Sample records for flowers exploring corolla

  1. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M

    2008-10-07

    An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.

  2. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants.

    PubMed

    Herrera, Javier

    2009-05-01

    While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200-400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed.

  3. Marcescent corollas as functional structures: effects on the fecundity of two insect-pollinated plants

    PubMed Central

    Herrera, Carlos M.

    2010-01-01

    Background and aims Persistence of withered corollas after anthesis (‘corolla marcescence’) is widespread in angiosperms, yet its functional significance does not seem to have been explored for any species. This note reports the results of experiments assessing the fecundity effects of marcescent corollas in two southern Spanish insect-pollinated plants, Lavandula latifolia (Lamiaceae) and Viola cazorlensis (Violaceae). Methods The effect of marcescent corollas on seed production was evaluated experimentally on wild-growing plants. Newly open flowers were randomly assigned to either control or treatment groups in experimental plants. After anthesis, withered corollas of treatment flowers were removed and those in control flowers were left in place. Fruits produced by treatment and control flowers were collected shortly before dehiscence and the number of seeds counted. Key Results In V. cazorlensis, removal of withered corollas had no effect on percentage of fruit set, but mean seeds per fruit increased from 9·5 to 11·4. In L. latifolia, corolla removal had no effect on the number of seeds per fruit, but reduced the proportion of flowers ripening fruit from 60 % to 40 %. The detrimental effect of corolla removal on L. latifolia fecundity resulted from the drastic increase in fruit infestation by seed-predatory cecidomyiid larvae, which occurred in 4 % and 34 % of control and treatment fruits, respectively. Conclusions Because of their potential effects on plant fecundity, marcescent corollas should not be dismissed a priori as biologically irrelevant leftovers from past floral functions. The simplicity of the experimental layout required to test for short-term fecundity effects of corolla marcescence should help to achieve a better understanding of the ecological and evolutionary correlates of this widespread but poorly understood trait. PMID:20870656

  4. Marcescent corollas as functional structures: effects on the fecundity of two insect-pollinated plants.

    PubMed

    Herrera, Carlos M

    2010-10-01

    Persistence of withered corollas after anthesis ('corolla marcescence') is widespread in angiosperms, yet its functional significance does not seem to have been explored for any species. This note reports the results of experiments assessing the fecundity effects of marcescent corollas in two southern Spanish insect-pollinated plants, Lavandula latifolia (Lamiaceae) and Viola cazorlensis (Violaceae). The effect of marcescent corollas on seed production was evaluated experimentally on wild-growing plants. Newly open flowers were randomly assigned to either control or treatment groups in experimental plants. After anthesis, withered corollas of treatment flowers were removed and those in control flowers were left in place. Fruits produced by treatment and control flowers were collected shortly before dehiscence and the number of seeds counted. In V. cazorlensis, removal of withered corollas had no effect on percentage of fruit set, but mean seeds per fruit increased from 9·5 to 11·4. In L. latifolia, corolla removal had no effect on the number of seeds per fruit, but reduced the proportion of flowers ripening fruit from 60 % to 40 %. The detrimental effect of corolla removal on L. latifolia fecundity resulted from the drastic increase in fruit infestation by seed-predatory cecidomyiid larvae, which occurred in 4 % and 34 % of control and treatment fruits, respectively. Because of their potential effects on plant fecundity, marcescent corollas should not be dismissed a priori as biologically irrelevant leftovers from past floral functions. The simplicity of the experimental layout required to test for short-term fecundity effects of corolla marcescence should help to achieve a better understanding of the ecological and evolutionary correlates of this widespread but poorly understood trait.

  5. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  6. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade

    PubMed Central

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-01-01

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702

  7. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-08-19

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Corolla chirality does not contribute to directed pollen movement in Hypericum perforatum (Hypericaceae): mirror image pinwheel flowers function as radially symmetric flowers in pollination.

    PubMed

    Diller, Carolina; Fenster, Charles B

    2016-07-01

    Corolla chirality, the pinwheel arrangement of petals within a flower, is found throughout the core eudicots. In 15 families, different chiral type flowers (i.e., right or left rotated corolla) exist on the same plant, and this condition is referred to as unfixed/enantiomorphic corolla chirality. There are no investigations on the significance of unfixed floral chirality on directed pollen movement even though analogous mirror image floral designs, for example, enantiostyly, has evolved in response to selection to direct pollinator and pollen movement. Here, we examine the role of corolla chirality on directing pollen transfer, pollinator behavior, and its potential influence on disassortative mating. We quantified pollen transfer and pollinator behavior and movement for both right and left rotated flowers in two populations of Hypericum perforatum. In addition, we quantified the number of right and left rotated flowers at the individual level. Pollinators were indifferent to corolla chirality resulting in no difference in pollen deposition between right and left flowers. Corolla chirality had no effect on pollinator and pollen movement between and within chiral morphs. Unlike other mirror image floral designs, corolla chirality appears to play no role in promoting disassortative mating in this species.

  9. Large and abundant flowers increase indirect costs of corollas: a study of coflowering sympatric Mediterranean species of contrasting flower size.

    PubMed

    Teixido, Alberto L; Valladares, Fernando

    2013-09-01

    Large floral displays receive more pollinator visits but involve higher production and maintenance costs. This can result in indirect costs which may negatively affect functions like reproductive output. In this study, we explored the relationship between floral display and indirect costs in two pairs of coflowering sympatric Mediterranean Cistus of contrasting flower size. We hypothesized that: (1) corolla production entails direct costs in dry mass, N and P, (2) corollas entail significant indirect costs in terms of fruit set and seed production, (3) indirect costs increase with floral display, (4) indirect costs are greater in larger-flowered sympatric species, and (5) local climatic conditions influence indirect costs. We compared fruit set and seed production of petal-removed flowers and unmanipulated control flowers and evaluated the influence of mean flower number and mean flower size on relative fruit and seed gain of petal-removed and control flowers. Fruit set and seed production were significantly higher in petal-removed flowers in all the studied species. A positive relationship was found between relative fruit gain and mean individual flower size within species. In one pair of species, fruit gain was higher in the large-flowered species, as was the correlation between fruit gain and mean number of open flowers. In the other pair, the correlation between fruit gain and mean flower size was also higher in the large-flowered species. These results reveal that Mediterranean environments impose significant constraints on floral display, counteracting advantages of large flowers from the pollination point of view with increased indirect costs of such flowers.

  10. Inheritance of flower color in periwinkle: orange-red corolla and white eye.

    PubMed

    Sreevalli, Y; Kulkarni, R N; Baskaran, K

    2002-01-01

    The commonly found flower colors in periwinkle (Catharanthus roseus)--pink, white, red-eyed, and pale pink center--are reported to be governed by the epistatic interaction between four genes--A, R, W, and I. The mode of inheritance of an uncommon flower color, orange-red corolla and white eye, was studied by crossing an accession possessing this corolla color with a white flowered variety (Nirmal). The phenotype of the F(1) plants and segregation data of F(2) and backcross generations suggested the involvement of two more interacting and independently inherited genes, one (proposed symbol E) determining the presence or absence of red eye and another (proposed symbol O) determining orange-red corolla.

  11. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.

    PubMed

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-12-01

    Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily.

  12. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    PubMed

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  13. Wind-Dragged Corolla Enhances Self-Pollination: A New Mechanism of Delayed Self-Pollination

    PubMed Central

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-01-01

    Background and Aims Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Methods Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Key Results Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. Conclusions This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily. PMID:17881336

  14. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: implications for evolutionary transitions.

    PubMed

    Tong, Ze-Yu; Wang, Xiang-Ping; Wu, Ling-Yun; Huang, Shuang-Quan

    2018-06-07

    Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 μL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination environments.

  15. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination.

    PubMed

    Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang

    2016-01-01

    Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures.

  16. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination

    PubMed Central

    Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang

    2016-01-01

    Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high temperature may affect the evolution of plant extrafloral structures. PMID:27716786

  17. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence

    PubMed Central

    Chapin, Laura J.; Jones, Michelle L.

    2009-01-01

    The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's role in nutrient remobilization, the P content of petals (collectively called the corolla) during early development and senescence was compared in ethylene-sensitive wild type Petunia×hybrida ‘Mitchell Diploid’ (MD) and transgenic petunias with reduced sensitivity to ethylene (35S::etr1-1). When compared to the total P content of corollas on the day of flower opening (the early non-senescing stage), P in MD corollas had decreased 74% by the late stage of senescence (advanced wilting). By contrast, P levels were only reduced by an average of 32% during etr1-1 corolla (lines 44568 and Z00-35-10) senescence. A high-affinity phosphate transporter, PhPT1 (PhPht1;1), was cloned from senescing petunia corollas by RT-PCR. PhPT1 expression was up-regulated during MD corolla senescence and a much smaller increase was detected during the senescence of etr1-1 petunia corollas. PhPT1 mRNA levels showed a rapid increase in detached corollas (treated at 1 d after flower opening) following treatment with low levels of ethylene (0.1 μl l-1). Transcripts accumulated in the presence of the protein synthesis inhibitor, cycloheximide, indicating that PhPT1 is a primary ethylene response gene. PhPT1 is a putative phosphate transporter that may function in Pi translocation during senescence. PMID:19380421

  18. Cytoplasmic male sterility in Mimulus hybrids has pleiotropic effects on corolla and pistil traits.

    PubMed

    Barr, C M; Fishman, L

    2011-05-01

    The mechanisms underlying genetic associations have important consequences for evolutionary outcomes, but distinguishing linkage from pleiotropy is often difficult. Here, we use a fine mapping approach to determine the genetic basis of association between cytonuclear male sterility and other floral traits in Mimulus hybrids. Previous work has shown that male sterility in hybrids between Mimulus guttatus and Mimulus nasutus is due to interactions between a mitochondrial gene from M. guttatus and two tightly linked nuclear restorer alleles on Linkage Group 7, and that male sterility is associated with reduced corolla size. In the present study, we generated a set of nearly isogenic lines segregating for the restorer region and male sterility, but with unique flanking introgressions. Male-sterile flowers had significantly smaller corollas, longer styles and greater stigmatic exsertion than fertile flowers. Because these effects were significant regardless of the genotypic composition of introgressions flanking the restorer region, they suggest that these floral differences are a direct byproduct of the genetic incompatibility causing anther abortion. In addition, we found a non-significant but intriguing trend for male-sterile plants to produce more seeds per flower than fertile siblings after supplemental pollination. Such pleiotropic effects may underlie the corolla dimorphism frequently observed in gynodioecious taxa and may affect selection on cytoplasmic male sterility genes when they initially arise.

  19. Stigma receptivity over the lifetime of the hermaphroditic flower of Elsholtzia rugulosa was negatively correlated with pollen viability.

    PubMed

    Zhang, Xin-Min; Wolfe, Lorne M

    2016-12-01

    Dichogamy is generally thought to be a mechanism that prevents self-fertilization in flowering plants. This study aims to investigate the relationships between floral age and stigma receptivity, style length and pollen viability, and define how floral characters avoid self-pollination in a gynodioecious Chinese plant, Elsholtzia rugulosa. We assessed the relationships between flower age and style length, stigma receptivity, and pollen viability in E. rugulosa. This species produces 2 forms with plants bearing either hermaphrodite flowers (H) or female flowers (F). Corolla length in F flowers was shorter than the corolla length of H flowers and produced no pollen. H flowers were protandrous, pollen release of H flowers occurred before stigma receptivity. Stigma receptivity was significantly positively correlated with style length in both F flowers and H flowers. Pollen viability in H flowers declined significantly with floral age. Our results suggest that self-pollination in H flowers is likely reduced by dichogamy because stigma receptivity and pollen viability were effectively separated in time. However, because H inflorescences typically have multiple flowers open at the same time means that geitonogamous selfing is not avoided.

  20. 'Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers.

    PubMed

    Castellanos, M C; Wilson, P; Thomson, J D

    2004-07-01

    Floral phenotypes may be as much the result of selection for avoidance of some animal visitors as selection for improving the interaction with better pollinators. When specializing on hummingbird-pollination, Penstemon flowers may have evolved to improve the morphological fit between bird and flower, or to exclude less-efficient bees, or both. We hypothesized how such selection might work on four floral characters that affect the mechanics of pollen transfer: anther/stigma exsertion, presence of a lower corolla lip, width of the corolla tube, and angle of flower inclination. We surgically modified bee-pollinated P. strictus flowers changing one trait at a time to make them resemble hummingbird-pollinated P. barbatus flowers, and measured pollen transfer by bumblebees and hummingbirds. Results suggest that, apart from 'pro-bird' adaptations, specific 'anti-bee' adaptations have been important in shaping hummingbird-flowers. Moreover, some trait changes may have been selected for only if changing in concert with other traits. Copyright 2004 Blackwell Publishing Ltd

  1. Nectary tracks as pollinator manipulators: The pollination ecology of Swertia bimaculata (Gentianaceae).

    PubMed

    Wang, Shuai; Fu, Wen-Long; Du, Wei; Zhang, Qi; Li, Ya; Lyu, Yu-Shu; Wang, Xiao-Fan

    2018-03-01

    Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata , evolved a peculiar form of corolla nectaries (known as "gland patches") arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis , a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary-anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis . Most visitors performed "circling behavior" in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the "visual attraction" hypothesis and supported the "visitor manipulation" hypothesis. The nectary whorl within a flower acted like a ring-shaped track that urged nectar foragers to circle on the corolla, making pollination in S. bimaculata flowers more orderly and selective than that in classically generalist flowers.

  2. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico.

    PubMed

    Martínez-Adriano, Cristian Adrian; Jurado, Enrique; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1-4 styles; 2-9 stamens; 6.5-41.5 mm long corolla; sepals from 4.5-29.5 mm in length; a total length from 15.5-59 mm; a corolla diameter from 10.5-77 mm. The nectar guide had a diameter from 5-30.5 mm; 4-9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants.

  3. Pollination-Induced Corolla Wilting in Petunia hybrida Rapid Transfer through the Style of a Wilting-Inducing Substance.

    PubMed

    Gilissen, L J; Hoekstra, F A

    1984-06-01

    Pollination or wounding of the stigma of Petunia hybrida flowers led to the generation of a wilting factor and its transfer to the corolla within 4 hours. This was concluded from the effects of time course removal of whole styles. In this 4-hour period, pollen tubes traversed only a fraction of the total distance to the ovaries. Both pollination and wounding of the stigma immediately resulted in an increase of ethylene evolution. Accelerated wilting, however, occured only when treated styles remained connected with the ovaries, and not when they were detached and left in the flower. A wilting factor was found in eluates collected from the ovarian end of the styles, only in the case of previous pollination or wounding. In such eluates, the level of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid was below detection.These observations suggest a material nature of the wilting factor in Petunia flowers, which rapidly passes through the style to the corolla, but which is different from 1-aminocyclopropane-1-carboxylic acid.

  4. [Floral structure of two species of Trachycarpea (Arecaceae)].

    PubMed

    Guevara, Lorena I; Jáuregui, Damelis J; Stauffer, Fred W

    2014-09-01

    Copernicia and Washingtonia are two genera of the Trachycarpeae for which no subtribal classification has been proposed, mainly because of the lack of resolution in phylogenetic studies. Morphology and anatomy of flowers whithin Coryphoideae have proven useful for taxa delimitation and supporting relationships among their members. A description of the morphological and anatomical structure of flowers of C. tectorum and W. filifera is presented in order to explore reproductive characters that may clarify their classification within the subfamily and to contribute with floral biology studies. Flowers of cultivated specimens of both taxa and developing fruits of C. tectorum were fixed in FAA, dissected for morphological analysis, and parafin-embedded flowers and fruits were serially sectioned for obtaining permanent slides, using conventional techniques and safranin-fast green staining. All procedures were carried out in the Laboratory of Morpho-Anatomy, Agronomy Faculty of the Universidad Central de Venezuela (UCV). Both species have hermaphroditic flowers. C. tectorum flowers have a thick and pubescent perianth, six stamens with filaments forming a tube fused to the corolla, with rounded projections and an acute apex where the anthers are inserted. W. filifera flowers have an irregularly dentate calyx, and a shortly acuminate corolla, six stamens united by their filaments to the corolla which at the same time are briefly fused to the gynoecium. Cells with druse crystals in the staminal tube are reported for C. tectorum. Only one of the carpels of the gynoecium of C. tectorum develops at fruit stage, and a layer of abundant raphide cells forming a crustaceous endocarp in mature fruits, was found. W. filifera presents the perianth mesophyll with few layers of thick walled cells and schlerenchymatic tissue, gynoecium with apically fused carpels in the ventral region of ovary, free at the base and the apex of the style, where the ventral sutures are opened. C. tectorum has a ventral hypodermis in the petals made of large and thick walled cells, gynoecium with apically fused carpels in the ovary, free and adpressed basally, style-stigma completely fused, and stylar transmission channel absent distally. Distinct stylar canals in C. tectorum, united distally in W. filifera confirm the close relationship between these species and subtribe Livistoninae. Also, some floral morpho-anatomical similarities (e.g. fleshy calyx base and a hypodermis with thickened cell walls in petals) were found between C. tectorum and Pritchardia, supporting the affinities between both genera.

  5. Successful boll development after ovary damage during emasculation of upland cotton flowers

    USDA-ARS?s Scientific Manuscript database

    Gossypium hirsutum flowers are easily emasculated by splitting the staminal column with the fingernail and removing the corolla and androecium. However, any damage to the ovary is considered detrimental to successful boll formation and damaged flowers are typically discarded. This study evaluated ...

  6. Flower, fruit phenology and flower traits in Cordia boissieri (Boraginaceae) from northeastern Mexico

    PubMed Central

    Martínez-Adriano, Cristian Adrian; Flores, Joel; González-Rodríguez, Humberto; Cuéllar-Rodríguez, Gerardo

    2016-01-01

    We characterized variations in Cordia boissieri flowers and established if these variations occur between plants or between flowering events. Flowering and fruiting was measured for 256 plants. A GLM test was used to determine the relationship between flowering and fruit set processes and rainfall. We performed measurements of floral traits to detect variations within the population and between flowering events. The position of the anthers with respect to the ovary was determined in 1,500 flowers. Three out of four flowering events of >80% C. boissieri plants occurred after rainfall events. Only one flowering event occurred in a drought. Most plants flowered at least twice a year. The overlapping of flowering and fruiting only occurred after rainfall. Anthesis lasted three-to-five days, and there were two flower morphs. Half of the plants had longistylus and half had brevistylus flowers. Anacahuita flower in our study had 1–4 styles; 2–9 stamens; 6.5–41.5 mm long corolla; sepals from 4.5–29.5 mm in length; a total length from 15.5–59 mm; a corolla diameter from 10.5–77 mm. The nectar guide had a diameter from 5–30.5 mm; 4–9 lobes; and 5 distinguishable nectar guide colors. The highest variation of phenotypic expression was observed between plants. PMID:27231656

  7. Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores)

    PubMed Central

    Fernández-Mazuecos, Mario; Blanco-Pastor, José Luis; Gómez, José M.; Vargas, Pablo

    2013-01-01

    Background and Aims The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ∼30 species and subspecies with highly specialized corollas. Methods A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. Key Results A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. Conclusions The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes. PMID:24142920

  8. Florivory and nectar-robbing perforations in flowers of pointleaf manzanita Arctostaphylos pungens (Ericaceae) and their effects on plant reproductive success

    PubMed Central

    Eliyahu, Dorit; McCall, Andrew C.; Lauck, Marina; Trakhtenbrot, Ana

    2015-01-01

    Damage to petals may have varying effects on the reproductive success of the plant. The variation may depend on the kind of damage to the corolla. Whether the damage is limited to the corolla, as is usually the case with nectar-robbing perforations, or extending to the reproductive parts of the flower, as in the case of florivory holes, might determine the extent of the effect on the plant's reproduction. We examined the various perforations in the flowers of Arctostaphylos pungens and correlated their presence with fruiting success. We found that though florivory holes were highly associated with damage to reproductive parts, fruiting success did not differ significantly between flowers with the two kinds of damage. Although nectar-robbing perforations were not associated with reduced number of fruit produced, they were significantly correlated with reduced number of fruit that contained seemingly viable seeds. The implications of our findings are discussed in the context of pollination and antagonism. PMID:26811740

  9. Florivory and nectar-robbing perforations in flowers of pointleaf manzanita Arctostaphylos pungens (Ericaceae) and their effects on plant reproductive success.

    PubMed

    Eliyahu, Dorit; McCall, Andrew C; Lauck, Marina; Trakhtenbrot, Ana

    2015-12-01

    Damage to petals may have varying effects on the reproductive success of the plant. The variation may depend on the kind of damage to the corolla. Whether the damage is limited to the corolla, as is usually the case with nectar-robbing perforations, or extending to the reproductive parts of the flower, as in the case of florivory holes, might determine the extent of the effect on the plant's reproduction. We examined the various perforations in the flowers of Arctostaphylos pungens and correlated their presence with fruiting success. We found that though florivory holes were highly associated with damage to reproductive parts, fruiting success did not differ significantly between flowers with the two kinds of damage. Although nectar-robbing perforations were not associated with reduced number of fruit produced, they were significantly correlated with reduced number of fruit that contained seemingly viable seeds. The implications of our findings are discussed in the context of pollination and antagonism.

  10. Morphofunctional Traits and Pollination Mechanisms of Coronilla emerus L. Flowers (Fabaceae)

    PubMed Central

    Aronne, Giovanna; Giovanetti, Manuela; De Micco, Veronica

    2012-01-01

    It is accepted that the papilionaceous corolla of the Fabaceae evolved under the selective pressure of bee pollinators. Morphology and function of different parts of Coronilla emerus L. flowers were related to their role in the pollination mechanism. The corolla has a vexillum with red nectar lines, a keel hiding stamens and pistil, and two wing petals fasten to the keel with two notched folds. Pollinators land on the complex of keel and wings, trigger the protrusion of pollen and finally of the stigma from the keel tip. Data on pollen viability and stigma receptivity prove that flowers are proterandrous. The results of hand-pollination experiments confirmed that insects are fundamental to set seed. Interaction with pollinators allows not only the transport of pollen but also the rupture of the stigmatic cuticle, necessary to achieve both allogamy and autogamy. Field observations showed that Hymenoptera, Lepidoptera, and Diptera visited the flowers. Only some of the Hymenoptera landed on the flowers from the front and elicited pollination mechanisms. Most of the insects sucked the nectar from the back without any pollen transfer. Finally, morphological and functional characteristics of C. emerus flowers are discussed in terms of floral larceny and reduction in pollination efficiency. PMID:22666114

  11. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales)

    PubMed Central

    Howarth, Dianella G.; Martins, Tiago; Chimney, Edward; Donoghue, Michael J.

    2011-01-01

    Background and Aims The expression of floral symmetry genes is examined in the CYCLOIDEA lineage following duplication, and these are linked to changes in flower morphology. The study focuses on Dipsacales, comparing DipsCYC2 gene expression in Viburnum (radially symmetrical Adoxaceae) to members of early-diverging lineages of the bilaterally symmetrical Caprifoliaceae (Diervilla and Lonicera). Methods Floral tissue from six species, which included dorsal, lateral and ventral regions of the corolla, was dissected. RNA was extracted from these tissues and each copy of DipsCYC2 was amplified with reverse transcriptase PCR. Key Results Members of DipsCYC2 were expressed across the corolla in the radially symmetrical Viburnum plicatum. A shift to bilaterally symmetrical flowers at the base of the Caprifoliaceae was accompanied by a duplication of the DipsCYC2 gene, resulting in DipsCYC2A and DipsCYC2B, and by loss of expression of both of these copies in the ventral petal. In Lonicera (Caprifolieae), there is a shift from flowers with two dorsally and three ventrally oriented corolla lobes to a clear differentiation of dorsal, lateral and ventral lobes. This shift entailed a decoupling of expression of DipsCYC2A and DipsCYC2B; DipsCYC2B continues to be expressed in the dorsal and lateral lobes, while DipsCYC2A expression is restricted to just the two dorsal lobes. A reversion to more radially symmetrical flowers within Lonicera was accompanied by a re-expansion of expression of both DipsCYC2A and DipsCYC2B. Conclusions The transition to bilateral symmetry in Caprifoliaceae involved: (a) duplication of an ancestral DipsCYC2 gene; (b) the loss of expression of both of these copies in the ventral petal; and (c) changes in the zone of expression, with one copy continuing to be expressed across the dorsal and lateral petals, and the other copy becoming restricted in expression to the dorsal corolla lobes. PMID:21478175

  12. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE.

    PubMed

    Berger, Brent A; Ricigliano, Vincent A; Savriama, Yoland; Lim, Aedric; Thompson, Veronica; Howarth, Dianella G

    2017-11-17

    While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.

  13. Interspecific amphiploid-derived alloplasmic male sterility with defective anthers, narrow disk florets, and small ray flowers in sunflower

    USDA-ARS?s Scientific Manuscript database

    The cytoplasmic male-sterility (CMS)/fertility-restoration system is important for hybrid sunflower (Helianthus annuus L.) seed production. Two novel alloplasmic CMSs, designated CMS GRO1 and CMS MAX3 with defective anthers, narrow disk florets with no swollen corolla, and short, narrow ray flowers,...

  14. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    PubMed

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness

    PubMed Central

    Hansen, Dennis M.; Van der Niet, Timotheüs; Johnson, Steven D.

    2012-01-01

    Nectar guides, contrasting patterns on flowers that supposedly direct pollinators towards a concealed nectar reward, are taxonomically widespread. However, there have been few studies of their functional significance and effects on plant fitness. Most previous studies focused on pollinator behaviour and used artificial flowers in laboratory settings. We experimentally investigated the role of putative nectar guides in a natural system: the South African iris Lapeirousia oreogena, whose flowers have a clearly visible pattern of six white arrow-markings pointing towards the narrow entrance of the long corolla tube, and its sole pollinator, a long-proboscid nemestrinid fly. We painted over none, some or all of the white arrow-markings with ink that matched the colour of the corolla background. Although arrow-marking removal had little effect on the approaches by flies to flowers from a distance, it dramatically reduced the likelihood of proboscis insertion. Export of pollen dye analogue (an estimate of male fitness) was reduced to almost zero in flowers from which all nectar guides had been removed, and fruit set (a measure of female fitness) was also significantly reduced. Our results confirm that the markings on L. oreogena flowers serve as nectar guides and suggest that they are under strong selective maintenance through both male and female fitness components in this pollination system. PMID:21795269

  16. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments.

    PubMed

    Liu, Juanxu; Li, Jingyu; Wang, Huinan; Fu, Zhaodi; Liu, Juan; Yu, Yixun

    2011-01-01

    Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.

  17. Is there a hybridization barrier between Gentiana lutea color morphs?

    PubMed

    Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo; Sobral, Mar

    2015-01-01

    In Gentiana lutea two varieties are described: G. lutea var. aurantiaca with orange corolla colors and G. lutea var. lutea with yellow corolla colors. Both color varieties co-occur in NW Spain, and pollinators select flower color in this species. It is not known whether a hybridization barrier exists between these G. lutea color varieties. We aim to test the compatibility between flower color varieties in G. lutea and its dependence on pollen vectors. Within a sympatric population containing both flower color morphs, we analyzed differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among varieties). We found a 93% reduction in number of seeds and a 37% reduction in seed weight respectively of autogamy treatments compared to xenogamy crossings. Additionally, reproductive success is higher within color varieties than among varieties, due to a 45% seed viability reduction on hybrids from different varieties. Our results show that G. lutea reproductive success is strongly dependent on pollinators and that a partial hybridization barrier exists between G. lutea varieties.

  18. Is there a hybridization barrier between Gentiana lutea color morphs?

    PubMed Central

    Losada, María; Veiga, Tania; Guitián, Javier; Guitián, José; Guitián, Pablo

    2015-01-01

    In Gentiana lutea two varieties are described: G. lutea var. aurantiaca with orange corolla colors and G. lutea var. lutea with yellow corolla colors. Both color varieties co-occur in NW Spain, and pollinators select flower color in this species. It is not known whether a hybridization barrier exists between these G. lutea color varieties. We aim to test the compatibility between flower color varieties in G. lutea and its dependence on pollen vectors. Within a sympatric population containing both flower color morphs, we analyzed differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among varieties). We found a 93% reduction in number of seeds and a 37% reduction in seed weight respectively of autogamy treatments compared to xenogamy crossings. Additionally, reproductive success is higher within color varieties than among varieties, due to a 45% seed viability reduction on hybrids from different varieties. Our results show that G. lutea reproductive success is strongly dependent on pollinators and that a partial hybridization barrier exists between G. lutea varieties. PMID:26528404

  19. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications.

    PubMed

    Krishna, Shivani; Keasar, Tamar

    2018-06-06

    Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.

  20. Proteomic analysis of pollination-induced corolla senescence in petunia.

    PubMed

    Bai, Shuangyi; Willard, Belinda; Chapin, Laura J; Kinter, Michael T; Francis, David M; Stead, Anthony D; Jones, Michelle L

    2010-02-01

    Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.

  1. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species

    PubMed Central

    Yuan, Yao-Wu; Rebocho, Alexandra B.; Sagawa, Janelle M.; Stanley, Lauren E.; Bradshaw, Harvey D.

    2016-01-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species. PMID:26884205

  2. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.

    PubMed

    Yuan, Yao-Wu; Rebocho, Alexandra B; Sagawa, Janelle M; Stanley, Lauren E; Bradshaw, Harvey D

    2016-03-01

    Flower color patterns have long served as a model for developmental genetics because pigment phenotypes are visually striking, yet generally not required for plant viability, facilitating the genetic analysis of color and pattern mutants. The evolution of novel flower colors and patterns has played a key role in the adaptive radiation of flowering plants via their specialized interactions with different pollinator guilds (e.g., bees, butterflies, birds), motivating the search for allelic differences affecting flower color pattern in closely related plant species with different pollinators. We have identified LIGHT AREAS1 (LAR1), encoding an R2R3-MYB transcription factor, as the causal gene underlying the spatial pattern variation of floral anthocyanin pigmentation between two sister species of monkeyflower: the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated Mimulus cardinalis. We demonstrated that LAR1 positively regulates FLAVONOL SYNTHASE (FLS), essentially eliminating anthocyanin biosynthesis in the white region (i.e., light areas) around the corolla throat of M. lewisii flowers by diverting dihydroflavonol into flavonol biosynthesis from the anthocyanin pigment pathway. FLS is preferentially expressed in the light areas of the M. lewisii flower, thus prepatterning the corolla. LAR1 expression in M. cardinalis flowers is much lower than in M. lewisii, explaining the unpatterned phenotype and recessive inheritance of the M. cardinalis allele. Furthermore, our gene-expression analysis and genetic mapping results suggest that cis-regulatory change at the LAR1 gene played a critical role in the evolution of different pigmentation patterns between the two species.

  3. [Literature study on species of honeysuckle flower].

    PubMed

    Zhang, Wei; Huang, Lu-Qi; Li, Chao-Xia; Li, Jian; Zhang, Rui-Xian

    2014-06-01

    Honeysuckle flower is a traditional herbal medicine in China Through systemically sorting and studying literature of Chinese medicine, this article pointed out that leech used by the traditional Chinese medicine in ancient time has the features of twist vine, slight purple stem with clothing hair; opposite growing leaves, ovule shape with clothing hair on both side; two flowers growing from one pedicel, labiate corolla with 3.2 cm longth, flower grows from white color to yellow color, each branch axil grows only one pedicel, the involucre is ovoid shape, and the flower season is from mid-March to mid-May. Among all species of caprifoliaceae, only Lonicera japonica Thunb. meets these botanic features. Therefore, L. japonica Thunb. should be used as the orthodox species of herbal honeysuckle flower.

  4. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan

    PubMed Central

    Gómez, José M.; Torices, Ruben; Lorite, Juan; Klingenberg, Christian Peter; Perfectti, Francisco

    2016-01-01

    Background and Aims Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. Methods Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. Key Results Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. Conclusions Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche. Even in a plant clade having a very generalized pollination system and exhibiting a conserved floral bauplan, pollinators can drive the evolution of important developmental attributes of corolla shape. PMID:26884512

  5. The role of the style as a sense-organ in relation to wilting of the flower.

    PubMed

    Gilissen, L J

    1976-01-01

    Pollen tube growth in the style (Petunia ♀xNicotiana ♂) accelerated wilting. Pollination and germination on the stigmatic surface (Petunia ♀xAtropa ♂) did not change the stage of flowering in comparison with unpollinated flowers. Wilting of the corolla was accelerated by cutting off the stigma or cutting the style half-way down. Removal of the entire style also brought about an acceleration, however, to a lesser extent. The role of the style as a sense-organ with regard to the transmission of information from stigma and style to other flower organs is discussed.

  6. It takes two to tango: self incompatibility in the bromeliad Tillandsia streptophylla (Bromeliaceae) in Mexico.

    PubMed

    Ramírez Morillo, Ivón M; Chi May, Francisco; Carnevali, Germán; May Pat, Filogonio

    2009-09-01

    Floral phenology and breeding system of Tillandsia streptophylla (Bromeliaceae) were studied in a low inundated forest in Yucatan, Mexico. During the flowering season, from March to August, terminal scapose 1-branched, paniculate inflorescences are produced with one flower per branch opening per day, over a period of 11-29 days. Flowers are tubular, light violet, with the stigma placed below the anthers, both protruding above the corolla. Flowers are protandrous, with anthers releasing pollen from 0500 hours and stigma becoming receptive around 0900 hours. Controlled experimental crosses suggest that Tillandsia streptophylla is self incompatible and therefore, pollinator-dependent.

  7. The Genetic Architecture of Interspecific Variation in Mimulus

    PubMed Central

    Macnair, M. R.; Cumbes, Q. J.

    1989-01-01

    The genetic architecture of various floral and morphological differences between Mimulus cupriphilus and Mimulus guttatus is investigated. M. cupriphilus is believed to have speciated from M. guttatus in the recent past. The two parent species, the F(1) and F(2), and two backcrosses were grown and scored for 23 different characters. The analysis of means revealed significant epistasis for a number of the floral characters, particularly those involving the length of parts. Dominance was generally toward M. guttatus, except for the characters related to flowering time. Analysis of the genetic correlations between characters revealed that there were at least four different polygenic genetic systems, governing flowering time, size of flower, number of spots on the corolla, and general size. An analysis of minimum gene number suggested that there were at least 3-7 genes controlling floral size, and a different three controlling floral spot number. Two other characters, corolla lobe shape and stem color, were produced by independent major gene differences. Annuality was also shown to be heritable. The two species appear to utilize the same gene for copper tolerance. The results are discussed in the light of current theories of speciation. PMID:17246497

  8. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae).

    PubMed

    Baranzelli, M C; Sérsic, A N; Cocucci, A A

    2014-04-01

    Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  9. Higher iridescent-to-pigment optical effect in flowers facilitates learning, memory and generalization in foraging bumblebees.

    PubMed

    de Premorel, Géraud; Giurfa, Martin; Andraud, Christine; Gomez, Doris

    2017-10-25

    Iridescence-change of colour with changes in the angle of view or of illumination-is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant-pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees ( Bombus terrestris ) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator-plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings. © 2017 The Author(s).

  10. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas.

    PubMed

    Paudel, Babu Ram; Shrestha, Mani; Burd, Martin; Adhikari, Subodh; Sun, Yong-Shuai; Li, Qing-Jun

    2016-09-01

    Geographical variation in the interacting traits of plant-pollinator mutualism can lead to local adaptive differentiation. We tested Darwin's hypothesis of reciprocal selection as a key driving force for the evolution of floral traits of an alpine ginger (Roscoea purpurea) and proboscis length of a tabanid fly (Philoliche longirostris). We documented the pattern of trait variation in R. purpurea and P. longirostris across five populations. At each site, we quantified pollinator-mediated selection on floral display area, inflorescence height and corolla length of R. purpurea by comparing selection gradients for flowers exposed to natural pollination and to supplemental hand pollination. Reciprocal selection between plant and fly was examined at two sites via the relationship between proboscis length and nectar consumption (fly benefit) and corolla length and pollen deposition (plant benefit). Local corolla tube length was correlated with local fly proboscis length among the five sites. We found strong linear selection imposed by pollinators on corolla tube length at all sites, but there was no consistent relationship of fitness to inflorescence height or floral display area. Selection between corolla length and proboscis length was reciprocal at the two experimental sites examined. The geographical pattern of trait variation and the evidence of selection is consistent with a mosaic of local, species-specific reciprocal selection acting as the major driving force for the evolution of corolla length of R. purpurea and proboscis length of P. longirostris. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan.

    PubMed

    Gómez, José M; Torices, Ruben; Lorite, Juan; Klingenberg, Christian Peter; Perfectti, Francisco

    2016-04-01

    Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche. Even in a plant clade having a very generalized pollination system and exhibiting a conserved floral bauplan, pollinators can drive the evolution of important developmental attributes of corolla shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Perianth organization and intra-specific floral variability.

    PubMed

    Herrera, J; Arista, M; Ortiz, P L

    2008-11-01

    Floral symmetry and fusion of perianth parts are factors that contribute to fine-tune the match between flowers and their animal pollination vectors. In the present study, we investigated whether the possession of a sympetalous (fused) corolla and bilateral symmetry of flowers translate into decreased intra-specific variability as a result of natural stabilizing selection exerted by pollinators. Average size of the corolla and intra-specific variability were determined in two sets of southern Spanish entomophilous plant species. In the first set, taxa were paired by family to control for the effect of phylogeny (phylogenetically independent contrasts), whereas in the second set species were selected at random. Flower size data from a previous study (with different species) were also used to test the hypothesis that petal fusion contributes to decrease intra-specific variability. In the phylogenetically independent contrasts, floral symmetry was a significant correlate of intra-specific variation, with bilaterally symmetrical flowers showing more constancy than radially symmetrical flowers (i.e. unsophisticated from a functional perspective). As regards petal fusion, species with fused petals were on average more constant than choripetalous species, but the difference was not statistically significant. The reanalysis of data from a previous study yielded largely similar results, with a distinct effect of symmetry on variability, but no effect of petal fusion. The randomly-chosen species sample, on the other hand, failed to reveal any significant effect of either symmetry or petal fusion on intra-specific variation. The problem of low-statistical power in this kind of analysis, and the difficulty of testing an evolutionary hypothesis that involves phenotypic traits with a high degree of morphological correlation is discussed.

  13. The effect of flower-like and non-flower-like visual properties on choice of unrewarding patterns by bumblebees

    NASA Astrophysics Data System (ADS)

    Orbán, Levente L.; Plowright, Catherine M. S.

    2013-07-01

    How do distinct visual stimuli help bumblebees discover flowers before they have experienced any reward outside of their nest? Two visual floral properties, type of a pattern (concentric vs radial) and its position on unrewarding artificial flowers (central vs peripheral on corolla), were manipulated in two experiments. Both visual properties showed significant effects on floral choice. When pitted against each other, pattern was more important than position. Experiment 1 shows a significant effect of concentric pattern position, and experiment 2 shows a significant preference towards radial patterns regardless of their position. These results show that the presence of markings at the center of a flower are not so important as the presence of markings that will direct bees there.

  14. Plant-pollinator interactions and floral convergence in two species of Heliconia from the Caribbean Islands.

    PubMed

    Martén-Rodríguez, Silvana; Kress, W John; Temeles, Ethan J; Meléndez-Ackerman, Elvia

    2011-12-01

    Variation in interspecific interactions across geographic space is a potential driver of diversification and local adaptation. This study quantitatively examined variation in floral phenotypes and pollinator service of Heliconia bihai and H. caribaea across three Antillean islands. The prediction was that floral characters would correspond to the major pollinators of these species on each island. Analysis of floral phenotypes revealed convergence among species and populations of Heliconia from the Greater Antilles. All populations of H. caribaea were similar, characterized by long nectar chambers and short corolla tubes. In contrast, H. bihai populations were strongly divergent: on Dominica, H. bihai had flowers with short nectar chambers and long corollas, whereas on Hispaniola, H. bihai flowers resembled those of H. caribaea with longer nectar chambers and shorter corolla tubes. Morphological variation in floral traits corresponded with geographic differences or similarities in the major pollinators on each island. The Hispaniolan mango, Anthracothorax dominicus, is the principal pollinator of both H. bihai and H. caribaea on Hispaniola; thus, the similarity of floral phenotypes between Heliconia species suggests parallel selective regimes imposed by the principal pollinator. Likewise, divergence between H. bihai populations from Dominica and Hispaniola corresponded with differences in the pollinators visiting this species on the two islands. The study highlights the putative importance of pollinator-mediated selection as driving floral convergence and the evolution of locally-adapted plant variants across a geographic mosaic of pollinator species.

  15. Molecular Characterization and Functional Analysis of Two Petunia PhEILs

    PubMed Central

    Liu, Feng; Hu, Li; Cai, Yuanping; Lin, Hong; Liu, Juanxu; Yu, Yixun

    2016-01-01

    Ethylene plays an important role in flower senescence of many plants. Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) and its homolog EIL1 are the downstream component of ethylene signaling transduction. However, the function of EILs during flower senescence remains unknown. Here, a petunia EIL gene, PhEIL2, was isolated. Phylogenetic tree showed that PhEIL1, whose coding gene is previously isolated, and PhEIL2 are the homologs of Arabidopsis AtEIL3 and AtEIL1, respectively. The expression of both PhEIL1 and PhEIL2 is the highest in corollas and increased during corolla senescence. Ethylene treatment increased the mRNA level of PhEIL1 but reduced that of PhEIL2. VIGS-mediated both PhEIL1 and PhEIL2 silencing delayed flower senescence, and significantly reduced ethylene production and the expression of PhERF3 and PhCP2, two senescence-associated genes in petunia flowers. The PhEIL2 protein activating transcription domain is identified in the 353-612-amino acids at C-terminal of PhEIL2 and yeast two-hybrid and bimolecular fluorescence complementation assays show that PhEIL2 interacts with PhEIL1, suggesting that PhEIL1 and PhEIL2 might form heterodimers to recognize their targets. These molecular characterizations of PhEIL1 and PhEIL2 in petunia are different with those of in Vigna radiata and Arabidopsis. PMID:27847510

  16. A perfect flower from the Jurassic of China

    PubMed Central

    Liu, Zhong-Jian; Wang, Xin

    2016-01-01

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov., from the Middle–Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers. PMID:27134345

  17. A perfect flower from the Jurassic of China.

    PubMed

    Liu, Zhong-Jian; Wang, Xin

    2016-07-03

    Flower, enclosed ovule and tetrasporangiate anther are three major characters distinguishing angiosperms from other seed plants. Morphologically, typical flowers are characterised by an organisation with gynoecium and androecium surrounded by corolla and calyx. Theoretically, flowers are derived from their counterparts in ancient ancestral gymnosperms. However, as for when, how and from which groups, there is no consensus among botanists yet. Although angiosperm-like pollen and angiosperms have been claimed in the Triassic and Jurassic, typical flowers with the aforesaid three key characters are still missing in the pre-Cretaceous age, making many interpretations of flower evolution tentative. Thus searching for flower in the pre-Cretaceous has been a tantalising task for palaeobotanists for a long time. Here, we report a typical flower, Euanthus panii gen. et sp. nov. , from the Middle-Late Jurassic of Liaoning, China. Euanthus has sepals, petals, androecium with tetrasporangiate dithecate anthers and gynoecium with enclosed ovules, organised just like in perfect flowers of extant angiosperms. The discovery of Euanthus implies that typical angiosperm flowers have already been in place in the Jurassic, and provides a new insight unavailable otherwise for the evolution of flowers.

  18. Complex implications around a simple trait: ecological context determines the fecundity effects of corolla marcescence.

    PubMed

    Herrera, Carlos M

    2011-05-01

    Post-anthesis functionality of persistent perianth parts has rarely been investigated, but available evidence suggests that perianth persistence may not always have an adaptive value. Given the high occurrence of the trait, that it may sometimes be maladaptive is an intriguing possibility and deserves exploration. This paper tests the hypothesis that the fitness value of corolla persistence after anthesis depends on ecological context, specifically the abundance of fruit predators and pollinators. The study was conducted on Narcissus longispathus, a species in which corolla marcescence is apparently maladaptive because withered corollas provide a shelter for fruit-predatory lepidopteran larvae. By experimentally manipulating corolla persistence, presence of fruit predators, and pollination, I tested whether variation in ecological scenario led to concomitant variation in the sign and magnitude of the effects of corolla marcescence on fecundity. Persistent corollas were detrimental to fecundity when plants were exposed to larvae, but not when larvae were excluded. Pollination and herbivory had nonadditive effects on the fecundity consequences of corolla marcescence, the strongest detrimental effects of corolla persistence occurring for the "exposed to larvae + supplementary pollination" treatment combination. The hypothesis that ecological context is a major determinant of the fitness value of corolla marcescence was supported. In N. longispathus, corolla marcescence will be a maladaptive trait in situations in which pollinators and fruit predators are simultaneously abundant, but will be a neutral character in the absence of fruit predators, irrespective of pollinator service.

  19. Flower specialisation: the occluded corolla of snapdragons (Antirrhinum) exhibits two pollinator niches of large long-tongued bees.

    PubMed

    Vargas, P; Liberal, I; Ornosa, C; Gómez, J M

    2017-09-01

    Flower specialisation of angiosperms includes the occluded corollas of snapdragons (Antirrhinum and some relatives), which have been postulated to be one of the most efficient structures to physical limit access to pollinators. The Iberian Peninsula harbours the highest number of species (18 Iberian of the 20 species of Antirrhinum) that potentially share similar pollinator fauna. Crossing experiments with 18 Iberian species from this study and literature revealed a general pattern of self-incompatibility (SI) - failure in this SI system has been also observed in a few plants - which indicates the need for pollinator agents in Antirrhinum pollination. Field surveys in natural conditions (304 h) found flower visitation (>85%) almost exclusively by 11 species of bee (Anthophora fulvitarsis, Anthophora plumipes, Anthidium sticticum, Apis mellifera, Bombus hortorum, Bombus pascuorum, Bombus ruderatus, Bombus terrestris, Chalicodoma lefebvrei, Chalicodoma pyrenaica and Xylocopa violacea). This result covering the majority of Antirrhinum species suggests that large bees of the two long-tongued bee families (Megachilidae, Apidae) are the major pollinators of Antirrhinum. A bipartite modularity analysis revealed two pollinator systems of long-tongued bees: (i) the long-studied system of bumblebees (Bombus spp.) associated with nine primarily northern species of Antirrhinum; and (ii) a newly proposed pollinator system involving other large bees associated with seven species primarily distributed in southern Mediterranean areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Bituminaria antiatlantica (Psoraleeae, Fabaceae), a new species from Morocco

    PubMed Central

    Brullo, Salvatore; Brullo, Cristian; Cambria, Salvatore; Cristaudo, Antonia; del Galdo, Gianpietro Giusso

    2017-01-01

    Abstract A new species of Bituminaria is described and illustrated: Bituminaria antiatlantica Brullo, C. Brullo, Cambria, Cristaudo & Giusso, sp. nov., which is endemic to Anti-Atlas Mountains (Morocco). It is a true chasmophyte, characterized by a suffruticose habit, several woody branches, leaflets coriaceous, rounded to ovate, small, few-flowered inflorescences and corolla pale coloured. PMID:29033664

  1. Kindia (Pavetteae, Rubiaceae), a new cliff-dwelling genus with chemically profiled colleter exudate from Mt Gangan, Republic of Guinea

    PubMed Central

    Cheek, Martin; Magassouba, Sékou; Howes, Melanie-Jayne R.; Doré, Tokpa; Doumbouya, Saïdou; Molmou, Denise; Grall, Aurélie; Couch, Charlotte

    2018-01-01

    A new genus Kindia (Pavetteae, Rubiaceae) is described with a single species, Kindia gangan, based on collections made in 2016 during botanical exploration of Mt Gangan, Kindia, Republic of Guinea in West Africa. The Mt Gangan area is known for its many endemic species including the only native non-neotropical Bromeliaceae Pitcairnia feliciana. Kindia is the fourth endemic vascular plant genus to be described from Guinea. Based on chloroplast sequence data, the genus is part of Clade II of tribe Pavetteae. In this clade, it is sister to Leptactina sensu lato (including Coleactina and Dictyandra). K. gangan is distinguished from Leptactina s.l. by the combination of the following characters: its epilithic habit; several-flowered axillary inflorescences; distinct calyx tube as long as the lobes; a infundibular-campanulate corolla tube with narrow proximal section widening abruptly to the broad distal section; presence of a dense hair band near base of the corolla tube; anthers and style deeply included, reaching about mid-height of the corolla tube; anthers lacking connective appendages and with sub-basal insertion; pollen type 1; pollen presenter (style head) winged and glabrous (smooth and usually hairy in Leptactina); orange colleters producing a vivid red exudate, which encircle the hypanthium, and occur inside the calyx and stipules. Kindia is a subshrub that appears restricted to bare, vertical rock faces of sandstone. Fruit dispersal and pollination by bats is postulated. Here, it is assessed as Endangered EN D1 using the 2012 IUCN standard. High resolution LC-MS/MS analysis revealed over 40 triterpenoid compounds in the colleter exudate, including those assigned to the cycloartane class. Triterpenoids are of interest for their diverse chemical structures, varied biological activities, and potential therapeutic value. PMID:29692954

  2. Ultraviolet Patterns on Rear of Flowers: Basis of Disparity of Buds and Blossoms

    PubMed Central

    Eisner, Thomas; Eisner, Maria; Aneshansley, D.

