the nature of visual cues and to locate the source of chemical cues. PMID:23698013

  12. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.

    PubMed

    Bjorkman, Anne D; Elmendorf, Sarah C; Beamish, Alison L; Vellend, Mark; Henry, Gregory H R

    2015-12-01

    Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long-term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21-year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05-0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species - especially for early-flowering species - while spring temperature was significantly related to flowering time only for later-flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species' phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone. © 2015 John Wiley & Sons Ltd.

  13. Variations in the Availability of Pollen Resources Affect Honey Bee Health

    PubMed Central

    Di Pasquale, Garance; Alaux, Cédric; Le Conte, Yves; Odoux, Jean-François; Pioz, Maryline; Vaissière, Bernard E.; Belzunces, Luc P.; Decourtye, Axel

    2016-01-01

    Intensive agricultural systems often expose honey bees (Apis mellifera L.) to large temporal variations in the availability (quantity, quality and diversity) of nutritional resources. Such nutritional irregularity is expected to affect honey bee health. We therefore tested under laboratory conditions the effect of such variation in pollen availability on honey bee health (survival and nursing physiology—hypopharyngeal gland development and vitellogenin expression). We fed honey bees with different diets composed of pollen pellets collected by honey bees in an agricultural landscape of western France. Slight drops (5–10%) in the availability of oilseed rape (Brassica napus L.) pollen resulted in significant reductions of all tested variables. Despite some variations in taxonomic diversity and nutritional quality, the pollen mixes harvested over the season had a similar positive influence on honey bee health, except for the one collected in late July that induced poor survival and nursing physiology. This period coincided with the mass-flowering of maize (Zea mays L.), an anemophilous crop which produces poor-quality pollen. Therefore, changes in bee health were not connected to variations in pollen diversity but rather to variations in pollen depletion and quality, such as can be encountered in an intensive agricultural system of western France. Finally, even though pollen can be available ad libitum during the mass-flowering of some crops (e.g. maize), it can fail to provide bees with diet adequate for their development. PMID:27631605

  14. Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris)

    NASA Astrophysics Data System (ADS)

    Raine, Nigel E.; Chittka, Lars

    2007-06-01

    To investigate how bumblebees (Bombus terrestris) learn the complex motor skills involved in pollen foraging, we observed naïve workers foraging on arrays of nectarless poppy flowers (Papaver rhoeas) in a greenhouse. Foraging skills were quantified by measuring the pollen load collected during each foraging bout and relating this to the number of flowers visited and bout duration on two consecutive days. The pollen standing crop (PSC) in each flower decreased drastically from 0530 to 0900 hours. Therefore, we related foraging performance to the changing levels of pollen available (per flower) and found that collection rate increased over the course of four consecutive foraging bouts (comprising between 277 and 354 individual flower visits), suggesting that learning to forage for pollen represents a substantial time investment for individual foragers. The pollen collection rate and size of pollen loads collected at the start of day 2 were markedly lower than at the end of day 1, suggesting that components of pollen foraging behaviour could be subject to imperfect overnight retention. Our results suggest that learning the necessary motor skills to collect pollen effectively from morphologically simple flowers takes three times as many visits as learning how to handle the most morphologically complex flowers to extract nectar, potentially explaining why bees are more specialised in their choice of pollen flowers.

  15. Pollinator-mediated competition between two co-flowering Neotropical mangrove species, Avicennia germinans (Avicenniaceae) and Laguncularia racemosa (Combretaceae)

    PubMed Central

    Landry, C. L.

    2013-01-01

    Background and Aims Three ecological relationships are possible between co-flowering plant species; they may have no effect on one another, compete for pollination services, or facilitate one another by attracting more pollinators to the area. In this study, the pollinator-mediated relationship between two mangrove species with overlapping flowering phenologies was investigated in one south Florida community. Methods Pollinator observations were recorded between 0900 h and 1700 h during June and July, 2008–2010. Insect visitation rates to Avicennia germinans and Laguncularia racemosa were estimated from 522 observation intervals of 10 min during three phenological time periods, when each species flowered alone and when they co-flowered. The number of timed intervals varied between years due to differences in flowering phenology, from four to 42 for A. germinans and from nine to 94 for L. racemosa. Key Results Avicennia germinans began flowering first in all years, and insect visitation rates were significantly greater to A. germinans than to L. racemosa (P<0·001). Flowers of both species received visits from bees, wasps, flies and butterflies; Apis mellifera was the most common floral visitor to both species. Visitation rates to L. racemosa increased significantly when A. germinans stopped flowering (P<0·001). However, there was no significant change in visitation rates to A. germinans after L. racemosa began flowering (P=0·628). Conclusions When they co-flowered, A. germinans outcompeted L. racemosa for pollinators. Laguncularia racemosa hermaphrodites self-pollinate autogamously when not visited by insects, so reduced visitation to L. racemosa flowers reduced the frequency of outcrossing and increased the frequency of selfing. Reduced outcrossing limits male reproductive success in this androdioecious species, which could lead to changes in the breeding system. The degree of overlap in flowering phenologies varied between years, so the effect on the mating and breeding system may differ between years. PMID:23235696

  16. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community

    PubMed Central

    Canto, A.; Herrera, C. M.

    2012-01-01

    Background and Aims Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Methods Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Key Results Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. Conclusions The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities. PMID:22915578

  17. Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla.

    PubMed

    Jorgensen, Rachael; Arathi, H S

    2013-09-01

    A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae). Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual. The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing. In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.

  18. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus).

    PubMed

    Zhu, Youyin; Li, Yongqiang; Xin, Dedong; Chen, Wenrong; Shao, Xu; Wang, Yue; Guo, Weidong

    2015-01-25

    Bud dormancy is a critical biological process allowing Chinese cherry (Prunus pseudocerasus) to survive in winter. Due to the lake of genomic information, molecular mechanisms triggering endodormancy release in flower buds have remained unclear. Hence, we used Illumina RNA-Seq technology to carry out de novo transcriptome assembly and digital gene expression profiling of flower buds. Approximately 47million clean reads were assembled into 50,604 sequences with an average length of 837bp. A total of 37,650 unigene sequences were successfully annotated. 128 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of second metabolite and plant hormone signal transduction accounted for higher percentage in flower bud. In critical period of endodormancy release, 1644, significantly differentially expressed genes (DEGs) were identified from expression profile. DEGs related to oxidoreductase activity were especially abundant in Gene Ontology (GO) molecular function category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. Quantitative real-time PCR (qRT-PCR) analysis indicated that levels of DEGs for abscisic acid and gibberellin biosynthesis decreased while the abundance of DEGs encoding their degradation enzymes increased and GID1 was down-regulated. Concomitant with endodormancy release, MADS-box transcription factors including P. pseudocerasus dormancy-associated MADS-box (PpcDAM), Agamous-like2, and APETALA3-like genes, shown remarkably epigenetic roles. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during bud dormancy in Chinese cherry. The uncovered data should be useful for future studies of bud dormancy in Prunus fruit trees lacking genomic information. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Asymmetrical conspecific seed-siring advantage between Silene latifolia and S. dioica.

    PubMed

    Montgomery, Benjamin R; Soper, Deanna M; Delph, Lynda F

    2010-04-01

    Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible. Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers. The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers. The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.

  20. Asymmetrical conspecific seed-siring advantage between Silene latifolia and S. dioica

    PubMed Central

    Montgomery, Benjamin R.; Soper, Deanna M.; Delph, Lynda F.

    2010-01-01

    Background and Aims Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible. Methods Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers. Key Results The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers. Conclusions The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species. PMID:20147372

Top