    1973-01-01

    Flowers of Jasminium primulinum and Hypericum spp. have ultraviolet patterns on the reverse surface of the corolla. Those areas of the surface that are exposed to the outside in the bud are ultraviolet absorbent, whereas the portions that come into view at maturity in the open blossom are ultraviolet reflectant. Buds and blossoms, as a result, appear different in color to insects sensitive to ultraviolet light. Experimental evidence indicates that the ultraviolet-absorbent quality of the outer surface of the bud is a consequence of exposure itself, attributable possibly to a “sun tanning” effect. Images PMID:16592074

  3. Flora of Nam Kading National Protected Area I: a new species of yellow-flowered Strobilanthes (Acanthaceae), S. namkadingensis.

    PubMed

    Souladeth, Phetlasy; Tagane, Shuichiro; Zhang, Meng; Okabe, Norikazu; Yahara, Tetsukazu

    2017-01-01

    A new species of Acanthaceae, Strobilanthes namkadingensis Soulad. & Tagane from Nam Kading National Protected Area, Bolikhamxay Province, central Laos, is described and illustrated. It is characterized by long spicate inflorescences consisting of 6-32 flowers, yellow corolla, the absence of long white hairs on the bracts and 4-6 seeds per capsule. Three DNA barcode regions of the partial genes for the large sub-unit ribulose-1,5-bisphosphate carboxylase oxygenase ( rbcL ) and maturase K ( matK ) and internal transcribed spacers (ITS) are also provided.

  4. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.

    PubMed

    Zhong, Jinshun; Kellogg, Elizabeth A

    2015-08-01

    • CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry. © 2015 Botanical Society of America, Inc.

  5. Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla.

    PubMed

    Jorgensen, Rachael; Arathi, H S

    2013-09-01

    A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae). Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual. The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing. In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.

  6. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata)[C][W][OPEN

    PubMed Central

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T.; Gaquerel, Emmanuel

    2014-01-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-l-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. PMID:25326292

  7. Tropism in azalea and lily flowers

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Tomita-Yokotani, K.; Nakamura, T.; Yamashita, M.

    Tropic responses were examined in azalea Rhododendrom pulchrum and lily Lilium cv. 'Casablanca' flowers. Orientation of the flowers in these two species depicts several up/down characteristics, such as angle of the corolla opening, alignment or configuration of a specific petal at the top, plus direction in the curved tip of the pistil and stamen. Gravity was found to be the prime factor, with light as a secondary signal that determines gravitropism in the pistil of the azalea. Within the azalea, sedimented amyloplasts were observed throughout the cells along the inner layers below the epidermis. In lily flowers, no sedimented amyloplasts were found in style cells, and phototropic responses caused upward bending of the pistil. Responses of lily pistils to monochromatic light were consistent with the action spectrum for phototropism in the shoots of monocotyledonous plants. We discuss how these features may increase the fitness for pollination in these two species.

  8. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks.

    PubMed

    Sazatornil, Federico D; Moré, Marcela; Benitez-Vieyra, Santiago; Cocucci, Andrea A; Kitching, Ian J; Schlumpberger, Boris O; Oliveira, Paulo E; Sazima, Marlies; Amorim, Felipe W

    2016-11-01

    A major challenge in evolutionary ecology is to understand how co-evolutionary processes shape patterns of interactions between species at community level. Pollination of flowers with long corolla tubes by long-tongued hawkmoths has been invoked as a showcase model of co-evolution. Recently, optimal foraging models have predicted that there might be a close association between mouthparts' length and the corolla depth of the visited flowers, thus favouring trait convergence and specialization at community level. Here, we assessed whether hawkmoths more frequently pollinate plants with floral tube lengths similar to their proboscis lengths (morphological match hypothesis) against abundance-based processes (neutral hypothesis) and ecological trait mismatches constraints (forbidden links hypothesis), and how these processes structure hawkmoth-plant mutualistic networks from five communities in four biogeographical regions of South America. We found convergence in morphological traits across the five communities and that the distribution of morphological differences between hawkmoths and plants is consistent with expectations under the morphological match hypothesis in three of the five communities. In the two remaining communities, which are ecotones between two distinct biogeographical areas, interactions are better predicted by the neutral hypothesis. Our findings are consistent with the idea that diffuse co-evolution drives the evolution of extremely long proboscises and flower tubes, and highlight the importance of morphological traits, beyond the forbidden links hypothesis, in structuring interactions between mutualistic partners, revealing that the role of niche-based processes can be much more complex than previously known. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  9. Floral development at multiple spatial scales in Polygonum jucundum (Polygonaceae), a distylous species with broadly open flowers.

    PubMed

    Huang, Lan-Jie; Fu, Wen-Long; Wang, Xiao-Fan

    2014-01-01

    Distyly, a special polymorph, has evolved in many groups of angiosperms and has attracted attention since Darwin's time. Development studies on distylous taxa have helped us to understand the evolutionary process of this polymorph, but most of these studies focus on species with narrowly tubular corolla. Here, we studied the floral development of Polygonum jucundum, a distylous species with broadly open flowers, at multiple spatial scales. Results showed that the difference in stigma height between flowers of the two morphs was caused by differences in style growth throughout the entire floral development process. The observed difference in anther heights between the two morphs was because the filaments grew faster in short-styled (SS) than in long-styled (LS) flowers in the later stages of floral development. In addition, the longer styles in LS flowers than in SS flowers was because of faster cell division in the early stages of floral development. However, SS flowers had longer filaments than LS flowers primarily because of greater cell elongation. These results indicate that floral development in P. jucundum differs from that of distylous taxa with floral tubes shown in previous studies. Further, we conclude that the presence of distyly in species with open flowers is a result of convergent evolution.

  10. Vigna yadavii (Leguminosae: Papilionoideae), a new species from Western Ghats, India

    PubMed Central

    Gaikwad, Sayajirao P.; Randive, Sonali D.; Garad, Krushnadeoray U.

    2014-01-01

    Abstract A new species of Vigna Savi, subgenus Ceratotropis (Piper) Verdc., Vigna yadavii S.P. Gaikwad, R.D. Gore, S.D. Randive & K.U. Garad, sp. nov. is described and illustrated here. It is morphologically close to Vigna dalzelliana (Kuntze) Verdc. but differs in its underground obligate cleistogamous flowers on positively geotropic branches, hairy calyx, small corolla, linear style beak and dimorphic seeds with shiny seed coat. PMID:25589877

  11. A Matter of Contrast: Yellow Flower Colour Constrains Style Length in Crocus species.

    PubMed

    Lunau, Klaus; Konzmann, Sabine; Bossems, Jessica; Harpke, Doerte

    2016-01-01

    Most flowers display distinct colour patterns comprising two different areas. The peripheral large-area component of floral colour patterns attracts flower visitors from some distance and the central small-area component guides flower visitors towards landing sites. Whereas the peripheral colour is largely variable among species, the central colour, produced mostly by anthers and pollen or pollen mimicking floral guides, is predominantly yellow and UV-absorbing. This holds also for yellow flowers that regularly display a UV bull's eye pattern. Here we show that yellow-flowering Crocus species are a noticeable exception, since yellow-flowering Crocus species-being entirely UV-absorbing-exhibit low colour contrast between yellow reproductive organs and yellow tepals. The elongated yellow or orange-yellow style of Crocus flowers is a stamen-mimicking structure promoting cross-pollination by facilitating flower visitors' contact with the apical stigma before the flower visitors are touching the anthers. Since Crocus species possess either yellow, violet or white tepals, the colour contrast between the stamen-mimicking style and the tepals varies among species. In this study comprising 106 Crocus species, it was tested whether the style length of Crocus flowers is dependent on the corolla colour. The results show that members of the genus Crocus with yellow tepals have evolved independently up to twelve times in the genus Crocus and that yellow-flowering Crocus species possess shorter styles as compared to violet- and white-flowering ones. The manipulation of flower visitors by anther-mimicking elongated styles in Crocus flowers is discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakouzi, Elias; Sultan, Rabih

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined usingmore » scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.« less

  13. FlowerMorphology: fully automatic flower morphometry software.

    PubMed

    Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V

    2018-05-01

    The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .

  14. Foraging scent marks of bumblebees: footprint cues rather than pheromone signals

    NASA Astrophysics Data System (ADS)

    Wilms, Jessica; Eltz, Thomas

    2008-02-01

    In their natural habitat foraging bumblebees refuse to land on and probe flowers that have been recently visited (and depleted) by themselves, conspecifics or other bees, which increases their overall rate of nectar intake. This avoidance is often based on recognition of scent marks deposited by previous visitors. While the term ‘scent mark’ implies active labelling, it is an open question whether the repellent chemicals are pheromones actively and specifically released during flower visits, or mere footprints deposited unspecifically wherever bees walk. To distinguish between the two possibilities, we presented worker bumblebees ( Bombus terrestris) with three types of feeders in a laboratory experiment: unvisited control feeders, passive feeders with a corolla that the bee had walked over on its way from the nest (with unspecific footprints), and active feeders, which the bee had just visited and depleted, but which were immediately refilled with sugar water (potentially with specific scent marks). Bumblebees rejected both active and passive feeders more frequently than unvisited controls. The rate of rejection of passive feeders was only slightly lower than that of active feeders, and this difference vanished completely when passive corollas were walked over repeatedly on the way from the nest. Thus, mere footprints were sufficient to emulate the repellent effect of an actual feeder visit. In confirmation, glass slides on which bumblebees had walked on near the nest entrance accumulated hydrocarbons (alkanes and alkenes, C23 to C31), which had previously been shown to elicit repellency in flower choice experiments. We conclude that repellent scent marks are mere footprints, which foraging bees avoid when they encounter them in a foraging context.

  15. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.

    PubMed

    Sasaki, Katsunori; Takahashi, Takashi

    2002-10-01

    The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.

  16. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    PubMed

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Chiococca grandiflora (Rubiaceae), a new species from Northern Mexico

    PubMed Central

    Lorence, David H.; Devender, Thomas R. Van; Ferguson, George M.

    2018-01-01

    Abstract The new species Chiococca grandiflora Lorence & T.Van Devender from Sinaloa and Sonora, Mexico differs from its congeners by its larger, showy white flowers in compact cymes of 3–9, and infundibuliform corollas 16–20 mm long with tubes 13–17 mm long and lobes 3–3.5 mm long. Its distribution, habitat, and relationships are outlined. The conservation status for this species is estimated to be Endangered (EN) based on IUCN Red List Criteria. PMID:29750072

  18. Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens).

    PubMed

    Phelps, Jordan D; Strang, Caroline G; Gbylik-Sikorska, Malgorzata; Sniegocki, Tomasz; Posyniak, Andrzej; Sherry, David F

    2018-03-01

    Bee pollination is economically and ecologically vital and recent declines in bee populations are therefore a concern. One possible cause of bee declines is pesticide use. Bumblebees exposed to imidacloprid, a neonicotinoid pesticide, have been shown to be less efficient foragers and collect less pollen on foraging trips than unexposed bees. We investigated whether bumblebees (Bombus impatiens) chronically exposed to imidacloprid at field-realistic levels of 2.6 and 10 ppb showed learning deficits that could affect foraging. Bumblebees were tested for their ability to associate flower colour with reward value in a simulated foraging environment. Bumblebees completed 10 foraging trips in which they collected sucrose solution from artificial flowers that varied in sucrose concentration. The reward quality of each artificial flower was predicted by corolla colour. Unexposed bumblebees acquired a preference for feeding on the most rewarding flower colour on the second foraging trip, while bumblebees exposed at 2.6 and 10 ppb did not until their third and fifth trip, respectively. The delay in preference acquisition in exposed bumblebees may be due to reduced flower sampling and shorter foraging trips. These results show that bumblebees exposed to imidacloprid are slow to learn the reward value of flowers and this may explain previously observed foraging inefficiencies associated with pesticide exposure.

  19. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    PubMed

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  20. Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas1[w

    PubMed Central

    Underwood, Beverly A.; Tieman, Denise M.; Shibuya, Kenichi; Dexter, Richard J.; Loucas, Holly M.; Simkin, Andrew J.; Sims, Charles A.; Schmelz, Eric A.; Klee, Harry J.; Clark, David G.

    2005-01-01

    In many flowering plants, such as petunia (Petunia × hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile organic compounds (VOCs) are regulated by ethylene. Expression of benzoic acid/salicylic acid carboxyl methyltransferase (PhBSMT1 and 2) mRNA is temporally and spatially down-regulated in floral organs in a manner consistent with current models for postpollination ethylene synthesis in petunia corollas. Emission of methylbenzoate and other VOCs after pollination and exogenous ethylene treatment parallels a reduction in PhBSMT1 and 2 mRNA levels. Under cyclic light conditions (day/night), PhBSMT mRNA levels are rhythmic and precede emission of methylbenzoate by approximately 6 h. When shifted into constant dark or light conditions, PhBSMT mRNA levels and subsequent methylbenzoate emission correspondingly decrease or increase to minimum or maximum levels observed during normal conditions, thus suggesting that light may be a more critical influence on cyclic emission of methylbenzoate than a circadian clock. Transgenic PhBSMT RNAi flowers with reduced PhBSMT mRNA levels show a 75% to 99% decrease in methylbenzoate emission, with minimal changes in other petunia VOCs. These results implicate PhBSMT1 and 2 as genes responsible for synthesis of methylbenzoate in petunia. PMID:15849311

  1. Two new species of Primulina (Gesneriaceae) from limestone karsts of China.

    PubMed

    Hong, Xin; Li, Zhong-Lin; Liu, Jia-Zhi; Zhou, Shou-Biao; Qin, Wei-Hua; Wen, Fang

    2018-01-01

    The limestone karst area of South China is a major biodiversity hotspot of global terrestrial biomes. During extensive field work on the Guangxi limestone formations, two unknown species of Gesneriaceae were collected. After conducting a comprehensive study of the literature and herbarium specimens, Primulina davidioides and P. hiemalis are recognized as two species new to science, and described and illustrated here. P. davidioides is morphologically close to P. lunglinensis based on the shape of the leaf and flower, but it can be easily distinguished by the shape of the bracts, corolla and stigma, indumentum of peduncles, pedicels and pistil and number of staminodes. P. hiemalis is closely relate to P. luzhaiensis in vegetative appearance, but differs in the shape of the calyx and stigma, number of bracts and staminodes, indumentum of the leaf blade and peduncle, and position of stamens in the corolla tube. Considering that not enough is known about their populations, it is proposed that their conservation statuses should currently be classed as data deficient (DD) according to the IUCN Red List Category and Criteria.

  2. Sexual dimorphism of staminate- and pistillate-phase flowers of Saponaria officinalis (bouncing bet) affects pollinator behavior and seed set.

    PubMed

    Davis, Sandra L; Dudle, Dana A; Nawrocki, Jenna R; Freestone, Leah M; Konieczny, Peter; Tobin, Michael B; Britton, Michael M

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals.

  3. Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    PubMed Central

    Davis, Sandra L.; Dudle, Dana A.; Nawrocki, Jenna R.; Freestone, Leah M.; Konieczny, Peter; Tobin, Michael B.; Britton, Michael M.

    2014-01-01

    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals. PMID:24690875

  4. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy L; Raguso, Robert A; Kessler, André

    2012-08-01

    Fragrance is a putatively important character in the evolution of flowering plants, but natural selection on scent is rarely studied and thus poorly understood. We characterized floral scent composition and emission in a common garden of Penstemon digitalis from three nearby source populations. We measured phenotypic selection on scent as well as floral traits more frequently examined, such as floral phenology, display size, corolla pigment, and inflorescence height. Scent differed among populations in a common garden, underscoring the potential for scent to be shaped by differential selection pressures. Phenotypic selection on flower number and display size was strong. However, selection favoured scent rather than flower size or colour, suggesting that smelling stronger benefits reproductive success in P. digitalis. Linalool was a direct target of selection and its high frequency in floral-scent bouquets suggests that further studies of both pollinator- and antagonist-mediated selection on this compound would further our understanding of scent evolution. Our results indicate that chemical dimensions of floral display are just as likely as other components to experience selective pressure in a nonspecialized flowering herb. Therefore, studies that integrate visual and chemical floral traits should better reflect the true nature of floral evolutionary ecology. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers

    PubMed Central

    Chen, Guoju; Liu, Heping; Wei, Qian; Zhao, Huina

    2017-01-01

    Abstract Anthocyanins, a class of flavonoids, are responsible for the orange to blue coloration of flowers and act as visual attractors to aid pollination and seed dispersal. Malonyl-CoA is the precursor for the formation of flavonoids and anthocyanins. Previous studies have suggested that malonyl-CoA is formed almost exclusively by acetyl-CoA carboxylase, which catalyzes the ATP-dependent formation of malonyl-CoA from acetyl-CoA and bicarbonate. In the present study, the full-length cDNA of Petunia hybrida acyl-activating enzyme 13 (PhAAE13), a member of clade VII of the AAE superfamily that encodes malonyl-CoA synthetase, was isolated. The expression of PhAAE13 was highest in corollas and was down-regulated by ethylene. Virus-induced gene silencing of petunia PhAAE13 significantly reduced anthocyanin accumulation, fatty acid content, and cuticular wax components content, and increased malonic acid content in flowers. The silencing of PhAAE3 and PhAAE14, the other two genes in clade VII of the AAE superfamily, did not change the anthocyanin content in petunia flowers. This study provides strong evidence indicating that PhAAE13, among clade VII of the AAE superfamily, is specifically involved in anthocyanin biosynthesis in petunia flowers. PMID:28204578

  6. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    PubMed

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  7. Records on floral biology and visitors of Jacquemontia montana (Moric.) Meisn. (Convolvulaceae) in Mucugê, Bahia.

    PubMed

    Silva, F O; Kevan, S D; Roque, N; Viana, B F; Kevan, P G

    2010-08-01

    We present the first records on pollination biology of Jacquemontia montana (Moric.) Meisn. (Convolvulaceae), a widespread climber in the Chapada Diamantina. Our objectives were to (1) characterise flower morphology and biology of J. montana; (2) sample flower visitors and (3) make inferences about potential pollinators, based on foraging behaviour. Observations and sampling were performed on two patches from 8:00 AM to 3:30 PM, May 15th to 16th, 2007. The corolla is bowl shaped, pentamerous, gamopetalous, actinomorphic, and yellow, with a mean diameter of 22.43 +/- 1.81 mm, the depth being variable during flower phases. Stigma receptivity lasted from 8:00 AM-3:30 PM and pollen viability from 9:00 AM-3:30 PM Pollen. showed great decline in number but not in viability during anthesis. Nectarivorous (Coleoptera, Diptera, Hymenoptera) and herbivorous (Orthoptera) insects were found on the flowers. Both male and female bees (Dialictus spp., Robertson 1902) were the most frequent flower visitor. The bees' behaviour, and time spent on flowers, varied according to the resource gathered (i.e., pollen or nectar). The Dialictus species are likely to be the main pollinator of J. montana, considering the frequency, contact with reproductive parts, and carrying only J. montana pollen spread over the ventral part of the thorax, abdomen and legs. Although not quantified, nectar may still be available in the afternoon, considering the behaviour of bees on flowers during this time. Pollen:ovule ration that was1.200:4, suggests facultative xenogamy.

  8. MAEWEST expression in flower development of two petunia species.

    PubMed

    Segatto, Ana Lúcia A; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B; Monte-Bello, Carolina C; Dornelas, Marcelo C; Margis, Rogerio; Freitas, Loreta B

    2013-07-03

    Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription-quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.

  9. Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae) Males for Pollination.

    PubMed

    Martel, Carlos; Cairampoma, Lianka; Stauffer, Fred W; Ayasse, Manfred

    2016-01-01

    Several neotropical orchid genera have been proposed as being sexually deceptive; however, this has been carefully tested in only a few cases. The genus Telipogon has long been assumed to be pollinated by male tachinid flies during pseudocopulatory events but no detailed confirmatory reports are available. Here, we have used an array of methods to elucidate the pollination mechanism in Telipogon peruvianus. The species presents flowers that have a mean floral longevity of 33 days and that are self-compatible, although spontaneous self-pollination does not occur. The flowers attract males of four tachinid species but only the males of an undescribed Eudejeania (Eudejeania aff. browni; Tachinidae) species are specific pollinators. Males visit the flowers during the first few hours of the day and the pollination success is very high (42% in one patch) compared with other sexually deceptive species. Female-seeking males are attracted to the flowers but do not attempt copulation with the flowers, as is usually described in sexually deceptive species. Nevertheless, morphological analysis and behavioural tests have shown an imperfect mimicry between flowers and females suggesting that the attractant stimulus is not based only on visual cues, as long thought. Challenging previous conclusions, our chemical analysis has confirmed that flowers of Telipogon release volatile compounds; however, the role of these volatiles in pollinator behaviour remains to be established. Pollinator behaviour and histological analyses indicate that Telipogon flowers possess scent-producing structures throughout the corolla. Our study provides the first confirmed case of (i) a sexually deceptive species in the Onciidinae, (ii) pollination by pre-copulatory behaviour and (iii) pollination by sexual deception involving tachinid flies.

  10. Telipogon peruvianus (Orchidaceae) Flowers Elicit Pre-Mating Behaviour in Eudejeania (Tachinidae) Males for Pollination

    PubMed Central

    Cairampoma, Lianka; Stauffer, Fred W.; Ayasse, Manfred

    2016-01-01

    Several neotropical orchid genera have been proposed as being sexually deceptive; however, this has been carefully tested in only a few cases. The genus Telipogon has long been assumed to be pollinated by male tachinid flies during pseudocopulatory events but no detailed confirmatory reports are available. Here, we have used an array of methods to elucidate the pollination mechanism in Telipogon peruvianus. The species presents flowers that have a mean floral longevity of 33 days and that are self-compatible, although spontaneous self-pollination does not occur. The flowers attract males of four tachinid species but only the males of an undescribed Eudejeania (Eudejeania aff. browni; Tachinidae) species are specific pollinators. Males visit the flowers during the first few hours of the day and the pollination success is very high (42% in one patch) compared with other sexually deceptive species. Female-seeking males are attracted to the flowers but do not attempt copulation with the flowers, as is usually described in sexually deceptive species. Nevertheless, morphological analysis and behavioural tests have shown an imperfect mimicry between flowers and females suggesting that the attractant stimulus is not based only on visual cues, as long thought. Challenging previous conclusions, our chemical analysis has confirmed that flowers of Telipogon release volatile compounds; however, the role of these volatiles in pollinator behaviour remains to be established. Pollinator behaviour and histological analyses indicate that Telipogon flowers possess scent-producing structures throughout the corolla. Our study provides the first confirmed case of (i) a sexually deceptive species in the Onciidinae, (ii) pollination by pre-copulatory behaviour and (iii) pollination by sexual deception involving tachinid flies. PMID:27812201

  11. Is floral diversification associated with pollinator divergence? Flower shape, flower colour and pollinator preference in Chilean Mimulus.

    PubMed

    Cooley, A M; Carvallo, G; Willis, J H

    2008-04-01

    Adaptation to different pollinators is thought to drive divergence in flower colour and morphology, and may lead to interspecific reproductive isolation. Floral diversity was tested for association with divergent pollinator preferences in a group of four closely related wildflower species: the yellow-flowered Mimulus luteus var. luteus and the red-pigmented M. l. variegatus, M. naiandinus and M. cupreus. Patterns of pollinator visitation were evaluated in natural plant populations in central Chile, including both single-species and mixed-species sites. Floral anthocyanin pigments were identified, and floral morphology and nectar variation were quantified in a common garden experiment using seeds collected from the study sites. Mimulus l. luteus, M. l. variegatus and M. naiandinus are morphologically similar and share a single generalist bumblebee pollinator, Bombus dahlbomii. Mimulus cupreus differs significantly from the first three taxa in corolla shape as well as nectar characteristics, and had far fewer pollinator visits. This system shows limited potential for pollinator-mediated restriction of gene flow as a function of flower colour, and no evidence of transition to a novel pollinator. Mimulus cupreus may experience reduced interspecific gene flow due to a lack of bumblebee visitation, but not because of its red pigmentation: rare yellow morphs are equally undervisited by pollinators. Overall, the results suggest that factors other than pollinator shifts may contribute to the maintenance of floral diversity in these Chilean Mimulus species.

  12. The extremely long-tongued Neotropical butterfly Eurybia lycisca (Riodinidae): Proboscis morphology and flower handling

    PubMed Central

    Bauder, Julia A.S.; Lieskonig, Nora R.; Krenn, Harald W.

    2011-01-01

    Few species of true butterflies (Lepidoptera: Papilionoidea) have evolved a proboscis that greatly exceeds the length of the body. This study is the first to examine the morphology of an extremely long butterfly proboscis and to describe how it is used to obtain nectar from flowers with very deep corolla tubes. The proboscis of Eurybia lycisca (Riodinidae) is approximately twice as long as the body. It has a maximal length of 45.6 mm (mean length 36.5 mm ± 4.1 S.D., N = 20) and is extremely thin, measuring only about 0.26 mm at its maximum diameter. The proboscis has a unique arrangement of short sensilla at the tip, and its musculature arrangement is derived. The flower handling times on the preferred nectar plant, Calathea crotalifera (Marantaceae), were exceptionally long (mean 54.5 sec ± 28.5 S.D., N = 26). When feeding on the deep flowers remarkably few proboscis movements occur. The relationship between Eurybia lycisca and its preferred nectar plant and larval host plant, Calathea crotalifera, is not mutualistic since the butterfly exploits the flowers without contributing to their pollination. We hypothesize that the extraordinarily long proboscis of Eurybia lycisca is an adaptation for capitalizing on the pre-existing mutualistic interaction of the host plant with its pollinating long-tongued nectar feeding insects. PMID:21115131

  13. Proteomic insights into floral biology.

    PubMed

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Patch dynamics of a foraging assemblage of bees.

    PubMed

    Wright, David Hamilton

    1985-03-01

    The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.

  15. Choices and consequences of oviposition by a pollinating seed predator, Hadena ectypa (Noctuidae), on its host plant, Silene stellata (Caryophyllaceae).

    PubMed

    Kula, Abigail A R; Dudash, Michele R; Fenster, Charles B

    2013-06-01

    Pollinating seed predators are models for the study of mutualisms. These insects have dual effects on host-plant fitness, through pollination as adults and flower and fruit predation as larvae. A rarely examined question is whether pollinating seed-predator oviposition choices are influenced by plant floral and size traits and the potential consequences of oviposition for host-plant reproduction. • We quantified oviposition by a pollinating seed predator, Hadena ectypa, on its host, Silene stellata, to determine if oviposition was associated with specific plant traits and whether oviposition was significantly correlated with fruit initiation or flower and fruit predation over three years. We also quantified whether stigmatic pollen loads of flowers visited by Hadena that both fed on nectar and oviposited were greater than when Hadena only fed on nectar. • Hadena had significant preference for plants having flowers with long corolla tubes in all three years. Moth oviposition was correlated with other traits only in some years. Oviposition did not increase stigmatic pollen loads. We observed significant positive relationships between both oviposition and fruit initiation and oviposition and flower/fruit predation. • Hadena ectypa oviposition choices were based consistently on floral tube length differences among individuals, and the consequences of oviposition include both fruit initiation (due to pollination while feeding on nectar prior to oviposition) and larval flower/fruit predation. The positive association between oviposition and fruit initiation may explain the long-term maintenance of facultative pollinating seed-predator interactions.

  16. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla.

    PubMed

    Hosokawa, Munetaka; Yamauchi, Takayoshi; Takahama, Masayoshi; Goto, Mariko; Mikano, Sachiko; Yamaguchi, Yuki; Tanaka, Yoshiyuki; Ohno, Sho; Koeda, Sota; Doi, Motoaki; Yazawa, Susumu

    2013-05-01

    The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to <2,000 ppm, completely white corollas continued to develop in >40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.

  17. Reconstructing the pollinator community and predicting seed set from hydrocarbon footprints on flowers.

    PubMed

    Witjes, Sebastian; Witsch, Kristian; Eltz, Thomas

    2011-04-01

    The measurement of insect visits to flowers is essential for basic and applied pollination ecology, but is often fraught with difficulty. Floral visitation is highly variable and observational studies are limited in scope due to the considerable time needed to acquire reliable data. Our study investigates whether the analysis of hydrocarbon residues (footprints) deposited by insects during flower visits allows the reconstruction of the visitor community and the prediction of seed set for large numbers of plants. In three consecutive years we recorded bumblebee visitation to wild plants of comfrey, Symphytum officinale, and later used gas chromatography/mass spectrometry (GC/MS) to quantify bumblebee-derived unsaturated hydrocarbons (UHCs) extracted from flowers. The UHCs washed from corollae were most similar to the tarsal UHC profile of the most abundant bumblebee species, Bombus pascuorum, in all 3 years. The species compositions of the bumblebee communities estimated from UHCs on flowers were also similar to those actually observed. There was a significant positive correlation between the observed number of visits by each of three bumblebee species (contributing 3-68% of the flower visits) and the estimated number of visits based on UHC profiles. Furthermore, significant correlations were obtained separately for workers and drones of two species. Seed set of comfrey plants was positively correlated with overall bumblebee visitation and the total amount of UHCs on flowers, suggesting the potential for pollen limitation. We suggest that quantifying cumulative footprint hydrocarbons provides a novel way to assess floral visitation by insects, and that this method can be used to predict seed set in pollen-limited plants.

  18. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed Central

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-01-01

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry. PMID:12079663

  19. The potential for floral mimicry in rewardless orchids: an experimental study.

    PubMed

    Gigord, Luc D B; Macnair, M R; Stritesky, M; Smithson, Ann

    2002-07-07

    More than one-third of orchid species do not provide their pollinators with either pollen or nectar rewards. Floral mimicry could explain the maintenance of these rewardless orchid species, but most rewardless orchids do not appear to have a rewarding plant that they mimic specifically. We tested the hypothesis that floral mimicry can occur through similarity based on corolla colour alone, using naive bumble-bees foraging on arrays of plants with one rewarding model species, and one rewardless putative mimic species (Dactylorhiza sambucina) which had two colour morphs. We found that when bees were inexperienced, they visited both rewardless morphs randomly. However, after bees had gained experience with the rewarding model, and it was removed from the experiment, bees resampled preferentially the rewardless morph most similar to it in corolla colour. This is the first clear evidence, to our knowledge, that pollinators could select for floral mimicry. We suggest that floral mimicry can be a selective force acting on rewardless orchids, but only under some ecological conditions. In particular, we argue that selection on early-flowering rewardless orchids that receive visits from a large pool of naive pollinators will be weakly influenced by mimicry.

  20. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae).

    PubMed

    Forrest, Jessica R K; Ogilvie, Jane E; Gorischek, Alex M; Thomson, James D

    2011-07-01

    In sub-alpine habitats, patchiness in snowpack produces marked, small-scale variation in flowering phenology. Plants in early- and late-melting patches are therefore likely to experience very different conditions during their flowering periods. Mertensia fusiformis is an early-flowering perennial that varies conspicuously in style length within and among populations. The hypothesis that style length represents an adaptation to local flowering time was tested. Specifically, it was hypothesized that lower air temperatures and higher frost risk would favour short-styled plants (with stigmas more shielded by corollas) in early-flowering patches, but that the pollen-collecting behaviour of flower visitors in late-flowering patches would favour long-styled plants. Floral morphology was measured, temperatures were monitored and pollinators were observed in several matched pairs of early and late populations. To evaluate effects of cold temperatures on plants of different style lengths, experimental pollinations were conducted during mornings (warm) and evenings (cool), and on flowers that either had or had not experienced a prior frost. The effectiveness of different pollinators was quantified as seed set following single visits to plants with relatively short or long styles. Late-flowering populations experienced warmer temperatures than early-flowering populations and a different suite of pollinators. Nectar-foraging bumble-bee queens and male solitary bees predominated in early populations, whereas pollen-collecting female solitary bees were more numerous in later sites. Pollinators differed significantly in their abilities to transfer pollen to stigmas at different heights, in accordance with our prediction. However, temperature and frost sensitivity did not differ between long- and short-styled plants. Although plants in late-flowering patches tended to have longer styles than those in early patches, this difference was not consistent. Seasonal change in pollinator-mediated selection on style length may help maintain variation in this trait in M. fusiformis, but adaptation to local flowering time is not apparent. The prevalence of short styles in these populations requires further explanation.

  1. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity.

    PubMed

    Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies

    2017-07-01

    Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems. © 2017 by the Ecological Society of America.

  2. Flower structure and developmental stages of the capitulum of Smallanthus sonchifolius (Asteraceae): reproductive implications.

    PubMed

    Ibañez, M S; Mercado, M I; Coll Aráoz, M V; Zannier, M L; Grau, A; Ponessa, G I

    2017-03-01

    Yacon (Smallanthus sonchifolius, Asteraceae) is an ancient andean crop that has numerous dietary and medicinal properties. Morphological and anatomical features and developmental changes of the capitulum were studied. A ray floret is a pistillate, female flower, while a disc floret is a staminate male flower, and the former opens before the latter, being pseudanthium protogynous. The capitulum presents interesting attributes for pollinators such as flower structure, nectaries and pollenkitt. Gynoecial nectaries were found on undeveloped ovary in the disc floret, but not in the ray floret. Glandular trichomes were observed on the abaxial epidermis of corolla in the ray floret, but not in the disc floret. Capitulum development was divided into eight stages. Stigma receptivity varied with these stages. Pollen viability was low (15%). In accordance with low viability, pollen grains exhibit diverse sizes and shapes, reduction in length of spines, and abnormal protoplasm. Examination of ovary development in the ray floret showed that a mature ovule was formed, but fertilization did not occur. In advanced developmental stages, the capitulum showed proliferation of the endothelium, degeneration of the embryo sac, and all harvested cypselae had aborted seeds. Problems found in pollen viability and aborted cypselae could be the result of a history of vegetative propagation in the domestication process.

  3. Comparative structure and pollen production of the stamens and pollinator-deceptive staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae).

    PubMed

    Hrycan, William C; Davis, Arthur R

    2005-06-01

    Flowers of Commelina coelestis and C. dianthifolia provide pollen alone as a floral reward, and rely on visual cues to attract pollinators. Three stamen types, all producing pollen, occur in each of these species: two cryptically coloured lateral stamens, a single cryptically coloured central stamen and three bright yellow staminodes that sharply contrast with the blue to purple corolla. The objective was to compare the stamen structure and pollen characteristics of each of the three stamen types, and to test the hypothesis that the staminodes are poor contributors of viable pollen for the siring of seed. The pollination roles of the three stamen types and the breeding systems of both species were also explored. Light, fluorescence and scanning electron microscopy were utilized to examine stamen morphology and pollen structure and viability. Controlled hand pollinations were used to explore the breeding system of each species. Filament and style lengths were measured to investigate herkogamy and autogamy. Pollen from all stamen morphs is viable, but staminode pollen has significantly lower viability. Pollen polymorphism exists both (a) between the lateral and central stamens and the staminodes, and (b) within each anther. Lateral and central stamens have thicker endothecia with a greater number of secondary cell wall thickenings than the staminodes. Both species are entomophilous and facultatively autogamous. Lateral stamen pollen is important for cross-pollination, central stamen pollen is utilized by both species as a pollinator reward and for delayed autogamy in C. dianthifolia, and the staminodes mimic, by means of both colour and epidermal features, large amounts of pollen to attract insects to the flowers. Pollen from all three anther morphs is capable of siring seed, although staminode pollen is inferior. The thin staminode endothecium with fewer secondary thickenings retards staminode dehiscence.

  4. The petunia homologue of tomato gast1: transcript accumulation coincides with gibberellin-induced corolla cell elongation.

    PubMed

    Ben-Nissan, G; Weiss, D

    1996-12-01

    Gibberellins (GAs) regulate petunia corolla pigmentation and elongation. To study this hormone's effect at the molecular level, we used the tomato gast1 gene as a probe to isolate a gibberellin-induced gene (gip) from petunia corollas. The deduced sequence of gip exhibited 82% identity with GAST1 protein and contained a short, highly hydrophobic N-terminal region. High levels of gip expression were detected in elongating corollas and young stem intemodes. When detached corollas were grown in vitro in sucrose medium, gip expression was strongly induced by gibberellic acid (GA3). GA3-induced gip expression in corollas was inhibited by abscisic acid (ABA). The expression of the gene was also induced by GA3 in detached young stem segments. Sucrose was not essential for GA-induced gip expression in corollas but enhanced its effect. In stems, on the other hand, sucrose inhibited the effect of the hormone. The results of the present work support the possible role of gip in GA-induced corolla and stem elongation.

  5. Ability of Bumblebees to Discriminate Differences in the Shape of Artificial Flowers of Primula sieboldii (Primulaceae)

    PubMed Central

    Yoshioka, Yosuke; Ohashi, Kazuharu; Konuma, Akihiro; Iwata, Hiroyoshi; Ohsawa, Ryo; Ninomiya, Seishi

    2007-01-01

    Background and Aims Flower shapes are important visual cues for pollinators. However, the ability of pollinators to discriminate between flower shapes under natural conditions is poorly understood. This study focused on the diversity of flower shape in Primula sieboldii and investigated the ability of bumblebees to discriminate between flowers by combining computer graphics with a traditional behavioural experiment. Methods Elliptic Fourier descriptors described shapes by transforming coordinate information for the contours into coefficients, and principal components analysis summarized these coefficients. Using these methods, artificial flowers were created based on the natural diversity of petal shape in P. sieboldii. Dual-choice tests were then performed to investigate the ability of the bumblebees to detect differences in the aspect ratio of petals and the depth of their head notch. Key Results The insects showed no significant ability to detect differences in the aspect ratio of the petals under natural conditions unless the morphological distance increased to an unrealistic level. These results suggest the existence of a perception threshold for distances in this parameter. The bumblebees showed a significant preference for narrow petals even after training using flowers with wide petals. The bumblebees showed a significant ability to discriminate based on the depth of the petal head notch after training using artificial flowers with a deep head notch. However, they showed no discrimination in tests with training using extreme distances between flowers in this parameter. Conclusions A new type of behavioural experiment was demonstrated using real variation in flower corolla shape in P. sieboldii. If the range in aspect ratios of petals expands much further, bumblebees may learn to exhibit selective behaviour. However, because discrimination by bumblebees under natural conditions was low, there may be no strong selective behaviour based on innate or learned preferences under natural conditions. PMID:17553825

  6. MAEWEST Expression in Flower Development of Two Petunia Species

    PubMed Central

    Segatto, Ana Lúcia A.; Turchetto-Zolet, Andreia Carina; Aizza, Lilian Cristina B.; Monte-Bello, Carolina C.; Dornelas, Marcelo C.; Margis, Rogerio; Freitas, Loreta B.

    2013-01-01

    Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription–quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions. PMID:23823801

  7. Nectar robbery by a hermit hummingbird: association to floral phenotype and its influence on flowers and network structure.

    PubMed

    Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Dalsgaard, Bo; Sazima, Ivan; Sazima, Marlies

    2015-07-01

    Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant-hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30% of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9% of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.

  8. Mutual reproductive dependence of distylic Cordia leucocephala (Cordiaceae) and oligolectic Ceblurgus longipalpis (Halictidae, Rophitinae) in the Caatinga.

    PubMed

    Milet-Pinheiro, Paulo; Schlindwein, Clemens

    2010-07-01

    The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow. In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined. The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow. The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube.

  9. Mutual reproductive dependence of distylic Cordia leucocephala (Cordiaceae) and oligolectic Ceblurgus longipalpis (Halictidae, Rophitinae) in the Caatinga

    PubMed Central

    Milet-Pinheiro, Paulo; Schlindwein, Clemens

    2010-01-01

    Background and Aims The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow. Methods In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined. Key Results The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow. Conclusions The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube. PMID:20400457

  10. The extremely long-tongued neotropical butterfly Eurybia lycisca (Riodinidae): proboscis morphology and flower handling.

    PubMed

    Bauder, Julia A S; Lieskonig, Nora R; Krenn, Harald W

    2011-03-01

    Few species of true butterflies (Lepidoptera: Papilionoidea) have evolved a proboscis that greatly exceeds the length of the body. This study is the first to examine the morphology of an extremely long butterfly proboscis and to describe how it is used to obtain nectar from flowers with very deep corolla tubes. The proboscis of Eurybia lycisca (Riodinidae) is approximately twice as long as the body. It has a maximal length of 45.6 mm (mean length 36.5 mm ± 4.1 S.D., N = 20) and is extremely thin, measuring only about 0.26 mm at its maximum diameter. The proboscis has a unique arrangement of short sensilla at the tip, and its musculature arrangement is derived. The flower handling times on the preferred nectar plant, Calathea crotalifera (Marantaceae), were exceptionally long (mean 54.5 sec ± 28.5 S.D., N = 26). When feeding on the deep flowers remarkably few proboscis movements occur. The relationship between Eurybia lycisca and its preferred nectar plant and larval host plant, Calathea crotalifera, is not mutualistic since the butterfly exploits the flowers without contributing to their pollination. We hypothesize that the extraordinarily long proboscis of Eurybia lycisca is an adaptation for capitalizing on the pre-existing mutualistic interaction of the host plant with its pollinating long-tongued nectar feeding insects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid.

    PubMed

    Sletvold, Nina; Trunschke, Judith; Smit, Mart; Verbeek, Jeffrey; Ågren, Jon

    2016-03-01

    Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency-dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = -0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand-pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots

    PubMed Central

    Howarth, Dianella G.; Donoghue, Michael J.

    2006-01-01

    Flower symmetry is of special interest in understanding angiosperm evolution and ecology. Evidence from the Antirrhineae (snapdragon and relatives) indicates that several TCP gene-family transcription factors, especially CYCLOIDEA (CYC) and DICHOTOMA (DICH), play a role in specifying dorsal identity in the corolla and androecium of monosymmetric (bilateral) flowers. Studies of rosid and asterid angiosperms suggest that orthologous TCP genes may be important in dorsal identity, but there has been no broad phylogenetic context to determine copy number or orthology. Here, we compare published data from rosids and asterids with newly collected data from ranunculids, caryophyllids, Saxifragales, and Asterales to ascertain the phylogenetic placement of major duplications in the “ECE” (CYC/TB1) clade of TCP transcription factors. Bayesian analyses indicate that there are three major copies of “CYC” in the ECE clade, and that duplications leading to these copies predate the core eudicots. CYC1 contains no subsequent duplications and may not be expressed in floral tissue. CYC3 exhibits similar patterns of duplication to CYC2 in several groups. Using RT-PCR, we show that, in flowers of Lonicera morrowii (Caprifoliaceae), DipsCYC2B is expressed in the four dorsal petals and not in the ventral petal. DipsCYC3B is expressed in flower and petal primordia, possibly most strongly in the ventral petal. PMID:16754863

  13. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system.

    PubMed

    Camargo, Iván Darío; Nattero, Julieta; Careaga, Sonia A; Núñez-Farfán, Juan

    2017-10-17

    Studies of phenotypic plasticity in plants have mainly focused on (1) the effect of environmental variation on whole-plant traits related to the number of modules rather than on (2) the phenotypic consequences of environmental variation in traits of individual modules. Since environmental and developmental factors can produce changes in traits related to the mating system, this study used the second approach to investigate whether within-individual variation in herkogamy-related traits is affected by the environment during plant development in two populations of Datura stramonium , an annual herb with a hypothesized persistent mixed mating system, and to determine which morphological traits may promote self-fertilization. Full-sib families of two Mexican populations of D. stramonium , with contrasting ecological histories, were grown under low, mid and high nutrient availability to investigate the effects of genetic, environmental and within-plant flower position on flower size, corolla, stamen and pistil lengths, and herkogamy. Populations showed differences in familial variation, plasticity and familial differences in plasticity in most floral traits analysed. In one population (Ticumán), the effect of flower position on trait variation varied among families, whereas in the other (Pedregal) the effect of flower position interacted with the nutrient environment. Flower size varied with the position of flowers, but in the opposite direction between populations in low nutrients; a systematic within-plant trend of reduction in flower size, pistil length and herkogamy with flower position increased the probability of self-fertilization in the Pedregal population. Besides genetic variation in floral traits between and within populations, environmental variation affects phenotypic floral trait values at the whole-plant level, as well as among flower positions. The interaction between flower position and nutrient environment can affect the plant's mating system, and this differs between populations. Thus, reductions in herkogamy with flower positions may be expected in environments with either low pollinator abundance or low nutrients. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Molecular phylogenetics of the Ronnbergia Alliance (Bromeliaceae, Bromelioideae) and insights into their morphological evolution.

    PubMed

    Aguirre-Santoro, Julián; Michelangeli, Fabián A; Stevenson, Dennis W

    2016-07-01

    The tank-epiphytic clade of berry-fruited bromeliads, also known as the Core Bromelioideae, represents a remarkable event of adaptive radiation within the Bromeliaceae; however, the details of this radiation have been difficult to study because this lineage is plagued with generic delimitation problems. In this study, we used a phylogenetic approach to investigate a well supported, albeit poorly understood, lineage nested within the Core Bromelioideae, here called the "Ronnbergia Alliance". In order to assess the monophyly and phylogenetic relationships of this group, we used three plastid and three nuclear DNA sequence markers combined with a broad sampling across three taxonomic groups and allied species of Aechmea expected to comprise the Ronnbergia Alliance. We combined the datasets to produce a well-supported and resolved phylogenetic hypothesis. Our main results indicated that the Ronnbergia Alliance was a well-supported monophyletic group, sister to the remaining Core Bromelioideae, and it was composed by species of the polyphyletic genera Aechmea, Hohenbergia and Ronnbergia. We identified two major internal lineages with high geographic structure within the Ronnbergia Alliance. The first of these lineages, called the Pacific Clade, contained species of Aechmea and Ronnbergia that occur exclusively from southern Central America to northwestern South America. The second clade, called the Atlantic Clade, contained species of Aechmea, Hohenbergia and Ronnbergia mostly limited to the Atlantic Forest and the Caribbean. We also explored the diagnostic and evolutionary importance of 13 selected characters using ancestral character reconstructions on the phylogenetic hypothesis. We found that the combination of tubular corollas apically spreading and unappendaged ovules had diagnostic value for the Ronnbergia Alliance, whereas flower size, length of the corolla tube, and petal pigmentation and apex were important characters to differentiate the Pacific and Atlantic clades. This study opens new perspectives for future taxonomic reorganizations and provides a framework for evolutionary and biogeographic studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae.

    PubMed

    Zhong, Jinshun; Preston, Jill C; Hileman, Lena C; Kellogg, Elizabeth A

    2017-05-01

    Independent evolution of derived complex characters provides a unique opportunity to assess whether and how similar genetic changes correlate with morphological convergence. Bilaterally symmetrical corollas have evolved multiple times independently from radially symmetrical ancestors and likely represent adaptations to attract specific pollinators. On the other hand, losses of bilateral corolla symmetry have occurred sporadically in various groups, due to either modification of bilaterally symmetrical corollas in late development or early establishment of radial symmetry. This study integrated phylogenetic, scanning electron microscopy (SEM)-based morphological, and gene expression approaches to assess the possible mechanisms underlying independent evolutionary losses of corolla bilateral symmetry. This work compared three species of Lamiaceae having radially symmetrical mature corollas with a representative sister taxon having bilaterally symmetrical corollas and found that each reaches radial symmetry in a different way. Higher core Lamiales share a common duplication in the CYCLOIDEA (CYC ) 2 gene lineage and show conserved and asymmetrical expression of CYC2 clade and RAD genes along the adaxial-abaxial floral axis in species having bilateral corolla symmetry. In Lycopus americanus , the development and expression pattern of La-CYC2A and La-CYC2B are similar to those of their bilaterally symmetrical relatives, whereas the loss of La-RAD expression correlates with a late switch to radial corolla symmetry. In Mentha longifolia , late radial symmetry may be explained by the loss of Ml-CYC2A , and by altered expression of two Ml-CYC2B and Ml-RAD genes . Finally, expanded expression of Cc-CYC2A and Cc-RAD strongly correlates with the early development of radially symmetrical corollas in Callicarpa cathayana . Repeated losses of mature corolla bilateral symmetry in Lamiaceae are not uncommon, and may be achieved by distinct mechanisms and various changes to symmetry genes, including the loss of a CYC2 clade gene from the genome, and/or contraction, expansion or alteration of CYC2 clade and RAD -like gene expression. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Nectar, Floral Morphology and Pollination Syndrome in Loasaceae subfam. Loasoideae (Cornales)

    PubMed Central

    ACKERMANN, MARKUS; WEIGEND, MAXIMILIAN

    2006-01-01

    • Background and Aims Loasaceae subfam. Loasoideae are mostly distributed in South America (sea level to over 4500 m) with a wide range of animals documented as pollinators. The aim was to investigate correlations between nectar parameters, flower morphology, pollination syndrome and phylogeny. • Methods Nectar was collected from 29 species from seven genera in the subfamily. Concentration and volumes were measured and the amount of sugar calculated. Correlations of nectar data were plotted on a ternary graph and nectar characteristics compared with flower visitors, floral morphology and phylogenetic data. • Key Results Sugar concentrations are generally higher than reported for most plant families in the literature. The species investigated can be roughly grouped as follows. Group I: plants with approx. 1·5(–3·5) µL nectar with (40–)60–80 % sugar and 0·19–2 mg sugar flower−1; with small, white, star-shaped corollas, pollinated by short-tongued bees. Groups II, III and IV: plants with mostly orange, balloon-, saucer-, bowl- or bell-shaped corollas. Group II: plants with approx. 9–14 µL nectar with 40–60 % sugar and 4–10 mg sugar flower−1; mostly visited by long-tongued bees and/or hummingbirds. Group III: plants with 40–100 µL nectar with 30–40 % sugar and 14–36 mg sugar flower–1, mostly visited by hummingbirds. Group IV: geoflorous plants with 80–90 µL with 10–15 % sugar and 8·5–12 mg sugar flower–1, presumably visited by small mammals. Groups II and III include species visited by bees and/or hummingbirds. • Conclusions Pollinator switches from short-tongued bees via long-tongued bees to hummingbirds appear to have taken place repeatedly in the genera Nasa, Loasa and Caiophora. Changes in nectar amount and concentration appear to evolve rapidly with little phylogenetic constraint. PMID:16820408

  18. Nectar Robbing Positively Influences the Reproductive Success of Tecomella undulata (Bignoniaceae)

    PubMed Central

    Singh, Vineet Kumar; Barman, Chandan; Tandon, Rajesh

    2014-01-01

    The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population. PMID:25036554

  19. Nectar robbing positively influences the reproductive success of Tecomella undulata (Bignoniaceae).

    PubMed

    Singh, Vineet Kumar; Barman, Chandan; Tandon, Rajesh

    2014-01-01

    The net consequence of nectar robbing on reproductive success of plants is usually negative and the positive effect is rarely produced. We evaluated the influence of nectar robbing on the behaviour of pollinators and the reproductive success of Tecomella undulata (Bignoniaceae) in a natural population. Experimental pollinations showed that the trees were strictly self-incompatible. The three types of floral colour morphs of the tree viz. red, orange and yellow, lacked compatibility barriers. The pollinators (Pycnonotus cafer and Pycnonotus leucotis) and the robber (Nectarinia asiatica) showed equal preference for all the morphs, as they visited each morph with nearly equal frequency and flower-handling time. The sunbirds caused up to 60% nectar robbing, mostly (99%) by piercing through the corolla tube. Although nectar is replenished at regular intervals, insufficient amount of nectar compelled the pollinators to visit additional trees in bloom. Data of manual nectar robbing from the entire tree showed that the pollinators covered lower number of flowers per tree (5 flowers/tree) and more trees per bout (7 trees/bout) than the unrobbed ones (19 flowers/tree and 2 trees bout). The robbed trees set a significantly greater amount of fruits than the unrobbed trees. However, the number of seeds in a fruit did not differ significantly. The study shows that plant-pollinator-robber interaction may benefit the self-incompatible plant species under conditions that increases the visits of pollinators among the compatible conspecifics in a population.

  20. 78 FR 36664 - Safety Zone; Fifth Coast Guard District Fireworks Display, Currituck Sound; Corolla, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... 1625-AA00 Safety Zone; Fifth Coast Guard District Fireworks Display, Currituck Sound; Corolla, NC.... This regulation applies to only one recurring fireworks event, held adjacent to the Currituck Sound... portion of the Currituck Sound, Corolla, NC, during the event. DATES: This rule will be effective from...

  1. Inbreeding in Mimulus guttatus Reduces Visitation by Bumble Bee Pollinators

    PubMed Central

    Carr, David E.; Roulston, T’ai H.; Hart, Haley

    2014-01-01

    Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens) in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37–54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations. PMID:25036035

  2. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida.

    PubMed

    Sun, Yi; Huang, He; Meng, Li; Hu, Ke; Dai, Si-Lan

    2013-10-01

    As the key enzyme in the biosynthesis of blue flower color pigments, flavonoid 3',5'-hydroxylase (F3'5'H) can catalyze the conversion of its major substrates, 2-S naringenin and dihydrokaempferol, into 3',4',5'-hydroxylated pentahydroxyflavanone and dihydromyricetin, respectively. Unlike other F3'5'Hs belonging to the CYP75A subfamily, Asteraceae-specific F3'5'Hs belong to the CYP75B subfamily. Furthermore, cineraria F3'5'H expressed in yeast exhibited not only F3'H (flavonoid 3'-hydroxylase) activity but also F3'5'H activity in vitro. In this study, Southern blotting showed that there was only one copy of a homolog of the F3'5'H gene PCFH in the Pericallis × hybrida genome. This gene could be detected by Northern blot in the primary developmental stages of ligulate florets of the purple- and blue-flowered cultivars, and its transcripts also accumulated in the leaves. Heterologous expression of PCFH could produce new delphinidin derivatives in the corollas of transgenic tobacco plants, increased the content of cyanidin derivatives and lead to the blue- and red-shifting of flower color in T₀ generation plants. These results indicate that cineraria F3'5'H exhibited both F3'5'H- and F3'H-activity in vivo. The types and contents of anthocyanins and flower color phenotypes of the T₁ generation were similar to those of T₀ generation plants. PCFH exhibited stable inheritance and normal functions between generations. This study supplies new evidence to understand Asteraceae-specific F3'5'Hs and provides important references for the further study of molecular breeding of blue-flowered chrysanthemums using the PCFH gene. © 2013 Scandinavian Plant Physiology Society.

  3. Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae.

    PubMed

    Thaowetsuwan, P; Honorio Coronado, E N; Ronse De Craene, L P

    2017-11-10

    Ophiocaryon is a lesser known genus in Sabiaceae. This study examines flowers of six Ophiocaryon species in comparison with Meliosmaalba, to identify taxonomically informative characters for understanding relationships within the family Sabiaceae, to imply previously unknown pollination mechanisms of Ophiocaryon, and to contribute to the placement of Sabiaceae within the early-diverging eudicots. Floral morphology and anatomy of six Ophiocaryon species and M. alba were studied and described using scanning electron microscopy, clearing techniques and resin sectioning. Novel characters of Ophiocaryon were identified, e.g. conical cells on petals, different kinds of orbicules in anthers, stomata on nectary appendage tips and ovary, two distinct surface patterns on stamens and ovary, tanniferous cell layers in the ovary wall, and acorn-shaped unitegmic ovules with very short integuments. Comparison of floral characters between Ophiocaryon and Meliosma found that the calyx, corolla, androecium and gynoecium of Ophiocaryon resemble an undeveloped state of the latter taxon, reflecting a paedomorphic regression of the flower of Ophiocaryon. The flower morphology and anatomy of Ophiocaryon was compared with its putative sister species M. alba, but no clear shared derived characters could be detected. Moreover, the findings of scent, presence of conical cells on petals and a nectary suggest flowers are pollinated by small insects with a secondary pollen presentation on the cupula of fertile stamens. We found that Ophiocaryon may be derived from ancestors that were similar to extant Meliosma in their flower structure and pollination mechanism. However, the lack of shared derived characters between Ophiocaryon and its phylogenetic sister group M. alba is puzzling and requires further investigations on the diversity of the latter species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Comparative Structure and Pollen Production of the Stamens and Pollinator-deceptive Staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae)

    PubMed Central

    HRYCAN, WILLIAM C.; DAVIS, ARTHUR R.

    2005-01-01

    • Background and Aims Flowers of Commelina coelestis and C. dianthifolia provide pollen alone as a floral reward, and rely on visual cues to attract pollinators. Three stamen types, all producing pollen, occur in each of these species: two cryptically coloured lateral stamens, a single cryptically coloured central stamen and three bright yellow staminodes that sharply contrast with the blue to purple corolla. The objective was to compare the stamen structure and pollen characteristics of each of the three stamen types, and to test the hypothesis that the staminodes are poor contributors of viable pollen for the siring of seed. The pollination roles of the three stamen types and the breeding systems of both species were also explored. • Methods Light, fluorescence and scanning electron microscopy were utilized to examine stamen morphology and pollen structure and viability. Controlled hand pollinations were used to explore the breeding system of each species. Filament and style lengths were measured to investigate herkogamy and autogamy. • Key Results Pollen from all stamen morphs is viable, but staminode pollen has significantly lower viability. Pollen polymorphism exists both (a) between the lateral and central stamens and the staminodes, and (b) within each anther. Lateral and central stamens have thicker endothecia with a greater number of secondary cell wall thickenings than the staminodes. • Conclusions Both species are entomophilous and facultatively autogamous. Lateral stamen pollen is important for cross-pollination, central stamen pollen is utilized by both species as a pollinator reward and for delayed autogamy in C. dianthifolia, and the staminodes mimic, by means of both colour and epidermal features, large amounts of pollen to attract insects to the flowers. Pollen from all three anther morphs is capable of siring seed, although staminode pollen is inferior. The thin staminode endothecium with fewer secondary thickenings retards staminode dehiscence. PMID:15797898

  5. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?

    PubMed Central

    Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.

    2014-01-01

    Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two shifts from traits associated with short-billed Orange-breasted sunbird pollination: one towards traits associated with moth pollination, and one towards traits associated with pollination by long-billed Malachite sunbirds. The latter shift coincided with the colonization of Namaqualand in which Orange-breasted sunbirds are absent. Conclusions Erica plukenetii is characterized by three pollination ecotypes, but only the evolutionary transition from short- to long-billed sunbird pollination can be clearly explained by the Grant–Stebbins model. Corolla length is a key character for both ecotype transitions, while floral scent emission was important for the transition from bird to moth pollination. PMID:24071499

  6. Identification and characterization of pin and thrum alleles of two genes that co-segregate with the Primula S locus.

    PubMed

    Li, Jinhong; Webster, Margaret; Furuya, Masaki; Gilmartin, Philip M

    2007-07-01

    The study of heteromorphy in Primula over the past 140 years has established the reproductive significance of this breeding system. Plants produce either thrum or pin flowers that demonstrate reciprocal herkogamy. Thrums have short styles and produce large pollen from anthers at the mouth of the flower; pins have long styles and produce small pollen from anthers located within the corolla tube. The control of heteromorphy is orchestrated by the S locus with dominant (S) and recessive (s) alleles that comprise a co-adapted linkage group of genes. Thrum plants are heterozygous (Ss) and pin plants are homozygous (ss). Reciprocal crosses between the two forms are required for fertilization; within-morph crosses are impeded by a sporophytic self-incompatibility system. Rare recombination events within the S locus produce self-fertile homostyles. As a first step towards identifying genes located at the S locus, we used fluorescent differential display to screen for differential gene expression in pin and thrum flowers. Rather than only detecting differentially regulated genes, we identified two S locus linked genes by virtue of allelic variation between pin and thrum transcripts. Analysis of pin and thrum plants together with homostyle recombinant reveals that one gene flanks the locus, whereas the other shows complete linkage. One gene is related to Arabidopsis flower-timing genes Col9 and Col10; the other encodes a small predicted membrane protein of unknown function. Notwithstanding the diallelic behaviour of the Primula S locus, analysis of pin and thrum plants reveal three alleles for each gene: two pin and one thrum.

  7. Transport of sup 14 C-IAA and sup 14 C-ACC within floral organs of Ipomoea nil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, H.G.; Maurice, H.R.; Koning, R.E.

    1989-04-01

    The transport of {sup 14}C-IAA {sup 14}C-ACC from agarose donor blocks applied to I. nil filaments their recovery as {sup 14}C-accumulation into floral organs was examined. The accumulation of the isotopes in the corolla tissue was greater when {sup 14}C-ACC was applied than {sup 14}C-IAA in intact isolated flower buds. Greater levels of the isotopes accumulated in the pistil, with minimal levels in receptacle and calyx tissues from isolated buds. With intact buds, greater levels of the isotopes were recovered in pistil, calyx receptacle tissues. This study provides further evidence for the role of the filaments as transport vectors formore » IAA ACC for the production of ethylene.« less

  8. Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): structural features and evolutionary implications

    PubMed Central

    El Ottra, Juliana Hanna Leite; Pirani, José Rubens; Endress, Peter K.

    2013-01-01

    Background and Aims Most genera of the neotropical Galipeinae (tribe Galipeeae, Rutoideae) exhibit several forms and degrees of fusion between the floral organs, including the union of petals into an apparently sympetalous corolla, the joining of the stamens among themselves and to the corolla, and the partial to complete connation of carpels. Though these and others floral traits are currently used in the circumscription of species in Galipeinae, few studies have shown in detail in which way (postgenital or congenital) and to what extent these fusions occur. To elucidate these anatomical conditions, a structural study of the flowers of the Galipeinae species was carried out. Methods Flowers of six species from three genera of Galipeinae were studied in their morphology, anatomy and development with stereomicroscopy, light microscopy and scanning electron microscopy (SEM). Key Results The floral tube is formed by synorganization of stamens with petals in all species, and exhibits three main patterns: (1) Conchocarpus heterophyllus and C. minutiflorus have a floral tube formed by marginal coherence/adherence of petals and filaments due to interwining trichomes (postgenital connection); (2) Erythrochiton brasiliensis has a tube formed by congenital fusion of petals and filaments; and (3) Galipea jasminiflora and Conchocarpus macrophyllus have a tube formed distally with the first pattern, and proximally with the second pattern. Although floral tubes seem to be homologous within Galipeinae, this is not true at the level of the family: the floral tube of Correa (from an only distantly related clade of the family) is formed by postgenital union of the petals representing a convergent structure. The gynoecium of the studied species of Galipeinae shows a great variability in the extent of fusion of carpel flanks. Even though different structures for the mature gynoecium were found in each genus, all genera show postgenitally fused carpel apices, which is related to the formation of a compitum, as described earlier for other members of Rutaceae. Conclusions The degree and diversity of fusions of floral organs in Galipeinae is unique within the order Sapindales. A study of the amount of diversification of Galipeinae in South America and comparison with other clades of Rutaceae would be of interest. PMID:23463590

  9. Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport

    PubMed Central

    Amano, Ikuko; Kitajima, Sakihito; Suzuki, Hideyuki; Koeduka, Takao

    2018-01-01

    The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. PMID:29902274

  10. Chemical compositions and antibacterial activities of the essential oils from aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic species to Turkey.

    PubMed

    Cosge, Belgin; Turker, Arzu; Ipek, Arif; Gurbuz, Bilal

    2009-04-30

    Essential oils extracted by hydrodistillation from the aerial parts and corollas of Origanum acutidens (Hand.-Mazz.) Ietswaart, an endemic Turkish flora species, were analyzed by GC-MS. The amounts of essential oil obtained from the aerial parts and the corollas were 0.73% and 0.93%, respectively. Twenty-five components in both the aerial parts oil and the corolla oil, representing 95.11% and 93.88%, respectively, were identified. The aerial parts and corolla oils were characterized by the predominance of two components: p-cymene (9.43% and 17.51%) and carvacrol (67.51% and 52.33%), respectively. The essential oils were also evaluated for their antimicrobial activity against ten bacteria by the disc diffusion assay. Our findings showed the following order in the sensitivity to the essential oils, as indicated by the corresponding inhibition zones: Proteus vulgaris > Salmonella typhimurium > Enterobacter cloacae > Klebsiella pneumonia > Escherichia coli > Serratia marcescens > Pseudomonas aeruginosa for the aerial parts essential oil, and Salmonella typhimurium > Proteus vulgaris > Enterobacter cloacae > Escherichia coli > Klebsiella pneumoniae > Serratia marcescens > Pseudomonas aeruginosa for the corolla essential oil. The studied essential oils thus exhibited a broad-spectrum of activity against both Gram-positive and Gram-negative bacteria, whereas the tested Gram-positive bacteria were more susceptible to the essential oil samples.

  11. Variation in the Breeding System of Prunella vulgaris L.

    PubMed

    Qu, Luping; Widrlechner, Mark P

    2011-05-01

    Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species.

  12. Variation in the Breeding System of Prunella vulgaris L

    PubMed Central

    Qu, Luping; Widrlechner, Mark P.

    2011-01-01

    Prunella vulgaris (Lamiaceae), commonly known as selfheal, is a perennial herb with a long history of use in traditional medicine. Recent studies have found that P. vulgaris possesses anti-inflammatory, antiviral, and antibacterial properties, and it is likely that this will lead to increased commercial demand for this species. To date, research publications on P. vulgaris cultivation and genetics are scarce. Using accessions originally collected from different geographical regions, we investigated the breeding system of this species by observing variation in floral morphology, time of pollen release, and selfed-seed set in bagged flowers and isolated plants. Two types of floral morphology, one with exerted styles, extending past open corollas when viewed from above, and the other with shorter, inserted styles, were found among 30 accessions. Two accessions originally collected from Asia uniformly displayed exerted styles, and 27 accessions had inserted styles. One accession from Oregon displayed variation in this trait among individual plants. Microscopic observation of seven accessions, including ones with both exerted and inserted styles, revealed that they all release pollen to some degree before the flowers open. Using bagged flowers, we found that selfed-seed set varied widely among eight accessions, ranging from 6% to 94%. However, bagging may underestimate seed set for some accessions. The two accessions with the lowest rates when using bagged flowers increased in seed set by 350% and 158%, respectively, when we evaluated single, unbagged plants in isolation cages. The accession with 6% selfed-seed set when bagged also had exerted styles. These findings suggest that mating systems in P. vulgaris may be in the process of evolutionary change and that understanding breeding-system variation should be useful in developing efficient seed-regeneration protocols and breeding and selection strategies for this species. PMID:21776085

  13. Flower development of Goniorrhachis marginata reveals new insights into the evolution of the florally diverse detarioid legumes.

    PubMed

    Prenner, Gerhard; Cardoso, Domingos

    2017-02-01

    The study of floral morphology and ontogeny and the re-investigation of existing data help to uncover potential synapomorphic characters and foster our understanding of phylogenetic relationships that rely primarily on molecular analyses. Goniorrhachis marginata is a monotypic caesalpinioid legume (Leguminosae) that shows some interesting floral features, such as a long hypanthium and regular Rosaceae-like flowers. We studied the ontogeny and morphology of the flowers in detail and present our results in a broad phylogenetic context. Flower buds were collected in the field, fixed in 70 % ethanol and investigated using scanning electron microscopy. Older buds in spirit were carefully opened to investigate the direction of style bending. Characters of the style from 131 taxa from the main legume lineages were analysed and mapped on a Bayesian molecular phylogeny. The tetramerous calyx is the result of complete loss of one sepal. The formation of the radially symmetrical corolla starts in a typical caesalpinioid pattern with the adaxial petal innermost (ascending aestivation). The young style bends in the abaxial direction, which is a character found exclusively in all studied detarioid legumes and therefore a newly described synapomorphy for the clade. We show that investigation of unstudied taxa and reinvestigation of published data can uncover new, previously overlooked and important characters. Curvature of the style can be detected in young buds with a hand lens and therefore is an important character for field botanists. Our study reveals the importance of including poorly studied and/or phylogenetically enigmatic taxa in molecular phylogenies and in detailed morphological and ontogenetic analyses. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    PubMed

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  15. Flower development of Goniorrhachis marginata reveals new insights into the evolution of the florally diverse detarioid legumes

    PubMed Central

    Prenner, Gerhard; Cardoso, Domingos

    2017-01-01

    Background and Aims The study of floral morphology and ontogeny and the re-investigation of existing data help to uncover potential synapomorphic characters and foster our understanding of phylogenetic relationships that rely primarily on molecular analyses. Goniorrhachis marginata is a monotypic caesalpinioid legume (Leguminosae) that shows some interesting floral features, such as a long hypanthium and regular Rosaceae-like flowers. We studied the ontogeny and morphology of the flowers in detail and present our results in a broad phylogenetic context. Methods Flower buds were collected in the field, fixed in 70 % ethanol and investigated using scanning electron microscopy. Older buds in spirit were carefully opened to investigate the direction of style bending. Characters of the style from 131 taxa from the main legume lineages were analysed and mapped on a Bayesian molecular phylogeny. Key Results The tetramerous calyx is the result of complete loss of one sepal. The formation of the radially symmetrical corolla starts in a typical caesalpinioid pattern with the adaxial petal innermost (ascending aestivation). The young style bends in the abaxial direction, which is a character found exclusively in all studied detarioid legumes and therefore a newly described synapomorphy for the clade. Conclusions We show that investigation of unstudied taxa and reinvestigation of published data can uncover new, previously overlooked and important characters. Curvature of the style can be detected in young buds with a hand lens and therefore is an important character for field botanists. Our study reveals the importance of including poorly studied and/or phylogenetically enigmatic taxa in molecular phylogenies and in detailed morphological and ontogenetic analyses. PMID:28025284

  16. Corolla Is a Novel Protein That Contributes to the Architecture of the Synaptonemal Complex of Drosophila

    PubMed Central

    Collins, Kimberly A.; Unruh, Jay R.; Slaughter, Brian D.; Yu, Zulin; Lake, Cathleen M.; Nielsen, Rachel J.; Box, Kimberly S.; Miller, Danny E.; Blumenstiel, Justin P.; Perera, Anoja G.; Malanowski, Kathryn E.; Hawley, R. Scott

    2014-01-01

    In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females. PMID:24913682

  17. Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales.

    PubMed

    Zhong, Jinshun; Kellogg, Elizabeth A

    2015-01-01

    Duplication, retention, and expression of CYCLOIDEA2 (CYC2)-like genes are thought to affect evolution of corolla symmetry. However, exactly what and how changes in CYC2-like genes correlate with the origin of corolla zygomorphy are poorly understood. We inferred and calibrated a densely sampled phylogeny of CYC2-like genes across the Lamiales and examined their expression in early diverging (EDL) and higher core clades (HCL). CYC2-like genes duplicated extensively in Lamiales, at least six times in core Lamiales (CL) around the Cretaceous-Paleogene (K-Pg) boundary, and seven more in EDL relatively more recently. Nested duplications and losses of CYC2-like paralogs are pervasive but may not correlate with transitions in corolla symmetry. We found evidence for dN/dS (ω) variation following gene duplications. CYC2-like paralogs in HCL show differential expression with higher expression in adaxial petals. Asymmetric expression but not recurrent duplication of CYC2-like genes correlates with the origin of corolla zygomorphy. Changes in both cis-regulatory and coding domains of CYC2-like genes are probably crucial for the evolution of corolla zygomorphy. Multiple selection regimes appear likely to play important roles in gene retention. The parallel duplications of CYC2-like genes are after the initial diversification of bumble bees and Euglossine bees. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Effects of Air Conditioner Use on Real-World Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Shean P; West, Brian H; Thomas, John F

    2013-01-01

    Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7more » kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point« less

  19. Gibberellic Acid Regulates Chalcone Synthase Gene Transcription in the Corolla of Petunia hybrida 1

    PubMed Central

    Weiss, David; van Blokland, Rik; Kooter, Jan M.; Mol, Joseph N. M.; van Tunen, Arjen J.

    1992-01-01

    The pigmentation of Petunia hybrida corollas is regulated by gibberellic acid (GA3). It controls the increase of flavonoid enzyme levels and their corresponding mRNAs. We have used an in vitro culture system for corollas to study the regulatory role of GA3 in the expression of flavonoid genes. By determining steady-state mRNA levels, we show that the accumulation of chalcone synthase (chs) mRNA in young corollas is dependent on the presence of both sucrose and GA3 in the culture medium. Whereas sucrose had a general metabolic effect on gene expression, the stimulatory role of GA3 was specific. Analysis of nascent transcripts in isolated corolla nuclei showed that changes in steady-state chs mRNA levels correlated very well with changes in the transcription rate. We therefore conclude that GA3 controls the expression of chs at the transcriptional level. Preculturing the corollas in sucrose medium without GA3 resulted in a lower chs mRNA level. The expression could be reinduced by the addition of GA3. The hormone is thus required for the induction but also for the maintenance of chs transcription. The delayed reinduction of chs expression, the lag time in the kinetics of chs mRNA accumulation, and the inhibitory effect of cycloheximide on the action of GA3 suggest that GA3 controls chs transcription in an indirect manner. Our data support a model in which GA3 induces the production of a regulatory protein such as a receptor or a trans-acting factor that is directly involved in chs transcription. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:16668613

  20. Geographic consistency and variation in conflicting selection generated by pollinators and seed predators.

    PubMed

    Sun, Shi-Guo; Armbruster, W Scott; Huang, Shuang-Quan

    2016-08-01

    Floral traits that attract pollinators may also attract seed predators, which, in turn, may generate conflicting natural selection on such traits. Although such selection trade-offs are expected to vary geographically, few studies have investigated selection mediated by pollinators and seed predators across a geographic mosaic of environments and floral variation. Floral traits were investigated in 14 populations of the bumble-bee-pollinated herb, Pedicularis rex, in which tubular flowers are subtended by cupular bracts holding rain water. To study potentially conflicting selection on floral traits generated by pollinators and florivores, stigmatic pollen loads, initial seed set, pre-dispersal seed predation and final viable seed production were measured in 12-14 populations in the field. Generalized Linear Model (GLM) analyses indicated that the pollen load on stigmas was positively related to the exsertion of the corolla beyond the cupular bracts and size of the lower corolla lip, but so too was the rate of seed predation, creating conflicting selection on both floral traits. A geographic mosaic of selection mediated by seed predators, but not pollinators, was indicated by significant variation in levels of seed predation and the inclusion of two-, three- and four-way interaction terms between population and seed predation in the best model [lowest corrected Akaike Information Criterion (AICc)] explaining final seed production. These results indicate opposing selection in operation: pollinators generated selection for greater floral exsertion beyond the bracts, but seed predators generated selection for reduced exsertion above the protective pools of water, although the strength of the latter varied across populations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The post-pollination ethylene burst and the continuation of floral advertisement are harbingers of non-random mate selection in Nicotiana attenuata.

    PubMed

    Bhattacharya, Samik; Baldwin, Ian T

    2012-08-01

    The self-compatible plant Nicotiana attenuata grows in genetically diverse populations after fires, and produces flowers that remain open for 3 days and are visited by assorted pollinators. To determine whether and when post-pollination non-random mate selection occurs among self and non-self pollen, seed paternity and semi-in vivo pollen tube growth were determined in controlled single/mixed pollinations. Despite all pollen sources being equally proficient in siring seeds in single-genotype pollinations, self pollen was consistently selected in mixed pollinations, irrespective of maternal genotype. However, clear patterns of mate discrimination occurred amongst non-self pollen when mixed pollinations were performed soon after corollas open, including selection against hygromycin B resistance (transformation selectable marker) in wild-type styles and for it in transformed styles. However, mate choice among pollen genotypes was completely shut down in plants transformed to be unable to produce (irACO) or perceive (ETR1) ethylene. The post-pollination ethylene burst, which originates primarily from the stigma and upper style, was strongly correlated with mate selection in single and mixed hand-pollinations using eight pollen donors in two maternal ecotypes. The post-pollination ethylene burst was also negatively correlated with the continuation of emission of benzylacetone, the most abundant pollinator-attracting corolla-derived floral volatile. We conclude that ethylene signaling plays a pivotal role in mate choice, and the post-pollination ethylene burst and the termination of benzylacetone release are accurate predictors, both qualitatively and quantitatively, of pre-zygotic mate selection and seed paternity. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators

    PubMed Central

    Queiroz, Joel A.; Quirino, Zelma G. M.; Machado, Isabel C.

    2015-01-01

    Floral attributes evolve in response to frequent and efficient pollinators, which are potentially important drivers of floral diversification and reproductive isolation. In this context, we asked, how do flowers evolve in a bat–hummingbird pollination system? Hence, we investigated the pollination ecology of two co-flowering Ipomoea taxa (I. marcellia and I. aff. marcellia) pollinated by bats and hummingbirds, and factors favouring reproductive isolation and pollinator sharing in these plants. To identify the most important drivers of reproductive isolation, we compared the flowers of the two Ipomoea taxa in terms of morphometry, anthesis and nectar production. Pollinator services were assessed using frequency of visits, fruit set and the number of seeds per fruit after visits. The studied Ipomoea taxa differed in corolla size and width, beginning and duration of anthesis, and nectar attributes. However, they shared the same diurnal and nocturnal visitors. The hummingbird Heliomaster squamosus was more frequent in I. marcellia (1.90 visits h−1) than in I. aff. marcellia (0.57 visits h−1), whereas glossophagine bats showed similar visit rates in both taxa (I. marcellia: 0.57 visits h−1 and I. aff. marcellia: 0.64 visits h−1). Bat pollination was more efficient in I. aff. marcellia, whereas pollination by hummingbirds was more efficient in I. marcellia. Differences in floral attributes between Ipomoea taxa, especially related to the anthesis period, length of floral parts and floral arrangement in the inflorescence, favour reproductive isolation from congeners through differential pollen placement on pollinators. This bat–hummingbird pollination system seems to be advantageous in the study area, where the availability of pollinators and floral resources changes considerably throughout the year, mainly as a result of rainfall seasonality. This interaction is beneficial for both sides, as it maximizes the number of potential pollen vectors for plants and resource availability for pollinators. PMID:26558704

  3. Leaf-Like Sepals Induced by Ectopic Expression of a SHORT VEGETATIVE PHASE (SVP)-Like MADS-Box Gene from the Basal Eudicot Epimedium sagittatum

    PubMed Central

    Li, Zhineng; Zeng, Shaohua; Li, Yanbang; Li, Mingyang; Souer, Erik

    2016-01-01

    Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium. PMID:27733858

  4. Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees

    PubMed Central

    Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D.

    2012-01-01

    Background and Aims Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. Methods For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. Key Results Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. Conclusions Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes. PMID:22278414

  5. Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae).

    PubMed

    Jabbour, Florian; Ronse De Craene, Louis P; Nadot, Sophie; Damerval, Catherine

    2009-10-01

    Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty. METHODS; The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors. In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla. It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.

  6. Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae)

    PubMed Central

    Jabbour, Florian; Ronse De Craene, Louis P.; Nadot, Sophie; Damerval, Catherine

    2009-01-01

    Background and Aims Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty. Methods The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors. Key Results In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla. Conclusions It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait. PMID:19608573

  7. Plant-animal interactions in suburban environments: implications for floral evolution.

    PubMed

    Irwin, Rebecca E; Warren, Paige S; Carper, Adrian L; Adler, Lynn S

    2014-03-01

    Plant interactions with mutualists and antagonists vary remarkably across space, and have played key roles in the ecology and evolution of flowering plants. One dominant form of spatial variation is human modification of the landscape, including urbanization and suburbanization. Our goal was to assess how suburbanization affected plant-animal interactions in Gelsemium sempervirens in the southeastern United States, including interactions with mutualists (pollination) and antagonists (nectar robbing and florivory). Based on differences in plant-animal interactions measured in multiple replicate sites, we then developed predictions for how these differences would affect patterns of natural selection, and we explored the patterns using measurements of floral and defensive traits in the field and in a common garden. We found that Gelsemium growing in suburban sites experienced more robbing and florivory as well as more heterospecific but not conspecific pollen transfer. Floral traits, particularly corolla length and width, influenced the susceptibility of plants to particular interactors. Observational data of floral traits measured in the field and in a common garden provided some supporting but also some conflicting evidence for the hypothesis that floral traits evolved in response to differences in species interactions in suburban vs. wild sites. However, the degree to which plants can respond to any one interactor may be constrained by correlations among floral morphological traits. Taken together, consideration of the broader geographic context in which organisms interact, in both suburban and wild areas, is fundamental to our understanding of the forces that shape contemporary plant-animal interactions and selection pressures in native species.

  8. Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.

    PubMed Central

    Tsuchimoto, S; van der Krol, A R; Chua, N H

    1993-01-01

    We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development. PMID:8104573

  9. Origin and evolution of Petrocosmea (Gesneriaceae) inferred from both DNA sequence and novel findings in morphology with a test of morphology-based hypotheses.

    PubMed

    Qiu, Zhi-Jing; Lu, Yuan-Xue; Li, Chao-Qun; Dong, Yang; Smith, James F; Wang, Yin-Zheng

    2015-07-03

    Petrocosmea Oliver (Gesneriaceae) currently comprises 38 species with four non-nominate varieties, nearly all of which have been described solely from herbarium specimens. However, the dried specimens have obscured the full range of extremely diverse morphological variation that exists in the genus and has resulted in a poor subgeneric classification system that does not reflect the evolutionary history of this group. It is important to develop innovative methods to find new morphological traits and reexamine and reevaluate the traditionally used morphological data based on new hypothesis. In addition, Petrocosmea is a mid-sized genus but exhibits extreme diverse floral variants. This makes the genus of particular interest in addressing the question whether there are any key factors that is specifically associated with their evolution and diversification. Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes combined with a comprehensive morphological investigation. Maximum-parsimony, maximum likelihood and Bayesian analyses of molecular data from two nuclear DNA and six cpDNA regions support the monophyly of Petrocosmea and recover five major clades within the genus, which is strongly corroborated by the reconstruction of ancestral states for twelve new morphological characters directly observed from living material. Ancestral area reconstruction shows that its most common ancestor was likely located east and southeast of the Himalaya-Tibetan plateau. The origin of Petrocosmea from a potentially Raphiocarpus-like ancestor might have involved a series of morphological modifications from caulescent to acaulescent habit as well as from a tetrandrous flower with a long corolla-tube to a diandrous flower with a short corolla-tube, also evident in the vestigial caulescent habit and transitional floral form in clade A that is sister to the remainder of the genus. Among the five clades in Petrocosmea, the patterns of floral morphological differentiation are consistent with discontinuous lineage-associated morphotypes as a repeated adaptive response to alternative environments. Our results suggest that the lineage-specific morphological differentiations reflected in the upper lip, a functional organ for insect pollination, are likely adaptive responses to pollinator shifts. We further recognize that the floral morphological diversification in Petrocosmea involves several evolutionary phenomena, i.e. evolutionary successive specialization, reversals, parallel evolution, and convergent evolution, which are probably associated with adaptation to pollination against the background of heterogeneous abiotic and biotic environments in the eastern wing regions of Himalaya-Tibetan plateau.

  10. Identification and cloning of class II and III chitinases from alkaline floral nectar of Rhododendron irroratum, Ericaceae.

    PubMed

    Zha, Hong-Guang; Milne, Richard I; Zhou, Hong-Xia; Chen, Xiang-Yang; Sun, Hang

    2016-10-01

    Class II and III chitinases belonging to different glycoside hydrolase families were major nectarins in Rhododendron irroratum floral nectar which showed significant chitinolytic activity. Previous studies have demonstrated antimicrobial activity in plant floral nectar, but the molecular basis for the mechanism is still poorly understood. Two chitinases, class II (Rhchi2) and III (Rhchi3), were characterized from alkaline Rhododendron irroratum nectar by both SDS-PAGE and mass spectrometry. Rhchi2 (27 kDa) and Rhchi3 (29 kDa) are glycoside hydrolases (family 19 and 18) with theoretical pI of 8.19 and 7.04. The expression patterns of Rhchi2 and Rhchi3 were analyzed by semi-quantitative RT-PCR. Rhchi2 is expressed in flowers (corolla nectar pouches) and leaves while Rhchi3 is expressed in flowers. Chitinase in concentrated protein and fresh nectar samples was visualised by SDS-PAGE and chitinolytic activity in fresh nectar was determined spectrophotometrically via chitin-azure. Full length gene sequences were cloned with Tail-PCR and RACE. The amino acid sequence deduced from the coding region for these proteins showed high identity with known chitinases and predicted to be located in extracellular space. Fresh R. irroratum floral nectar showed significant chitinolytic activity. Our results demonstrate that class III chitinase (GH 18 family) also exists in floral nectar. The functional relationship between class II and III chitinases and the role of these pathogenesis-related proteins in antimicrobial activity in nectar is suggested.

  11. Pollination ecology of Disterigma stereophyllum (Ericaceae) in south-western Colombia.

    PubMed

    Navarro, L; Guitián, P; Ayensa, G

    2008-07-01

    Several authors have recently expressed doubts that the 'pollination syndromes' as usually expressed are an adequate description of correlated suites of floral characters, or that they adequately describe evolutionary or ecological associations of plants with pollinators. Disterigma stereophyllum is a neotropical Ericaceae with floral characteristics intermediate between the 'entomophilous' syndrome and the 'ornithophilous' syndrome: the corolla is short, white and urceolate, but flowers produce large amounts of dilute nectar. We studied the pollination ecology of this species in south-western Colombia, and found it to be pollinated almost exclusively by hummingbirds at our study site. Two hummingbird species were responsible for about 75 of visits. Despite the fact that nectar standing crop remained more or less constant throughout the day, visit frequencies were highest in the morning and declined throughout the day. Pollinator efficiency, measured as the number of pollen grains deposited on a virgin stigma by each visitor after one visit, did not differ among the species of hummingbirds, but was lower for a nectar-robbing bird, Diglossa albilatera. This species does not contact the surface of the stigma during nectar robbing, but can produce some self-pollination indirectly because it shakes branches vigorously while piercing the flower. These findings indicate a need for further studies of neotropical Ericaceae in order to elucidate whether floral visitors of species like D. stereophyllum fluctuate through time or space, and whether floral characteristics reflect a compromise between such different visitors, or a transitional stage between pollination syndromes, or some other possibility.

  12. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  13. Hemiboea suiyangensis (Gesneriaceae): a new species from Guizhou, China.

    PubMed

    Li, Shuwan; Han, Mengqi; Li, Xiaojie; Li, Zhenyu; Xiang, Xiaoguo

    2018-01-01

    The limestone areas in south China are a major biodiversity hotspot for terrestrial biomes. Hemiboea , with 34 species and 5 varieties, mainly distributed in south China, is one of the characteristic plant groups in limestone areas. Hemiboea suiyangensis , a new species of Gesneriaceae from limestone areas in Guizhou, China, is described and illustrated. The new species is easily distinguished from other Hemiboea species by having an oblique-infundibular corolla with an abaxially gibbous swelling on the upper half of the tube and with a densely villose throat and lower lobes. Hemiboea suiyangensis is similar to H. omeiensis W. T. Wang in the shape of the leaf blade, but differs from the latter by the shape of the petiole, involucre, calyx and corolla and the colour of the corolla. The conservation status of this species is considered to be "Critically Endangered" (CR) according to IUCN Red List Criteria.

  14. Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness.

    PubMed

    Richardson, Leif L; Bowers, M Deane; Irwin, Rebecca E

    2016-02-01

    Plants produce an array of secondary metabolites that play important ecological roles as anti-herbivore and anti-pathogen defenses. Many herbivores experience physiological costs when they consume secondary metabolites, yet some also benefit, for example when these chemicals confer resistance to parasites and predators. Secondary metabolites are often present in nectar and pollen, which is paradoxical given that floral rewards are important in the attraction of mutualists rather than deterrence of antagonists. Motivated by studies of interactions among plants, herbivores, and parasites, as well as research showing that secondary metabolites can reduce bee disease, we characterized the occurrence of two iridoid glycosides, aucubin and catalpol, in floral rewards and other tissues of the bee pollinated plant, Chelone glabra. We then experimentally investigated effects of nectar iridoid glycoside concentrations on the foraging behavior of bumble bee pollinators naturally afflicted by a parasitoid fly and a protozoan intestinal parasite, and subsequent effects on an estimate of plant reproduction. We found that floral nectar had lower iridoid glycoside concentrations than leaves, pollen, and corollas, and that, compared to those plant parts, the relative ratio of the two primary iridoid glycosides, aucubin and catalpol, was reversed in nectar. Whether bees carried parasitoid fly larvae did not affect their response to nectar chemistry; however, there was a significant interaction between protozoan parasite infection and nectar treatment, with infected bees foraging longer at flowers with high compared to low nectar iridoid glycoside concentrations. Parasitized bees were also more likely to return to inflorescences with high iridoid glycoside nectar. Consequently, flowers in the high iridoid glycoside nectar treatment donated significantly more pollen to conspecific stigmas than did flowers in the low iridoid glycoside treatment, suggesting an increase in male plant fitness. Taken together, these results demonstrate that nectar secondary metabolites can mediate the behavior of pollinators with subsequent benefits for estimates of plant reproduction.

  15. Morphological and molecular data confirm the transfer of homostylous species in the typically distylous genus Galianthe (Rubiaceae), and the description of the new species Galianthe vasquezii from Peru and Colombia.

    PubMed

    Florentín, Javier Elias; Cabaña Fader, Andrea Alejandra; Salas, Roberto Manuel; Janssens, Steven; Dessein, Steven; Cabral, Elsa Leonor

    2017-01-01

    Galianthe (Rubiaceae) is a neotropical genus comprising 50 species divided into two subgenera, Galianthe subgen. Galianthe, with 39 species and Galianthe subgen. Ebelia , with 11 species. The diagnostic features of the genus are: usually erect habit with xylopodium, distylous flowers arranged in lax thyrsoid inflorescences, bifid stigmas, 2-carpellate and longitudinally dehiscent fruits, with dehiscent valves or indehiscent mericarps, plump seeds or complanate with a wing-like strophiole, and pollen with double reticulum, rarely with a simple reticulum. This study focused on two species that were originally described under Diodia due to the occurrence of fruits indehiscent mericarps: Diodia palustris and D. spicata . In the present study, classical taxonomy is combined with molecular analyses. As a result, we propose that both Diodia species belong to Galianthe subgen. Ebelia . The molecular position within Galianthe , based on ITS and ETS sequences, has been supported by the following morphological characters: thyrsoid, spiciform or cymoidal inflorescences, bifid stigmas, pollen grains with a double reticulum, and indehiscent mericarps. However, both species, unlike the remainder of the genus Galianthe , have homostylous flowers, so the presence of this type of flower significantly modifies the generic concept. In this framework, a third homostylous species, Galianthe vasquezii , from the Andean region is also described. Until now, this species remained cryptic under specimens of Galianthe palustris It differs however from the latter by having longer calyx lobes, the presence of dispersed trichomes inside the corolla lobes (vs. glabrous), fruits that are acropetally dehiscent (vs. basipetally dehiscent), and its Andean geographical distribution (vs. Paranaense). Additionally, a lectotype has been chosen for Diodia palustris , Borreria pterophora has been placed under synonymy of Galianthe palustris , and Galianthe boliviana is reported for the first time from Peru. A key of all Galianthe species with indehiscent mericarps is also provided.

  16. Pollen Morphology of Caesalpinia pulcherrima (L.) Swartz in Highland and Lowland West Sumatra

    NASA Astrophysics Data System (ADS)

    Fitri, R.; Des, M.

    2018-04-01

    Determine the morphology structure of pollen on some variation colour of corolla Caesalpinia pulcherrima L. (Swartz) in highland and lowland West Sumatra has been conducted. The result reveals that topography and variation colour of corolla C. pulcherrima L. (Swartz) affects the shape of pollen. Pollen of C. pulcherrima L. (Swartz) has single grains or monad, isopolar polarity, radial symmetry, and size categories large. The length of polar axis (P) 58.16 to 74.11 μm, the length of the equatorial diameter (E) 59.86 to 75.97 μm, so that pollen can be classified into sub-spheroidal sub-oblate, spheriodal sub-spheroidal oblate, and sub-spheroidal prolate. Ornamentation of C. pulcherrima (L.) Swartz was reticulate. The pollen has aperture 3, the type pore and located in equatorial. From these data can be concluded that pollen from varying colour of corolla C. pulcherrima (L.) Swartz has same in terms of unit, polarity, symmetry, size, and type aperture, but it different in terms of shape.

  17. Exploration for the Biological Control of Flowering Rush, Butomus umbellatus

    DTIC Science & Technology

    2015-06-01

    control of flowering rush, Butomus umbellatus P. Häfliger, R. Leiner, C. Baan, A. Martins, S. Soukou, D. Sjolie, I. Toševski and H.L...2014 to 00-06-2015 4. TITLE AND SUBTITLE Exploration for the Biological Control of Flowering Rush, Butomus umbellatus 5a. CONTRACT NUMBER W911NF-14...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Flowering rush (Butomus umbellatus

  18. Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus.

    PubMed

    Fambrini, Marco; Basile, Alice; Salvini, Mariangela; Pugliesi, Claudio

    2014-10-01

    Tubular ray flower (turf) is a sunflower mutant that caught attention because it bears actinomorphic ray flowers, due to the presence of an active, although non-autonomous CACTA transposon (Tetu1) in the TCP domain of a CYCLOIDEA-like gene, HaCYC2c, a major regulator of sunflower floral symmetry. Here, we analyzed its excision rates in F3 population deriving from independent crosses of turf with common sunflower accessions. Our results suggest that the excision rate, ranging from 1.21 to 6.29%, depends on genetic background; moreover, the absence of somatic sectors in inflorescences of revertant individuals analyzed (182) and genetic analyses suggests a tight developmental control of Tetu1 excision, likely restricted to germinal cells. We individuate events of Tetu1 excision through molecular analysis that restore the wild type (WT) HaCYC2c allele, but even transposon excisions during which footprints are left. All mutations we detected occurred at the TCP basic motif and cause a change in ray flower phenotype. In particular, we selected five mutants with a one-to-four amino acid change that influence the capacity of reproductive organ development and ray flower corolla shaping (MUT-1, -2, -3, -4, -5). Revertant alleles not affecting turf phenotype (i.e. reading frame mutations) have also been identified (MUT-6). In all mutants, Real-time quantitative PCR (qPCR) experiments revealed variations of the steady state level of HaCYC2c mRNA. MUT-1 and MUT-4 showed a significant HaCYC2c down-regulation with respect to WT. A large variation within the biological replicates of MUT-2, MUT-3 and MUT-5 was detected and not significant differences in transcription levels between mutants and WT were observed. We detected low steady state level of HaCYC2c mRNA both in turf as in MUT-6. A three dimensional (3D) structure prediction tool let us predict an incorrect folding of the TCP protein already after a single amino acid deletion. This in turn is detectable as the restore of traits that are not peculiar of WT ray flowers, such as male fertility. Our analysis of an active TE sheds light on the TCP motif of the HaCYC2c gene and suggests that Tetu1 may be useful to obtain new natural mutants and for transposon tagging in different inbred lines of sunflower. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Natural history matters: how biological constraints shape diversified interactions in pollination networks.

    PubMed

    Jordano, Pedro

    2016-11-01

    Species-specific traits constrain the ways organisms interact in nature. Some pairwise interactions among coexisting species simply do not occur; they are impossible to observe despite the fact that partners coexist in the same place. The author discusses these 'forbidden links' of species interaction networks. Photo: a sphingid moth, Manduca sexta visiting a flower of Tocoyena formosa (Rubiaceae) in the Brazilian Cerrado; tongue and corolla tube lengths approximately 100 mm. Courtesy of Felipe Amorim. Sazatornil, F.D., Moré, M., Benitez-Vieyra, S., Cocucci, A.A., Kitching, I.J., Schlumpberger, B.O., Oliveira, P.E., Sazima, M. & Amorim, F.W. (2016) Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. Journal of Animal Ecology, 85, 1586-1594. Species-specific traits and life-history characteristics constrain the ways organisms interact in nature. For example, gape-limited predators are constrained in the sizes of prey they can handle and efficiently consume. When we consider the ubiquity of such constrains, it is evident how hard it can be to be a generalist partner in ecological interactions: a free-living animal or plant cannot simply interact with every available partner it encounters. Some pairwise interactions among coexisting species simply do not occur; they are impossible to observe despite the fact that partners coexist in the same place. Sazatornil et al. () explore the nature of such constraints in the mutualisms among hawkmoths and the plants they pollinate. In this iconic interaction, used by Darwin and Wallace to vividly illustrate the power of natural selection in shaping evolutionary change, both pollinators and plants are sharply constrained in their interaction modes and outcomes. © 2016 The Author. Journal of Animal Ecology © 2016 British Ecological Society.

  20. Pollinator-mediated selection in a specialized hummingbird-Heliconia system in the Eastern Caribbean.

    PubMed

    Temeles, E J; Rah, Y J; Andicoechea, J; Byanova, K L; Giller, G S J; Stolk, S B; Kress, W J

    2013-02-01

    Phenotypic matches between plants and their pollinators often are interpreted as examples of reciprocal selection and adaptation. For the two co-occurring plant species, Heliconia bihai and H. caribaea in the Eastern Caribbean, we evaluated for five populations over 2 years the strength and direction of natural selection on corolla length and number of bracts per inflorescence. These plant traits correspond closely to the bill lengths and body masses of their primary pollinators, female or male purple-throated carib hummingbirds (Eulampis jugularis). In H. bihai, directional selection for longer corollas was always significant with the exception of one population in 1 year, whereas selection on bract numbers was rare and found only in one population in 1 year. In contrast, significant directional selection for more bracts per inflorescence occurred in all three populations of the yellow morph and in two populations of the red morph of H. caribaea, whereas significant directional selection on corolla length occurred in only one population of the red morph and one population of the yellow morph. Selection for longer corollas in H. bihai may result from better mechanical fit, and hence pollination, by the long bills of female E. jugularis, their sole pollinator. In contrast, competition between males of E. jugularis for territories may drive selection for more bracts in H. caribaea. Competitive exclusion of female E. jugularis by territorial males also implicates pollinator competition as a possible ecological mechanism for trait diversification in these plants. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  1. Rapid independent trait evolution despite a strong pleiotropic genetic correlation.

    PubMed

    Conner, Jeffrey K; Karoly, Keith; Stewart, Christy; Koelling, Vanessa A; Sahli, Heather F; Shaw, Frank H

    2011-10-01

    Genetic correlations are the most commonly studied of all potential constraints on adaptive evolution. We present a comprehensive test of constraints caused by genetic correlation, comparing empirical results to predictions from theory. The additive genetic correlation between the filament and the corolla tube in wild radish flowers is very high in magnitude, is estimated with good precision (0.85 ± 0.06), and is caused by pleiotropy. Thus, evolutionary changes in the relative lengths of these two traits should be constrained. Still, artificial selection produced rapid evolution of these traits in opposite directions, so that in one replicate relative to controls, the difference between them increased by six standard deviations in only nine generations. This would result in a 54% increase in relative fitness on the basis of a previous estimate of natural selection in this population, and it would produce the phenotypes found in the most extreme species in the family Brassicaceae in less than 100 generations. These responses were within theoretical expectations and were much slower than if the genetic correlation was zero; thus, there was evidence for constraint. These results, coupled with comparable results from other species, show that evolution can be rapid despite the constraints caused by genetic correlations.

  2. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum

    PubMed Central

    Cohen, James I.

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum. Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs. PMID:28066486

  3. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum.

    PubMed

    Cohen, James I

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum . Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs.

  4. Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators.

    PubMed

    Friberg, Magne; Schwind, Christopher; Roark, Lindsey C; Raguso, Robert A; Thompson, John N

    2014-09-01

    Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.

  5. The role of ABC genes in shaping perianth phenotype in the basal angiosperm Magnolia.

    PubMed

    Wróblewska, M; Dołzbłasz, A; Zagórska-Marek, B

    2016-03-01

    It is generally accepted that the genus Magnolia is characterised by an undifferentiated perianth, typically organised into three whorls of nearly identical tepals. In some species, however, we encountered interesting and significant perianth modifications. In Magnolia acuminata, M. liliiflora and M. stellata the perianth elements of the first whorl are visually different from the others. In M. stellata the additional, spirally arranged perianth elements are present above the first three whorls, which suggests that they have been formed within the domain of stamen primordia. In these three species, we analysed expression patterns of the key flower genes (AP1, AGL6, AP3, PI, AG) responsible for the identity of flower elements and correlated them with results of morphological and anatomical investigations. In all studied species the elements of the first whorl lacked the identity of petals (lack of AP3 and PI expression) but also that of leaves (presence of AGL6 expression), and this seems to prove their sepal character. The analysis of additional perianth elements of M. stellata, spirally arranged on the elongated floral axis, revealed overlapping and reduced activity of genes involved in specification of the identity of the perianth (AGL6) but also of generative parts (AG), even though no clear gradient of morphological changes could be observed. In conclusion, Magnolia genus is capable of forming, in some species, a perianth differentiated into a calyx (sepals) and corolla (petals). Spirally arranged, additional perianth elements of M. stellata, despite activity of AG falling basipetally, resemble petals. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. PhDAHP1 is required for floral volatile benzenoid/phenylpropanoid biosynthesis in Petunia × hybrida cv 'Mitchell Diploid'.

    PubMed

    Langer, Kelly M; Jones, Correy R; Jaworski, Elizabeth A; Rushing, Gabrielle V; Kim, Joo Young; Clark, David G; Colquhoun, Thomas A

    2014-07-01

    Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis consists of numerous enzymatic and regulatory processes. The initial enzymatic step bridging primary metabolism to secondary metabolism is the condensation of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) carried out via 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-PHOSPHATE (DAHP) synthase. Here, identified, cloned, localized, and functionally characterized were two DAHP synthases from the model plant species Petunia × hybrida cv 'Mitchell Diploid' (MD). Full-length transcript sequences for PhDAHP1 and PhDAHP2 were identified and cloned using cDNA SMART libraries constructed from pooled MD corolla and leaf total RNA. Predicted amino acid sequence of PhDAHP1 and PhDAHP2 proteins were 76% and 80% identical to AtDAHP1 and AtDAHP2 from Arabidopsis, respectively. PhDAHP1 transcript accumulated to relatively highest levels in petal limb and tube tissues, while PhDAHP2 accumulated to highest levels in leaf and stem tissues. Through floral development, PhDAHP1 transcript accumulated to highest levels during open flower stages, and PhDAHP2 transcript remained constitutive throughout. Radiolabeled PhDAHP1 and PhDAHP2 proteins localized to plastids, however, PhDAHP2 localization appeared less efficient. PhDAHP1 RNAi knockdown petunia lines were reduced in total FVBP emission compared to MD, while PhDAHP2 RNAi lines emitted 'wildtype' FVBP levels. These results demonstrate that PhDAHP1 is the principal DAHP synthase protein responsible for the coupling of metabolites from primary metabolism to secondary metabolism, and the ultimate biosynthesis of FVBPs in the MD flower. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    PubMed Central

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  8. Two new species of Oreocharis (Gesneriaceae) from Fan Si Pan, the highest mountain in Vietnam

    PubMed Central

    Chen, Wen Hong; Nguyen, Quang Hieu; Chen, Run Zheng; Nguyen, Tien Hiep; Nguyen, Sinh Khang; Nguyen, Van Tap; Möller, Michael; Middleton, David J.; Shui, Yu-Min

    2018-01-01

    Abstract Two new species of Oreocharis Benth. from Fan Si Pan, the highest mountain in Vietnam (Sa Pa) are described and illustrated. Oreocharis grandiflora W.H.Chen, Q.H.Nguyen & Y.M.Shui, is similar to O. flavida Merr. from Hainan province, China, but differs mainly by its larger and infundibuliform corolla, stamens adnate to the base of the corolla tube and stamens coherent in two pairs. The second, Oreocharis longituba W.H.Chen, Q.H.Nguyen & Y.M.Shui, is similar to O. hirsuta Barnett, endemic to northern Thailand, but mainly differs in its pubescence, coherent stamens and glabrous filaments. PMID:29416424

  9. Solar furnaces or swamp coolers: costs and benefits of water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus.

    PubMed

    Galen, Candace

    2006-06-01

    Solar tracking or heliotropism simultaneously raises organ temperature and light interception. For leaves and flowers carbon gain is maximized at the expense of water loss. In this study I explore how costs and benefits associated with water use by solar-tracking flowers of the alpine snow buttercup, Ranunculus adoneus change with ambient temperature. First, I test whether heliotropism increases the water cost of reproduction in the snow buttercup under extant alpine conditions. I then explore whether water use for evaporative cooling in solar-tracking flowers reduces the risk of over-heating as temperatures increase. Solar tracking, by elevating floral temperature and irradiance causes a 29% increase in water uptake by flowers. Gas exchange measurements suggest that the extra water taken up by solar-tracking flowers is released through transpiration. Transpirational cooling in turn allows solar-tracking flowers to gain advantages of enhanced light interception and warmth while reducing the risk of over-heating. Transpiration reduces excess temperature in solar-tracking flowers, but at a water cost. Results show that even in cool alpine habitats, flower heliotropism has water costs to balance its reproductive advantages. Plants with solar-tracking flowers may tolerate hotter conditions if soil moisture is plentiful, but not under drought.

  10. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background

    PubMed Central

    Corcobado, Guadalupe; Trillo, Alejandro

    2017-01-01

    Our understanding of how floral visitors integrate visual and olfactory cues when seeking food, and how background complexity affects flower detection is limited. Here, we aimed to understand the use of visual and olfactory information for bumblebees (Bombus terrestris terrestris L.) when seeking flowers in a visually complex background. To explore this issue, we first evaluated the effect of flower colour (red and blue), size (8, 16 and 32 mm), scent (presence or absence) and the amount of training on the foraging strategy of bumblebees (accuracy, search time and flight behaviour), considering the visual complexity of our background, to later explore whether experienced bumblebees, previously trained in the presence of scent, can recall and make use of odour information when foraging in the presence of novel visual stimuli carrying a familiar scent. Of all the variables analysed, flower colour had the strongest effect on the foraging strategy. Bumblebees searching for blue flowers were more accurate, flew faster, followed more direct paths between flowers and needed less time to find them, than bumblebees searching for red flowers. In turn, training and the presence of odour helped bees to find inconspicuous (red) flowers. When bees foraged on red flowers, search time increased with flower size; but search time was independent of flower size when bees foraged on blue flowers. Previous experience with floral scent enhances the capacity of detection of a novel colour carrying a familiar scent, probably by elemental association influencing attention. PMID:28898287

  11. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic.

    PubMed

    Lessard-Therrien, Malie; Davies, T Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  12. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Teaching Flowers: A Photo Essay

    ERIC Educational Resources Information Center

    Hewson, Federico

    2017-01-01

    "Teaching Flowers" reflects on humanity's deep connections to horticulture by gathering varied thoughts from seminal writers in the field. In addition, this visual article draws attention to labor issues within the U.S. floral industry by documenting the author's exploration of flowers as social sculpture in New York City.

  14. Experimental reduction in interaction intensity strongly affects biotic selection.

    PubMed

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  15. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations.

    PubMed

    Sobral, Mar; Veiga, Tania; Domínguez, Paula; Guitián, Javier A; Guitián, Pablo; Guitián, José M

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.

  16. Selective Pressures Explain Differences in Flower Color among Gentiana lutea Populations

    PubMed Central

    Domínguez, Paula; Guitián, Javier A.; Guitián, Pablo; Guitián, José M.

    2015-01-01

    Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation. PMID:26172378

  17. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-01-01

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation. PMID:29617274

  18. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.).

    PubMed

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Bendahmane, Mohammed; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-04-04

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation ( DcaMADS ) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKC c , two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE ( SVP )), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 ( AGL6 ), one SEEDSTICK ( STK ), one B sister , one SVP , and one Mα ). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.

  19. Morphological and molecular identification to secure cultivar maintenance and management of self-sterile Rubus arcticus

    PubMed Central

    Kostamo, K.; Toljamo, A.; Antonius, K.; Kokko, H.; Kärenlampi, S. O.

    2013-01-01

    Background and Aims Preservation of cultivar purity creates a particular challenge for plants that are self-incompatible, require insects for cross-pollination, and have easily germinating seeds and vigorously spreading rhizomes. As the fields must be planted with mixed populations, and a balance must be maintained between the cultivars to achieve effective pollination, methods for field monitoring of the relative density of different cultivars must be practical. Furthermore, a DNA-based method is needed for cultivar verification in the collections and outside of the growing season. The aim of this study was to develop both types of methods for Rubus arcticus (arctic bramble). Methods Morphological parameters were measured from six cultivars grown on three farms. Observations from the flowers and fruits included: petal and sepal number, flower diameter, arrangement of petals, size of calyx in relation to corolla, fruit weight, yield and soluble sugars. Observations from the leaves included: width and height of middle leaflet, shape of the base of terminal leaflet, shape of terminal leaflet, leaf margin serration and fingertip touch. The applicability of simple sequence repeat (SSR) or microsatellite DNA markers developed for red raspberry was tested on eight arctic bramble cultivars. Key Results and Conclusions Morphological and molecular identification methods were developed for R. arcticus. The best morphological characteristics were the length-to-width ratio of the middle leaflet and leaf margin serration. A particular characteristic, fingertip touch, was shown by electron microscopy to be related to the density and quality of the leaf hairs. Red raspberry SSR marker no. 126 proved to be applicable for differentiation of the eight arctic bramble cultivars tested. These identification methods are critical to secure the maintenance and management of R. arcticus. However, the challenges faced and approaches taken are equally applicable to other species with similar biology. PMID:23456688

  20. Evolution of Perianth and Stamen Characteristics with Respect to Floral Symmetry in Ranunculales

    PubMed Central

    Damerval, Catherine; Nadot, Sophie

    2007-01-01

    Background and Aims Floral symmetry presents two main states in angiosperms, namely polysymmetry and monosymmetry. Monosymmetry is thought to have evolved several times independently from polysymmetry, possibly in co-adaptation with specialized pollinators. Monosymmetry commonly refers to the perianth, even though associated androecium modifications have been reported. The evolution of perianth symmetry is examined with respect to traits of flower architecture in the Ranunculales, the sister group to all other eudicots, which present a large diversity of floral forms. Methods Characters considered were perianth merism, calyx, corolla and androecium symmetry, number of stamens and spurs. Character evolution was optimized on a composite phylogenetic tree of Ranunculales using maximum parsimony. Key Results The ancestral state for merism could not be inferred because the basalmost Eupteleaceae lack a perianth and have a variable number of stamens. The Papaveraceae are dimerous, and the five other families share a common trimerous ancestor. Shifts from trimery to dimery (or reverse) are observed. Pentamery evolved in Ranunculaceae. Ranunculales except Eupteleaceae, present a polysymmetric ancestral state. Monosymmetry evolved once within Papaveraceae, Ranunculaceae and Menispermaceae (female flowers only). Oligandry is the ancestral state for all Ranunculales, and polyandry evolved several times independently, in Papaveraceae, Menispermaceae, Berberidaceae and Ranunculaceae, with two reversions to oligandry in the latter. The ancestral state for androecium symmetry is ambiguous for the Ranunculales, while polysymmetry evolved immediately after the divergence of Eupteleaceae. A disymmetric androecium evolved in Papaveraceae. The ancestral state for spurs is none. Multiple spurs evolved in Papaveraceae, Berberidaceae and Ranunculaceae, and single spurs occur in Papaveraceae and Ranunculaceae. Conclusions The evolution of symmetry appears disconnected from changes in merism and stamen number, although monosymmetry never evolved in the context of an open ground plan. In bisexual species, monosymmetry evolved coincidently with single spurs, allowing us to propose an evolutionary scenario for Papaveraceae. PMID:17428835

  1. Discussion on Comprehensive Utilization Value of Scutellaria Baicalensis Flower

    NASA Astrophysics Data System (ADS)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    The chemical constituents of Scutellaria baicalensis flower are flavonoids, volatile oils and melanin, It has anti-tumor, anti-inflammatory, antioxidant, anti angiogenic and antithrombotic pharmacological effects, and it has the effect of clearing away heat and relieving lung fire. Scutellaria baicalensis flower is rich in resources, cheap, easy to obtain, accurate effect, With the prevention and treatment of a variety of diseases. In this paper, the ancient application, chemical constituents, pharmacological actions and comprehensive utilization of Scutellaria baicalensis flower were reviewed, The purpose of this study was to explore the value of its development and utilization, so as to provide reference for the comprehensive utilization of Scutellaria baicalensis flower.

  2. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    USGS Publications Warehouse

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  3. Eating flowers? Exploring attitudes and consumers' representation of edible flowers.

    PubMed

    Rodrigues, H; Cielo, D P; Goméz-Corona, C; Silveira, A A S; Marchesan, T A; Galmarini, M V; Richards, N S P S

    2017-10-01

    Edible flowers have gained more attention in recent years thanks to their perceived health benefits. Despite this attention, it seems that edible flowers are not popularized for consumption in South America, being considered unfamiliar for some cultures from this continent. In this context, the general goal of the present study was to investigate the three dimensions of social representation theory, the representational field, the information and the attitude of the two conditions of edible flowers: a more general "food made with flowers" and more directional product "yoghurt made with flowers", using Brazilian consumers. To achieve this goal, a free word association task was applied. A total of 549 consumers participated in this study. Participants were divided into two conditions, in which the inductor expressions for the free word association task changed: (a) food products made with flowers and (b) yoghurt made with flowers. Results showed a very positive attitude to both situations, and consumers associated Food products made with flowers to "health care" while the central core of yoghurt made with flowers reflected the innovative condition of this product, supported here by their unpredictable character (information generated). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Climatic niche and flowering and fruiting phenology of an epiphytic plant

    PubMed Central

    Barve, Narayani; Martin, Craig E.; Peterson, A. Townsend

    2015-01-01

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5–35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. PMID:26359490

  5. Humans' Relationship to Flowers as an Example of the Multiple Components of Embodied Aesthetics.

    PubMed

    Huss, Ephrat; Bar Yosef, Kfir; Zaccai, Michele

    2018-03-01

    This paper phenomenologically and qualitatively explores the relationship between humans and flowers as a relationship that throws light on the synergetic dynamics of embodied aesthetics. Its methods include qualitative description and thematic analyses of preferred flower types, as well as concept maps of the general term 'flower' by 120 students in Israel. The results revealed the interactive perceptual-compositional elements, as well as embodied, relational, and socially embedded elements of the aesthetic pleasure associated with flowers. Implications of this case study are generalized to understand the multiple and interactive components of embodied aesthetic experiences as a deep source of pleasure through interactive stimulation by and connection to the natural world.

  6. Corolla Wild Horses Protection Act

    THOMAS, 113th Congress

    Rep. Jones, Walter B., Jr. [R-NC-3

    2013-01-03

    Senate - 06/10/2013 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 84. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    PubMed

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.

  8. Combining high-throughput sequencing and targeted loci data to infer the phylogeny of the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae).

    PubMed

    Fonseca, Luiz Henrique M; Lohmann, Lúcia G

    2018-06-01

    Combining high-throughput sequencing data with amplicon sequences allows the reconstruction of robust phylogenies based on comprehensive sampling of characters and taxa. Here, we combine Next Generation Sequencing (NGS) and Sanger sequencing data to infer the phylogeny of the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae), a diverse lineage of Neotropical plants, using Maximum Likelihood and Bayesian approaches. We used NGS to obtain complete or nearly-complete plastomes of members of this clade, leading to a final dataset with 54 individuals, representing 44 members of ingroup and 10 outgroups. In addition, we obtained Sanger sequences of two plastid markers (ndhF and rpl32-trnL) for 44 individuals (43 ingroup and 1 outgroup) and the nuclear PepC for 64 individuals (63 ingroup and 1 outgroup). Our final dataset includes 87 individuals of members of the "Adenocalymma-Neojobertia" clade, representing 66 species (ca. 90% of the diversity), plus 11 outgroups. Plastid and nuclear datasets recovered congruent topologies and were combined. The combined analysis recovered a monophyletic "Adenocalymma-Neojobertia" clade and a paraphyletic Adenocalymma that also contained a monophyletic Neojobertia plus Pleonotoma albiflora. Relationships are strongly supported in all analyses, with most lineages within the "Adenocalymma-Neojobertia" clade receiving maximum posterior probabilities. Ancestral character state reconstructions using Bayesian approaches identified six morphological synapomorphies of clades namely, prophyll type, petiole and petiolule articulation, tendril ramification, inflorescence ramification, calyx shape, and fruit wings. Other characters such as habit, calyx cupular trichomes, corolla color, and corolla shape evolved multiple times. These characters are putatively related with the clade diversification and can be further explored in diversification studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Ovary starch reserves and pistil development in avocado (Persea americana).

    PubMed

    Alcaraz, M Librada; Hormaza, J Ignacio; Rodrigo, Javier

    2010-12-01

    In avocado, only a very small fraction of the flowers are able to set fruit. Previous work in other woody perennial plant species has shown the importance of carbohydrates accumulated in the flower in the reproductive process. Thus, in order to explore the implications of the nutritive status of the flower in the reproductive process in avocado, the starch content in the pistil has been examined in individual pollinated and non-pollinated flowers at anthesis and during the days following anthesis. Starch content in different pistilar tissues in each flower was quantified with the help of an image analysis system attached to a microscope. Flowers at anthesis were rich in highly compartmentalized starch. Although no external morphological differences could be observed among flowers, the starch content varied widely at flower opening. Starch content in the ovary is largely independent of flower size because these differences were not correlated with ovary size. Differences in the progress of starch accumulation within the ovule integuments between pollinated and non-pollinated flowers occurred concomitantly with the triggering of the progamic phase. The results suggest that starch reserves in the ovary could play a significant role in the reproductive process in avocado. Copyright © Physiologia Plantarum 2010.

  11. A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements

    PubMed Central

    Reynolds, Andrew M.; Lihoreau, Mathieu; Chittka, Lars

    2013-01-01

    Pollinating bees develop foraging circuits (traplines) to visit multiple flowers in a manner that minimizes overall travel distance, a task analogous to the travelling salesman problem. We report on an in-depth exploration of an iterative improvement heuristic model of bumblebee traplining previously found to accurately replicate the establishment of stable routes by bees between flowers distributed over several hectares. The critical test for a model is its predictive power for empirical data for which the model has not been specifically developed, and here the model is shown to be consistent with observations from different research groups made at several spatial scales and using multiple configurations of flowers. We refine the model to account for the spatial search strategy of bees exploring their environment, and test several previously unexplored predictions. We find that the model predicts accurately 1) the increasing propensity of bees to optimize their foraging routes with increasing spatial scale; 2) that bees cannot establish stable optimal traplines for all spatial configurations of rewarding flowers; 3) the observed trade-off between travel distance and prioritization of high-reward sites (with a slight modification of the model); 4) the temporal pattern with which bees acquire approximate solutions to travelling salesman-like problems over several dozen foraging bouts; 5) the instability of visitation schedules in some spatial configurations of flowers; 6) the observation that in some flower arrays, bees' visitation schedules are highly individually different; 7) the searching behaviour that leads to efficient location of flowers and routes between them. Our model constitutes a robust theoretical platform to generate novel hypotheses and refine our understanding about how small-brained insects develop a representation of space and use it to navigate in complex and dynamic environments. PMID:23505353

  12. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.

    PubMed

    Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.

  13. Pollinator Competition as a Driver of Floral Divergence: An Experimental Test

    PubMed Central

    Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John

    2016-01-01

    Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810

  14. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.

    PubMed

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.

  15. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    PubMed Central

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  16. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.).

    PubMed

    Huang, You-Jun; Liu, Li-Li; Huang, Jian-Qin; Wang, Zheng-Jia; Chen, Fang-Fang; Zhang, Qi-Xiang; Zheng, Bing-Song; Chen, Ming

    2013-10-10

    Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC' model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants.

  17. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.)

    PubMed Central

    2013-01-01

    Background Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Results Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Conclusions Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC’ model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants. PMID:24106755

  18. Climatic niche and flowering and fruiting phenology of an epiphytic plant.

    PubMed

    Barve, Narayani; Martin, Craig E; Peterson, A Townsend

    2015-09-10

    Species have geographic distributions constrained by combinations of abiotic factors, biotic factors and dispersal-related factors. Abiotic requirements vary across the life stages for a species; for plant species, a particularly important life stage is when the plant flowers and develops seeds. A previous year-long experiment showed that ambient temperature of 5-35 °C, relative humidity of >50 % and ≤15 consecutive rainless days are crucial abiotic conditions for Spanish moss (Tillandsia usneoides L.). Here, we explore whether these optimal physiological intervals relate to the timing of the flowering and fruiting periods of Spanish moss across its range. As Spanish moss has a broad geographic range, we examined herbarium specimens to detect and characterize flowering/fruiting periods for the species across the Americas; we used high-temporal-resolution climatic data to assess the availability of optimal conditions for Spanish moss populations during each population's flowering period. We explored how long populations experience suboptimal conditions and found that most populations experience suboptimal conditions in at least one environmental dimension. Flowering and fruiting periods of Spanish moss populations are either being optimized for one or a few parameters or may be adjusted such that all parameters are suboptimal. Spanish moss populations appear to be constrained most closely by minimum temperature during this period. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Abelmoschi Corolla non-flavonoid components altered the pharmacokinetic profile of its flavonoids in rat.

    PubMed

    Lu, Linling; Qian, Dawei; Guo, Jianming; Qian, Yefei; Xu, Boyi; Sha, Mei; Duan, Jinao

    2013-07-30

    Abelmoschi Corolla is a well-known herbal medicine used for the treatment of chronic renal disease. Flavonoids are the major bioactive ingredients of Abelmoschi Corolla, but some non-flavonoid components also exist in this herb. In order to clarify the influences of non-flavonoid components on the pharmacokinetics profile of the flavonoid fraction from Abelmoschi Corolla (FFA), an investigation was carried out to compare the pharmacokinetic parameters of seven flavonoid components after administration of FFA and after administration of FFA combined with different non-flavonoid fractions. A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the seven compounds. Sprague-Dawley rats were allocated to four groups which orally administered FFA, FFA combined with macromolecular fraction (FFA-MF), FFA combined with small molecule fraction (FFA-SF) and FFA combined with MF-SF (FFA-MF-SF) with approximately the same dose of FFA. At different time points, the concentration of rutin (1), hyperoside (2), isoquercitrin (3), hibifolin (4), myricetin (5), quercetin-3'-O-glucose (6), quercetin (7) in rat plasma were determined and main pharmacokinetic parameters including T(1/2), T(max), AUC and C(max) were calculated using the DAS 2.0 software package. The statistical analysis was performed using the Student's t-test with P<0.05 as the level of significance. Flavonoids almost had similar pharmacokinetics profile that were rapidly absorbed, reached the peak concentration at 30-60 min in group A, but the pharmacokinetic profiles and parameters of these flavonoids changed when co-administered with non-flavonoid components. It was found that AUC of five flavonoids but not hibifolin and quercetin in group FFA-SF and group FFA-MF-SF increased (P<0.05) in comparison with group FFA while the tendency was not observed in group FFA-MF. Moreover, seven flavonoids had varying degrees of differences in the pharmacokinetics parameters such as C(max), T(max) and T(1/2) (P<0.05) in group FFA-MF, FFA-SF and FFA-MF-SF by comparison with group FFA. These results indicate that non-flavonoid components could improve the bioavailability and delay the elimination of some flavonoids in rat. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia.

    PubMed

    Grogan, James; Loveless, Marilyn D

    2013-11-01

    Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the flowering phenology of big-leaf mahogany (Swietenia macrophylla, Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. We use a crown scoring system to estimate the timing and duration of population-level flowering at three forest sites in the Brazilian Amazon over a five-year period. We combine this information with data on population structure and spatial distribution to consider the implications of logging for population flowering patterns and reproductive success. Mahogany trees as small as 14 cm diam flowered, but only trees > 30 cm diam flowered annually or supra-annually. Mean observed flowering periods by focal trees ranged from 18-34 d, and trees flowered sequentially during 3-4 mo beginning in the dry season. Focal trees demonstrated significant interannual correlation in flowering order. Estimated population-level flowering schedules resembled that of the focal trees, with temporal isolation between early and late flowering trees. At the principal study site, conventional logging practices eliminated 87% of mahogany trees > 30 cm diam and an estimated 94% of annual pre-logging floral effort. Consistent interannual patterns of sequential flowering among trees create incompletely isolated subpopulations, constraining pollen flow. After harvests, surviving subcommercial trees will have fewer, more distant, and smaller potential partners, with probable consequences for post-logging regeneration. These results have important implications for the sustainability of harvesting systems for tropical timber species.

  1. Dormancy release and flowering time in Ziziphus jujuba Mill., a "direct flowering" fruit tree, has a facultative requirement for chilling.

    PubMed

    Meir, Michal; Ransbotyn, Vanessa; Raveh, Eran; Barak, Simon; Tel-Zur, Noemi; Zaccai, Michele

    2016-03-15

    In deciduous fruit trees, the effect of chilling on flowering has mostly been investigated in the "indirect flowering" group, characterized by a period of rest between flower bud formation and blooming. In the present study, we explored the effects of chilling and chilling deprivation on the flowering of Ziziphus jujuba, a temperate deciduous fruit tree belonging to the "direct flowering" group, in which flower bud differentiation, blooming and fruit development occur after dormancy release, during a single growing season. Dormancy release, vegetative growth and flowering time in Z. jujuba cv. Ben-Li were assessed following several treatments of chilling. Chilling treatments quantitatively decreased the timing of vegetative bud dormancy release, thereby accelerating flowering, but had no effect on the time from dormancy release to flowering. Trees grown at a constant temperature of 25°C, without chilling, broke dormancy and flowered, indicating the facultative character of chilling in this species. We measured the expression of Z. jujuba LFY and AP1 homologues (ZjLFY and ZjAP1). Chilling decreased ZjLFY expression in dormant vegetative buds but had no effect on ZjAP1expression, which reached peak expression before dormancy release and at anthesis. In conclusion, chilling is not obligatory for dormancy release of Z. jujuba cv. Ben-Li vegetative buds. However, the exposure to chilling during dormancy does accelerate vegetative bud dormancy release and flowering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra

    PubMed Central

    Brito, Vinícius L. G.; Weynans, Kevin; Sazima, Marlies; Lunau, Klaus

    2015-01-01

    Floral color changes and retention of old flowers are frequently combined phenomena restricted to the floral guide or single flowers in few-flowered inflorescences. They are thought to increase the attractiveness over long distances and to direct nearby pollinators toward the rewarding flowers. In Tibouchina pulchra, a massively flowering tree, the whole flower changes its color during anthesis. On the first day, the flowers are white and on the next 3 days, they change to pink. This creates a new large-scale color pattern in which the white pre-changed flowers contrast against the pink post-changed ones over the entire tree. We describe the spectral characteristics of floral colors of T. pulchra and test bumblebees’ response to this color pattern when viewed at different angles (simulating long and short distances). The results indicated the role of different color components in bumblebee attraction and the possible scenario in which this flower color pattern has evolved. We tested bumblebees’ preference for simulated trees with 75% pink and 25% white flowers resembling the color patterns of T. pulchra, and trees with green leaves and pink flowers (control) in long-distance approach. We also compared an artificial setting with three pink flowers and one white flower (T. pulchra model) against four pink flowers with white floral guides (control) in short-distance approach. Bumblebees spontaneously preferred the simulated T. pulchra patterns in both approaches despite similar reward. Moreover, in short distances, pollinator visits to peripheral, non-rewarding flowers occurred only half as frequently in the simulated T. pulchra when compared to the control. Thefore, this exceptional floral color change and the retention of old flowers in T. pulchra favors the attraction of pollinators over long distances in a deception process while it honestly directs them toward the rewarding flowers at short distances possibly exploring their innate color preferences. PMID:26052335

  3. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  4. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  5. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae).

    PubMed

    Roberts, Wade R; Roalson, Eric H

    2017-03-20

    Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.

  6. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  7. Genetic Architecture of Flowering-Time Variation in Brachypodium distachyon

    DOE PAGES

    Woods, Daniel P.; Bednarek, Ryland; Bouché, Frédéric; ...

    2016-10-14

    The transition to reproductive development is a crucial step in the plant life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a nondomesticated pooid grass closely related to cereals such as wheat (Triticum spp.) and barley (Hordeum vulgare L.). A recombinant inbred line population derived from a cross between the rapid-flowering accession Bd21 and the delayed-flowering accession Bd1-1 were grown in a variety of environmental conditions to enable exploration of the genetic architecture of flowering time.more » A genotyping-by-sequencing approach was used to develop SNP markers for genetic map construction, and quantitative trait loci (QTLs) that control differences in flowering time were identified. Many of the flowering-time QTLs are detected across a range of photoperiod and vernalization conditions, suggesting that the genetic control of flowering within this population is robust. The two major QTLs identified in undomesticated B. distachyon colocalize with VERNALIZATION1/PHYTOCHROME C and VERNALIZATION2, loci identified as flowering regulators in the domesticated crops wheat and barley. This suggests that variation in flowering time is controlled in part by a set of genes broadly conserved within pooid grasses.« less

  8. Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions

    PubMed Central

    Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.

    2008-01-01

    Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169

  9. Recent advances on the development and regulation of flower color in ornamental plants

    PubMed Central

    Zhao, Daqiu; Tao, Jun

    2015-01-01

    Flower color is one of the most important features of ornamental plants. Its development and regulation are influenced by many internal and external factors. Therefore, understanding the mechanism of color development and its regulation provides an important theoretical basis and premise for the cultivation and improvement of new color varieties of ornamental plants. This paper outlines the functions of petal tissue structure, as well as the distribution and type of pigments, especially anthocyanins, in color development. The progress of research on flower color regulation with a focus on physical factors, chemical factors, and genetic engineering is introduced. The shortcomings of flower color research and the potential directions for future development are explored to provide a broad background for flower color improvements in ornamental plants. PMID:25964787

  10. [Analysis and evaluation of alkaloids and flavonoids in flower of Sophora flavescens from Shanxi province].

    PubMed

    Zhang, Huang-Qin; Zhu, Zhen-Hua; Qian, Da-Wei; Weng, Ze-Bin; Guo, Sheng; Duan, Jin-Ao; Lei, Zhen-Hong; Li, An-Ping

    2016-12-01

    This study intends to explore the potential resource-orientedutilization value of the flower of Sophora flavescents by analyzing alkaloids and flavonoids in the flower of S. flavescens from Shanxi province. This study established a rapid UPLC-TQ-MS/MS method that is used for determination of seven alkaloids and seven flavonoids in the flower of S.flavescens. The different florescences all have the seven detected alkaloids such as cytisine, oxy-matrine, oxy-sophocarpine, sophoridine, N-methylcytisine, matrine, sophocarpine.The total contents of detected alkaloids are as follows: flower buds 1.47%, primal flowers 1.34%, full bloomed flowers 1.17%, faded flowers 1.01%. The top three contents of alkaloids are N-methylcytisine , oxy-sophocarpine and oxymatrine, accounting for about 83% of the total amount of detected alkaloids. All the samples in different florescences have the seven detected flavonoids such as rutin, luteolin, quercetin, isoquercitrin, trifolirhizin, kurarinone, and kushenol I. The total contents of detected alkaloids are as follows: flower buds 495.2 μg•g⁻¹, primal flowers 313.7 μg•g⁻¹, faded flowers 224.2 μg•g⁻¹, full bloomed flowers 193.0 μg•g⁻¹. The content of luteolinis relatively higher than other detected flavonoids, accounting for about 89%-94% of the total amount of detected flavonoids. The results indicated that the flower of S.flavescens could be an important material resource to obtain the resourceful alkaloids. This result can provide scientific basis for resource-oriented utilization and industrial development of the flower of S. flavescens. Copyright© by the Chinese Pharmaceutical Association.

  11. Seasonal importance of flowers to Costa Rican capuchins (Cebus capucinus imitator): Implications for plant and primate.

    PubMed

    Hogan, Jeremy D; Melin, Amanda D; Mosdossy, Krisztina N; Fedigan, Linda M

    2016-12-01

    Our goal is to investigate flower foraging by capuchin monkeys, a behavior rarely studied in wild primates. We ask what drives seasonal variation in florivory rates: flower quality and abundance or fluctuations in fruit and invertebrate abundances. We explore how capuchins affect the reproductive success of flower food species by quantifying the potential pollination rate. We followed capuchin groups from dawn to dusk and recorded all flower foraging bouts. Flower food nutritional composition was compared to fruit and invertebrate foods. We recorded overall flower, fruit, and invertebrate abundances and compared the rate of flower foraging to these. We estimated the likelihood of pollination from the proportion of flower patch visits to each plant species that satisfied minimum behavioral requirements. Flower eating was highly seasonal, and was significantly negatively related to overall fruit and invertebrate abundance but not flower abundance. Although smaller than most fruits, flowers were nutritionally comparable to fruit foods by dry mass and contained higher average concentrations of protein. Capuchins are likely pollinators for Luehea speciosa; most foraging visits to this species occurred in a manner that makes outcrossing or geitonogamous pollination likely. Flowers are an important seasonal resource for capuchins. Flowers likely act as fallback foods during periods of reduced fruit and invertebrate abundance, and may exert evolutionary pressure disproportionate to their consumption. Capuchin florivory likely affects the reproductive success of some plants, potentially shaping forest structure. Our study illustrates the value of assessing the importance of rare foods in the primate diet. © 2016 Wiley Periodicals, Inc.

  12. Exploring Nectar Biology To Learn about Pollinators.

    ERIC Educational Resources Information Center

    LaBare, Kelly M.; Broyles, Steven B.; Klotz, R. Lawrence

    2000-01-01

    Discusses the importance of studying nectar biology. Describes how to extract nectar from various flowers, measure nectar volume, determine sugar concentration, and determine caloric value per nectar sample. These data are then related to hummingbird energetics to determine how many flowers are required to supply the pollinator with its caloric…

  13. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions.

    PubMed

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.

  14. Preliminary sensory evaluation of edible flowers from wild Allium species.

    PubMed

    D'Antuono, L Filippo; Manco, Manuela Agata

    2013-11-01

    The use of edible flowers as an aesthetic and flavour component of specific dishes is gaining popularity, and their production is becoming an interesting niche market activity for growers. Allium is an important genus of flowering plants, also including traditional wild food species. The combination of tradition with the new uses of flowers is appealing, requiring, however, explorative acceptance assays for its exploitation. The flowers of the native Mediterranean species Allium neapolitanum, A. roseum and A. triquetrum were subject to hedonic visual, smell and flavour evaluation. Panellists also indicated specific flavour notes and their opinion about the more suitable uses. All the species were positively rated. A. roseum was preferred for all respects; A. triquetrum obtained the lowest visual rating, whereas A. neapolitanum had the lowest flavour rating. A spicy note was the main determinant of high flavour ratings. Dishes retaining the visual appearance of flowers were indicated as more suitable to combine with Allium flowers. This is the first attempt at sensory evaluation of Allium flowers. Nutritional and health promotion properties and toxicity risks do not represent major issues for these products, because of potentially low consumption levels. The main constraint for a wider use of Allium flowers is represented by the absence of a consolidated consumption habit and regular supply. © 2013 Society of Chemical Industry.

  15. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili.

    PubMed

    Rudall, Paula J; Bateman, Richard M

    2010-02-12

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.

  16. Pistil Starch Reserves at Anthesis Correlate with Final Flower Fate in Avocado (Persea americana)

    PubMed Central

    Alcaraz, María Librada; Hormaza, José Ignacio; Rodrigo, Javier

    2013-01-01

    A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit. PMID:24167627

  17. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana).

    PubMed

    Alcaraz, María Librada; Hormaza, José Ignacio; Rodrigo, Javier

    2013-01-01

    A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit.

  18. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    PubMed

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.

  19. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    PubMed Central

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  20. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    PubMed

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    USDA-ARS?s Scientific Manuscript database

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  2. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1.

    PubMed

    Taulemesse, François; Le Gouis, Jacques; Gouache, David; Gibon, Yves; Allard, Vincent

    2015-01-01

    In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.

  3. Post-Flowering Nitrate Uptake in Wheat Is Controlled by N Status at Flowering, with a Putative Major Role of Root Nitrate Transporter NRT2.1

    PubMed Central

    Taulemesse, François; Le Gouis, Jacques; Gouache, David; Gibon, Yves; Allard, Vincent

    2015-01-01

    In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO3 -) uptake under non-limiting NO3 - conditions, while following the expression of key genes involved in NO3 - uptake and assimilation. We found that post-flowering NO3 - uptake was strongly influenced by plant N status at flowering during the first 300–400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO3 - correlated well with the expression of the gene TaNRT2.1, coding for a root NO3 - transporter, which seems to play a major role in post-flowering NO3 - uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat. PMID:25798624

  4. Turkish Student Teachers' Ideas about Diagrams of a Flower and a Plant Cell

    ERIC Educational Resources Information Center

    Topsakal, Unsal Umdu; Oversby, John

    2012-01-01

    In the present study, the understandings of student teachers (training for the primary phase and Master's degree students from a primary science and technology education department) about flowers and plant cells using the method of drawing in combination with interviews are explored. The data were gathered from 116 student teachers and 10 Master's…

  5. Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency.

    PubMed

    Xin, Xukai; Liu, Hsiang-Yu; Ye, Meidan; Lin, Zhiqun

    2013-11-21

    By combining the ease of producing ZnO nanoflowers with the advantageous chemical stability of TiO2, hierarchically structured hollow TiO2 flower-like clusters were yielded via chemical bath deposition (CBD) of ZnO nanoflowers, followed by their conversion into TiO2 flower-like clusters in the presence of TiO2 precursors. The effects of ZnO precursor concentration, precursor amount, and reaction time on the formation of ZnO nanoflowers were systematically explored. Dye-sensitized solar cells fabricated by utilizing these hierarchically structured ZnO and TiO2 flower clusters exhibited a power conversion efficiency of 1.16% and 2.73%, respectively, under 100 mW cm(-2) illumination. The intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) studies suggested that flower-like structures had a fast electron transit time and their charge collection efficiency was nearly 100%.

  6. The 2-D lattice theory of Flower Constellations

    NASA Astrophysics Data System (ADS)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  7. Ecological Implications of a Flower Size/Number Trade-Off in Tropical Forest Trees

    PubMed Central

    Kettle, Chris J.; Maycock, Colin R.; Ghazoul, Jaboury; Hollingsworth, Pete M.; Khoo, Eyen; Sukri, Rahayu Sukmaria Haji; Burslem, David F. R. P.

    2011-01-01

    Background In angiosperms, flower size commonly scales negatively with number. The ecological consequences of this trade-off for tropical trees remain poorly resolved, despite their potential importance for tropical forest conservation. We investigated the flower size number trade-off and its implications for fecundity in a sample of tree species from the Dipterocarpaceae on Borneo. Methodology/Principal Findings We combined experimental exclusion of pollinators in 11 species, with direct and indirect estimates of contemporary pollen dispersal in two study species and published estimates of pollen dispersal in a further three species to explore the relationship between flower size, pollinator size and mean pollen dispersal distance. Maximum flower production was two orders of magnitude greater in small-flowered than large-flowered species of Dipterocarpaceae. In contrast, fruit production was unrelated to flower size and did not differ significantly among species. Small-flowered species had both smaller-sized pollinators and lower mean pollination success than large-flowered species. Average pollen dispersal distances were lower and frequency of mating between related individuals was higher in a smaller-flowered species than a larger-flowered confamilial. Our synthesis of pollen dispersal estimates across five species of dipterocarp suggests that pollen dispersal scales positively with flower size. Conclusions and Their Significance Trade-offs embedded in the relationship between flower size and pollination success contribute to a reduction in the variance of fecundity among species. It is therefore plausible that these processes could delay competitive exclusion and contribute to maintenance of species coexistence in this ecologically and economically important family of tropical trees. These results have practical implications for tree species conservation and restoration. Seed collection from small-flowered species may be especially vulnerable to cryptic genetic erosion. Our findings also highlight the potential for differential vulnerability of tropical tree species to the deleterious consequences of forest fragmentation. PMID:21408110

  8. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  9. Sex allocation and functional bias of quaternary and quinary flowers on same inflorescence in the hermaphrodite Ruta graveolens

    NASA Astrophysics Data System (ADS)

    Tang, Jing-Yu; Ren, Ming-Xun

    2011-09-01

    Intra-inflorescence variation in floral traits is important to understand the pollination function of an inflorescence and the real reproductive outputs of a plant. Ruta graveolens (Rutaceae) produce both quaternary (four petals and eight stamens) and quinary (five petals and ten stamens) flowers on the same cymes, while their pollination roles and the effects on the reproductive success remained unexplored. We experimentally examined the biomass of female versus male organs and pollen viability and stigma receptivity to explore the sex allocation patterns between the flowers. The breeding systems and reproductive outputs through either female function (seed set) or male function (pollen dispersal) were also studied for quinary and quaternary flowers to determine whether there was functional bias. The results showed that R. graveolens was protandrous, with a mixed mating system. Its stamens could slowly move one by one and only dehisce when positioning at the flower center, which could greatly enhance pollen dispersal. The first-opened quinary flower allocated significantly higher resources (dry biomass) in female organs while quaternary flowers allocated more resource in male organs. The quaternary flowers experienced higher pollen limitation in seed production but were more successful in pollen dispersal and the quinary flowers reproduced both through female and male functions. Our data suggested that quinary and quaternary flower on same inflorescence in R. graveolens functioned mainly as the sex role that most resources were allocated, which probably reflect an adaptation for floral phenology and pollination process in this plant.

  10. Pollinator effectiveness varies with experimental shifts in flowering time.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  11. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili

    PubMed Central

    Rudall, Paula J.; Bateman, Richard M.

    2010-01-01

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867

  12. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    NASA Astrophysics Data System (ADS)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  13. Somatic embryogenesis from corolla tubes of interspecific amphiploids between cultivated sunflower (Helianthus annuus L.) and its wild species

    USDA-ARS?s Scientific Manuscript database

    Somatic embryogenesis in vitro provides an efficient means of plant multiplication, facilitating sunflower improvement and germplasm innovation. In the present study, using interspecific amphiploids (2n=4x=68) between cultivated sunflower and wild perennial Helianthus species as explant donors, soma...

  14. Flowering phenology and its implications for management of big-leaf mahogany Swietenia macrophylla in Brazilian Amazonia

    Treesearch

    J. Grogan; M. D. Loveless

    2013-01-01

    Premise of the study: Flowering phenology is a crucial determinant of reproductive success and offspring genetic diversity in plants. We measure the fl owering phenology of big-leaf mahogany ( Swietenia macrophylla , Meliaceae), a widely distributed neotropical tree, and explore how disturbance from logging impacts its reproductive biology. • Methods: We use a crown...

  15. Identification of flowering genes in strawberry, a perennial SD plant

    PubMed Central

    Mouhu, Katriina; Hytönen, Timo; Folta, Kevin; Rantanen, Marja; Paulin, Lars; Auvinen, Petri; Elomaa, Paula

    2009-01-01

    Background We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15°C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. Results We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. Conclusion We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from strawberry. However, novel regulatory mechanisms exist, like SFL that functions as a switch between short-day/low temperature and long-day/high temperature flowering responses between the short-day genotype and the everbearing 'Baron Solemacher'. The identification of putative flowering gene homologs and AP1 as potential marker gene for floral initiation will strongly facilitate the exploration of strawberry flowering pathways. PMID:19785732

  16. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    PubMed

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Comparative proteomic analysis of eggplant (Solanum melongena L.) heterostylous pistil development

    PubMed Central

    Li, Wenjia; Jiang, Yaqing; Song, Shiwei; Li, Yan; Chen, Riyuan

    2017-01-01

    Heterostyly is a common floral polymorphism, but the proteomic basis of this trait is still largely unexplored. In this study, self- and cross-pollination of L-morph and S-morph flowers and comparison of embryo sac development in eggplant (Solanum melongena L.) suggested that lower fruit set from S-morph flowers results from stigma-pollen incompatibility. To explore the molecular mechanism underlying heterostyly development, we conducted isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis of eggplant pistils for L- and S-morph flowers. A total of 5,259 distinct proteins were identified during heterostyly development. Compared S-morph flowers with L-morph, we discovered 57 and 184 differentially expressed proteins (DEPs) during flower development and maturity, respectively. Quantitative real time polymerase chain reactions were used for nine genes to verify DEPs from the iTRAQ approach. During flower development, DEPs were mainly involved in morphogenesis, biosynthetic processes, and metabolic pathways. At flower maturity, DEPs primarily participated in biosynthetic processes, metabolic pathways, and the formation of ribosomes and proteasomes. Additionally, some proteins associated with senescence and programmed cell death were found to be upregulated in S-morph pistils, which may lead to the lower fruit set in S-morph flowers. Although the exact roles of these related proteins are not yet known, this was the first attempt to use an iTRAQ approach to analyze proteomes of heterostylous eggplant flowers, and these results will provide insights into biochemical events taking place during the development of heterostyly. PMID:28586360

  18. Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.

    PubMed

    Crosby, Sarah C; Ivens-Duran, Morgan; Bertness, Mark D; Davey, Earl; Deegan, Linda A; Leslie, Heather M

    2015-05-01

    Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. We examined temporal and spatial patterns in flowering and seed production in S. alterniflora at a latitudinal scale (along the U.S. Atlantic coast), regional scale (within New England), and local scale (among subhabitats within marshes) and determined the impact of flowering on growth allocation using field and greenhouse studies. Flowering stem density did not vary along a latitudinal gradient, while at the local scale plants in the less submerged panne subhabitats produced fewer flowers and seeds than those in more frequently submerged subhabitats. We also found that a shift in biomass allocation from above to belowground was temporally related to flowering phenology. We expect that environmental change will affect seed production and that the phenological relationship with flowering will result in limitations to belowground production and thus affect marsh elevation gain. Salt marshes provide an excellent model system for exploring the interactions between plant ecology and ecosystem functioning, enabling better predictions of climate change impacts. © 2015 Botanical Society of America, Inc.

  19. Resource reallocation patterns within Sagittaria trifolia inflorescences following differential pollination.

    PubMed

    Dai, Can; Luo, Wen-Jie; Gong, Yan-Bing; Liu, Fan; Wang, Zheng-Xiang

    2018-04-30

    Understanding resource allocation to reproduction, a key factor in life history tradeoffs, has long intrigued plant ecologists. Despite the recognized importance of understanding the movement of resources among flowers following variable pollination, the patterns of resource reallocation to plant reproductive organs have not been thoroughly addressed. In this study, we aimed to empirically explore how resources redistribute within inflorescences in response to differential pollination intensities. Using a common herb, Sagittaria trifolia, we conducted supplemental and controlled pollination for single, some, or all flowers in simple and complex inflorescences, and compared their resulting fruiting probabilities, seed production, and average seed masses. Pollen supplementation of a single flower significantly increased its fruiting probability; however, the same manipulation of an inflorescence did not increase its overall reproduction. Single pollen-supplemented flowers had a higher percentage fruit set than inflorescences receiving supplemental pollination. In complex inflorescences, supplemental pollination had no effect on the reproductive success of flowers on the lateral or main branches. We provided evidence of resource reallocation from controlled to pollen-supplemented flowers in simple inflorescences; however, resources were unlikely to be reallocated between the main and lateral branches in the complex inflorescences, suggesting that flowering branches represent integrated physiological units in S. trifolia. The results also demonstrated that single-flower supplemental pollination would exaggerate pollen limitation and lead to a biased understanding of a plant's reproductive status. © 2018 Botanical Society of America.

  20. Stable Epigenetic Variants Selected from an Induced Hypomethylated Fragaria vesca Population.

    PubMed

    Xu, Jihua; Tanino, Karen K; Robinson, Stephen J

    2016-01-01

    Epigenetic inheritance was transmitted through selection over five generations of extreme early, but not late flowering time phenotypic lines in Fragaria vesca . Epigenetic variation was initially artificially induced using the DNA demethylation reagent 5-azacytidine (5-azaC). It is the first report to explore epigenetic variant selection and phenotypic trait inheritance in strawberry. Transmission frequency of these traits was determined across generations. The early flowering (EF4) and late stolon (LS) phenotypic traits were successfully transmitted across five and three generations through meiosis, respectively. Stable mitotic transmission of the early flowering phenotype was also demonstrated using clonal daughters derived from the 4th Generation (S4) mother plant. In order to further explore the DNA methylation patterns underlying the early flowering trait, the standard MSAP method using isoschizomers Hpa II/Msp I, and newly modified MSAP method using isoschizomers Tfi I/Pfe I which detected DNA methylation at CG, CHG, CHH sites were used in two early flowering lines, EF lines 1 (P2) and EF lines 2 (P3), and control lines (P1). A significant reduction in the number of fully-methylated bands was detected in P2 and P3 when compared to P1 using the novel MSAP method. In the standard MSAP, the symmetric CG and CHG methylation was maintained over generations in the early flowering lines based on the clustering in P2 and P3, the novel MSAP approach revealed the asymmetric CHH methylation pattern was not maintained over generations. This study provides evidence of stable selection of phenotypic traits, particularly early flowering through both meiosis and mitosis, which is meaningful to both breeding programs and commercial horticulture. The maintenance in CG and CHG methylation over generations suggests the early flowering phenotype might be related to DNA methylation alterations at the CG or CHG sites. Finally, this work provides a new approach for studying the role of epigenetics on complex quantitative trait improvement in strawberry, as well as providing a tool to expand phenotypic diversity and expedite potential new horticulture cultivar releases through either seed or vegetative propagation.

  1. [Effects of flower bud removal and artificial pollination on growth and yield of Tulipa edulis].

    PubMed

    Miao, Yuan-Yuan; Zhu, Zai-Biao; Guo, Qiao-Sheng; Ma, Hong-Liang; Yang, Ying; Zhu, Li-Fang

    2014-06-01

    The study was conducted to explore the response of growth and yield of Tulipa edulis to flower bud removal and artificial pollination. And flower bud removal and artificial pollination were carried out in the squaring period and bloom stage respectively. The morphological index and biomass indicators were determined and the yield was counted in harvest time. Result showed that flower bud removal was beneficial to the growth of T. edulis, resulting in increasing growth index, biomass as well as the yield of bulb. The diameter and dry weight of T. edulis fruit by artificial pollination were increased significantly compared with the control. Seed setting percentage increased to 100%, and the number of seed as well as the single grain weight increased by 69.03% and 16.48%, respectively, which did not significantly affect the bulb production. In conclusion, Flower bud removal treatment accelerates bulb biomass increase, so as to improve its yield. Artificial pollination raised significantly seed setting percentage, seed number as well as the single grain weight.

  2. Variation in floret size explains differences in wild bee visitation to cultivated sunflowers

    USDA-ARS?s Scientific Manuscript database

    Wild and managed bees are needed to move sunflower (Helianthus annuus L.) pollen, both to create hybrid seed and to encourage high, consistent yields when those hybrids are subsequently grown. Among floral traits that influence bee preference, floret size may be critical, as the depth of the corolla...

  3. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  4. Resolving Recent Plant Radiations: Power and Robustness of Genotyping-by-Sequencing.

    PubMed

    Fernández-Mazuecos, Mario; Mellers, Greg; Vigalondo, Beatriz; Sáez, Llorenç; Vargas, Pablo; Glover, Beverley J

    2018-03-01

    Disentangling species boundaries and phylogenetic relationships within recent evolutionary radiations is a challenge due to the poor morphological differentiation and low genetic divergence between species, frequently accompanied by phenotypic convergence, interspecific gene flow and incomplete lineage sorting. Here we employed a genotyping-by-sequencing (GBS) approach, in combination with morphometric analyses, to investigate a small western Mediterranean clade in the flowering plant genus Linaria that radiated in the Quaternary. After confirming the morphological and genetic distinctness of eight species, we evaluated the relative performances of concatenation and coalescent methods to resolve phylogenetic relationships. Specifically, we focused on assessing the robustness of both approaches to variations in the parameter used to estimate sequence homology (clustering threshold). Concatenation analyses suffered from strong systematic bias, as revealed by the high statistical support for multiple alternative topologies depending on clustering threshold values. By contrast, topologies produced by two coalescent-based methods (NJ$_{\\mathrm{st}}$, SVDquartets) were robust to variations in the clustering threshold. Reticulate evolution may partly explain incongruences between NJ$_{\\mathrm{st}}$, SVDquartets and concatenated trees. Integration of morphometric and coalescent-based phylogenetic results revealed (i) extensive morphological divergence associated with recent splits between geographically close or sympatric sister species and (ii) morphological convergence in geographically disjunct species. These patterns are particularly true for floral traits related to pollinator specialization, including nectar spur length, tube width and corolla color, suggesting pollinator-driven diversification. Given its relatively simple and inexpensive implementation, GBS is a promising technique for the phylogenetic and systematic study of recent radiations, but care must be taken to evaluate the robustness of results to variation of data assembly parameters.

  5. Floral colours in a world without birds and bees: the plants of Macquarie Island.

    PubMed

    Shrestha, M; Lunau, K; Dorin, A; Schulze, B; Bischoff, M; Burd, M; Dyer, A G

    2016-09-01

    We studied biotically pollinated angiosperms on Macquarie Island, a remote site in the Southern Ocean with a predominately or exclusively dipteran pollinator fauna, in an effort to understand how flower colour affects community assembly. We compared a distinctive group of cream-green Macquarie Island flowers to the flora of likely source pools of immigrants and to a continental flora from a high latitude in the northern hemisphere. We used both dipteran and hymenopteran colour models and phylogenetically informed analyses to explore the chromatic component of community assembly. The species with cream-green flowers are very restricted in colour space models of both fly vision and bee vision and represent a distinct group that plays a very minor role in other communities. It is unlikely that such a community could form through random immigration from continental source pools. Our findings suggest that fly pollination has imposed a strong ecological filter on Macquarie Island, favouring floral colours that are rare in continental floras. This is one of the strongest demonstrations that plant-pollinator interactions play an important role in plant community assembly. Future work exploring colour choices by dipteran flower visitors would be valuable. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Seeing is believing: information content and behavioural response to visual and chemical cues

    PubMed Central

    Gonzálvez, Francisco G.; Rodríguez-Gironés, Miguel A.

    2013-01-01

    Predator avoidance and foraging often pose conflicting demands. Animals can decrease mortality risk searching for predators, but searching decreases foraging time and hence intake. We used this principle to investigate how prey should use information to detect, assess and respond to predation risk from an optimal foraging perspective. A mathematical model showed that solitary bees should increase flower examination time in response to predator cues and that the rate of false alarms should be negatively correlated with the relative value of the flower explored. The predatory ant, Oecophylla smaragdina, and the harmless ant, Polyrhachis dives, differ in the profile of volatiles they emit and in their visual appearance. As predicted, the solitary bee Nomia strigata spent more time examining virgin flowers in presence of predator cues than in their absence. Furthermore, the proportion of flowers rejected decreased from morning to noon, as the relative value of virgin flowers increased. In addition, bees responded differently to visual and chemical cues. While chemical cues induced bees to search around flowers, bees detecting visual cues hovered in front of them. These strategies may allow prey to identify the nature of visual cues and to locate the source of chemical cues. PMID:23698013

  7. Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage.

    PubMed

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E

    2016-01-01

    Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies.

  8. The Impact of Hybrid Vehicles on Street Crossings

    ERIC Educational Resources Information Center

    Wiener, William; Naghshineh, Koorosh; Salisbury, Brad; Rozema, Randall

    2006-01-01

    The authors had three purposes: (a) to compare the sound output of a Toyota Corolla, a vehicle powered by an internal combustion engine (ICE) with that of a hybrid vehicle (Prius) under conditions of acceleration and approach in relation to the potential decision of a pedestrian who is visually impaired to begin to cross the street, (b) to…

  9. Phenology of species interactions in response to climate change: two case studies of plant-pollinator interactions using long-term data

    NASA Astrophysics Data System (ADS)

    McKinney, A. M.; Inouye, D. W.

    2012-12-01

    Climate change may alter the temporal overlap among interacting taxa with potential demographic consequences. Evidence of mistimed interactions in response to climate change, especially between plants and pollinators, is mixed, and few long-term datasets exist to test for changes in synchrony. Furthermore, advancements in flowering driven by climate change are especially pronounced at higher latitudes, so that migratory pollinators from lower latitudes may increasingly arrive at breeding grounds after the appearance of floral resources. We explored long-term shifts in phenological synchrony in two plant-pollinator systems:1) syrphid fly and flowering phenology in the Colorado Rocky Mountains, USA (1992-2011) and 2) hummingbird arrival relative to onset of early-season nectar resources in the Colorado Rocky Mountains (1975-2011) and the Santa Catalina Mountains, Arizona, USA (1984-2010). We investigated the abiotic cues associated with the phenology of the activity period of syrphid flies and their floral resources, including degree days above freezing, precipitation, and timing of snowmelt as potential explanatory variables. Timing of snowmelt was the best predictor of the onset of flowering and syrphid emergence. Snowmelt was also the best predictor of the end of flowering, while temperature and precipitation best predicted the end of the syrphid period. Both the onset and end of flowering advanced more rapidly than syrphids in response to earlier snowmelt. These different rates of phenological advancement resulted in increased temporal overlap between the flower and syrphid community in years of early snowmelt, because of longer flowering and fly activity periods during these years. If snowmelt continues to advance, temporal overlap between syrphids and their floral resources is therefore likely to increase. This case study shows that the phenology of interacting taxa may respond differently to climate cues, but that this does not necessarily lead to phenological mismatch. To explore the hypothesis that changes in phenological synchrony will occur at the northern edge of the breeding range of migratory pollinators, we compared dates of first arrival of Broad-tailed Hummingbirds (Selasphorus platycercus) to dates of flowering of plants they visit for nectar. Near the southern limit of the breeding range, neither hummingbird arrival nor first flowering dates have changed significantly over the past few decades. Near the northern limit of the breeding range, first and peak flowering of early-season food plants have shifted to earlier dates, resulting in a shorter interval between appearance of first hummingbirds and first flowers. If phenological shifts continue at current rates, hummingbirds will eventually arrive at northern breeding grounds after flowering begins, which could reduce their nesting success. This problem could be compounded by a mid-season drop in flower availability that is appearing as the growing season starts earlier. These results support the prediction that migratory species may experience the greatest phenological mismatches at the poleward limits of their migration. A novel hypothesis based on these results posits that the poleward limit for some species may contract toward lower latitudes under continued warming.

  10. Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage

    PubMed Central

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E.

    2016-01-01

    Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies. PMID:26982030

  11. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.

    PubMed

    Liu, Hao; Gu, Fengwei; Dong, Shuangyu; Liu, Wei; Wang, Hui; Chen, Zhiqiang; Wang, Jiafeng

    2016-10-14

    Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  13. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  14. Pollen limitation in a narrow endemic plant: geographical variation and driving factors.

    PubMed

    Fernández, Juande D; Bosch, Jordi; Nieto-Ariza, Beatriz; Gómez, José M

    2012-10-01

    Pollen limitation may have important consequences for the reproduction and abundance of plant species. It may be especially harmful to endangered and endemic plants with small populations. In this study, we quantify the effect of pollen limitation on seed production and seedling emergence in an endangered narrow endemic crucifer, Erysimum popovii. We conducted a pollen addition experiment across the entire geographic distribution of the species, and explored the effect of pollinator assemblage, plant population size and density, and other habitat variables on pollen limitation intensity in 13 populations. We supplemented flowers in 20 plants per population with allogamous pollen. To account for potential resource reallocation, we used two types of control untreated flowers: internal control flowers from the same individual as the supplemented flowers, and external control flowers from other individuals. Our results indicate that E. popovii is pollen-limited in most of the populations studied, but only through seed production, since pollen supplementation did not enhance seedling emergence. Beefly abundance was associated with among-population differences in pollen limitation intensity. Populations in which beeflies were more abundant were less pollen-limited. In contrast, the abundance of other flower visitors, such as large bees or butterflies, was not associated with pollen limitation. Annual rainfall and bare soil cover were associated with the intensity of pollen limitation across populations.

  15. Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries.

    PubMed

    Moni, Prabu; Hyun, Suyeon; Vignesh, Ahilan; Shanmugam, Sangaraju

    2017-07-06

    Chrysanthemum flower-like NiCo 2 O 4 -nitrogen doped graphene oxide composite material has been explored as a bifunctional cathode electrocatalyst for aqueous zinc-air and non-aqueous lithium-oxygen batteries. This cathode exhibits maximum discharge capacities of 712 and 15 046 mA h g -1 for zinc-air and lithium-oxygen batteries, respectively, with stable cycling over 50 cycles.

  16. KENNEDY SPACE CENTER, FLA. - Roses and other flowers ring the base of the Astronaut Memorial Mirror at the KSC Visitor Complex following a memorial service held for the crew of Columbia on the anniversary of the tragic accident that took their lives Feb. 1, 2003.  The public was invited to the service and encouraged to place the flowers on the fence.  The service included comments by Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, and Dr. Stephen Feldman, president of the Astronaut Memorial Foundation.  The black granite mirror honors astronauts, whose names are carved in the surface, who have given their lives for space exploration.

    NASA Image and Video Library

    2004-02-01

    KENNEDY SPACE CENTER, FLA. - Roses and other flowers ring the base of the Astronaut Memorial Mirror at the KSC Visitor Complex following a memorial service held for the crew of Columbia on the anniversary of the tragic accident that took their lives Feb. 1, 2003.  The public was invited to the service and encouraged to place the flowers on the fence.  The service included comments by Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, and Dr. Stephen Feldman, president of the Astronaut Memorial Foundation.  The black granite mirror honors astronauts, whose names are carved in the surface, who have given their lives for space exploration.

  17. Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia.

    PubMed

    Reck-Kortmann, Maikel; Silva-Arias, Gustavo Adolfo; Segatto, Ana Lúcia Anversa; Mäder, Geraldo; Bonatto, Sandro Luis; de Freitas, Loreta Brandão

    2014-12-01

    The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae

    PubMed Central

    Wang, Ruohan; Zhang, Zhixiang

    2015-01-01

    Floral thermogenesis plays a crucial role in pollination biology, especially in plant–pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant–pollinator interactions and the regulatory mechanisms in thermogenic plants. PMID:26844867

  19. jsc2017e136060 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch cerem

    NASA Image and Video Library

    2017-11-30

    jsc2017e136060 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Kanai, Scott Tingle of NASA and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  20. [Preliminary exploration on knockout drops (Meng Han Agents)].

    PubMed

    Zhang, Z

    1996-05-01

    This author points out, based on relevant materials, that knockout drops were vertigo powder. Due to homophonic reasons in Chinese language, the term "mingxuan" was transliterated into the former Chinese term (menghan). Knockout drops for medicinal use were merely made up of compound recipes containing stramonium flowers. The knockout drops in old fictions and opera books were powder of stramonium flower. The ingredients and application of such recipes are discussed here, the anti-remedies for such recipes are also mentioned.

  1. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase

    PubMed Central

    Del Duca, Stefano; Serafini-Fracassini, Donatella; Cai, Giampiero

    2014-01-01

    Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to “cationization” or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD. PMID:24778637

  2. The best of both worlds? A review of delayed selfing in flowering plants.

    PubMed

    Goodwillie, Carol; Weber, Jennifer J

    2018-04-01

    In a seminal body of theory, Lloyd showed that the fitness consequences of selfing will depend on its timing in anthesis. Selfing that occurs after opportunities for outcrossing or pollen dispersal can provide reproductive assurance when pollinators are limited and is expected to incur little cost, even when inbreeding depression is high. As a result, delayed selfing is often interpreted as a "best-of-both-worlds" mating system that combines the advantages of selfing and outcrossing. We surveyed 65 empirical studies of delayed selfing, recording floral mechanisms and examining information on inbreeding depression, autofertility, and other parameters to test the support for delayed selfing as a best-of-both-worlds strategy. Phylogenetic distribution of the diverse floral mechanisms suggests that some basic floral structures may predispose plant taxa to evolve delayed selfing. Delayed selfing appears to serve as a best-of-both-worlds strategy in some but not all species. While the capacity for autonomous selfing is often high, it is lower, in some cases, than in related species with earlier modes of selfing. In other delayed-selfers, low inbreeding depression and reduced investment in corollas and pollen suggest limited benefits from outcrossing. Despite a growing literature on the subject, experimental evidence for delayed selfing is limited and major gaps in knowledge remain, particularly with respect to the stability of delayed selfing and the conditions that may favor transitions between delayed and earlier selfing. Finally, we suggest a potential role of delayed selfing in facilitating transitions from self-incompatibility to selfing. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  3. Hawkmoths evaluate scenting flowers with the tip of their proboscis

    PubMed Central

    Haverkamp, Alexander; Yon, Felipe; Keesey, Ian W; Mißbach, Christine; Koenig, Christopher; Hansson, Bill S; Baldwin, Ian T

    2016-01-01

    Pollination by insects is essential to many ecosystems. Previously, we have shown that floral scent is important to mediate pollen transfer between plants (Kessler et al., 2015). Yet, the mechanisms by which pollinators evaluate volatiles of single flowers remained unclear. Here, Nicotiana attenuata plants, in which floral volatiles have been genetically silenced and its hawkmoth pollinator, Manduca sexta, were used in semi-natural tent and wind-tunnel assays to explore the function of floral scent. We found that floral scent functions to increase the fitness of individual flowers not only by increasing detectability but also by enhancing the pollinator's foraging efforts. Combining proboscis choice tests with neurophysiological, anatomical and molecular analyses we show that this effect is governed by newly discovered olfactory neurons on the tip of the moth's proboscis. With the tip of their tongue, pollinators assess the advertisement of individual flowers, an ability essential for maintaining this important ecosystem service. DOI: http://dx.doi.org/10.7554/eLife.15039.001 PMID:27146894

  4. Flower drinking and masculinity in Taiwan.

    PubMed

    Bedford, Olwen; Hwang, Shu-Ling

    2011-01-01

    This study explores the role of the hostess club culture in the creation and maintenance of masculinity in Taiwan. The article focuses on flower drinking (the consumption of alcohol in bars, often integrated with prostitution), which is a common practice in Taiwan. Data were obtained from 58 in-depth interviews with men from a variety of occupations and social backgrounds (mean age = 38.50, SD = 11.00) and 73 questionnaires administered to soldiers (mean age = 21.00, SD = 1.10). Findings indicated that demonstration of skill at flower drinking and facility with the related social etiquette are important channels for male bonding that were central to the mid- to upper-class participants' professional development. Flower drinking also provided a method of discriminating men from other men through their choices of why and where to go and how to behave while there. Specific ways that Taiwanese masculinity differs from Western and from Japanese masculinity, and support for the continuing relevance of the traditional Confucian ideal of masculinity, wen-wu, are discussed.

  5. Do honeybees shape the bacterial community composition in floral nectar?

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  6. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in 'Fuji' apple (Malus domestica Borkh.).

    PubMed

    Zhang, Songwen; Zhang, Dong; Fan, Sheng; Du, Lisha; Shen, Yawen; Xing, Libo; Li, Youmei; Ma, Juanjuan; Han, Mingyu

    2016-10-01

    Gibberellins (GAs) reduce apple (Malus domestica) flowering rates; however, the mechanism of their action is not fully understood. To gain a better insight into gibberellin-regulated flowering, here, 5 year-old 'Fuji' apple trees were used to explore the responses of hormones [GA1+3, GA4+7, indole-3-acetic acid (IAA), zeatin-riboside (ZR), and abscisic acid (ABA)], and gibberellin- and flowering-associated genes, to applications of gibberellin acid (GA3) and paclobutrazol (PAC). Results showed that GA3 relatively stimulated vegetative growth and delayed floral induction. Moreover, GA3 spraying significantly affected contents of all endogenous hormones and all the genes tested in at least one time points: the content of endogenous GAs was increased instantly and that of ZR was reduced at 44 days after fullbloom (DAF), which might constitute an unfavorable factor for flower formation; MdKO (ent-kaurene oxidase gene) and MdGA20ox (GA20 oxidase gene) were significantly repressed by a high level of GAs through the negative feedback regulation of GA; additionally, the MdSPLs (SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE) in this study were all significantly repressed by GA3 but promoted by PAC; the expression of MdFT1/2 (FLOWERING LOCUS T), MdSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1) and MdAP1 (APETALA1) in GA3-treated buds changed in the same way, and they were repressed at 44 DAF. We suppose that GA3 spraying disrupts the balance between ZR and GAs, and inhibits floral induction, probably by suppressing MdSPLs and the floral integrators in flower induction, which ultimately contributed to inhibiting flower formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C.

    PubMed

    Feng, Wei; Jacob, Yannick; Veley, Kira M; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D

    2011-03-01

    The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.

  8. Hypomorphic Alleles Reveal FCA-Independent Roles for FY in the Regulation of FLOWERING LOCUS C1[C][W][OA

    PubMed Central

    Feng, Wei; Jacob, Yannick; Veley, Kira M.; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D.

    2011-01-01

    The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC. PMID:21209277

  9. Improving yield and berry quality for zygomorphic blooms of blueberry: the role of the plant growth regulators, gibberellic acid and coconut oil

    USDA-ARS?s Scientific Manuscript database

    A putative mutant gene(s) induces a high degree of zygomorphy that eliminates or deforms the tubular corollas of rabbiteye blueberries. Once thought to have a benign affect on V. ashei pollination and fruit set, zygomorphy is linked to greater seedlessness, lower fruit set, and is suspected to be a ...

  10. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities.

    PubMed

    Bloch, Guy; Bar-Shai, Noam; Cytter, Yotam; Green, Rachel

    2017-11-19

    The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera , has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  11. Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming.

    PubMed

    Li, Xiang; Yao, Fan; Fan, Hang; Li, Ke; Sun, Liwei; Liu, Yujun

    2018-03-26

    Heating is a traditional method used in ginseng root processing, however, there aren't reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed.

  12. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.

    PubMed

    Du, Yanjun; Chen, Jingru; Willis, Charles G; Zhou, Zhiqiang; Liu, Tong; Dai, Wujun; Zhao, Yuan; Ma, Keping

    2017-09-01

    Climate change has resulted in major changes in plant phenology across the globe that includes leaf-out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf-out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf-out date to climate factors exhibits phylogenetic signal. We used a 52-year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf-out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf-out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf-out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf-out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non-native species. Earlier leaf-out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf-out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf-out sensitivity.

  13. Drought, pollen and nectar availability, and pollination success.

    PubMed

    Waser, Nickolas M; Price, Mary V

    2016-06-01

    Pollination success of animal-pollinated flowers depends on rate of pollinator visits and on pollen deposition per visit, both of which should vary with the pollen and nectar "neighborhoods" of a plant, i.e., with pollen and nectar availability in nearby plants. One determinant of these neighborhoods is per-flower production of pollen and nectar, which is likely to respond to environmental influences. In this study, we explored environmental effects on pollen and nectar production and on pollination success in order to follow up a surprising result from a previous study: flowers of Ipomopsis aggregata received less pollen in years of high visitation by their hummingbird pollinators. A new analysis of the earlier data indicated that high bird visitation corresponded to drought years. We hypothesized that drought might contribute to the enigmatic prior result if it decreases both nectar and pollen production: in dry years, low nectar availability could cause hummingbirds to visit flowers at a higher rate, and low pollen availability could cause them to deposit less pollen per visit. A greenhouse experiment demonstrated that drought does reduce both pollen and nectar production by I. aggregata flowers. This result was corroborated across 6 yr of variable precipitation and soil moisture in four unmanipulated field populations. In addition, experimental removal of pollen from flowers reduced the pollen received by nearby flowers. We conclude that there is much to learn about how abiotic and biotic environmental drivers jointly affect pollen and nectar production and availability, and how this contributes to pollen and nectar neighborhoods and thus influences pollination success.

  14. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  15. Evolutionary and Morphometric Implications of Morphological Variation Among Flowers Within an Inflorescence: A Case-Study Using European Orchids

    PubMed Central

    BATEMAN, RICHARD M.; RUDALL, PAULA J.

    2006-01-01

    • Background and Aims This study explores the previously largely ignored morphological variation that occurs among flowers within a single inflorescence. • Methods Variation in four metric parameters (labellum length and width, spur length and width) that together strongly influence pollination frequency is documented within the simple racemose inflorescences of eight individuals that represent a primary hybrid and six species of European orchids. • Key Results Regression of each parameter against the location of each flower on the inflorescence, and calculation of correlation coefficients for each pair of parameters within each inflorescence, demonstrate significant decoupling of labellum and spur development, despite the fact that they are different portions of the same floral organ. Spur length and diameter are constant across inflorescences of Dactylorhiza other than the vestigial-spurred D. viridis, whereas in other genera spur length declines in parallel with labellum dimensions. These differences are likely to reflect selection pressures or developmental constraints. Strong negative deviations from the regression line for one or more parameters are evident in occasional flowers, occurring most frequently in the lowermost and uppermost one or two flowers, and so reflecting transitions in meristematic behaviour. Thus, population-level morphometric studies are best conducted on flowers taken from approximately the mid-point of the inflorescence. Moreover, in the two relatively large inflorescences where lower flowers were removed for measurement before the upper flowers had opened, labellum size increased significantly in the flowers immediately above the excisions, suggesting that excision liberated resources that were diverted into the opening buds. Repeat measurement of all flowers from one selected inflorescence demonstrated typical measurement errors of only ± 30–80 μm, irrespective of the size of the structure studied. If flowers are not mounted and measured immediately following excision, modest negative deviations of 30–50 μm result from post-mounting shrinkage; this occurs less rapidly in the spur than in the thinner labellum, which should therefore be measured first. Variation in all four parameters among all the flowers of a single inflorescence is between 42 % and 107 % of that observed between a similar number of flowers sampled from a consistent location on different (but conspecific and coexisting) inflorescences. • Conclusions This result demonstrates the strong influence of epigenesis on flower morphology and further emphasizes the importance of (a) sampling from a consistent location within the inflorescences under comparison, (b) interpreting morphometric ordinations hierarchically, building from individuals to infraspecific taxa and species via populations, and (c) considering in any microevolutionary study the potentially profound effects of the cline in flower size within each inflorescence. PMID:17018569

  16. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.

    PubMed

    Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an

    2016-01-01

    Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate/staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development and embryo sac development. Our transcriptome data provide a comprehensive gene expression profile for flower sex differentiation in Jatropha curcas, as well as new clues and information for further study in this field.

  17. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing

    PubMed Central

    Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an

    2016-01-01

    Background Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate / staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. Results After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development and embryo sac development. Conclusions Our transcriptome data provide a comprehensive gene expression profile for flower sex differentiation in Jatropha curcas, as well as new clues and information for further study in this field. PMID:26848843

  18. How to be a good neighbour: Facilitation and competition between two co-flowering species.

    PubMed

    Mesgaran, Mohsen B; Bouhours, Juliette; Lewis, Mark A; Cousens, Roger D

    2017-06-07

    Empirical evidence suggests that co-flowering species can facilitate each other through shared pollinators. However, the extent to which one co-flowering species can relieve pollination limitation of another while simultaneously competing for abiotic resource has rarely been examined. Using a deterministic model we explored the demographic outcome for one ("focal") species of its co-occurrence with a species that shares pollinators and competes for both pollinator visitation and abiotic resources. In this paper we showed how the overall impact can be positive or negative, depending on the balance between enhanced fertilization versus increased competition. Our model could predict the density of co-flowering species that will maximize the pollination rate of the focal species by attracting pollinators. Because that density will also give rise to competitive effects, a lower density of co-flowering species is required for optimizing the trade-off between enhanced fertilization and competition so as to give the maximum possible facilitation of reproduction in the focal species. Results were qualitatively different when we considered attractiveness of the co-flowering species, as opposed to its density, because attractiveness, unlike density, had no effect on competition for abiotic resources. Whereas unattractive neighbours would not bring in pollinators, very attractive neighbours would captivate pollinators, not sharing them with the focal species. Thus optimal benefit to the focal species came at intermediate levels of attractiveness in the co-flowering species. This intermediate level of attractiveness in co-flowering species simultaneously maximized pollination and overall facilitation of reproduction for the focal species. The likelihood of facilitation was predicted to decline with the selfing rate of the focal species, revealing an indirect cost for an inbreeding mating system. Whether a co-flowering species can be facilitative depends on the way pollinators respond to the plant density: only a Type III functional response for visitation rate can result in facilitation. Our model provided both a conceptual framework and precise quantitative measures for determining the impacts of a neighbouring co-flowering species on reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales.

    PubMed

    Chartier, Marion; Löfstrand, Stefan; von Balthazar, Maria; Gerber, Sylvain; Jabbour, Florian; Sauquet, Hervé; Schönenberger, Jürg

    2017-04-12

    The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers. © 2017 The Authors.

  20. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations.

    PubMed

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E

    2010-12-01

    Animals collecting resources that replenish over time often visit patches in predictable sequences called traplines. Despite the widespread nature of this strategy, we still know little about how spatial memory develops and guides individuals toward suitable routes. Here, we investigate whether flower visitation sequences by bumblebees Bombus terrestris simply reflect the order in which flowers were discovered or whether they result from more complex navigational strategies enabling bees to optimize their foraging routes. We analyzed bee flight movements in an array of four artificial flowers maximizing interfloral distances. Starting from a single patch, we sequentially added three new patches so that if bees visited them in the order in which they originally encountered flowers, they would follow a long (suboptimal) route. Bees' tendency to visit patches in their discovery order decreased with experience. Instead, they optimized their flight distances by rearranging flower visitation sequences. This resulted in the development of a primary route (trapline) and two or three less frequently used secondary routes. Bees consistently used these routes after overnight breaks while occasionally exploring novel possibilities. We discuss how maintaining some level of route flexibility could allow traplining animals to cope with dynamic routing problems, analogous to the well-known traveling salesman problem.

  1. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    NASA Astrophysics Data System (ADS)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  2. The flower of Hibiscus trionum is both visibly and measurably iridescent.

    PubMed

    Vignolini, Silvia; Moyroud, Edwige; Hingant, Thomas; Banks, Hannah; Rudall, Paula J; Steiner, Ullrich; Glover, Beverley J

    2015-01-01

    Living organisms can use minute structures to manipulate the reflection of light and display colours based on interference. There has been debate in recent literature over whether the diffractive optical effects produced by epoxy replicas of petals with folded cuticles persist and induce iridescence in the original flowers when the effects of petal pigment and illumination are taken into account. We explored the optical properties of the petal of Hibiscus trionum by macro-imaging, scanning and transmission electron microscopy, and visible and ultraviolet (UV) angle-resolved spectroscopy of the petal. The flower of Hibiscus trionum is visibly iridescent, and the iridescence can be captured photographically. The iridescence derives from a diffraction grating generated by folds of the cuticle. The iridescence of the petal can be quantitatively characterized by spectrometric measurements with several square-millimetres of sample area illuminated. The flower of Hibiscus trionum has the potential to interact with its pollinators (honeybees, other bees, butterflies and flies) through iridescent signals produced by its cuticular diffraction grating. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  3. Take Your Class Outdoors.

    ERIC Educational Resources Information Center

    Shellenberger, Barbara R.

    1981-01-01

    Offers suggestions for designing outdoor activities to provide students with opportunities for exploring, observing, and discovering. Outlines several science activities for each of the following topics: trees, rocks, soil, insects, wild flowers, grasses, lichens, and clouds. (DS)

  4. Charting the Land of Flowers: Exploration and Mapmaking in Spanish Florida

    ERIC Educational Resources Information Center

    Kite-Powell, Rodney

    2013-01-01

    Produced by cartographers of many nations over the course of six centuries, maps detailing Florida and the North American continent tell tales of exploration, conflict, and change. Before 1492, Europeans were unaware of what existed on the other side of the Atlantic Ocean. That reality is illustrated quite well on two maps that show the…

  5. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers.

    PubMed

    Pardee, Gabriella L; Inouye, David W; Irwin, Rebecca E

    2018-02-01

    Frost is an important episodic event that damages plant tissues through the formation of ice crystals at or below freezing temperatures. In montane regions, where climate change is expected to cause earlier snow melt but may not change the last frost-free day of the year, plants that bud earlier might be directly impacted by frost through damage to flower buds and reproductive structures. However, the indirect effects of frost mediated through changes in plant-pollinator interactions have rarely been explored. We examined the direct and pollinator-mediated indirect effects of frost on three wildflower species in southwestern Colorado, USA, Delphinium barbeyi (Ranunculaceae), Erigeron speciosus (Asteraceae), and Polemonium foliosissimum (Polemoniaceae), by simulating moderate (-1 to -5°C) frost events in early spring in plants in situ. Subsequently, we measured plant growth, and upon flowering measured flower morphology and phenology. Throughout the flowering season, we monitored pollinator visitation and collected seeds to measure plant reproduction. We found that frost had species-specific direct and indirect effects. Frost had direct effects on two of the three species. Frost significantly reduced flower size, total flowers produced, and seed production of Erigeron. Furthermore, frost reduced aboveground plant survival and seed production for Polemonium. However, we found no direct effects of frost on Delphinium. When we considered the indirect impacts of frost mediated through changes in pollinator visitation, one species, Erigeron, incurred indirect, negative effects of frost on plant reproduction through changes in floral traits and pollinator visitation, along with direct effects. Overall, we found that flowering plants exhibited species-specific direct and pollinator-mediated indirect responses to frost, thus suggesting that frost may play an important role in affecting plant communities under climate change. © 2017 John Wiley & Sons Ltd.

  7. Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae).

    PubMed

    Munguía-Rosas, Miguel A; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J Carlos

    2012-02-01

    Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.

  8. Effects of phenolic constituents of daylily flowers on corticosterone- and glutamate-treated PC12 cells.

    PubMed

    Tian, Huan; Yang, Fei-Fei; Liu, Chun-Yu; Liu, Xin-Min; Pan, Rui-Le; Chang, Qi; Zhang, Ze-Sheng; Liao, Yong-Hong

    2017-01-21

    Daylily flowers, the flower and bud parts of Hemerocallis citrina or H. fulva, are well known as Wang-You-Cao in Chinese, meaning forget-one's sadness plant. However, the major types of active constituents responsible for the neurological effects remain unclear. This study was to examine the protective effects of hydroalcoholic extract and fractions and to identify the active fractions. The extract of daylily flowers was separated with AB-8 resin into different fractions containing non-phenolic compounds, phenolic acid derivatives and flavonoids as determined using UPLC-DAD chromatograms. The neuroprotective activity was measured by evaluating the cell viability and lactate dehydrogenase release using PC12 cell damage models induced by corticosterone and glutamate. The neurological mechanisms were explored by determining their effect on the levels of dopamine (DA), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), noradrenaline (NE) and acetylcholine (ACh) in the cell culture medium measured using an LC-MS/MS method. Pretreatment of PC12 cells with the extract and phenolic fractions of daylily flowers at concentrations ranging from 0.63 to 5 mg raw material/mL significantly reversed corticosterone- and glutamate-induced neurotoxicity in a dose-dependent manner. The fractions containing phenolic acid derivatives (0.59% w/w in the flowers) and/or flavonoids (0.60% w/w) exerted similar dose-dependent neuroprotective effect whereas the fractions with non-phenolic compounds exhibited no activity. The presence of phenolic acid derivatives in the corticosterone- and glutamate-treated PC12 cells elevated the DA level in the cell culture medium whereas flavonoids resulted in increased ACH and 5-HT levels. Phenolic acid derivatives and flavonoids were likely the active constituents of daylily flowers and they conferred a similar extent of neuroprotection, but affected the release of neurotransmitters in a different manner.

  9. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    PubMed Central

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  10. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    PubMed

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  11. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  12. The Secret Life of Exosomes: What Bees Can Teach Us About Next-Generation Therapeutics.

    PubMed

    Marbán, Eduardo

    2018-01-16

    Mechanistic exploration has pinpointed nanosized extracellular vesicles, known as exosomes, as key mediators of the benefits of cell therapy. Exosomes appear to recapitulate the benefits of cells and more. As durable azoic entities, exosomes have numerous practical and conceptual advantages over cells. Will cells end up just being used to manufacture exosomes, or will they find lasting value as primary therapeutic agents? Here, a venerable natural process-the generation of honey-serves as an instructive parable. Flowers make nectar, which bees collect and process into honey. Cells make conditioned medium, which laboratory workers collect and process into exosomes. Unlike flowers, honey is durable, compact, and nutritious, but these facts do not negate the value of flowers themselves. The parallels suggest new ways of thinking about next-generation therapeutics. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. 3D flower-like hierarchical Ag@nickel-cobalt hydroxide microsphere with enhanced electrochemical properties

    NASA Astrophysics Data System (ADS)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng

    2016-10-01

    The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.

  14. Ecotypic differentiation and phenotypic plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leontodon saxatilis.

    PubMed

    Martín-Forés, Irene; Avilés, Marta; Acosta-Gallo, Belén; Breed, Martin F; Del Pozo, Alejandro; de Miguel, José M; Sánchez-Jardón, Laura; Castro, Isabel; Ovalle, Carlos; Casado, Miguel A

    2017-05-08

    Dispersal and reproductive traits of successful plant invaders are expected to undergo strong selection during biological invasions. Numerous Asteraceae are invasive and display dimorphic fruits within a single flower head, resulting in differential dispersal pathways - wind-dispersed fruits vs. non-dispersing fruits. We explored ecotypic differentiation and phenotypic plasticity of seed output and fruit dimorphisms in exotic Chilean and native Spanish populations of Leontodon saxatilis subsp. rothii. We collected flower heads from populations in Spain and Chile along a rainfall gradient. Seeds from all populations were planted in reciprocal transplant trials in Spain and Chile to explore their performance in the native and invasive range. We scored plant biomass, reproductive investment and fruit dimorphism. We observed strong plasticity, where plants grown in the invasive range had much greater biomass, flower head size and seed output, with a higher proportion of wind-dispersed fruits, than those grown in the native range. We also observed a significant ecotype effect, where the exotic populations displayed higher proportions of wind-dispersed fruits than native populations. Together, these patterns reflect a combination of phenotypic plasticity and ecotypic differentiation, indicating that Leontodon saxatilis has probably increased propagule pressure and dispersal distances in its invasive range to enhance its invasiveness.

  15. Predicting Flowering Behavior and Exploring Its Genetic Determinism in an Apple Multi-family Population Based on Statistical Indices and Simplified Phenotyping.

    PubMed

    Durand, Jean-Baptiste; Allard, Alix; Guitton, Baptiste; van de Weg, Eric; Bink, Marco C A M; Costes, Evelyne

    2017-01-01

    Irregular flowering over years is commonly observed in fruit trees. The early prediction of tree behavior is highly desirable in breeding programmes. This study aims at performing such predictions, combining simplified phenotyping and statistics methods. Sequences of vegetative vs. floral annual shoots (AS) were observed along axes in trees belonging to five apple related full-sib families. Sequences were analyzed using Markovian and linear mixed models including year and site effects. Indices of flowering irregularity, periodicity and synchronicity were estimated, at tree and axis scales. They were used to predict tree behavior and detect QTL with a Bayesian pedigree-based analysis, using an integrated genetic map containing 6,849 SNPs. The combination of a Biennial Bearing Index (BBI) with an autoregressive coefficient (γ g ) efficiently predicted and classified the genotype behaviors, despite few misclassifications. Four QTLs common to BBIs and γ g and one for synchronicity were highlighted and revealed the complex genetic architecture of the traits. Irregularity resulted from high AS synchronism, whereas regularity resulted from either asynchronous locally alternating or continual regular AS flowering. A relevant and time-saving method, based on a posteriori sampling of axes and statistical indices is proposed, which is efficient to evaluate the tree breeding values for flowering regularity and could be transferred to other species.

  16. Context-dependent decisions among options varying in a single dimension.

    PubMed

    Morgan, Kate V; Hurly, T Andrew; Bateson, Melissa; Asher, Lucy; Healy, Susan D

    2012-02-01

    Contrary to theories of rational choice, adding alternatives to a choice set can change the choices made by both humans and animals. This is usually done by adding an inferior decoy to a choice set of two favoured options that are characterized on two distinct dimensions. We presented wild, free-living rufous hummingbirds (Selasphorus rufus) with choices between two or three options that varied in a single dimension only. The options varied in concentration, in volume or in corolla length. When the options varied in concentration, the addition of a medium option to a choice set of a low and a high concentration caused birds to increase their preference for the high option. However, they decreased their preference for the high concentration option when a low option was added to a choice set of high and medium concentrations. When the options varied only in volume, the addition of a high volume option to a choice set of low and medium options decreased the birds' preference for the medium option. We saw no effects of adding a third option when the options varied in corolla length alone. Hummingbirds, then, make context-dependent decisions even when the options vary in only a single dimension although which effect occurs seems to depend on the dimension being manipulated. None of the current theories alone adequately explain these results. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Quali-quantitative analysis of the phenolic fraction of the flowers of Corylus avellana, source of the Italian PGI product "Nocciola di Giffoni": Isolation of antioxidant diarylheptanoids.

    PubMed

    Masullo, Milena; Mari, Angela; Cerulli, Antonietta; Bottone, Alfredo; Kontek, Bogdan; Olas, Beata; Pizza, Cosimo; Piacente, Sonia

    2016-10-01

    There is only limited information available on the chemical composition of the non-edible parts of Corylus avellana, source of the Italian PGI product "Nocciola di Giffoni" (hazelnut). An initial LC-MS profile of the methanolic extract of the male flowers of C. avellana, cultivar 'Tonda di Giffoni' led to the isolation of 12 compounds, of which the structures were elucidated by NMR spectroscopy. These were identified as three previously undescribed diarylheptanoids, named giffonins Q-S, along with nine known compounds. Furthermore, the quantitative determination of the main compounds occurring in the methanolic extract of C. avellana flowers was carried out by an analytical approach based on LC-ESI(QqQ)MS, using the Multiple Reaction Monitoring (MRM) experiment. In order to explore the antioxidant ability of C. avellana flowers, the methanolic extract and the isolated compounds were evaluated for their inhibitory effects on human plasma lipid peroxidation induced by H2O2 and H2O2/Fe(2+), by measuring the concentration of TBARS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Methods for genetic transformation in Dendrobium.

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit; Cardoso, Jean Carlos; Chandler, Stephen F; Zeng, Songjun

    2016-03-01

    The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.

  19. Character evolution and missing (morphological) data across the core asterids (Gentianidae)

    USDA-ARS?s Scientific Manuscript database

    Character evolution and missing (morphological) data across Asteridae. Premise of the study: Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this ...

  20. Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae)

    PubMed Central

    Munguía-Rosas, Miguel A.; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J. Carlos

    2012-01-01

    • Background and Aims Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. • Methods Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. • Key Results CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. • Conclusions Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively. PMID:22095920

  1. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the ‘Nagafu No. 2’ and ‘Qinguan’ Varieties of Apple (Malus domestica Borkh.)

    PubMed Central

    Xing, Libo; Zhang, Dong; Song, Xiaomin; Weng, Kai; Shen, Yawen; Li, Youmei; Zhao, Caiping; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-01-01

    Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, ‘Nagafu No. 2’ and ‘Qinguan,’ which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in ‘Nagafu No. 2’ and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in ‘Qinguan.’ The ‘SNP,’ ‘INDEL,’ and ‘SV’ distributions were non-random, with variation-rich or -poor regions throughout the genomes. In ‘Nagafu No. 2’ and ‘Qinguan’ there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in ‘Nagafu No. 2,’ ‘Qinguan,’ and ‘Golden Delicious,’ identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between ‘Nagafu No. 2’ and ‘Qinguan.’ The genome variation data provided a foundation for the further exploration of apple diversity and gene–phenotype relationships, and for future research on molecular breeding to improve apple and related species. PMID:27446138

  2. SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa).

    PubMed

    Liu, Bing; Wei, Gang; Shi, Jinlei; Jin, Jing; Shen, Ting; Ni, Ting; Shen, Wen-Hui; Yu, Yu; Dong, Aiwu

    2016-04-01

    As a key epigenetic modification, the methylation of histone H3 lysine 36 (H3K36) modulates chromatin structure and is involved in diverse biological processes. To better understand the language of H3K36 methylation in rice (Oryza sativa), we chose potential histone methylation enzymes for functional exploration. In particular, we characterized rice SET DOMAIN GROUP 708 (SDG708) as an H3K36-specific methyltransferase possessing the ability to deposit up to three methyl groups on H3K36. Compared with the wild-type, SDG708-knockdown rice mutants displayed a late-flowering phenotype under both long-day and short-day conditions because of the down-regulation of the key flowering regulatory genes Heading date 3a (Hd3a), RICE FLOWERING LOCUS T1 (RFT1), and Early heading date 1 (Ehd1). Chromatin immunoprecipitation experiments indicated that H3K36me1, H3K36me2, and H3K36me3 levels were reduced at these loci in SDG708-deficient plants. More importantly, SDG708 was able to directly target and effect H3K36 methylation on specific flowering genes. In fact, knockdown of SDG708 led to misexpression of a set of functional genes and a genome-wide decrease in H3K36me1/2/3 levels during the early growth stages of rice. SDG708 is a methyltransferase that catalyses genome-wide deposition of all three methyl groups on H3K36 and is involved in many biological processes in addition to flowering promotion. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. The biological significance of color constancy: an agent-based model with bees foraging from flowers under varied illumination.

    PubMed

    Faruq, Samia; McOwan, Peter W; Chittka, Lars

    2013-08-20

    The perceived color of an object depends on its spectral reflectance and the spectral composition of the illuminant. Thus when the illumination changes, the light reflected from the object also varies. This would result in a different color sensation if no color constancy mechanism is put in place-that is, the ability to form consistent representation of colors across various illuminants and background scenes. We explore the quantitative benefits of various color constancy algorithms in an agent-based model of foraging bees, where agents select flower color based on reward. Each simulation is based on 100 "meadows" with five randomly selected flower species with empirically determined spectral reflectance properties, and each flower species is associated with realistic distributions of nectar rewards. Simulated foraging bees memorize the colors of flowers that they have experienced as most rewarding, and their task is to discriminate against other flower colors with lower rewards, even in the face of changing illumination conditions. We compared the performance of von Kries, White Patch, and Gray World constancy models with (hypothetical) bees with perfect color constancy, and color-blind bees. A bee equipped with trichromatic color vision but no color constancy performed only ∼20% better than a color-blind bee (relative to a maximum improvement at 100% for perfect color constancy), whereas the most powerful recovery of reflectance in the face of changing illumination was generated by a combination of von Kries photoreceptor adaptation and a White Patch calibration (∼30% improvement relative to a bee without color constancy). However, none of the tested algorithms generated perfect color constancy.

  4. Analysis and functional annotation of expressed sequence tags (ESTs) from multiple tissues of oil palm (Elaeis guineensis Jacq.)

    PubMed Central

    Ho, Chai-Ling; Kwan, Yen-Yen; Choi, Mei-Chooi; Tee, Sue-Sean; Ng, Wai-Har; Lim, Kok-Ang; Lee, Yang-Ping; Ooi, Siew-Eng; Lee, Weng-Wah; Tee, Jin-Ming; Tan, Siang-Hee; Kulaveerasingam, Harikrishna; Alwee, Sharifah Shahrul Rabiah Syed; Abdullah, Meilina Ong

    2007-01-01

    Background Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm. Results In this study, six cDNA libraries from oil palm zygotic embryos, suspension cells, shoot apical meristems, young flowers, mature flowers and roots, were constructed. We have generated a total of 14537 expressed sequence tags (ESTs) from these libraries, from which 6464 tentative unique contigs (TUCs) and 2129 singletons were obtained. Approximately 6008 of these tentative unique genes (TUGs) have significant matches to the non-redundant protein database, from which 2361 were assigned to one or more Gene Ontology categories. Predominant transcripts and differentially expressed genes were identified in multiple oil palm tissues. Homologues of genes involved in many aspects of flower development were also identified among the EST collection, such as CONSTANS-like, AGAMOUS-like (AGL)2, AGL20, LFY-like, SQUAMOSA, SQUAMOSA binding protein (SBP) etc. Majority of them are the first representatives in oil palm, providing opportunities to explore the cause of epigenetic homeotic flowering abnormality in oil palm, given the importance of flowering in fruit production. The transcript levels of two flowering-related genes, EgSBP and EgSEP were analysed in the flower tissues of various developmental stages. Gene homologues for enzymes involved in oil biosynthesis, utilization of nitrogen sources, and scavenging of oxygen radicals, were also uncovered among the oil palm ESTs. Conclusion The EST sequences generated will allow comparative genomic studies between oil palm and other monocotyledonous and dicotyledonous plants, development of gene-targeted markers for the reference genetic map, design and fabrication of DNA array for future studies of oil palm. The outcomes of such studies will contribute to oil palm improvements through the establishment of breeding program using marker-assisted selection, development of diagnostic assays using gene targeted markers, and discovery of candidate genes related to important agronomic traits of oil palm. PMID:17953740

  5. Functional constraints on the evolution of long butterfly proboscides: lessons from Neotropical skippers (Lepidoptera: Hesperiidae)

    PubMed Central

    Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W

    2015-01-01

    Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. PMID:25682841

  6. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    PubMed

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  7. Tailoring Co(OH)2 hollow nanostructures via Cu2O template etching for high performance supercapacitors.

    PubMed

    Yang, Huan; Xie, Jiale; Bao, Shu juan; Li, Chang Ming

    2015-11-01

    Co(OH)2 hollow nanostructures including cube, octahedron and flower are delicately tailored via a simple and fast one-step Cu2O template etching method. The as-prepared materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscope (FESEM), N2 adsorption-desorption and electrochemical methods and X-ray photoelectron spectroscopy (XPS). In particular, the supercapacitive behaviors of the as-prepared materials were investigated to explore relation of capacitance versus nanostructure. Results indicate that the as-prepared Co(OH)2 samples inherit the size and shape of the Cu2O templates but with an inside hollow, and the differently nanostructured Co(OH)2 exhibits different capacitive behaviors. Among various morphologies, the flower Co(OH)2 has the largest specific capacitance of 1350 F/g, while octahedron Co(OH)2 has the smallest one of 986.4 F/g. This is mainly because the flower Co(OH)2 not only has the largest available surface area, but also offers the fast interfacial electron transfer for higher pseudocapacitance and enhanced electrolyte ion diffusion rate for high power density, which is supported by both theoretical calculation, measured BET data and ac impedance measurements. This work may provide a vivid example to rationally design a nanostructure and further explore its fundamental insights for high performance supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. How honey is processed

    USDA-ARS?s Scientific Manuscript database

    This month's column follows the "How Is It Processed?" theme. Honey has been called "the nectar of the gods" because of its rich histor and contribution to foods. This column will explore the properties of honey as well as how honey is processed - from flower to food....

  9. Re"CYC"ling molecular regulators in the evolution and development of flower symmetry.

    PubMed

    Spencer, Victoria; Kim, Minsung

    2018-07-01

    Flower forms are both highly diverse and multifaceted. As well as varying in colour, size, organ number, and much more, flowers show different types of symmetry. Floral symmetry can be grouped into three main categories: asymmetry, bilateral symmetry and radial symmetry, characterised by zero, one, and multiple planes of symmetry, respectively. This review will first explore floral symmetry from a classical morphological view, then from a modern molecular perspective. The recent molecular work on symmetry in monocots and eudicots will be discussed, followed by an in-depth discussion into the evolution of CYC genes, particularly in the capitulum of the sunflower family (Asteraceae). Whilst recent studies on non-model species are helping to bring new light to this field, more species coverage is required to understand how traits such as bilateral symmetry have evolved so many times, and whether the same molecular regulators were recruited for this function. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Green Chemistry Glucose Biosensor Development using Etlingera elatior Extract

    NASA Astrophysics Data System (ADS)

    Fatoni, A.; Anggraeni, M. D.; Zusfahair; Iqlima, H.

    2018-01-01

    Glucose biosensor development is one of the important strategies for early detection of diabetes mellitus disease. This study was aimed to explore the flower extract of Etlingera elatior for a green-analysis method of glucose biosensor. Flowers were extracted using ethanol: HCl and tested its performances as an indicator of glucose biosensor using glucose oxidase enzyme. The glucose oxidase react with glucose resulted hydrogen peroxide that would change the color of the flower extract. Furthermore, the extract was also studied including their stability to pH, oxidizing and reducing, temperature, and storage. The results showed that the Etlingera elatior extract had high correlation between color change and glucose concentration with regression equation of y = -0.0005x + 0.4724 and R2 of 0.9965. The studied biosensor showed a wide linear range to detect glucose sample of 0 to 500 mM. The extract characterization showed a more stable in low pH (acid), reducing agent addition, heating treatment and storage.

  11. The electrical conductivity and energy band gap of ‘bunga belimbing buluh’/tio2 nanocrystals as hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Kamarulzaman, N. H.; Salleh, H.; Ghazali, M. S. M.; Ghazali, S. M.; Ahmad, Z.

    2018-05-01

    This research intends to explore the effect of thickness of inorganic titania nanocrystals (TiO2 NCs) materials and Averrhoe bilimbi’s flower towards the electrical conductivity. Averrhoe bilimbi’s flower or also known as ‘bunga belimbing buluh’ was used for the first time as a natural dye in hybrid solar cells. The performance of electrical conductivity can be improved in bilayer heterojunction hybrid solar cell (HCS). The TiO2 NCs was deposited on the ITO substrate using Electrochemistry method at room temperature. The dye extracted from Averrhoe bilimbi’s flower was deposited on the top of TiO2 NCs layered using the same method. The electrical conductivity can be recorded using Four Point Probe (FPP) under dark and light radiation (range of 0 Wm-2 to 200Wm-2). From the results, electrical conductivity was increased by the increment light intensity and suitable for further solar cell fabrications.

  12. Antibacterial potential of Calotropis procera (flower) extract against various pathogens.

    PubMed

    Ali, Abid; Ansari, Asma; Qader, Shah Ali Ul; Mumtaz, Majid; Saied, Sumayya; Mahboob, Tabassum

    2014-09-01

    Increased bacterial resistance towards commonly used antibiotics has become a debated issue all over the world in a last few decades. Due to this, consumer demand towards natural anti-microbial agents is increasing day by day. Natural anti-microbial agents have gained enormous attention as an alternative therapeutic agent in pharmaceutical industry. Current study is an effort to explore and identify a bactericidal potential of various solvent extracts of Calotropis procera flower. Flowers of C. procera were extracted with hexane, butanol, ethyl acetate and aqua to evaluate the antibacterial activity by agar well diffusion method against the various human pathogens. The microorganisms used in this study includes Salmonella typhi, Escherichia coli (O157:H7), Micrococcus luteus KIBGE-IB20 (Gen Bank accession: JQ250612) and methicillin resistant Staphylococcus aureus (MRSA) KIBGE-IB23 (Gen Bank accession: KC465400). Zones of inhibition were observed against all four pathogenic strains. Fraction soluble in hexane showed broad spectrum of inhibition against all the studied pathogens. However, fractions soluble in ethyl acetate inhibited the growth of E. coli, MRSA, and M. luteus. In case of butanol and aqueous extracts only growth of M. luteus was inhibited. Results revealed that the flower extracts of C. procera have a potential to be used as an antibacterial agent against these pathogenic organisms.

  13. In vitro evaluation of cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species

    PubMed Central

    Gordanian, B.; Behbahani, M.; Carapetian, J.; Fazilati, M.

    2014-01-01

    The present study was carried out to investigate cytotoxic activity of flower, leaf, stem and root extracts of five Artemisia species against breast cancer cell line (MCF7) and human embryonic kidney normal cell line (HEK293). The studied Artemisia species were A. absinthium, A. vulgaris, A. incana, A. fragrans and A. spicigera. The cytotoxic activity was measured by MTT assay at different concentrations (62.5, 125, 250, 500 μg/ml). Among these five species, methanol extracts of flower, leaf, stem and root of A. absinthium and A. vulgaris exhibited considerable cytotoxic activity. The flower extracts of these two species were found to have higher cytotoxic effect on MCF7 cell with an IC50 value of 221.5 and >500 μg/ml, respectively. Leaf methanol extract of A. incana also showed cytotoxic activity. Cytotoxic activity of different extracts of A. absinthium, A. vulgaris and A. incana against MCF7 was 10%-40% more than HEK293 cells. Not only the extracts of A. spicigera and A. fragrans did not show any cytotoxic effect against both cell lines, but also increased the number of cells. This study revealed that A. absinthium and A. vulgaris may have a great potential to explore new anticancer drugs. PMID:25657777

  14. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  15. ARC-2011-ACD11-0030-062

    NASA Image and Video Library

    2011-02-27

    10th Anniversary of Reachout for the Rainbow after School Science Festival highlighting NASA Ames and the Traveling Space Museum exhibits and activities at the South San Francisco Bayview Opera House. Sanai Flowers enjoys exploring the space buggy at the outdoor exhibit. photo release on file

  16. A New Sythetic Hybrid (A1D5) between Gossypium herbaceum and G. raimondii and Its Morphological, Cytogenetic, Molecular Characterization

    PubMed Central

    Zhu, Shuijin; Zhang, Lufei; Li, Lingjiao

    2017-01-01

    The diploid species G. herbaceum (A1) and G. raimondii (D5) are the progenitors of allotetraploid cotton, respectively. However, hybrids between G. herbaceum and G. raimondii haven’t been reported. In the present study, hybridization between G. herbaceum and G. raimondii was explored. Morphological, cytogenetic and molecular analyses were used to assess the hybridity. The interspecific hybrid plants were successfully obtained. Most of the morphological characteristics of the hybrids were intermediate between G. herbaceum and G. raimondii. However, the color of glands, anther cases, pollen and corolla, and the state of bracteoles in hybrids were associated with the G. herbaceum. The color of staminal columns and filaments in hybrids were associated with G. raimondii. Cytogenetic analysis confirmed abnormal meiotic behavior existed in hybrids. The hybrids couldn’t produce boll-set. Simple sequence repeat results found that besides the fragments inherited from the two parents, some novel bands were amplified in hybrids, indicating that potential mutations and chromosomal recombination occurred between parental genomes during hybridization. These results may provide some novel insights in speciation, genome interaction, and evolution of the tetraploid cotton species. PMID:28187145

  17. The Church's Ministry in Higher Education.

    ERIC Educational Resources Information Center

    Westerhoff, John H., Ed.

    Papers presented include: "Hope, History, and Higher Education in the South," (James H. Smylie, response by Samuel S. Hill, Jr.); "Current Strategies: An Exploration and Evaluation," (Robert L. Wilson, response by Clyde O. Robinson, Jr.); "Trends in Higher Education: A Look to the Future," (Anne Flowers, response by…

  18. Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic.

    PubMed

    Cao, Dongyan; Wang, Jiao; Ju, Zheng; Liu, Qingqing; Li, Shan; Tian, Huiqin; Fu, Daqi; Zhu, Hongliang; Luo, Yunbo; Zhu, Benzhong

    2016-06-01

    Despite many studies about functions of miR396 were concentrated on cotyledon and leaf growth and development, only few researches were focused on flower and fruit, especially for fleshy fruit, for example, tomato fruit. Here, the roles of miR396 throughout the growth and development of tomato plant were explored with combining bioinformatics and transgene-mediated methods. In tomato, miR396 had two mature types (miR396a and miR396b), and miR396a expressed significantly higher than miR396b in cotyledon, flower, sepal and fruit. Generally, plant growth and development were regulated by miR396 via growth-regulating factors (GRFs). In tomato, all 13 SlGRFs were analyzed comprehensively, including phylogeny, domain and expression patterns. To investigate the roles of miR396 further, STTM396a/396a-88 was over-expressed in tomato, which induced miR396a and miR396b both dramatical down-regulation, and the target GRFs general up-regulation. As a result, the flowers, sepals and fruits all obviously became bigger. Most significantly, the sepal length of transgenic lines #3 and #4 at 39 days post-anthesis was separately increased 75% and 81%, and the fruit weight was added 45% and 39%, respectively. Overall, these results revealed novel roles of miR396 in regulating flower and fruit development, and provided a new potential way for improving tomato fruit yield. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Functional constraints on the evolution of long butterfly proboscides: lessons from Neotropical skippers (Lepidoptera: Hesperiidae).

    PubMed

    Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W

    2015-03-01

    Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.

  20. Vision and Embodied Knowing: The Making of Floral Design

    ERIC Educational Resources Information Center

    Gåfvels, Camilla

    2016-01-01

    This article focuses on assessment actions in floristry education, addressing how interaction with flowers influences and mediates vocational knowing. Using video recordings from floristry education for adults, the article explores the interaction between teacher and student when assessing on-going work and performance as a way to frame the…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslarzes, K.J.P.

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 andmore » 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.« less

  2. Islet protection and amelioration of type 2 diabetes mellitus by treatment with quercetin from the flowers of Edgeworthia gardneri.

    PubMed

    Zhuang, Manjiao; Qiu, Honghong; Li, Ping; Hu, Lihua; Wang, Yayu; Rao, Lei

    2018-01-01

    The traditional Chinese medicine - the flower of Edgeworthia gardneri - is reported as an effective therapeutic for type 2 diabetes mellitus (T2DM). Nevertheless, most constituents of the flowers of E. gardneri have not yet been studied. This study was conducted to investigate the effect of quercetin extracted from the flowers of E. gardneri on islet protection and amelioration in T2DM and explore its mechanism. Quercetin was extracted from the flowers of E. gardneri and verified by high-performance liquid chromatography. Quercetin or crude extract's effect on insulin secretion was investigated. ERK1/2 and phospho-ERK1/2 were detected by Western blot analysis, and fluo-3 AM was used to detect intracellular Ca 2+ . The anti-apoptosis effect of quercetin or crude extract on MIN-6 cells was investigated by thiazolyl blue tetrazolium bromide (MTT) assay and flow cytometry analysis. Activation of caspases and expression of Bcl-2 and BAX were tested by Western blot analysis. In addition, the mitochondrial membrane potential was determined by JC-1 probe. Moreover, in vivo activity was also tested in db/db mice. A quercetin level of >10 μmol/L could induce insulin secretion. Intracellular Ca 2+ and ERK1/2 were involved in the signaling pathway of quercetin-induced insulin secretion. We also observed that quercetin could inhibit palmitic acid-induced cell apoptosis via suppressing the activation of caspase-3, -9, -12; increasing the ratio of Bcl-2/BAX and reversing the impaired mitochondrial membrane potential. Crude extract's effect on insulin secretion was similar to that of pure extracted quercetin, while it possessed higher anti-apoptosis activity. Additionally, intraperitoneal glucose tolerance, plasma insulin level, hepatic triglyceride, hepatic glycogen and the pathological histology of both pancreatic islet and liver in db/db mice were significantly improved by the administration of the extracted quercetin. Our study indicated that quercetin extracted from the flowers of E. gardneri exerted excellent properties in islet protection and amelioration.

  3. Phylogenetic trait-based analyses of ecological networks

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    Ecological networks of two interacting guilds of species, such as flowering plants and pollinators, are common in nature, and studying their structure can yield insights into their resilience to environmental disturbances. Here we develop analytical methods for exploring the strengths of interactions within bipartite networks consisting of two guilds of phylogenetically related species. We then apply these methods to investigate the resilience of a plant–pollinator community to anticipated climate change. The methods allow the statistical assessment of, for example, whether closely related pollinators are more likely to visit plants with similar relative frequencies, and whether closely related pollinators tend to visit closely related plants. The methods can also incorporate trait information, allowing us to identify which plant traits are likely responsible for attracting different pollinators. These questions are important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70 years, six of the plants have advanced their flowering, while eight have not. When we experimentally forced earlier flowering times, five of the six advanced-flowering species experienced higher pollinator visitation rates, whereas only one of the eight other species had more visits; this network thus appears resilient to climate change, because those species with advanced flowering have ample pollinators earlier in the season. Using the methods developed here, we show that advanced-flowering plants did not have a distinct pollinator community from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator community composition; closely related pollinators were not more likely to visit the same plant species. However, differences among pollinator communities visiting different plants were explained by plant height, floral color, and symmetry. As a result, closely related plants attracted similar numbers of pollinators. By parsing out characteristics that explain why plants share pollinators, we can identify plant species that likely share a common fate in a changing climate. PMID:24358717

  4. Phylogenetic trait-based analyses of ecological networks.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2013-10-01

    Ecological networks of two interacting guilds of species, such as flowering plants and pollinators, are common in nature, and studying their structure can yield insights into their resilience to environmental disturbances. Here we develop analytical methods for exploring the strengths of interactions within bipartite networks consisting of two guilds of phylogenetically related species. We then apply these methods to investigate the resilience of a plant-pollinator community to anticipated climate change. The methods allow the statistical assessment of, for example, whether closely related pollinators are more likely to visit plants with similar relative frequencies, and whether closely related pollinators tend to visit closely related plants. The methods can also incorporate trait information, allowing us to identify which plant traits are likely responsible for attracting different pollinators. These questions are important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70 years, six of the plants have advanced their flowering, while eight have not. When we experimentally forced earlier flowering times, five of the six advanced-flowering species experienced higher pollinator visitation rates, whereas only one of the eight other species had more visits; this network thus appears resilient to climate change, because those species with advanced flowering have ample pollinators earlier in the season. Using the methods developed here, we show that advanced-flowering plants did not have a distinct pollinator community from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator community composition; closely related pollinators were not more likely to visit the same plant species. However, differences among pollinator communities visiting different plants were explained by plant height, floral color, and symmetry. As a result, closely related plants attracted similar numbers of pollinators. By parsing out characteristics that explain why plants share pollinators, we can identify plant species that likely share a common fate in a changing climate.

  5. Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial.

    PubMed

    Koontz, Stephanie M; Weekley, Carl W; Haller Crate, Sarah J; Menges, Eric S

    2017-11-01

    Cleistogamy (CL) in angiosperms historically has been understudied; however, its co-occurrence with chasmogamy (CH) across many plant species suggests a fitness advantage to maintaining this mixed-mating strategy. Maintenance of mixed-mating has been attributed to reproductive assurance, resource allocation or genetic trade-offs. Our goals were to explore patterns of CH and CL, quantify reproductive contributions measured by fruit production and determine how CL is maintained in the endangered perennial Polygala lewtonii. This species exhibits CH and both above-ground cleistogamy (CL-AG) and below-ground cleistogamy (CL-BG). In monthly censuses from 2008 to 2012, we documented flowering patterns by counting CH flowering stems, CL-AG fruits and CL-BG rhizomes per plant. Monitoring of buds on CH flowering stems in 2004 provided an estimate of CH fruits per plant. Plant excavations in 2005 of CL-BG rhizomes provided an estimate of CL-BG fruits per plant. Floral morphs were temporally separated with CH flowers observed from January to May and CL flowers from June to February. Overall, 17.5 % of plants flowered; most plants expressed CH first in spring months (63.4 %) and the rest initiated CL-AG in fall months. Reproductive output was dominated by CH (median 26 fruits) compared to combined CL (median 3.5 fruits). Annual reproductive effort of CL-AG was positively correlated with plant age while CH had no relation. Our research shows CH as the dominant form of reproductive effort with most individuals expressing CH and through greater reproductive contributions. CL appears limited by plant size or resources based on the positive relationship with plant age. CL dependency on resource availability is common in other species found in dry or low-quality habitats; however, CL contributions in this species are comparatively low. This raises more questions related to energy requirements of both floral morphs, how this affects the production of viable progeny and why CL persists.

  6. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations.

    PubMed

    Field, David L; Pickup, Melinda; Barrett, Spencer C H

    2013-05-01

    Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants.

  7. jsc2017e136054 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch cerem

    NASA Image and Video Library

    2017-11-30

    jsc2017e136054 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Shkaplerov, Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) and Scott Tingle of NASA will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  8. Mars Greenhouse Experiment Module: An Experiment to Grow Flowers on Mars

    NASA Technical Reports Server (NTRS)

    MacCallum, T. K.; Poynter, J. E.; McKay, C. P.

    2000-01-01

    NASA has entered a new phase of in-depth exploration of the planets where robotic exploration of the Solar System is focusing on in-situ missions that pave the way for human exploration. Creating a human presence on Mars will require specialized knowledge and experience concerning the Martian environment and validated technologies that will provide life-supporting consumables. An understanding of the response of terrestrial organisms to the Martian environment with respect to potential deleterious effects on crew health and changes to biological processes will be paramount. In response to these challenges an innovative selfcontained flight experiment is proposed, which is designed to assess the biocompatibility of the Martian environment by germinating seeds and following their growth through to flowering. The experiment, dubbed Mars Greenhouse Experiment Module (Mars GEM), will be accomplished in a sealed pressurized growth chamber or 'Mars Greenhouse'. Seeds will be grown in Martian soil and the Mars Greenhouse will provide ultraviolet-radiation protected, thermal-controlled environment for plant growth that actively controls the CO2 (required nutrient) and O2 (generated by the plants) levels in the chamber. The simple, but visually dramatic, demonstration of the potential to grow a plant in a man-made environment on the surface of Mars should establish a strong connection between current robotic missions and future human habitation on Mars.

  9. Intra-plant Variation in Nectar Sugar Composition in Two Aquilegia Species (Ranunculaceae): Contrasting Patterns under Field and Glasshouse Conditions

    PubMed Central

    Canto, Azucena; Pérez, Ricardo; Medrano, Mónica; Castellanos, María Clara; Herrera, Carlos M.

    2007-01-01

    Background and Aims Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp. cazorlensis (Ranunculaceae). The aims of the study are to assess the generality of extreme intra-plant variation in nectar sugar composition recently reported for other species in the field, and gaining insight on the possible mechanisms involved. Methods The proportions of glucose, fructose and sucrose in single-nectary nectar samples collected from field and glasshouse plants were determined using high performance liquid chromatography. A hierarchical variance partition was used to dissect total variance into components due to variation among plants, flowers within plants, and nectaries within flowers. Key Results Nectar of the two species was mostly sucrose-dominated, but composition varied widely in the field, ranging from sucrose-only to fructose-dominated. Most intra-specific variance was due to differences among nectaries of the same flower, and flowers of the same plant. The high intra-plant variation in sugar composition exhibited by field plants vanished in the glasshouse, where nectar composition emerged as a remarkably constant feature across plants, flowers and nectaries. Conclusions In addition to corroborating the results of previous studies documenting extreme intra-plant variation in nectar sugar composition in the field, this study suggests that such variation may ultimately be caused by biotic factors operating on the nectar in the field but not in the glasshouse. Pollinator visitation and pollinator-borne yeasts are suggested as likely causal agents. PMID:17259227

  10. Evolutionary history of the Afro-Madagascan Ixora species (Rubiaceae): species diversification and distribution of key morphological traits inferred from dated molecular phylogenetic trees

    PubMed Central

    Tosh, J.; Dessein, S.; Buerki, S.; Groeninckx, I.; Mouly, A.; Bremer, B.; Smets, E. F.; De Block, P.

    2013-01-01

    Background and Aims Previous work on the pantropical genus Ixora has revealed an Afro-Madagascan clade, but as yet no study has focused in detail on the evolutionary history and morphological trends in this group. Here the evolutionary history of Afro-Madagascan Ixora spp. (a clade of approx. 80 taxa) is investigated and the phylogenetic trees compared with several key morphological traits in taxa occurring in Madagascar. Methods Phylogenetic relationships of Afro-Madagascan Ixora are assessed using sequence data from four plastid regions (petD, rps16, rpoB-trnC and trnL-trnF) and nuclear ribosomal external transcribed spacer (ETS) and internal transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil evidence. Key Results Two separate lineages of Madagascan taxa are recovered, one of which is nested in a group of East African taxa. Divergence in Ixora is estimated to have commenced during the mid Miocene, with extensive cladogenesis occurring in the Afro-Madagascan clade during the Pliocene onwards. Conclusions Both lineages of Madagascan Ixora exhibit morphological innovations that are rare throughout the rest of the genus, including a trend towards pauciflorous inflorescences and a trend towards extreme corolla tube length, suggesting that the same ecological and selective pressures are acting upon taxa from both Madagascan lineages. Novel ecological opportunities resulting from climate-induced habitat fragmentation and corolla tube length diversification are likely to have facilitated species radiation on Madagascar. PMID:24142919

  11. Ricochet pollination in Senna (Fabaceae) - petals deflect pollen jets and promote division of labour among flower structures.

    PubMed

    Amorim, T; Marazzi, B; Soares, A A; Forni-Martins, E R; Muniz, C R; Westerkamp, C

    2017-11-01

    Naturalists Fritz and Hermann Müller hypothesised that heteranthery often leads to a division of labour into 'feeding' and 'pollinating' stamens; the latter often being as long as the pistil so as to promote successful pollination on the bees' back. In many buzz-pollinated species of Senna, however, the so-called pollinating stamens are short and not level with the stigma, raising the question of how pollen is shed on the bees' back. Here we explore a mechanism called 'ricochet pollination'. We test whether division of labour is achieved through the interaction between short lower stamens and strongly concave 'deflector petals'. We studied the arrangement and morphology of the floral organs involved in the ricochet pollination, functioning of the flowers through artificial sonication and observed the interactions between bees and flowers in the field. The middle stamens are adapted to eject pollen downwards, which can be readily collected on the bee mid legs. Most of the pollen is ejected towards the deflector petal(s). Pollen from this set of stamens is more likely to contribute to pollination. The pollen grains seem to ricochet multiple times against the deflector petals to eventually reach the bee's back. The pollen ricochet mechanism promotes a division of labour by involving additional floral organs, such as petals, reinforcing the Müllers' division-of-labour hypothesis. However, alternative, non-multiexclusive hypotheses could be explored in genus Senna and other angiosperm species. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum.

    PubMed

    Pacheco, Diego Andrés; Dudley, Leah S; Cabezas, Josefina; Cavieres, Lohengrin A; Arroyo, Mary T K

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower longevity along the altitudinal gradient is less common for potential flower longevity than for open-pollination flower longevity. Independently of any selection that may occur on potential longevity, plastic responses of flowers to environmental conditions are likely to contribute to altitudinal variation in flower longevity, especially in dry alpine areas. Such plastic responses could push flowers of alpine species towards shorter life-lengths under climate change, with uncertain consequences for successful pollination and plant fitness in a warming world.

  13. Plastic Responses Contribute to Explaining Altitudinal and Temporal Variation in Potential Flower Longevity in High Andean Rhodolirion montanum

    PubMed Central

    Cavieres, Lohengrin A.

    2016-01-01

    The tendency for flower longevity to increase with altitude is believed by many alpine ecologists to play an important role in compensating for low pollination rates at high altitudes due to cold and variable weather conditions. However, current studies documenting an altitudinal increase in flower longevity in the alpine habitat derive principally from studies on open-pollinated flowers where lower pollinator visitation rates at higher altitudes will tend to lead to flower senescence later in the life-span of a flower in comparison with lower altitudes, and thus could confound the real altitudinal pattern in a species´ potential flower longevity. In a two-year study we tested the hypothesis that a plastic effect of temperature on flower longevity could contribute to an altitudinal increase in potential flower longevity measured in pollinator-excluded flowers in high Andean Rhodolirium montanum Phil. (Amaryllidaceae). Using supplemental warming we investigated whether temperature around flowers plastically affects potential flower longevity. We determined tightly temperature-controlled potential flower longevity and flower height for natural populations on three alpine sites spread over an altitudinal transect from 2350 and 3075 m a.s.l. An experimental increase of 3.1°C around flowers significantly decreased flower longevity indicating a plastic response of flowers to temperature. Flower height in natural populations decreased significantly with altitude. Although temperature negatively affects flower longevity under experimental conditions, we found no evidence that temperature around flowers explains site variation in flower longevity over the altitudinal gradient. In a wetter year, despite a 3.5°C temperature difference around flowers at the extremes of the altitudinal range, flower longevity showed no increase with altitude. However, in a drier year, flower longevity increased significantly with altitude. The emerging picture suggests an increase in flower longevity along the altitudinal gradient is less common for potential flower longevity than for open-pollination flower longevity. Independently of any selection that may occur on potential longevity, plastic responses of flowers to environmental conditions are likely to contribute to altitudinal variation in flower longevity, especially in dry alpine areas. Such plastic responses could push flowers of alpine species towards shorter life-lengths under climate change, with uncertain consequences for successful pollination and plant fitness in a warming world. PMID:27861586

  14. Macrosolen bidoupensis (Loranthaceae), a new species from Bidoup Nui Ba National Park, southern Vietnam

    PubMed Central

    Tagane, Shuichiro; Dang, Van Son; Ngoc, Nguyen Van; Binh, Hoang Thi; Komada, Natsuki; Wai, Jarearnsak Sae; Naiki, Akiyo; Nagamasu, Hidetoshi; Toyama, Hironori; Yahara, Tetsukazu

    2017-01-01

    Abstract Macrosolen bidoupensis Tagane & V.S.Dang, sp. nov. (Loranthaceae) is newly described from Bidoup Nui Ba National Park in Lam Dong Province, southern Vietnam. The new species is characterized by small broadly elliptic to circular leaves, sessile to short petioles, slightly cordate to rounded leaf bases, 4–5 pairs of lateral veins and a basally green corolla tube. An illustration, a summary of DNA barcoding of the plastid genes rbcL and matK, and a key to the species of Macrosolen in Vietnam are provided. PMID:28781562

  15. Unfälle mit Kleintransportern

    NASA Astrophysics Data System (ADS)

    Tschirschwitz, Christian

    Auf einer außerörtlichen Bundesstraße geriet ein mit vier Personen besetzter Pkw Toyota Corolla aus letztlich nicht vollständig geklärten Gründen ins Schleudern. Nachdem sich das Fahrzeug beträchtlich entgegen dem Uhrzeigersinn ausgedreht hatte, prallte ein entgegenkommender Kleintransporter VW T4 frontal an die rechte Flanke des Toyota. Der Transporter wurde gedreht, ausgehoben und durch einen Pkw Ford Escort unterfahren. Alle Fahrzeuge kamen in Kollisionsortnähe zum Endstand. Die vier Toyota-Insassen wurden getötet. Aus den anderen Fahrzeugen wurden sechs Personen überwiegend schwer verletzt. Unbeteiligte Zeugen waren nicht vorhanden.

  16. jsc2017e136058 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Scott Tingle of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Tingle, Anton Shkaplerov of t

    NASA Image and Video Library

    2017-11-30

    jsc2017e136058 - On a snowy night at Red Square in Moscow, Expedition 54-55 crewmember Scott Tingle of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Tingle, Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  17. Within-plant distribution of Aulacorthum solani (Hemiptera: Aphididae), on various greenhouse plants with implications for control.

    PubMed

    Jandricic, S E; Mattson, N S; Wraight, S P; Sanderson, J P

    2014-04-01

    Foxglove aphid, Aulacorthum solani (Kaltenbach) (Hemiptera: Aphididae), has recently undergone a status change from an occasional pest to a serious pest in greenhouses of North America and the United Kingdom. Little nonanecdotal information exists on the ecology of this insect in greenhouse crops. To help improve integrated pest management decisions for A. solani, the within-plant distribution of this pest was explored on a variety of common greenhouse plants in both the vegetative and flowering stage. This aphid generally was found on lower leaves of vegetative plants, but was found higher in the canopy on reproductive plants (on flowers, flower buds, or upper leaves). Aphid numbers were not consistently positively correlated with total leaf surface areas within plant strata across plant species. Thus, the observed differences in preferred feeding sites on vegetative versus flowering plants are possibly a response to differences in nutritional quality of the various host-plant tissues. Despite being anecdotally described as a "stem-feeding aphid," A. solani was rarely found feeding on stems at the population densities established in our tests, with the exception of racemes of scarlet sage (Salvia splendans). Although some previous reports suggested that A. solani prefers to feed on new growth of plants, our results indicate that mature leaves are preferred over growing tips and young leaves. The implications of the within-plant feeding preferences of A. solani populations with respect to both biological and chemical control are discussed.

  18. Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light.

    PubMed

    Arnold, Sarah E J; Chittka, Lars

    2012-07-01

    Patchy illumination presents foraging animals with a challenge, as the targets being sought may appear to vary in colour depending on the illumination, compromising target identification. We sought to explore how the bumblebee Bombus terrestris copes with tasks involving flower colour discrimination under patchy illumination. Light patches varied between unobscured daylight and leaf-shade, as a bee might encounter in and around woodland. Using a flight arena and coloured filters, as well as one or two different colours of artificial flower, we quantified how bees chose to forage when presented with foraging tasks under patchy illumination. Bees were better at discriminating a pair of similar colours under simulated unobscured daylight illumination than when foraging under leaf-shade illumination. Accordingly, we found that bees with prior experience of simulated daylight but not leaf-shade illumination initially preferred to forage in simulated daylight when all artificial flowers contained rewards as well as when only one colour was rewarding, whereas bees with prior experience of both illuminants did not exhibit this preference. Bees also switched between illuminants less than expected by chance. This means that bees prefer illumination conditions with which they are familiar, and in which rewarding flower colours are easily distinguishable from unrewarding ones. Under patchy illumination, colour discrimination performance was substantially poorer than in homogenous light. The bees' abilities at coping with patchy light may therefore impact on foraging behaviour in the wild, particularly in woodlands, where illumination can change over short spatial scales.

  19. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.

    PubMed

    Swoboda, I; Bhalla, P L

    1997-10-01

    The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.

  20. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    PubMed

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Food for Thought: The Mathematics of the Kitchen Garden

    ERIC Educational Resources Information Center

    Lyon, Anthony; Bragg, Leicha A.

    2011-01-01

    A kitchen garden is not just a place to grow food for cooking; it is a place of sensory stimulation through extraordinary explorations and investigations into the natural world. A kitchen garden contains vegetables, fruits, herbs, edible flowers, and/or ornamental plants; and animals such as chickens for supplying eggs, as well as manure for…

  2. Alternative Organisational Learning Therapy: An Empirical Case Study Using Behaviour and U Theory

    ERIC Educational Resources Information Center

    Ho, Li-An; Kuo, Tsung-Hsien

    2009-01-01

    This paper draws on the concept and process of deeper learning, namely the U theory (Senge, Scharmer, Jaworski, & Flowers, 2004a). As a driver to get a deeper exploration of organisational change process, the theory of U goes beyond the interpersonal aspects of learning, instead focusing on a deeper personal generative learning that emphasizes…

  3. Monet Flowers: How My Summer Trip Inspired a Garden of Art...

    ERIC Educational Resources Information Center

    Dunay, Cecelia M.

    1998-01-01

    Describes a lesson plan designed for first- through fifth-grade students in which they made their own impressionist-style artworks. Explains that the lesson was introduced with a discussion on Claude Monet, his many art prints, and the impressionist genre. Explores the differences between things of nature and man-made objects. Notes materials and…

  4. Floratherapy as a Creative Arts Intervention with Women in a Retirement Home

    ERIC Educational Resources Information Center

    Perryman, Kristi L.; Keller, Elizabeth A.

    2009-01-01

    Floratherapy is a creative arts technique involving the manipulation and use of flowers. It can be used to facilitate clients' awareness into inner issues, allowing them to view their life situations through a nonthreatening and often nonverbal means. This article presents one portion of a qualitative research project designed to explore the…

  5. Aqui y Alla: Exploring Our Lives through Poetry--Here and There

    ERIC Educational Resources Information Center

    Schlessman, Elizabeth

    2010-01-01

    The bilingual poetry and stories of Salvadoran writer Jorge Argueta have been an invaluable resource in this author's classroom. She has used poems from "Talking with Mother Earth" for homework and class analysis during a study of ecosystems, the story "Xochitl and the Flowers" to lead into persuasive writing, and "Bean Soup" to teach…

  6. Infants' Recognition of Objects Using Canonical Color

    ERIC Educational Resources Information Center

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  7. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  8. Short-term effects of burn season on flowering phenology of savanna plants

    USGS Publications Warehouse

    Pavlovic, N.B.; Leicht-Young, S. A.; Grundel, R.

    2011-01-01

    We examined the effect of season of burn on flowering phenology of groundlayer species, in the year following burns, in a mesic-sand Midwestern oak savanna. Burn treatments were fall, early-season, growing-season, late-season, and 1 or 5 years after a prior early-season wildfire. For these treatments, we compared the number of flowering stems and of flowers for species overall, for the 20 most prolifically flowering species, as well as for species grouped by flowering phenoperiods, and by growth form. Growing-season burn had a significant negative effect on number of flowering stems and total number of flowers. This effect occurred when either the burn occurred during the flowering season or during the season prior to the flowering phenoperiod. Tradescantia ohiensis showed expedited flowering and Phlox pilosa showed delayed flowering in response to early-season burning. Flowering of early shrubs was reduced by the previous fall and early-spring fires, while flowering of mid-season blooming shrubs was reduced by the early- and growing-season burns. Vaccinium and Gaylussacia, early-flowering shrubs, produced fewer flowers 1 year after than 5 years after an early-season burn. Arabis lyrata showed reduced flowering from the early-season burn. We also found four instances where the early-spring burn effect on flowering was more severe than the fall burn effect, suggesting that many frequent early-season burns may be deleterious to flowering and reproduction of some species. Burns occurring too frequently in the same season could negatively affect future flowering and reproduction of these plant species.

  9. Identification of successive flowering phases highlights a new genetic control of the flowering pattern in strawberry

    PubMed Central

    Perrotte, Justine; Guédon, Yann; Gaston, Amèlia; Denoyes, Béatrice

    2016-01-01

    The genetic control of the switch between seasonal and perpetual flowering has been deciphered in various perennial species. However, little is known about the genetic control of the dynamics of perpetual flowering, which changes abruptly at well-defined time instants during the growing season. Here, we characterize the perpetual flowering pattern and identify new genetic controls of this pattern in the cultivated strawberry. Twenty-one perpetual flowering strawberry genotypes were phenotyped at the macroscopic scale for their course of emergence of inflorescences and stolons during the growing season. A longitudinal analysis based on the segmentation of flowering rate profiles using multiple change-point models was conducted. The flowering pattern of perpetual flowering genotypes takes the form of three or four successive phases: an autumn-initiated flowering phase, a flowering pause, and a single stationary perpetual flowering phase or two perpetual flowering phases, the second one being more intense. The genetic control of flowering was analysed by quantitative trait locus mapping of flowering traits based on these flowering phases. We showed that the occurrence of a fourth phase of intense flowering is controlled by a newly identified locus, different from the locus FaPFRU, controlling the switch between seasonal and perpetual flowering behaviour. The role of this locus was validated by the analysis of data obtained previously during six consecutive years. PMID:27664957

  10. Airbag Tracks on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The circular shapes seen on the martian surface in these images are 'footprints' left by the Mars Exploration Rover Opportunity's airbags during landing as the spacecraft gently rolled to a stop. Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24, 2004, Earth-received time. The circular region of the flower-like feature on the right is about the size of a basketball. Scientists are studying the prints for more clues about the makeup of martian soil. The images were taken at Meridiani Planum, Mars, by the panoramic camera on the Mars Exploration Rover Opportunity.

  11. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis.

    PubMed

    Bowman, Jeff S; Berthiaume, Chris T; Armbrust, E Virginia; Deming, Jody W

    2014-08-01

    Newly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community. The analysis links genes for key biogeochemical processes to the Rhizobiales, including dimethylsulfide uptake, betaine glycine turnover, and halocarbon production. Nodulation and nitrogen fixation genes characteristic of terrestrial root-nodulating Rhizobiales were generally lacking from these metagenomes. Non-Rhizobiales clades at the ice surface had genes that would enable additional biogeochemical processes, including mercury reduction and dimethylsulfoniopropionate catabolism. Although the ultimate source of the observed microbial community is not known, considerations of the possible role of eolian deposition or transport with particles entrained during ice formation favor a suspended particle source for this microbial community. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  13. Life history traits in selfing versus outcrossing annuals: exploring the 'time-limitation' hypothesis for the fitness benefit of self-pollination

    PubMed Central

    Snell, Rebecca; Aarssen, Lonnie W

    2005-01-01

    Background Most self-pollinating plants are annuals. According to the 'time-limitation' hypothesis, this association between selfing and the annual life cycle has evolved as a consequence of strong r-selection, involving severe time-limitation for completing the life cycle. Under this model, selection from frequent density-independent mortality in ephemeral habitats minimizes time to flower maturation, with selfing as a trade-off, and / or selection minimizes the time between flower maturation and ovule fertilization, in which case selfing has a direct fitness benefit. Predictions arising from this hypothesis were evaluated using phylogenetically-independent contrasts of several life history traits in predominantly selfing versus outcrossing annuals from a data base of 118 species distributed across 14 families. Data for life history traits specifically related to maturation and pollination times were obtained by monitoring the start and completion of different stages of reproductive development in a greenhouse study of selfing and outcrossing annuals from an unbiased sample of 25 species involving five pair-wise family comparisons and four pair-wise genus comparisons. Results Selfing annuals in general had significantly shorter plant heights, smaller flowers, shorter bud development times, shorter flower longevity and smaller seed sizes compared with their outcrossing annual relatives. Age at first flower did not differ significantly between selfing and outcrossing annuals. Conclusions This is the first multi-species study to report these general life-history differences between selfers and outcrossers among annuals exclusively. The results are all explained more parsimoniously by selection associated with time-limitation than by selection associated with pollinator/mate limitation. The shorter bud development time reported here for selfing annuals is predicted explicitly by the time-limitation hypothesis for the fitness benefit of selfing (and not by the alternative 'reproductive assurance' hypothesis associated with pollinator/mate limitation). Support for the time-limitation hypothesis is also evident from published surveys: whereas selfers and outcrossers are about equally represented among annual species as a whole, selfers occur in much higher frequencies among the annual species found in two of the most severely time-limited habitats where flowering plants grow – deserts and cultivated habitats. PMID:15707481

  14. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns.

    PubMed

    Papiorek, S; Junker, R R; Alves-Dos-Santos, I; Melo, G A R; Amaral-Neto, L P; Sazima, M; Wolowski, M; Freitas, L; Lunau, K

    2016-01-01

    Colour is one of the most obvious advertisements of flowers, and occurs in a huge diversity among the angiosperms. Flower colour is responsible for attraction from a distance, whereas contrasting colour patterns within flowers aid orientation of flower visitors after approaching the flowers. Due to the striking differences in colour vision systems and neural processing across animal taxa, flower colours evoke specific behavioural responses by different flower visitors. We tested whether and how yellow flowers differ in their spectral reflectance depending on the main pollinator. We focused on bees and birds and examined whether the presence or absence of the widespread UV reflectance pattern of yellow flowers predicts the main pollinator. Most bee-pollinated flowers displayed a pattern with UV-absorbing centres and UV-reflecting peripheries, whereas the majority of bird-pollinated flowers are entirely UV- absorbing. In choice experiments we found that bees did not show consistent preferences for any colour or pattern types. However, all tested bee species made their first antennal contact preferably at the UV-absorbing area of the artificial flower, irrespective of its spatial position within the flower. The appearance of UV patterns within flowers is the main difference in spectral reflectance between yellow bee- and bird-pollinated flowers, and affects the foraging behaviour of flower visitors. The results support the hypothesis that flower colours and the visual capabilities of their efficient pollinators are adapted to each other. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. [The changes in spectral features of the staple-food bamboos of giant panda after flowering].

    PubMed

    Liu, Xue-Hua; Wu, Yan

    2012-12-01

    Large-area flowering of the giant pandas' staple food is an important factor which can influence their survival. Therefore, it is necessary to predict the bamboo flowering. Foping Nature Reserve was taken as the study area. The research selected the giant pandas' staple-food bamboos Bashania fargesii, Fargesia qinlingensis and Fargesia dracocephala with different flowering situations (i. e., flowering, potential flowering, non-flowering with far distance) to measure the spectral reflectance of bamboo leaves. We studied the influence of bamboo flowering on the spectral features of three bamboo species through analyzing the original spectral reflectance and their red edge parameters. The results showed that (1) the flowering changed the spectra features of bamboo species. The spectral reflectance of B. fargesii shows a pattern: flowering bamboo < potential flowering bamboo < non-flowering bamboo with far distance, while F. qinlingensis and F. dracocephala show the different pattern: flowering bamboo > or = potential flowering bamboo > non-flowering bamboo with far distance. Among three bamboo species, F. dracocephala showed the greatest change, and then F. qinlingensis. (2) After bamboo flowering, the red edge of B. fargesii has no obvious shifting, while the other two bamboos have distinctive shifting towards the shorter waves. The study found that the original spectral feature and the red edge all changed under various flowering states, which can be used to provide the experimental basis and theoretic support for the future prediction of bamboo flowering through remote sensing.

  16. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea.

    PubMed

    Thairu, Margaret W; Brunet, Johanne

    2015-05-01

    Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability.

    PubMed

    Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.

  18. Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

    PubMed Central

    Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena

    2018-01-01

    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453

  19. Flowers in Their Variety.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2002-01-01

    Describes the diversity of flowers with regard to the flower paintings of Pierre-Joseph Redoute, books about flowers, and research in genetic studies. Discusses gardening flowers and flowering strategies and criticizes the fact that biology education has moved steadily away from plants. (KHR)

  20. Low flower-size variation in bilaterally symmetrical flowers: Support for the pollination precision hypothesis.

    PubMed

    Nikkeshi, Aoi; Kurimoto, Daiki; Ushimaru, Atushi

    2015-12-01

    The evolutionary shift from radial to bilateral symmetry in flowers is generally associated with the evolution of low flower-size variation. This phenomenon supports the hypothesis that the lower size variation in bilateral flowers can be attributed to low pollinator diversity. In this study, we propose two other hypotheses to explain low flower-size variation in bilateral symmetrical flowers. To test the three hypotheses, we examined the relative importance of pollinator diversity, composition, and bilateral symmetry itself as selective forces on low flower-size variation. We examined pollinator diversity and composition and flower-size variation for 36 species in a seminatural ecosystem with high bee richness and frequent lepidopteran visitation. Bilateral flowers were more frequently visited than radial flowers by larger bees, but functional-group diversity of the pollinators did not differ between symmetry types. Although bilateral flowers had significantly lower flower-size variation than radial flowers, flower-size variation did not vary with pollinator diversity and composition but was instead related to bilateral symmetry. Our results suggest that the lower size variation in bilateral flowers might have evolved under selection favoring the control of pollinator behavior on flowers to enhance the accurate placement of pollen on the body of the pollinator, independent of pollinator type. Because of the limited research on this issue, future work should be conducted in various types of plant-pollinator communities worldwide to further clarify the issue. © 2015 Botanical Society of America.

  1. Ecological causes and consequences of flower color polymorphism in a self-pollinating plant (Boechera stricta).

    PubMed

    Vaidya, Priya; McDurmon, Ansley; Mattoon, Emily; Keefe, Michaela; Carley, Lauren; Lee, Cheng-Ruei; Bingham, Robin; Anderson, Jill T

    2018-04-01

    Intraspecific variation in flower color is often attributed to pollinator-mediated selection, yet this mechanism cannot explain flower color polymorphisms in self-pollinating species. Indirect selection mediated via biotic and abiotic stresses could maintain flower color variation in these systems. The selfing forb, Boechera stricta, typically displays white flowers, but some individuals produce purple flowers. We quantified environmental correlates of flower color in natural populations. To disentangle plasticity from genotypic variation, we performed a multiyear field experiment in five gardens. In controlled conditions, we evaluated herbivore preferences and the effects of drought stress and soil pH on flower color expression. In natural populations, purple-flowered individuals experienced lower foliar herbivory than did their white-flowered counterparts. This pattern also held in the common gardens. Additionally, low-elevation environments induced pigmented flowers (plasticity), and the likelihood of floral pigmentation decreased with source elevation of maternal families (genetic cline). Viability selection favored families with pigmented flowers. In the laboratory, herbivores exerted greater damage on tissue derived from white- vs purple-flowered individuals. Furthermore, drought induced pigmentation in white-flowered lineages, and white-flowered plants had a fecundity advantage in the well-watered control. Flower color variation in selfing species is probably maintained by herbivory, drought stress, and other abiotic factors that vary spatially. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. How Do Trees Know When to Flower? Predicting Reproductive Phenology of Douglas-fir with Changing Winter and Spring Temperatures

    NASA Astrophysics Data System (ADS)

    Prevey, J.; St Clair, B.; Harrington, C.

    2016-12-01

    Flowering at the right time is one of the primary ways that plants are adapted to their environment. Trees that flower too early risk cold damage to vulnerable new tissues and those that flower too late miss peak resources or may mistime flowering to coincide with other trees, altering outcrossing rates and gene flow. Past observations indicate that temperature cues over winter and spring influence the timing of flowering in many tree species. Understanding these cues is important for predicting how flowering phenology of trees will change with a changing climate.We developed predictive models of flowering for Douglas-fir, an abundant and commercially important tree in the Pacific Northwest. We assembled over 10,000 flowering observations of trees from 11 sites across western Oregon and Washington. We modeled the dates of flowering using hourly temperature data; our models of flowering were adapted from previous models of vegetative budburst and height growth initiation developed for Douglas-fir. Preliminary results show that both chilling (cold) and forcing (warm) temperatures over winter and spring are important determinants of flowering time for Douglas-fir. This suggests that as spring temperatures warm in the future, Douglas-fir across the Pacific Northwest will flower earlier, unless plants experience insufficient chilling over winter, in which case it is possible that Douglas-fir may flower later than in the past, or not flower at all. At one site, Douglas-fir genotypes from different geographic regions flowered in the same order from year to year, indicating that both temperature and heredity influence flowering. Knowledge of the environmental and genetic cues that drive the timing of flowering can help predict how changes in temperature under various climate models could change flowering time across sites. These models may also indicate the geographic areas where future climate could enhance or reduce flowering of Douglas-fir in the future.

  3. Antitumour evaluation of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantea L. flower.

    PubMed

    Habib, Muhammad Rowshanul; Karim, Muhammad Rezaul

    2012-12-01

    The objective of the study is to explore the anticancer activity of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantea flower against Ehrlich ascites carcinoma cells (EAC) in Swiss albino mice. The activity of DEHP was evaluated at doses of 10, 20 and 40 mg kg-1 body mass applied intraperitoneally. DEHP showed a significant decrease in viable cell count (p < 0.05), mass gain (due to tumour burden) and elevated the life span of EAC cell bearing mice. Altered hematological profiles such as RBC, hemoglobin, WBC and differential count were reverted to normal levels in DEHP-treated mice. DEHP also brought back altered biochemical parameters (glucose, cholesterol, triglycerides, blood urea, SALP and SGOT) to normal level. Results of this study indicate that DEHP show potent dose dependent antitumour activity against EAC in vivo.

  4. Linguistic Insecurity: The Effect of Attitudes toward Language on Language Production. Flowers of Evil.

    ERIC Educational Resources Information Center

    Baron, Dennis E.

    This paper, a small part of a larger project which explores the effects of linguistic insecurity on language production, discusses the negative attitudes toward language of some of the present-day "language elite"--those who take pleasure in or earn their livelihood by "Correcting every body else." Linguistic insecurity is, then, the feeling that…

  5. Why Can't Tyrone Write: Reconceptualizing Flower and Hayes for African-American Adolescent Male Writers

    ERIC Educational Resources Information Center

    Stormer, Kimberly J.

    2017-01-01

    Using qualitative methods and a case study design, the perceptions and writing processes of three African-American eighth grade males were explored. Data were derived from semi-structured and informal interviews, and document analysis. The study concluded that the perceptions of the three participants' writing processes did not adhere to the steps…

  6. Planning Intentionally for Children's Outdoor Environments: The Gift of Change

    ERIC Educational Resources Information Center

    Rosenow, Nancy

    2011-01-01

    When the author was a child 50 years ago, nobody planned her outdoor environment. Her home was close to flower-filled meadows that she could explore freely, and her preschool and elementary school classrooms opened onto beautiful woodlands that children used as an important part of their day-to-day learning. The last time she visited her old…

  7. Exploring Plants, Insects, and Animals: Opportunities for Cultivating Empathy in Children

    ERIC Educational Resources Information Center

    Belz, Paul

    2012-01-01

    Imagine what a child can learn by slithering across the ground like a worm or snail! Children learn many things from their connections with beautiful living things such as flowers and rabbits. Many adults are surprised when young scientists identify with "yucky" animals and plants. A child who connects with creatures ranging from the cuddly to the…

  8. The Interviewer Wore a Flower in Her Hair: The Effect of Hair Ornamentation on Compliance to a Survey Request

    ERIC Educational Resources Information Center

    Stefan, Jordy; Jacob, Céline; Guéguen, Nicolas

    2015-01-01

    Studies have shown that restaurant waitresses with hair ornamentation receive higher tips than waitresses without ornaments. However, the effect of such ornamentation on other behaviors has never been explored. In this study, the effect of a female interviewer's hair ornamentation on compliance with a survey request was examined. Male and female…

  9. What flowers do we like? The influence of shape and color on the rating of flower beauty.

    PubMed

    Hůla, Martin; Flegr, Jaroslav

    2016-01-01

    There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006) rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research.

  10. What flowers do we like? The influence of shape and color on the rating of flower beauty

    PubMed Central

    Flegr, Jaroslav

    2016-01-01

    There is no doubt that people find flowers beautiful. Surprisingly, we know very little about the actual properties which make flowers so appealing to humans. Although the evolutionary aesthetics provides some theories concerning generally preferred flower traits, empirical evidence is largely missing. In this study, we used an online survey in which residents of the Czech Republic (n = 2006) rated the perceived beauty of 52 flower stimuli of diverse shapes and colors. Colored flowers were preferred over their uncolored versions. When controlling for flower shape, we found an unequal preference for different flower colors, blue being the most and yellow the least preferred. In the overall assessment of beauty, shape was more important than color. Prototypical flowers, i.e., radially symmetrical flowers with low complexity, were rated as the most beautiful. We also found a positive effect of sharp flower contours and blue color on the overall rating of flower beauty. The results may serve as a basis for further studies in some areas of the people-plant interaction research. PMID:27330863

  11. Foraging behavior of three bee species in a natural mimicry system: female flowers which mimic male flowers in Ecballium elaterium (Cucurbitaceae).

    PubMed

    Dukas, Reuyen

    1987-12-01

    The behavior of Apis mellifera and two species of solitary bees which forage in the flowers of monoecious Ecballium elaterium (L.) A. Rich (Cucurbitaceae) were compared. The female flowers of E. elaterium resemble male flowers visually but are nectarless, and their number is relatively smaller. Apis mellifera was found to discriminate between the two genders and to pay relatively fewer visits to female flowers (mean of 30% relative to male flowers) from the beginning of their activity in the morning. The time spent by honeybees in female flowers is very short compared to that spent in male flowers. It is surmised that the bees remember the differences between the flowers where they foraged on the previous days. In contrast, the two species of solitary bees Lasioglossum politum (Morawitz) (Halictidae) and Ceratina mandibularis Fiese (Anthophoridae) visit the female flowers with nearly equal frequencies at the beginning of each foraging day and stay longer in these flowers. Over the day there is a decline in the relative frequency of visits to female flowers and also in the mean time spent in them. The study shows that bees can collect rewards at high efficiency from the flowers of Ecballium elaterium because of their partial discrimination ability and the scarcity of the mimic flowers. It is suggested that the memory pattern of some solitary bees may be different from that of Apis mellifera. It seems that the limited memory and discrimination ability of bees can lead to a high frequency of visits to the mimic flowers during a long flowering season.

  12. A flower image retrieval method based on ROI feature.

    PubMed

    Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan

    2004-07-01

    Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

  13. Explaining the apparent paradox of persistent selection for early flowering.

    PubMed

    Austen, Emily J; Rowe, Locke; Stinchcombe, John R; Forrest, Jessica R K

    2017-08-01

    Decades of observation in natural plant populations have revealed pervasive phenotypic selection for early flowering onset. This consistent pattern seems at odds with life-history theory, which predicts stabilizing selection on age and size at reproduction. Why is selection for later flowering rare? Moreover, extensive evidence demonstrates that flowering time can and does evolve. What maintains ongoing directional selection for early flowering? Several non-mutually exclusive processes can help to reconcile the apparent paradox of selection for early flowering. We outline four: selection through other fitness components may counter observed fecundity selection for early flowering; asymmetry in the flowering-time-fitness function may make selection for later flowering hard to detect; flowering time and fitness may be condition-dependent; and selection on flowering duration is largely unaccounted for. In this Viewpoint, we develop these four mechanisms, and highlight areas where further study will improve our understanding of flowering-time evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.

  15. Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa

    PubMed Central

    Morales, Carolina L.; Traveset, Anna; Harder, Lawrence D.

    2013-01-01

    Background and Aims Large floral displays have opposing consequences for animal-pollinated angiosperms: they attract more pollinators but also enable elevated among-flower self-pollination (geitonogamy). The presence of sterile flowers as pollinator signals may enhance attraction while allowing displays of fewer open fertile flowers, limiting geitonogamy. The simultaneous contributions of fertile and non-fertile display components to pollinator attraction and reproductive output remain undetermined. Methods The simultaneous effects of the presence of sterile flowers and fertile-flower display size in two populations of Leopoldia comosa were experimentally assessed. Pollinator behaviour, pollen removal and deposition, and fruit and seed production were compared between intact plants and plants with sterile flowers removed. Key Results The presence of sterile flowers almost tripled pollinator attraction, supplementing the positive effect of the number of fertile flowers on the number of bees approaching inflorescences. Although attracted bees visited more flowers on larger inflorescences, the number visited did not additionally depend on the presence of sterile flowers. The presence of sterile flowers improved all aspects of plant performance, the magnitude of plant benefit being context dependent. During weather favourable to pollinators, the presence of sterile flowers increased pollen deposition on stigmas of young flowers, but this difference was not evident in older flowers, probably because of autonomous self-pollination in poorly visited flowers. Total pollen receipt per stigma decreased with increasing fertile display size. In the population with more pollinators, the presence of sterile flowers increased fruit number but not seed set or mass, whereas in the other population sterile flowers enhanced seeds per fruit, but not fruit production. These contrasts are consistent with dissimilar cross-pollination and autonomous self-pollination, coupled with the strong predispersal inbreeding depression exhibited by L. comosa populations. Conclusions Sterile flowers enrich pollination quality by promoting pollen export and import, while limiting the mating costs of geitonogamy associated with large fertile displays. PMID:23131298

  16. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): direct and correlated responses to selection on flower size and number.

    PubMed

    Worley, A C; Barrett, S C

    2000-10-01

    Trade-offs between flower size and number seem likely to influence the evolution of floral display and are an important assumption of several theoretical models. We assessed floral trade-offs by imposing two generations of selection on flower size and number in a greenhouse population of bee-pollinated Eichhornia paniculata. We established a control line and two replicate selection lines of 100 plants each for large flowers (S+), small flowers (S-), and many flowers per inflorescence (N+). We compared realized heritabilities and genetic correlations with estimates based on restricted-maximum-likelihood (REML) analysis of pedigrees. Responses to selection confirmed REML heritability estimates (flower size, h2 = 0.48; daily flower number, h2 = 0.10; total flower number, h2 = 0.23). Differences in nectar, pollen, and ovule production between S+ and S- lines supported an overall divergence in investment per flower. Both realized and REML estimates of the genetic correlation between daily and total flower number were r = 1.0. However, correlated responses to selection were inconsistent in their support of a trade-off. In both S- lines, correlated increases in flower number indicated a genetic correlation of r = -0.6 between flower size and number. In contrast, correlated responses in N+ and S+ lines were not significant, although flower size decreased in one N+ line. In addition, REML estimates of genetic correlations between flower size and number were positive, and did not differ from zero when variation in leaf area and age at first flowering were taken into account. These results likely reflect the combined effects of variation in genes controlling the resources available for flowering and genes with opposing effects on flower size and number. Our results suggest that the short-term evolution of floral display is not necessarily constrained by trade-offs between flower size and number, as is often assumed.

  17. The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes

    PubMed Central

    Watts, Stella; Dormann, Carsten F.; Martín González, Ana M.; Ollerton, Jeff

    2016-01-01

    Background and Aims Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant–pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant–pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization. Methods A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization. Key Results All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant–pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d' quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas. Conclusions We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist. PMID:27562649

  18. [Microscopic anatomy and volatile secondary metabolites at three stages of development of the inflorescences of Lantana camara (Verbenaceae)].

    PubMed

    Caroprese Araque, José Fernando; Parra Garcés, María Isabel; Arrieta Prieto, Dagoberto; Stashenko, Elena

    2011-03-01

    Plants of the Verbenaceae family, like L. camara, have called the attention of researchers, not only because of its high diversity and its distribution around the world, but also for its variable use as popular medicine to treat diseases like tetanus, rheumatism and malaria, and as bactericide and insecticide. To assess this, the morphology and ontogeny of the inflorescences of Lantana camara and the chemical composition of volatile secondary metabolites were analyzed at three different ontogeny stages. Plants were collected from the experimental crop area in CENIVAM, Bucaramanga, Colombia. Fresh inflorescence stages were established and analyzed using a stereoscopic microscope, fixed in FAA and included in parafine. Transversal and longitudinal 10 microm thick sections were prepared using a rotative microtome, safranine-fastgreen stained and were observed and photographed using a light microscope. The chemical composition of volatile secondary metabolites were analyzed for each stage. The analytes, obtained from 0.7 g of plant, were isolated by solid phase micro-extraction in the headspace mode (HS-SPME) and were placed in 20 ml vials. The components were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Stage I was microscopically characterized by an immature development in which the meristematic differentiation begins with a mass of cells. In Stage II, the morphogenetic movement gives way to the formation of the respective floral sexual structures, calyx and corolla. In Stage III, the different organs are conspicuous: four stamens epipetals and didynamous, monocarpelar, biloculate and globose gynoecium, upper ovary and lateral stigma; the flowers are hermaphroditic. The main secondary metabolites detected by GC-MS were bicyclosesquiphellandrene, E-beta-farnesene, E-beta-caryophyllene, gamma-muurolene + gamma-curcumene and alpha-zingiberene. Nevertheless, this study reports for the first time in plant species alpha-gurjunene, gamma-amorphene, alpha-muurolene, sesquithujene, alpha-trans-bergamotene and trans-cadina-1,4-diene. The diversity of compounds found can be only explained by the extraction methods employed, the developmental stages and section of the plant, the geographic conditions, collection time and the genetic constitution of the evaluated species.

  19. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes.

    PubMed

    Watts, Stella; Dormann, Carsten F; Martín González, Ana M; Ollerton, Jeff

    2016-09-01

    Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant-pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant-pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization. A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization. All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant-pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d' quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas. We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    PubMed

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  1. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development

    PubMed Central

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-01-01

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146

  2. Flower power: Floral and resource manipulations reveal how and why reproductive trade-offs occur for lowbush blueberry (Vaccinium angustifolium).

    PubMed

    Bajcz, Alex W; Drummond, Francis A

    2017-08-01

    Plant reproductive trade-offs are thought to be caused by resource limitations or other constraints, but more empirical support for these hypotheses would be welcome. Additionally, quantitative characterization of these trade-offs, as well as consideration of whether they are linear, could yield additional insights. We expanded our flower removal research on lowbush blueberry ( Vaccinium angustifolium ) to explore the nature of and causes of its reproductive trade-offs. We used fertilization, defoliation, positionally biased flower removal, and multiple flower removal levels to discern why reproductive trade-offs occur in this taxon and to plot these trade-offs along two continuous axes. We found evidence through defoliation that vegetative mass per stem may trade off with reproductive effort in lowbush blueberry because the two traits compete for limited carbon. Also, several traits including ripe fruit production per reproductive node and fruit titratable acidity may be "sink-limited"-they decline with increasing reproductive effort because average reproductive structure quality declines. We found no evidence that reproductive trade-offs were caused by nitrogen limitation. Use of reproductive nodes remaining per stem as a measure of reproductive effort indicated steeper trade-offs than use of the proportion of nodes remaining. For five of six traits, we found evidence that the trade-off could be concave down or up instead of strictly linear. Synthesis . To date, studies have aimed primarily at identifying plant reproductive trade-offs. However, understanding how and why these trade-offs occur represent the exciting and necessary next steps for this line of inquiry.

  3. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    PubMed

    Popic, Tony J; Davila, Yvonne C; Wardle, Glenda M

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2) area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  4. Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: Net Sampling Out-Perform Pan Traps

    PubMed Central

    Popic, Tony J.; Davila, Yvonne C.; Wardle, Glenda M.

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service. PMID:23799127

  5. For she that hath, to her shall be given…Implications of flowering in Anemone nemorosa L.

    PubMed

    Pontoppidan, M-B; Petersen, P M; Philipp, M

    2011-11-01

    We looked for life-history trade-offs between flowering, vegetative growth and somatic maintenance in the common woodland herb Anemone nemorosa. A. nemorosa forms a horizontal rhizome system consisting of previously formed annual segments and terminated by a flowering or non-flowering shoot. Resources acquired by the aboveground parts are used for flowering, seed production, storage and growth of the annual segments. Resources stored in the rhizome during the growing period are used for preformation of buds, somatic maintenance between two growing periods and development of aboveground parts in the following spring. We hypothesised that the decision to invest in flower buds depends on the amount of resources stored in the recently formed annual segment. We also hypothesised a trade-off between flowering and segment growth and, finally, as a consequence, we expected individual rhizomes to alternate between the flowering and the non-flowering state. We found that segments producing flower buds were significantly longer than non-flowering segments, indicating that resource level influences the function of the preformed buds. Contrary to our expectations, we found flowering rhizomes produced longer annual segments than non-flowering rhizomes. We suggest the larger leaf area of flowering rhizomes and occasional abortion of flowers or seeds as possible mechanisms behind this pattern. Our study shows that even though the decision to produce a flower bud is taken in another time-frame than that in which the actual flowering and fruiting takes place, an ostensibly inexpedient decision is changed to a neutral or even an advantageous incident. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. The cutting effect of male flower on the size of the fruit cob, the size of the fruit and seeds in Porang (Amorphophallus muelleri Blume)

    NASA Astrophysics Data System (ADS)

    Harijati, Nunung; Navisya, Hikma Isnailul; Diao, Ying

    2017-11-01

    The formation of fruits and seeds depends on pollination and fertilization. For the fruit itself, its formation and final size are closely correlated with the gibberellin content. It is known that pollen is one source of gibberellins. Porang is a member of the genus Amorphophallus, which has a compound fruit arranged on a cob and monoecious. Each fruit may contain a single seed or multiple seeds. The purpose of this study was to determine the effect of male flower removal on the size of the fruit cob, the number of fruit per ear, the seed number per ear, the fruit size and the proportion of fruit that contains single or multiple seeds. Removing male flowers is done by cutting the cluster of male flowers when the flower is very young and still wrapped with a sheath. The resulting data were analyzed using an unpaired t-test. Analysis of the results shows that the diameter and length of the cob of a cut-male flower are lower than the normal flower. The number of fruit or seed numbers per ear of the cut-male flower is lower than the normal flower. However, the length and diameter of the fruit of the cut-male flower is higher than the normal flower. The normal flower has higher numbers of individual fruit with single seeds than cut-male flowers, and cut-male flowers have higher incidences of fruit containing more than one seed (multiple seeds). The maximum seed number of individual fruit of normal flowers and cut-male flowers is 4 and 7 seeds respectively. In categories of fruit containing multiple seeds, the individual fruit containing 2 seeds has the highest proportion of cut-male flowers.

  7. [Characteristics of arthropod community in alpine cabbage fields].

    PubMed

    Wang, Xiang-ping; Zhang, Zhong-ning

    2007-01-01

    The study on the community structure of arthropod in the alpine cabbage fields of Hubei Province showed that the dominant pests were Brevicoryne brassicae, Mamestra brassicae and Plutella xylostella, while the dominant natural enemies were Diaeretiella rapae, Cotesia plutella, Erigonidum gramiaicolum and Syrphus corollae. The richness, diversity index, evenness index and dominance index of pest and natural enemy sub-communities all changed with time. The dominance index of pest sub-community was higher, while its diversity and evenness indices were lower than those of natural enemy sub-community. Based on fuzzy clustering analysis, the pest and natural enemy subcommunities of 14 time sequences were grouped into 4 and 3 sorts, respectively.

  8. [Natural history of flowers and gravity].

    PubMed

    Yamashita, Masamichi; Tomita-Yokotani, Kaori; Nakamura, Teruko

    2004-06-01

    Many flowers have coevolved with their pollinator animals. Gravity has been one of selection pressure for the evolution of flowers. Gravity rules morphology and other features of flowers in many aspects. Pair matching between the flower and its specific pollinator is one of factors that determine the fitness of both sides. Evolution of flower morphology and its molecular basis are reviewed briefly. Anemophilous flowers are also under the influence of gravity. Shape and other features of entomophilous flowers have been highly diversed. Gravitropic response and its mechanism are summarized. Recent findings on gravitropism and phototropism of pistils and stamens are presented in this article.

  9. Flower tracking in hawkmoths: behavior and energetics.

    PubMed

    Sprayberry, Jordanna D H; Daniel, Thomas L

    2007-01-01

    As hovering feeders, hawkmoths cope with flower motions by tracking those motions to maintain contact with the nectary. This study examined the tracking, feeding and energetic performance of Manduca sexta feeding from flowers moving at varied frequencies and in different directions. In general we found that tracking performance decreased as frequency increased; M. sexta tracked flowers moving at 1 Hz best. While feeding rates were highest for stationary flowers, they remained relatively constant for all tested frequencies of flower motion. Calculations of net energy gain showed that energy expenditure to track flowers is minimal compared to energy intake; therefore, patterns of net energy gain mimicked patterns of feeding rate. The direction effects of flower motion were greater than the frequency effects. While M. sexta appeared equally capable of tracking flowers moving in the horizontal and vertical motion axes, they demonstrated poor ability to track flowers moving in the looming axis. Additionally, both feeding rates and net energy gain were lower for looming axis flower motions.

  10. Flower orientation enhances pollen transfer in bilaterally symmetrical flowers.

    PubMed

    Ushimaru, Atushi; Dohzono, Ikumi; Takami, Yasuoki; Hyodo, Fujio

    2009-07-01

    Zygomorphic flowers are usually more complex than actinomorphic flowers and are more likely to be visited by specialized pollinators. Complex zygomorphic flowers tend to be oriented horizontally. It is hypothesized that a horizontal flower orientation ensures effective pollen transfer by facilitating pollinator recognition (the recognition-facilitation hypothesis) and/or pollinator landing (the landing-control hypothesis). To examine these two hypotheses, we altered the angle of Commelina communis flowers and examined the efficiency of pollen transfer, as well as the behavior of their visitors. We exposed unmanipulated (horizontal-), upward-, and downward-facing flowers to syrphid flies (mostly Episyrphus balteatus), which are natural visitors to C. communis. The frequency of pollinator approaches and landings, as well as the amount of pollen deposited by E. balteatus, decreased for the downward-facing flowers, supporting both hypotheses. The upward-facing flowers received the same numbers of approaches and landings as the unmanipulated flowers, but experienced more illegitimate landings. In addition, the visitors failed to touch the stigmas or anthers on the upward-facing flowers, leading to reduced pollen export and receipt, and supporting the landing-control hypothesis. Collectively, our data suggested that the horizontal orientation of zygomorphic flowers enhances pollen transfer by both facilitating pollinator recognition and controlling pollinator landing position. These findings suggest that zygomorphic flowers which deviate from a horizontal orientation may have lower fitness because of decreased pollen transfer.

  11. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae): morphological and molecular analyses of flower organ identity

    PubMed Central

    2009-01-01

    Background The ornamental crop Calluna vulgaris is of increasing importance to the horticultural industry in the northern hemisphere due to a flower organ mutation: the flowers of the 'bud-flowering' phenotype remain closed i.e. as buds throughout the total flowering period and thereby maintain more colorful flowers for a longer period of time than the wild-type. This feature is accompanied and presumably caused by the complete lack of stamens. Descriptions of this botanical particularity are inconsistent and partially conflicting. In order to clarify basic questions of flower organ identity in general and stamen loss in detail, a study of the wild-type and the 'bud-flowering' flower type of C. vulgaris was initiated. Results Flowers were examined by macro- and microscopic techniques. Organ development was investigated comparatively in both the wild-type and the 'bud-flowering' type by histological analyses. Analysis of epidermal cell surface structure of vegetative tissues and perianth organs using scanning electron microscopy revealed that in wild-type flowers the outer whorls of colored organs may be identified as sepals, while the inner ones may be identified as petals. In the 'bud-flowering' type, two whorls of sepals are directly followed by the gynoecium. Both, petals and stamens, are completely missing in this flower type. The uppermost whorl of green leaves represents bracts in both flower types. In addition, two MADS-box genes (homologs of AP3/DEF and SEP1/2) were identified in C. vulgaris using RACE-PCR. Expression analysis by qRT-PCR was conducted for both genes in leaves, bracts, sepals and petals. These experiments revealed an expression pattern supporting the organ classification based on morphological characteristics. Conclusions Organ identity in both wild-type and 'bud-flowering' C. vulgaris was clarified using a combination of microscopic and molecular methods. Our results for bract, sepal and petal organ identity are supported by the 'ABCDE model'. However, loss of stamens in the 'bud-flowering' phenotype is an exceptional flower organ modification that cannot be explained by modified spatial expression of known organ identity genes. PMID:20003430

  12. Southern Monarchs do not Develop Learned Preferences for Flowers With Pyrrolizidine Alkaloids.

    PubMed

    de Oliveira, Marina Vasconcelos; Trigo, José Roberto; Rodrigues, Daniela

    2015-07-01

    Danaus butterflies sequester pyrrolizidine alkaloids (PAs) from nectar and leaves of various plant species for defense and reproduction. We tested the hypothesis that the southern monarch butterfly Danaus erippus shows innate preferences for certain flower colors and has the capacity to develop learned preferences for artificial flowers presenting advantageous floral rewards such as PAs. We predicted that orange and yellow flowers would be innately preferred by southern monarchs. Another prediction is that flowers with both sucrose and PAs would be preferred over those having sucrose only, regardless of flower color. In nature, males of Danaus generally visit PA sources more often than females, so we expected that males of D. erippus would exhibit a stronger learned preference for PA sources than the females. In the innate preference tests, adults were offered artificial non-rewarding yellow, orange, blue, red, green, and violet flowers. Orange and yellow artificial flowers were most visited by southern monarchs, followed by blue and red ones. No individual visited either green or violet flowers. For assessing learned preferences for PA flowers over flowers with no PAs, southern monarchs were trained to associate orange flowers with sucrose plus the PA monocrotaline vs. yellow flowers with sucrose only; the opposite combination was used to train another set of butterflies. In the tests, empty flowers were offered to trained butterflies. Neither males nor females showed learned preferences for flower colors associated with PAs in the training set. Thus, southern monarchs resemble the sister species Danaus plexippus in their innate preferences for orange and yellow flowers. Southern monarchs, similarly to temperate monarchs, might not be as PA-demanding as are other danaine species.

  13. The evolution of flowering strategies in US weedy rice.

    PubMed

    Thurber, Carrie S; Reagon, Michael; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2014-10-01

    • Local adaptation in plants often involves changes in flowering time in response to day length and temperature. Many crops have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading the agricultural environment. Given the shared species designation of cultivated rice (Oryza sativa) and its the invasive conspecific weed, weedy rice, we assessed the extent to which flowering time differed between these groups. We further assessed whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the United States.• We quantified flowering time under day-neutral conditions in weedy, cultivated, and wild Oryza groups. We also sequenced two candidate gene regions: Hd1, a locus involved in promotion of flowering under short days, and the promoter of Hd3a, a locus encoding the mobile signal that induces flowering.• We found that flowering time has diverged between two distinct weedy rice groups, such that straw-hull weeds tend to flower earlier and black-hull awned weeds tend to flower later than cultivated rice. These differences are consistent with weed Hd1 alleles. At both loci, weeds share haplotypes with their cultivated progenitors, despite significantly different flowering times.• Our phenotypic data indicate the existence of multiple flowering strategies in weedy rice. Flowering differences between weeds and ancestors suggest this trait has evolved rapidly. From a weed management standpoint, there is the potential for overlap in flowering of black-hull awned weeds and crops in the United States, permitting hybridization and the potential escape of genes from crops. © 2014 Botanical Society of America, Inc.

  14. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.

  15. Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics.

    PubMed

    Pan, Qifang; Dai, Yuntao; Nuringtyas, Tri Rini; Mustafa, Natali Rianika; Schulte, Anna Elisabeth; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Flower colour is a complex phenomenon that involves a wide range of secondary metabolites of flowers, for example phenolics and carotenoids as well as co-pigments. Biosynthesis of these metabolites, though, occurs through complicated pathways in many other plant organs. The analysis of the metabolic profile of leaves, stems and roots, for example, therefore may allow the identification of chemomarkers related to the final expression of flower colour. To investigate the metabolic profile of leaves, stems, roots and flowers of Catharanthus roseus and the possible correlation with four flower colours (orange, pink, purple and red). (1) H-NMR and multivariate data analysis were used to characterise the metabolites in the organs. The results showed that flower colour is characterised by a special pattern of metabolites such as anthocyanins, flavonoids, organic acids and sugars. The leaves, stems and roots also exhibit differences in their metabolic profiles according to the flower colour. Plants with orange flowers featured a relatively high level of kaempferol analogues in all organs except roots. Red-flowered plants showed a high level of malic acid, fumaric acid and asparagine in both flowers and leaves, and purple and pink flowering plants exhibited high levels of sucrose, glucose and 2,3-dihydroxy benzoic acid. High concentrations of quercetin analogues were detected in flowers and leaves of purple-flowered plants. There is a correlation between the metabolites specifically associated to the expression of different flower colours and the metabolite profile of other plant organs and it is therefore possible to predict the flower colours by detecting specific metabolites in leaves, stems or roots. This may have interesting application in the plant breeding industry. Copyright © 2013 John Wiley & Sons, Ltd.

  16. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues

    PubMed Central

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  17. Current progress in orchid flowering/flower development research

    PubMed Central

    Wang, Hsin-Mei; Tong, Chii-Gong

    2017-01-01

    ABSTRACT Genetic pathways relevant to flowering of Arabidopsis are under the control of environmental cues such as day length and temperatures, and endogenous signals including phytohormones and developmental aging. However, genes and even regulatory pathways for flowering identified in crops show divergence from those of Arabidopsis and often do not have functional equivalents to Arabidopsis and/or existing species- or genus-specific regulators and show modified or novel pathways. Orchids are the largest, most highly evolved flowering plants, and form an extremely peculiar group of plants. Here, we briefly summarize the flowering pathways of Arabidopsis, rice and wheat and present them alongside recent discoveries/progress in orchid flowering and flower developmental processes including our transgenic Phalaenopsis orchids for LEAFY overexpression. Potential biotechnological applications in flowering/flower development of orchids with potential target genes are also discussed from an interactional and/or comparative viewpoint. PMID:28448202

  18. KSC-03pd0475

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. -- Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, places flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. She joined students from Columbia Elementary School in Palm Bay, Fla., who also paid tribute to the Columbia crew. The students visited the Center to learn about the past, present and future of space exploration.

  19. KSC-03pd0473

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. - Students from Columbia Elementary School in Palm Bay, Fla., place flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. The students visited the Center to learn about the past, present and future of space exploration. They also listened to Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, and saw the 3-D IMAX film "Space Station."

  20. KSC-03pd0471

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. -- Students from Columbia Elementary School in Palm Bay, Fla., place flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. The students visited the Center to learn about the past, present and future of space exploration. They also listened to Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, and saw the 3-D IMAX film "Space Station."

  1. KSC-03pd0470

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. -- Students from Columbia Elementary School in Palm Bay, Fla., place flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. The students visited the Center to learn about the past, present and future of space exploration. They also listened to Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, and saw the 3-D IMAX film "Space Station."

  2. KSC-03pd0472

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. - Students from Columbia Elementary School in Palm Bay, Fla., place flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. The students visited the Center to learn about the past, present and future of space exploration. They also listened to Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, and saw the 3-D IMAX film "Space Station."

  3. KSC-03pd0474

    NASA Image and Video Library

    2003-02-21

    KENNEDY SPACE CENTER, FLA. -- Kirstie McCool Chadwick, the sister of Columbia astronaut William "Willie" J. McCool, places flowers at the Astronaut Memorial to honor the fallen crew of Space Shuttle Columbia. She joined students from Columbia Elementary School in Palm Bay, Fla., who also paid tribute to the Columbia crew. The students visited the Center to learn about the past, present and future of space exploration.

  4. The Flowering of EAP/ESP: Customised Support for the Development of Communicative Competence in Writing in the Disciplines

    ERIC Educational Resources Information Center

    Braidwood, Eva; McAnsh, Suzy

    2013-01-01

    Despite a proliferation of research into academic writing and the availability of a number of guides to writing, little attention has been given to the means of supporting students striving to reach the level of proficiency in English expected from graduates in their respective fields. Our study aims to explore the prevalent problems in writing in…

  5. Flowers behind the back of the universe: A cosmic art project exploring the invisible

    NASA Astrophysics Data System (ADS)

    Tanaka, Yuri; Doser, Michael; Sakurai, Ryu; Shimoyama, Hajime; Takahashi, Ryo

    2018-05-01

    What can be seen within this universe? Since humans are not instinctively aware of the limitations of their sensorium, what is being missed is not immediately obvious. Aiming to explore with our imagination the invisible elements in the universe, we created an interactive cosmic art project in collaboration with the Gunma Astronomical Observatory, and the Polytech Festival in Moscow. In this paper, we firstly address the topic of dark matter, from the physics point of view, the concept in our project touching upon the invisible beauty in the universe, and then discuss the practical methodology for the process of making the installation. This installation was laid out based on a map of constellations from where people were able to see the antipode of Moscow, an opposite point from the venue where the installation was set, in analogy to illustrating what exists, but can not be seen. Using origami flowers - made in the course of a workshop by the visitors of the festival - as a metaphor of the beauty and transience of life, the installation seeks to deepen the awareness of participants about the numerous invisible structures in the universe. Placing them within reflective structures underlines both our reliance on technology to make the invisible visible, and the influence of the point of view on how we perceive and interpret the resulting representations. In their various forms and colors, these flowers can be seen as metaphorical mirror images of that which lies at the antipodes of our awareness: of colorful gas glowing in radio waves, supernovas in their many x-ray hues, dark matter, neutrinos, gravitational waves, dark energy. Considering both the invisible scenery of the sky and the invisible elements of beauty in the universe as lying behind the 'back' of the universe, hidden to our senses, this project explores a new way of communication between humans and the ubiquitous invisible in an artistic manner. Finally, the whole process of this project is summarized in order to suggest future directions for our transdisciplinary collaboration.

  6. Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Campanello, Paula I.; Goldstein, Guillermo

    2011-07-01

    Chusquea ramosissima is a semelparous woody bamboo growing in the understory of the semideciduous Atlantic Forest that increases in abundance after disturbance and consequently has profound effects on vegetation dynamics. Flowering and death of C. ramosissima may open a window of opportunity leaving space vacant for the recruitment of tree seedlings. We describe the flowering pattern and seedling demography of this species at different spatio-temporal scales between the years 2001 and 2009, and evaluate if tree seedling abundance of canopy species increased after the flowering event. At a landscape scale, flowering sites were interspersed with sites that did not flower. At a local scale, the flowering extended over 5 years, with flowering and non-flowering culms intermingled, also in small patches (i.e., 4 m 2). Seeds germinated soon after flowering and die-back. Four successive seedling cohorts were studied. Mortality rate was high during the first 4 months after seedling emergence but several fast-growing seedlings were able to become established successfully. At the end of the study, 10%-20% of the initial number of bamboo seedlings in each cohort survived. Seedling abundance of tree canopy species was similar in flowering and non-flowering sites. C. ramosissima was able to re-colonize and perpetuate in sites it previously occupied. The coexistence of flowering and non-flowering culms at different spatio-temporal scales and clonal growth by rhizomes, together with the successful bamboo seedlings establishment, enhanced bamboo persistence in gaps and disturbed sites. Flowering and death of C. ramosissima did not facilitate seedling growth of canopy tree species.

  7. When can stress facilitate divergence by altering time to flowering?

    PubMed

    Jordan, Crispin Y; Ally, Dilara; Hodgins, Kathryn A

    2015-12-01

    Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat-induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress-induced phenology shifts.

  8. Using daily temperature to predict phenology trends in spring flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Kim, Soo-Ock; Kim, Dae-Jun; Moon, Kyung Hwan; Yun, Jin I.

    2015-05-01

    The spring season in Korea features a dynamic landscape with a variety of flowers blooming sequentially one after another. This enables local governments to earn substantial sightseeing revenues by hosting festivals featuring spring flowers. Furthermore, beekeepers move from the southern tip of the Korean Peninsula all the way northward in a quest to secure spring flowers as nectar sources for a sustained period of time. However, areal differences in flowering dates of flower species are narrowing, which has economic consequences. Analysis of data on flowering dates of forsythia ( Forsythia koreana) and cherry blossom ( Prunus serrulata), two typical spring flower species, as observed for the past 60 years at six weather stations of the Korea Meteorological Administration (KMA) indicated that the difference between the flowering date of forsythia, the earliest blooming flower in spring, and cherry blossom, which flowers later than forsythia, was 14 days on average in the climatological normal year for the period 1951-1980, compared with 11 days for the period 1981-2010. In 2014, the gap narrowed further to 7 days, making it possible in some locations to see forsythias and cherry blossoms blooming at the same time. Synchronized flowering of these two flower species is due to acceleration of flowering due to an abnormally high spring temperature, and this was more pronounced in the later-blooming cherry blossom than forsythia. While cherry blossom flowering dates across the nation ranged from March 31 to April 19 (an areal difference of 20 days) for the 1951-1980 normal year, the difference ranged from March 29 to April 12 (an areal difference of 16 days) for the 1981-2010 normal year, and in 2014, the flowering dates spanned March 25 and March 30 (an areal difference of 6 days). In the case of forsythia, the gap was narrower than in cherry blossoms. Climate change in the Korean Peninsula, reflected by rapid temperature hikes in late spring in contrast to a slow temperature rise in early spring immediately after dormancy release, likely brought forward the flowering date of cherry blossom. We derived a thermal time-based flowering model from this analysis and used it to predict the flowering dates of forsythia and cherry blossom in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species, showing a feasibility of prediction under the changing climate.

  9. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress.

    PubMed

    Zhu, Zhu; Qi, Fenghui; Yan, Chaofu; Zhan, Yaguang

    2016-02-01

    Fraxinus mandshurica is considered a dioecious hardwood, and the temporal separation of the maturation of the male and female flowers is one reason that F. mandshurica has become an endangered species in China. Rainfall and low temperature influence pollen formation and dispersal and the blooming of female flowers. Therefore, low fertilization efficiency strongly influences the population of F. mandshurica. Nevertheless, few studies have investigated the sex-specific morphological, physiological and molecular differentiation of F. mandshurica during flowering and its responses to low temperature. In this study, we investigated the sexual differences in the morphological, physiological, and biochemical parameters of F. mandshurica during flowering and determined the physiological and biochemical parameters and expression levels of related genes in response to low-temperature stress induced by exposure to 4 °C (chilling stress) during pollen dispersal and fertilization. Our study supports the hypothesis that male flowers suffer more severe injuries while female flowers are more adaptable to environmental stress during flower development in F. mandshurica. The results showed higher physiological and biochemical levels of malondialdehyde, proline, and soluble sugar, as well as the expression of genes involved in calcium signaling, cold shock and DNA methylation in male flowers compared with female flowers, which suggested that male flowers suffer from more serious peroxidation than female flowers. In contrast, higher antioxidant capacity and FmaCAT expression were detected in female flowers, providing preliminary evidence that male flowers rapidly fade after pollination and further demonstrating that female flowers need a much stronger antioxidant enzyme system to maintain embryonic growth. Most peaks related to physiological and molecular responses were observed at 2-4 h and 8-10 h of exposure to chilling stress in the female and male flowers, respectively. This trend implies that female flowers have higher adaptability to low temperature during fertilization. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Antioxidant activity of Rafflesia kerrii flower extract.

    PubMed

    Puttipan, Rinrampai; Okonogi, Siriporn

    2014-02-01

    Rafflesia kerrii has been used in Thai traditional remedies for treatment of several diseases. However, scientific data particularly on biological activities of this plant is very rare. The present study explores an antioxidant activity of R. kerrii flower (RKF). Extracting solvent and extraction procedure were found to play an important role on the activity of RKF extract. The extract obtained from water-ethanol system showed higher antioxidant activity than that from water-propylene glycol system. Fractionated extraction using different solvents revealed that methanol fractionated extract (RM) possessed the highest antioxidant activity with Trolox equivalent antioxidant capacity (TEAC) and inhibitory concentration of 50% inhibition (IC50) values of approximately 39 mM/mg and 3 μg/mL, respectively. Phytochemical assays demonstrated that RM contained extremely high quantity of phenolic content with gallic antioxidant equivalent (GAE) and quercetin equivalent (QE) values of approximately 312 mg/g and 16 mg/g, respectively. Ultraviolet-visible spectroscopy (UV- VIS) and high-pressure liquid chromatography (HPLC) indicated that gallic acid was a major component. RM which was stored at 40°C, 75% RH for 4 months showed slightly significant change (p < 0.05) in phytochemical content and antioxidant activity with zero order degradation. The results of this study could be concluded that R. kerrii flower was a promising natural source of strong antioxidant compounds.

  11. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    PubMed

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  12. Metabolomic profiling of the nectars of Aquilegia pubescens and A. Canadensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fattymore » acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. As a result, this network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).« less

  13. Metabolomic profiling of the nectars of Aquilegia pubescens and A. Canadensis

    DOE PAGES

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.; ...

    2015-05-01

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fattymore » acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. As a result, this network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).« less

  14. Mycorrhizal colonization does not affect tolerance to defoliation of an annual herb in different light availability and soil fertility treatments but increases flower size in light-rich environments.

    PubMed

    Aguilar-Chama, Ana; Guevara, Roger

    2012-01-01

    Heterogeneous distribution of resources in most plant populations results in a mosaic of plant physiological responses tending to maximize plant fitness. This includes plant responses to trophic interactions such as herbivory and mycorrhizal symbiosis which are concurrent in most plants. We explored fitness costs of 50% manual defoliation and mycorrhizal inoculation in Datura stramonium at different light availability and soil fertility environments in a greenhouse experiment. Overall, we showed that non-inoculated and mycorrhiza-inoculated plants did not suffer from 50% manual defoliation in all the tested combinations of light availability and soil fertility treatments, while soil nutrients and light availability predominately affected plant responses to the mycorrhizal inoculation. Fifty percent defoliation had a direct negative effect on reproductive traits whereas mycorrhiza-inoculated plants produced larger flowers than non-inoculated plants when light was not a limiting factor. Although D. stramonium is a facultative selfing species, other investigations had shown clear advantages of cross-pollination in this species; therefore, the effects of mycorrhizal inoculation on flower size observed in this study open new lines of inquiry for our understanding of plant responses to trophic interactions. Also in this study, we detected shifts in the limiting resources affecting plant responses to trophic interactions.

  15. jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup

    NASA Image and Video Library

    2017-11-30

    jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  16. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant

    PubMed Central

    2010-01-01

    Background Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). Results We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. Conclusions This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites. PMID:20482889

  17. The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant.

    PubMed

    Zhao, Zhi-Gang; Du, Guo-Zhen; Huang, Shuang-Quan

    2010-05-20

    Floral traits within plants can vary with flower position or flowering time. Within an inflorescence, sexual allocation of early produced basal flowers is often female-biased while later produced distal flowers are male-biased. Such temporal adjustment of floral resource has been considered one of the potential advantages of modularity (regarding a flower as a module) in hermaphrodites. However, flowers are under constraints of independent evolution of a given trait. To understand flower diversification within inflorescences, here we examine variation and covariation in floral traits within racemes at the individual and the maternal family level respectively in an alpine herb Aconitum gymnandrum (Ranunculaceae). We found that floral traits varied significantly with flower position and among families, and position effects were family-specific. Most of the variance of floral traits was among individuals rather than among flowers within individuals or among families. Significant phenotypic correlations between traits were not affected by position, indicating trait integration under shared developmental regulation. In contrast, positive family-mean correlations in floral traits declined gradually from basal to distal flowers (nine significant correlations among floral traits in basal flowers and only three in distal flowers), showing position-specificity. Therefore, the pattern and magnitude of genetic correlations decreased with flower position. This finding on covariation pattern in floral reproductive structures within racemes has not been revealed before, providing insights into temporal variation and position effects in floral traits within plants and the potential advantages of modularity in hermaphrodites.

  18. Phytohormone and assimilate profiles in emasculated flowers of the black locust (Robinia pseudoacacia) during development.

    PubMed

    Sun, Peng; Yuan, Cunquan; Dai, Li; Xi, Yang; Li, Yunfei; Hu, Ruiyang; Sun, Yuhan; Xu, Zhaohe; Li, Yun

    2013-09-01

    Emasculation and bagging of flowers, which are widely used in the controlled pollination of monoclinous plants, may induce premature senescence, flower abscission and low fruit set. To determine the mechanism responsible for these phenomena, levels of abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA), ethylene, soluble sugars, reducing sugars and free amino acids in black locust (Robinia pseudoacacia) flowers subjected to different treatments were quantified at different developmental stages. The phytohormones and assimilates were also quantified in untreated flowers to investigate the presence of discernible patterns. The levels of ethylene and ABA in emasculated and bagged (EB) flowers increased prematurely compared with those of untreated flowers, whereas the content of reducing sugars in EB flowers decreased compared with that of untreated flowers. These results indicated that the premature increase in ethylene and ABA synthesis, and the decrease in reducing sugars content, in EB flowers may cause flower abscission and result in low fruit set, which may be relevant for assimilate applications and future research on the regulation of controlled pollinations with exogenous phytohormones.

  19. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence1

    PubMed Central

    Broholm, Suvi K.; Tähtiharju, Sari

    2016-01-01

    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. PMID:27382139

  20. Flower-visiting behavior of male bees is triggered by nectar-feeding insects.

    PubMed

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  1. Flower-visiting behavior of male bees is triggered by nectar-feeding insects

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Abe, Tetsuto; Yamaura, Yuichi; Makino, Shun'ichi

    2007-08-01

    Bees are important pollinators for many flowering plants. Female bees are thought to be more effective pollinators than male bees because they carry much more pollen than males. Males of some solitary bee species are known to patrol near flowers that females visit. Because patrolling males visit flowers to mate or defend their territories, they may function as pollinators. However, the significance of patrolling males to pollination has not been studied. We studied males of a solitary bee, Heriades fulvohispidus (Megachilidae), patrolling near flowers and visiting flowers that attracted nectar-feeding insects, including conspecifics, on the Ogasawara (Bonin) Islands. To test the hypothesis that patrolling male bees may function as pollen vectors, we compared the frequency of visits by H. fulvohispidus to flowers of an endemic plant, Schima mertensiana (Theaceae); comparisons were made among flowers with a dead H. fulvohispidus, a dead beetle, a piece of plastic, and nothing (control flowers). Patrolling H. fulvohispidus more frequently visited flowers with a dead conspecific, a dead beetle, or a piece of plastic than the control flowers. Our experiment demonstrates that nectar-feeding insects (including conspecifics and other insects) enhance the flower-visiting frequency of patrolling H. fulvohispidus males on S. mertensiana flowers. Furthermore, we observed S. mertensiana pollen on patrolling males as well as females, suggesting that male bees may also function as pollen vectors.

  2. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.

  3. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  4. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.)

    PubMed Central

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-01-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to ‘pollen development genes’ from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7–10 years, can now be shortened to 6–10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. PMID:27052434

  6. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    PubMed Central

    2011-01-01

    Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were also decreased in these plants, apparently leading to decreased transmethylation capacity. The proteome analysis using 2D-PAGE indicated significantly altered proteome profile, which may have been both due to altered transcript levels, decreased translation, and increased proteosomal/protease activity. Conclusion Expression of the HC-Pro RSS mimics transcriptional changes previously shown to occur in plants infected with intact viruses (e.g. Tobacco etch virus, TEV). The results indicate that the HC-Pro RSS contributes a significant part of virus-plant interactions by changing the levels of multiple cellular RNAs and proteins. PMID:21507209

  7. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring?

    PubMed

    de Sá, Nuno C; Castro, Paula; Carvalho, Sabrina; Marchante, Elizabete; López-Núñez, Francisco A; Marchante, Hélia

    2018-01-01

    Invasion by alien species is a worldwide phenomenon with negative consequences at both natural and production areas. Acacia longifolia is an invasive shrub/small tree well known for its negative ecological impacts in several places around the world. The recent introduction of a biocontrol agent ( Trichilogaster acaciaelongifoliae ), an Australian bud-galling wasp which decreases flowering of A. longifolia , in Portugal, demands the development of a cost-efficient method to monitor its establishment. We tested how unmanned aerial vehicles (UAV) can be used to map A. longifolia flowering. Our core assumption is as the population of the biocontrol agent increases, its impacts on the reduction of A. longifolia flowering will be increasingly visible. Additionally, we tested if there is a simple linear correlation between the number of flowers of A. longifolia counted in field and the area covered by flowers in the UAV imagery. UAV imagery was acquired over seven coastal areas including frontal dunes, interior sand dunes and pine forests considering two phenological stages: peak and off-peak flowering season. The number of flowers of A. longifolia was counted, in a minimum of 60 1 m 2 quadrats per study area. For each study area, flower presence/absence maps were obtained using supervised Random Forest. The correlation between the number of flowers and the area covered by flowering plants could then be tested. The flowering of A. longifolia was mapped using UAV mounted with RGB and CIR Cannon IXUS/ELPH cameras (Overall Accuracy > 0.96; Cohen's Kappa > 0.85) varying according to habitat type and flowering season. The correlation between the number of flowers counted and the area covered by flowering was weak ( r 2 between 0.0134 and 0.156). This is probably explained, at least partially, by the high variability of A. longifolia in what regards flowering morphology and distribution. The very high accuracy of our approach to map A. longifolia flowering proved to be cost efficient and replicable, showing great potential for detecting the future decrease in flowering promoted by the biocontrol agent. The attempt to provide a low-cost method to estimate A. longifolia flower productivity using UAV failed, but it provided valuable insights on the future steps.

  8. Aggregation of Thaumatomyia glabra (Diptera: Chloropidae) Males on Iris spp. Flowers Releasing Methyl Anthranilate.

    PubMed

    Ohler, Bonnie J; Guédot, Christelle; Zack, Richard S; Landolt, Peter J

    2016-12-01

    Aggregations of Thaumatomyia glabra (Diptera: Chloropidae) were observed on flowers of Iris pallida Lamarck (Asparagales: Iridaceae), whereas no T. glabra (Meigen) were observed on nearby Iris germanica L. flowers. Sampling of T. glabra on I. pallida flowers revealed the presence of males only. In a previous study, T. glabra males were attracted to methyl anthranilate. We found methyl anthranilate in extracts of I. pallida flowers on which T. glabra aggregated, but not in extracts of I. germanica flowers. Applying methyl anthranilate to I. germanica flowers elicited attraction of T. glabra to the flowers. This study suggests that I. pallida flowers may attract T. glabra males to aggregate because they release the known attractant, methyl anthranilate, whereas I. germanica flowers may not be attractive because they do not release methyl anthranilate. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  9. Bumble-bee learning selects for both early and long flowering in food-deceptive plants

    PubMed Central

    Internicola, Antonina I.; Harder, Lawrence D.

    2012-01-01

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species. PMID:22090384

  10. FReD: the floral reflectance database--a web portal for analyses of flower colour.

    PubMed

    Arnold, Sarah E J; Faruq, Samia; Savolainen, Vincent; McOwan, Peter W; Chittka, Lars

    2010-12-10

    Flower colour is of great importance in various fields relating to floral biology and pollinator behaviour. However, subjective human judgements of flower colour may be inaccurate and are irrelevant to the ecology and vision of the flower's pollinators. For precise, detailed information about the colours of flowers, a full reflectance spectrum for the flower of interest should be used rather than relying on such human assessments. The Floral Reflectance Database (FReD) has been developed to make an extensive collection of such data available to researchers. It is freely available at http://www.reflectance.co.uk. The database allows users to download spectral reflectance data for flower species collected from all over the world. These could, for example, be used in modelling interactions between pollinator vision and plant signals, or analyses of flower colours in various habitats. The database contains functions for calculating flower colour loci according to widely-used models of bee colour space, reflectance graphs of the spectra and an option to search for flowers with similar colours in bee colour space. The Floral Reflectance Database is a valuable new tool for researchers interested in the colours of flowers and their association with pollinator colour vision, containing raw spectral reflectance data for a large number of flower species.

  11. Bumble-bee learning selects for both early and long flowering in food-deceptive plants.

    PubMed

    Internicola, Antonina I; Harder, Lawrence D

    2012-04-22

    Most rewardless orchids engage in generalized food-deception, exhibiting floral traits typical of rewarding species and exploiting the instinctive foraging of pollinators. Generalized food-deceptive (GFD) orchids compete poorly with rewarding species for pollinator services, which may be overcome by flowering early in the growing season when relatively more pollinators are naive and fewer competing plant species are flowering, and/or flowering for extended periods to enhance the chance of pollinator visits. We tested these hypotheses by manipulating flowering time and duration in a natural population of Calypso bulbosa and quantifying pollinator visitation based on pollen removal. Both early and long flowering increased bumble-bee visitation compared with late and brief flowering, respectively. To identify the cause of reduced visitation during late flowering, we tested whether negative experience with C. bulbosa (avoidance learning) and positive experience with a rewarding species, Arctostaphylos uva-ursi, (associative learning) by captive bumble-bees could reduce C. bulbosa's competitiveness. Avoidance learning explained the higher visitation of early- compared with late-flowering C. bulbosa. The resulting pollinator-mediated selection for early flowering may commonly affect GFD orchids, explaining their tendency to flower earlier than rewarding orchids. For dissimilar deceptive and rewarding sympatric species, associative learning may additionally favour early flowering by GFD species.

  12. Poplar FT2 Shortens the Juvenile Phase and Promotes Seasonal Flowering[W

    PubMed Central

    Hsu, Chuan-Yu; Liu, Yunxia; Luthe, Dawn S.; Yuceer, Cetin

    2006-01-01

    Many woody perennials, such as poplar (Populus deltoides), are not able to form flower buds during the first several years of their life cycle. They must undergo a transition from the juvenile phase to the reproductive phase to be competent to produce flower buds. After this transition, trees begin to form flower buds in the spring of each growing season. The genetic factors that control flower initiation, ending the juvenile phase, are unknown in poplar. The factors that regulate seasonal flower bud formation are also unknown. Here, we report that poplar FLOWERING LOCUS T2 (FT2), a relative of the Arabidopsis thaliana flowering-time gene FT, controls first-time and seasonal flowering in poplar. The FT2 transcript is rare during the juvenile phase of poplar. When juvenile poplar is transformed with FT2 and transcript levels are increased, flowering is induced within 1 year. During the transition between vegetative and reproductive growth in mature trees, FT2 transcripts are abundant during reproductive growth under long days. Subsequently, floral meristems emerge on flanks of the axillary inflorescence shoots. These findings suggest that FT2 is part of the flower initiation pathway in poplar and plays an additional role in regulating seasonal flower initiation that is integrated with the poplar perennial growth habit. PMID:16844908

  13. De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering.

    PubMed

    Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo

    2017-10-01

    Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Unusual positional effects on flower sex in an andromonoecious tree: Resource competition, architectural constraints, or inhibition by the apical flower?

    PubMed

    Granado-Yela, Carlos; Balaguer, Luis; Cayuela, Luis; Méndez, Marcos

    2017-04-01

    Two, nonmutually exclusive, mechanisms-competition for resources and architectural constraints-have been proposed to explain the proximal to distal decline in flower size, mass, and/or femaleness in indeterminate, elongate inflorescences. Whether these mechanisms also explain unusual positional effects such as distal to proximal declines of floral performance in determinate inflorescences, is understudied. We tested the relative influence of these mechanisms in the andromonoecious wild olive tree, where hermaphroditic flowers occur mainly on apical and the most proximal positions in determinate inflorescences. We experimentally increased the availability of resources for the inflorescences by removing half of the inflorescences per twig or reduced resource availability by removing leaves. We also removed the apical flower to test its inhibitory effect on subapical flowers. The apical flower had the highest probability of being hermaphroditic. Further down, however, the probability of finding a hermaphroditic flower decreased from the base to the tip of the inflorescences. An experimental increase of resources increased the probability of finding hermaphroditic flowers at each position, and vice versa. Removal of the apical flower increased the probability of producing hermaphroditic flowers in proximal positions but not in subapical positions. These results indicate an interaction between resource competition and architectural constraints in influencing the arrangement of the hermaphroditic and male flowers within the inflorescences of the wild olive tree. Subapical flowers did not seem to be hormonally suppressed by apical flowers. The study of these unusual positional effects is needed for a general understanding about the functional implications of inflorescence architecture. © 2017 Botanical Society of America.

  15. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate.

    PubMed

    Akter, Asma; Biella, Paolo; Klecka, Jan

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction.

  16. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate

    PubMed Central

    2017-01-01

    Plants often grow in clusters of various sizes and have a variable number of flowers per inflorescence. This small-scale spatial clustering affects insect foraging strategies and plant reproductive success. In our study, we aimed to determine how visitation rate and foraging behaviour of pollinators depend on the number of flowers per plant and on the size of clusters of multiple plants using Dracocephalum moldavica (Lamiaceae) as a target species. We measured flower visitation rate by observations of insects visiting single plants and clusters of plants with different numbers of flowers. Detailed data on foraging behaviour within clusters of different sizes were gathered for honeybees, Apis mellifera, the most abundant visitor of Dracocephalum in the experiments. We found that the total number of flower visitors increased with the increasing number of flowers on individual plants and in larger clusters, but less then proportionally. Although individual honeybees visited more flowers in larger clusters, they visited a smaller proportion of flowers, as has been previously observed. Consequently, visitation rate per flower and unit time peaked in clusters with an intermediate number of flowers. These patterns do not conform to expectations based on optimal foraging theory and the ideal free distribution model. We attribute this discrepancy to incomplete information about the distribution of resources. Detailed observations and video recordings of individual honeybees also showed that the number of flowers had no effect on handling time of flowers by honeybees. We evaluated the implications of these patterns for insect foraging biology and plant reproduction. PMID:29136042

  17. Synchrony in the phenology of a culturally iconic spring flower

    NASA Astrophysics Data System (ADS)

    Sparks, Tim H.; Mizera, Tadeusz; Wójtowicz, Wanda; Tryjanowski, Piotr

    2012-03-01

    We examine the flowering phenology of the cultural iconic Spring Snowflake Leucojum vernum, a considerable tourist attraction, recorded from two sites in western Poland. Flowering dates at the two sites were closely correlated but about 6 days later at the more natural area. The end of flowering was associated with the start of canopy leafing. Early flowering was related to a longer flowering season which may benefit ecotourism under future climate warming.

  18. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  19. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  20. A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence

    PubMed Central

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088

  1. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    PubMed

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  2. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering.

    PubMed

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Dörmann, Peter; Coupland, George

    2014-04-04

    Arabidopsis FT protein is a component of florigen, which transmits photoperiodic flowering signals from leaf companion cells to the shoot apex. Here, we show that FT specifically binds phosphatidylcholine (PC) in vitro. A transgenic approach to increase PC levels in vivo in the shoot meristem accelerates flowering whereas reduced PC levels delay flowering, demonstrating that PC levels are correlated with flowering time. The early flowering is related to FT activity, because expression of FT-effector genes is increased in these plants. Simultaneous increase of FT and PC in the shoot apical meristem further stimulates flowering, whereas a loss of FT function leads to an attenuation of the effect of increased PC. Specific molecular species of PC oscillate diurnally, and night-dominant species are not the preferred ligands of FT. Elevating night-dominant species during the day delays flowering. We suggest that FT binds to diurnally changing molecular species of PC to promote flowering.

  3. The diversity of floral temperature patterns, and their use by pollinators

    PubMed Central

    Harrap, Michael JM; Hempel de Ibarra, Natalie; Whitney, Heather M

    2017-01-01

    Pollinating insects utilise various sensory cues to identify and learn rewarding flower species. One such cue is floral temperature, created by captured sunlight or plant thermogenesis. Bumblebees, honeybees and stingless bees can distinguish flowers based on differences in overall temperature between flowers. We report here that floral temperature often differs between different parts of the flower creating a temperature structure or pattern. Temperature patterns are common, with 55% of 118 plant species thermographed, showing within-flower temperature differences greater than the 2°C difference that bees are known to be able to detect. Using differential conditioning techniques, we show that bumblebees can distinguish artificial flowers differing in temperature patterns comparable to those seen in real flowers. Thus, bumblebees are able to perceive the shape of these within-flower temperature patterns. Floral temperature patterns may therefore represent a new floral cue that could assist pollinators in the recognition and learning of rewarding flowers. PMID:29254518

  4. Floral Longevity and Nectar Secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae)

    PubMed Central

    STPICZYŃSKA, MAŁGORZATA

    2003-01-01

    Flowering and nectar secretion were studied in Platanthera chlorantha in two years. Nectar was secreted and accumulated in this orchid’s spur, originating from part of the labellum. The nectary spur was, on average, 32 mm long. It produced 6·86 µl nectar in 1999 and 7·84 µl in 2000. The number of flowers per inflorescence and the volume of nectar secreted per flower were not correlated. Nectar secretion and flower longevity differed depending on pollination and flower position in the inflorescence. Among pairs of pollinated and unpollinated flowers there was no difference in the volume of nectar produced; however, the life span of pollinated flowers was shorter than that of unpollinated ones. Within an inflorescence, the lowest‐positioned flowers had the largest nectar production and the longest life compared with flowers positioned higher up. PMID:12805083

  5. Flower constancy in insect pollinators

    PubMed Central

    Ratnieks, Francis L.W.

    2011-01-01

    As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521

  6. Evolutionary Co-Option of Floral Meristem Identity Genes for Patterning of the Flower-Like Asteraceae Inflorescence.

    PubMed

    Zhao, Yafei; Zhang, Teng; Broholm, Suvi K; Tähtiharju, Sari; Mouhu, Katriina; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula

    2016-09-01

    The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.

    PubMed

    Sandring, Saskia; Agren, Jon

    2009-05-01

    The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.

  8. Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism

    USGS Publications Warehouse

    Holland, J. Nathaniel; Bronstein, Judith L.; DeAngelis, Donald L.

    2004-01-01

    Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.

  9. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants

    PubMed Central

    Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143

  10. Flexibility of resource allocation in a hermaphroditic-gynomonoecious herb through deployment of female and male resources in perfect flowers.

    PubMed

    Mamut, Jannathan; Xiong, Ying-Ze; Tan, Dun-Yan; Huang, Shuang-Quan

    2017-03-01

    It has been hypothesized that two flower types permit flexible allocation of resources to female and male functions, yet empirical evidence for the sex-allocation hypothesis remains scarce in gynomonoecious species. To characterize resource allocation to pistillate and perfect flowers and allocation of perfect flowers between gynomonoecious and hermaphroditic individuals, we examined the flexibility and whether female-biased allocation increases with plant size in the hermaphroditic-gynomonoecious herb Eremurus anisopterus . Frequency of gynomonoecious individuals, flower production, and plant size were investigated in different populations. Floral allocation was compared among the three flower types of E. anisopterus . Frequency of gynomonoecious plants varied from 2-17% in nine populations. Only larger plants produced female flowers at the bottom of racemes. Both female and perfect flower production tended to increase proportionately with plant size in gynomonoecious individuals. Female flowers did not produce less biomass than perfect flowers from hermaphroditic or gynomonoecious plants. However, both female and perfect flowers from gynomonoecious individuals had lighter stamen mass, but larger pistil mass, than perfect flowers from hermaphrodites. Although the prediction of an increase in female flower number with plant size was not observed in E. anisopterus , the flexibility of sex allocation in gynomonoecious species was confirmed in that gynomonoecious individuals had a female-biased floral allocation compared to hermaphroditic individuals. Such comparisons of gynomonoecious to hermaphroditic individuals permit us to unveil a sexual adjustment strategy: flexibility of sexual investments within plants. © 2017 Botanical Society of America.

  11. [Morphogenetic lability of reproductive structures in Ruppia maritima (Ruppiaceae, Alismatales): from two lateral flowers to a terminal flower].

    PubMed

    Lokk, I É; Sokolov, D D; Remizova, M V

    2011-01-01

    Flowers of Ruppia are normally arranged into an open two-flowered spike, but sometimes the two lateral flowers are congenitally united with each other and form a terminal flower-like structure. This developmental abnormality resembles those described in well-investigated mutants of model organisms of developmental genetics such as Arabidopsis Antirrhinum. A study of Ruppia allows investigating morphogenetic lability of this feature in natural populations. These data will be important for understanding evolutionary transitions between open and closed inflorescences. This paper presents first data on frequencies ofterminal flower-like structures in natural populations of Ruppia maritima and first observations of their development. Vascular supply of inflorescences with free and united flowers is compared for the first time. Strong differences in frequencies of occurrence of terminal flower-like structures among examined natural populations are revealed. Data on variation of organ numbers in flowers of plants from different populations allow hypothesizing that increased size of floral primordia is a factor that plays a role in their amalgamation into ajoint primordium of a terminal structure. Vascular system of inflorescences of R. maritima with united flowers is quite similar to the vascular system of a flower and nothing contradicts a hypothesis on terminal position ofthis structure. Transversally inserted stamens in inflorescences with united flowers are usually of inverted polarity. This appears to be the first documented example of an inversion of relative polarity of stamens and carpels in angiosperms.

  12. Context-dependent crypsis: a prey's perspective of a color polymorphic predator.

    PubMed

    Rodríguez-Morales, D; Rico-Gray, V; García-Franco, J G; Ajuria-Ibarra, H; Hernández-Salazar, L T; Robledo-Ospina, L E; Rao, D

    2018-05-12

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  13. Context-dependent crypsis: a prey's perspective of a color polymorphic predator

    NASA Astrophysics Data System (ADS)

    Rodríguez-Morales, D.; Rico-Gray, V.; García-Franco, J. G.; Ajuria-Ibarra, H.; Hernández-Salazar, L. T.; Robledo-Ospina, L. E.; Rao, D.

    2018-06-01

    Many animals use body coloration as a strategy to communicate with conspecifics, prey, and predators. Color is a trade-off for some species, since they should be visible to conspecifics but cryptic to predators and prey. Some flower-dwelling predators, such as crab spiders, are capable of choosing the color of flowers where they ambush flower visitors and pollinators. In order to avoid being captured, visitors evaluate flowers visually before landing. The crab spider Mecaphesa dubia is a polymorphic species (white/purple color morphs), which inhabits the flower heads of a dune plant, Palafoxia lindenii. Using full-spectrum photography of spiders and flowers, we evaluated how honeybees perceived the spiders at different distances. Using visual modeling, we obtained the chromatic and achromatic contrasts of the spiders on flower heads as perceived by honeybees. Purple morphs were found mainly on the receptacle area and white morphs were equally likely to be found in the flowers and receptacle. According to theoretical modeling, white morphs were visible to honeybees from a distance of 10 cm in receptacle area but appeared to be cryptic in the flower area. Purple morphs were cryptic on the receptacle and less so when they were on the flowers. Spiders on flower heads are predicted to be more easily detected by honeybees using chromatic contrast. Our study shows that the conspicuousness of flower dwelling spiders to honeybees depends on the color morph, the distance of observation, and the position of spider on the flower head.

  14. Identification and Validation of Reference Genes for RT-qPCR Analysis in Non-Heading Chinese Cabbage Flowers

    PubMed Central

    Wang, Cheng; Cui, Hong-Mi; Huang, Tian-Hong; Liu, Tong-Kun; Hou, Xi-Lin; Li, Ying

    2016-01-01

    Non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino) is an important vegetable member of Brassica rapa crops. It exhibits a typical sporophytic self-incompatibility (SI) system and is an ideal model plant to explore the mechanism of SI. Gene expression research are frequently used to unravel the complex genetic mechanism and in such studies appropriate reference selection is vital. Validation of reference genes have neither been conducted in Brassica rapa flowers nor in SI trait. In this study, 13 candidate reference genes were selected and examined systematically in 96 non-heading Chinese cabbage flower samples that represent four strategic groups in compatible and self-incompatible lines of non-heading Chinese cabbage. Two RT-qPCR analysis software, geNorm and NormFinder, were used to evaluate the expression stability of these genes systematically. Results revealed that best-ranked references genes should be selected according to specific sample subsets. DNAJ, UKN1, and PP2A were identified as the most stable reference genes among all samples. Moreover, our research further revealed that the widely used reference genes, CYP and ACP, were the least suitable reference genes in most non-heading Chinese cabbage flower sample sets. To further validate the suitability of the reference genes identified in this study, the expression level of SRK and Exo70A1 genes which play important roles in regulating interaction between pollen and stigma were studied. Our study presented the first systematic study of reference gene(s) selection for SI study and provided guidelines to obtain more accurate RT-qPCR results in non-heading Chinese cabbage. PMID:27375663

  15. Genome-scale transcriptional study of hybrid effects and regulatory divergence in an F1 hybrid Ruellia (Wild Petunias: Acanthaceae) and its parents.

    PubMed

    Zhuang, Yongbin; Tripp, Erin A

    2017-01-17

    New combinations of divergent genomes can give rise to novel genetic functions in resulting hybrid progeny. Such functions may yield opportunities for ecological divergence, contributing ultimately to reproductive isolation and evolutionary longevity of nascent hybrid lineages. In plants, the degree to which transgressive genotypes contribute to floral novelty remains a question of key interest. Here, we generated an F 1 hybrid plant between the red-flowered Ruellia elegans and yellow flowered R. speciosa. RNA-seq technology was used to explore differential gene expression between the hybrid and its two parents, with emphasis on genetic elements involved in the production of floral anthocyanin pigments. The hybrid was purple flowered and produced novel floral delphinidin pigments not manufactured by either parent. We found that nearly a fifth of all 86,475 unigenes expressed were unique to the hybrid. The majority of hybrid unigenes (80.97%) showed a pattern of complete dominance to one parent or the other although this ratio was uneven, suggesting asymmetrical influence of parental genomes on the progeny transcriptome. However, 8.87% of all transcripts within the hybrid were expressed at significantly higher or lower mean levels than observed for either parent. A total of 28 unigenes coding putatively for eight core enzymes in the anthocyanin pathway were recovered, along with three candidate MYBs involved in anthocyanin regulation. Our results suggest that models of gene evolution that explain phenotypic novelty and hybrid establishment in plants may need to include transgressive effects. Additionally, our results lend insight into the potential for floral novelty that derives from unions of divergent genomes. These findings serve as a starting point to further investigate molecular mechanisms involved in flower color transitions in Ruellia.

  16. Conservation of Pollinators in Traditional Agricultural Landscapes – New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research

    PubMed Central

    Kovács-Hostyánszki, Anikó; Földesi, Rita; Mózes, Edina; Szirák, Ádám; Fischer, Joern; Hanspach, Jan; Báldi, András

    2016-01-01

    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups—wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES). PMID:27285118

  17. Circadian rhythm of a Silene species favours nocturnal pollination and constrains diurnal visitation

    PubMed Central

    Prieto-Benítez, Samuel; Dötterl, Stefan; Giménez-Benavides, Luis

    2016-01-01

    Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their pollinator guilds. PMID:27451986

  18. Conservation of Pollinators in Traditional Agricultural Landscapes - New Challenges in Transylvania (Romania) Posed by EU Accession and Recommendations for Future Research.

    PubMed

    Kovács-Hostyánszki, Anikó; Földesi, Rita; Mózes, Edina; Szirák, Ádám; Fischer, Joern; Hanspach, Jan; Báldi, András

    2016-01-01

    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups-wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES).

  19. KENNEDY SPACE CENTER, FLA. - Brilliant roses and carnations frame the names of the Columbia crew carved onto the black granite surface of the Astronaut Memorial Mirror at the KSC Visitor Complex.  The flowers were left by visitors who attended a memorial service for the crew on the anniversary of the tragic accident that claimed their lives Feb. 1, 2003.  The service included comments by Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, and Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, who placed the wreath at the mirror.  The mirror honors astronauts who have given their lives for space exploration.

    NASA Image and Video Library

    2004-02-01

    KENNEDY SPACE CENTER, FLA. - Brilliant roses and carnations frame the names of the Columbia crew carved onto the black granite surface of the Astronaut Memorial Mirror at the KSC Visitor Complex.  The flowers were left by visitors who attended a memorial service for the crew on the anniversary of the tragic accident that claimed their lives Feb. 1, 2003.  The service included comments by Center Director Jim Kennedy, Deputy Director Woodrow Whitlow Jr., Executive Director of Florida Space Authority Winston Scott, and Dr. Stephen Feldman, president of the Astronaut Memorial Foundation, who placed the wreath at the mirror.  The mirror honors astronauts who have given their lives for space exploration.

  20. Exposure of a diurnal mosquito vector to floral mimics: foraging responses, feeding patterns, and significance for sugar bait technology.

    PubMed

    Dieng, Hamady; Satho, Tomomitsu; Arzemi, Nurul Atieqah Binti; Aliasan, Nur Ezzati; Abang, Fatimah; Wydiamala, Erida; Miake, Fumio; Zuharah, Wan Fatma; Kassim, Nur Faeza A; Vargas, Ronald E Morales; Morales, Noppawan P; Noweg, Gabriel Tonga

    2018-05-29

    Food location by mosquitoes is mediated by resource-derived olfactory and visual signals. Smell sensation is intermittent and dependent on the environment, whereas visual signals are continual and precede olfactory cues. Success of mosquito bait technology, where olfactory cues are used for attraction, is being impeded by reduced attractiveness. Despite proof that mosquitoes respond to colored objects, including those mimicking floral shape, and that they can discriminate among flowers, the impacts of artificial flowers on foraging remain unexplored. Using artificial flowers with sugar rewards, we examined the foraging responses of Aedes aegypti to various colors in equal choice bioassays. Starved adults were exposed to single flowers with petals of a given color (Single Blue Flowers [SBFs]; Single Red Flowers [SRFs]; Single Yellow Flowers [SYFs]; Single Pink Flowers [SPIFs]; and Single Purple Flowers [SPFs]) and two others with white petals (SWFs). Discrepancies in response time, visitation, feeding, and resting of both sexes were compared between colored flowers and SWFs. Ae. aegypti exhibited shorter response times to colored flowers compared to SWFs, but this behavior was mostly seen for SBFs or SYFs in females, and SRFs, SYFs, SPIFs, or SPFs in males. When provided an option to land on colored flowers and SWFs, female visitation occurred at high rates on SBFs, SRFs, SYFs, SPIFs, and SPFs; for males, this preference for colored flowers was seen to a lesser degree on SBF and SPIFs. Both sexes exhibited preference for colored flowers as sugar sources, but with different patterns: SPIFs, SRFs, SYFs, and SPFs for females; SYFs, SPFs, SPIFs and SRFs for males. Females preferentially rested on colored flowers when in competition with SWFs, but this preference was more pronounced for SPFs, SRFs, and SBFs. Males exhibited an increased preference for SRFs, SPFs, and SYFs as resting sites. Our results indicated the attraction of Ae. aegypti to rewarding artificial flowers, in some cases in ways similar to live flowering plants. The discovery that both male and female Ae. aegypti can feed on nectar mimics held by artificial flowers opens new avenues for improving sugar bait technology and for developing new attract-and-kill devices. Copyright © 2018. Published by Elsevier B.V.

  1. Reduction in the critical dark length for flower induction during aging in the short-day plant Pharbitis nil var. Kidachi.

    PubMed

    Hasegawa, Hiroshi; Yamada, Mizuki; Iwase, Yuiko; Wada, Kaede C; Takeno, Kiyotoshi

    2010-12-01

    The stress-sensitive short-day plant Pharbitis nil var. Kidachi flowers under a 16-h light and 8-h dark regime and non-stress conditions when grown for long periods of time. Such flowering was found to occur from the third week, and the floral buds were formed from the eighth node of the main stem. When young plants were grafted onto aged plants, the scions were induced to flower early. This flower induction by grafting was more effective when older plants were used as rootstocks. Grafting experiments using a single leaf as a donor revealed that younger leaves are more responsive to flower induction, suggesting that this age-mediated flowering response is not induced by aging or senescence of individual leaves. Rather, the plant may obtain the ability to flower as the whole plant ages. Flowering does not occur under continuous light conditions. A night break given in the 8-h dark period inhibits flowering. These results suggest that 8-h dark conditions, which are normally considered to be long-day conditions, actually correspond to short-day conditions for this plant. The 8-h dark conditions caused early flowering more efficiently in older plants. The critical dark length determined by a single treatment was 12 h in 0-week-old plants and was reduced to 6 h in 2- and 4-week-old plants. These results suggest that the critical dark length becomes shorter when plants get older. The expression of PnFT1 and PnFT2, orthologs of the flowering gene flowering locus T, was analyzed by reverse transcription-polymerase chain reaction revealing that the expression of PnFT at the end of dark period is correlated with flowering.

  2. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Ali, S; Charles, T C; Glick, B R

    2012-11-01

    The ability of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing plant growth-promoting bacterial (PGPB) endophytes Pseudomonas fluorescens YsS6 and Pseudomonas migulae 8R6, their ACC deaminase minus mutants and the rhizospheric plant growth-promoting bacterium Pseudomonas putida UW4 to delay the senescence of mini carnation cut flowers was assessed. Fresh cut flowers were incubated with either a bacterial cell suspension, the ethylene precursor ACC, the ethylene inhibitor l-α-(aminoethoxyvinyl)-glycine or 0·85% NaCl at room temperature for 11 days. Levels of flower senescence were recorded every other day. To verify the presence of endophytes inside the plant tissues, scanning electron microscopy was performed. Among all treatments, flowers treated with wild-type ACC deaminase-containing endophytic strains exhibited the most significant delay in flower senescence, while flowers treated with the ACC deaminase minus mutants senesced at a rate similar to the control. Flowers treated with Ps. putida UW4 senesced more rapidly than untreated control flowers. The only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity so that it may be concluded that this enzyme is directly responsible for the significant delay in flower senescence. Despite containing ACC deaminase activity, Ps. putida UW4 is not taken up by the cut flowers and therefore has no effect on prolonging their shelf life. The world-wide cut flower industry currently uses expensive and potentially environmentally dangerous chemical inhibitors of ethylene to prolong the shelf life of cut flowers. The use of PGPB endophytes with ACC deaminase activity has the potential to replace the chemicals that are currently used by the cut flower industry. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  3. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri

    PubMed Central

    Lu, Zhaogeng; Xu, Jing; Li, Weixing; Zhang, Li; Cui, Jiawen; He, Qingsong; Wang, Li; Jin, Biao

    2017-01-01

    Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers. PMID:28298915

  4. Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of Brassica rapa Crops: Implications for Gene Flow

    PubMed Central

    Mesa, Laura A.; Howlett, Bradley G.; Grant, Jan E.; Didham, Raphael K.

    2013-01-01

    The potential movement of transgenes from genetically modified crops to non-genetically modified crops via insect-mediated pollen dispersal has been highlighted as one of the areas of greatest concern in regards to genetically modified crops. Pollen movement depends sensitively on spatial and temporal variation in the movement of insect pollinators between crop fields. This study tested the degree of variation in the diversity and relative abundance of flower-visiting insects entering versus leaving pak choi, Brassica rapa var. chinensis L. (Brassicales: Brassicaceae), crops throughout different stages of the flowering cycle. The relative abundance of flower-visiting insects varied significantly with Brassica crop phenology. Greater numbers of flower-visiting insects were captured inside rather than outside the crop fields, with the highest capture rates of flower-visitors coinciding with the peak of flowering in both spring-flowering and summer-flowering crops. Moreover, the ratio of flower-visiting insects entering versus leaving crop fields also varied considerably with changing crop phenology. Despite high variation in relative capture rates, the data strongly indicate non-random patterns of variation in insect movement in relation to crop phenology, with early-season aggregation of flower-visiting insects entering and remaining in the crop, and then mass emigration of flower-visiting insects leaving the crop late in the flowering season. Although pollen movement late in the flowering cycle might contribute relatively little to total seed set (and hence crop production), the findings here suggest that extensive late-season pollinator redistribution in the landscape could contribute disproportionately to long-distance gene movement between crops. PMID:23937538

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitholt, J.J.

    Soybeans (Glycine max (L.) Merr.) were grown in the field in 1982 and 1983 (cv. Kent) and greenhouse (cv. McCall) to characterize the effects of timing and source-sink alterations on flower and immature pod abortion and to study the causes of abortion. Flowers and immature pods were marked during early flowering (R1 to R2) and late flowering (R3 to R4). Nineteen percent of the early flowers aborted in the greenhouse and 31 to 48% aborted in the field. Seventy-six to 92% and 77 to 90% of the late flowers aborted in the greenhouse and field, respectively. Defoliation increased early flowermore » abortion and depodding decreased late flower abortion. Fifteen and 19% of the early immature pods and the late immature pods from depodded plants aborted, respectively. Fifty-seven percent of the late immature pods aborted. Across both years there was not a consistent relationship between the concentrations of ethanol soluble carbohydrates, starch, ethanol soluble nitrogen, ethanol insoluble nitrogen, nitrate, and cations in the flowers or immature pods and abortion. During both early and late flowering, a single leaf located in the middle of the main stem that subtended flowers at anthesis, or immature pods was labeled with 3.7 x 10/sup 5/ Bq /sup 14/CO/sub 2/ for 1 h. After 24 h the entire plant was harvested, divided into flowers, pods, labeled leaf, and the remainder of the plant and the radioactivity was determined. The low aborting flowers and immature pods contained a greater percentage of the total /sup 14/C recovered than the high aborting flowers and immature pods. The results indirectly support the hypothesis that a signal compound produced by another plant part, perhaps the established pods, inhibits the development of aborting flowers and immature pods.« less

  6. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.

    PubMed

    Legave, Jean-Michel; Guédon, Yann; Malagi, Gustavo; El Yaacoubi, Adnane; Bonhomme, Marc

    2015-01-01

    The responses of flowering phenology to temperature increases in temperate fruit trees have rarely been investigated in contrasting climatic regions. This is an appropriate framework for highlighting varying responses to diverse warming contexts, which would potentially combine chill accumulation (CA) declines and heat accumulation (HA) increases. To examine this issue, a data set was constituted in apple tree from flowering dates collected for two phenological stages of three cultivars in seven climate-contrasting temperate regions of Western Europe and in three mild regions, one in Northern Morocco and two in Southern Brazil. Multiple change-point models were applied to flowering date series, as well as to corresponding series of mean temperature during two successive periods, respectively determining for the fulfillment of chill and heat requirements. A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances as in previous studies but also stationary flowering date series. At global scale, differentiated flowering time patterns result from varying interactions between contrasting thermal determinisms of flowering dates and contrasting warming contexts. This may explain flowering date advances in most of European regions and in Morocco vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region where the flowering date series was stationary. While the flowering duration series were stationary whatever the region, the flowering durations were far longer in mild regions compared to temperate regions. Our findings suggest a new warming vulnerability in temperate Mediterranean regions, which could shift toward responding more to chill decline and consequently experience late and extended flowering under future warming scenarios.

  7. The Role of Staminate Flowers in the Breeding System of Olea europaea (Oleaceae): an Andromonoecious, Wind‐pollinated Taxon

    PubMed Central

    CUEVAS, JULIÁN; POLITO, VITO S.

    2004-01-01

    • Background and Aims Andromonoecy, as a breeding system, has generated a considerable body of theory in terms of sexual selection, but extended records comparing the performance of pollen grains from staminate versus hermaphrodite flowers are still sparse. The objective in this study was to elucidate the role of staminate flowers in the andromonoecious breeding system of olive (Olea europaea). • Methods To determine the meaning of staminate flowers, an evaluation was made of resource allocation to, and phenology of, staminate and hermaphrodite flowers in the cultivar ‘Mission’, and a comparison was made of the male function between both kinds of flowers. • Key Results Dry weight of hermaphrodite flowers was 19 % greater than dry weight of staminate flowers arising in comparable positions of the panicle. This difference was mainly due to pistil and petal weight; there were no significant differences in stamen weight. There were no significant differences between staminate and hermaphrodite flowers in either amount of pollen per anther, or pollen quality as determined by pollen viability, germinability or ability to fertilize other flowers. There was no significant link between gender and time of anthesis. However, position of the flower within the panicle correlated with time of anthesis and gender. Flowers at the apex and at primary pedicels tended to be hermaphrodite and open earlier, whereas flowers arising in secondary pedicels were mainly staminate and were commonly the last to reach anthesis. • Conclusions It is proposed that the main advantage provided by production of staminate flowers in olive is to enhance male fitness by increasing pollen output at the whole plant level, although a relict function of attracting pollinators cannot be completely discarded. PMID:15037451

  8. FReD: The Floral Reflectance Database — A Web Portal for Analyses of Flower Colour

    PubMed Central

    Savolainen, Vincent; McOwan, Peter W.; Chittka, Lars

    2010-01-01

    Background Flower colour is of great importance in various fields relating to floral biology and pollinator behaviour. However, subjective human judgements of flower colour may be inaccurate and are irrelevant to the ecology and vision of the flower's pollinators. For precise, detailed information about the colours of flowers, a full reflectance spectrum for the flower of interest should be used rather than relying on such human assessments. Methodology/Principal Findings The Floral Reflectance Database (FReD) has been developed to make an extensive collection of such data available to researchers. It is freely available at http://www.reflectance.co.uk. The database allows users to download spectral reflectance data for flower species collected from all over the world. These could, for example, be used in modelling interactions between pollinator vision and plant signals, or analyses of flower colours in various habitats. The database contains functions for calculating flower colour loci according to widely-used models of bee colour space, reflectance graphs of the spectra and an option to search for flowers with similar colours in bee colour space. Conclusions/Significance The Floral Reflectance Database is a valuable new tool for researchers interested in the colours of flowers and their association with pollinator colour vision, containing raw spectral reflectance data for a large number of flower species. PMID:21170326

  9. Comparative transcriptomic analysis of the evolution and development of flower size in Saltugilia (Polemoniaceae).

    PubMed

    Landis, Jacob B; Soltis, Douglas E; Soltis, Pamela S

    2017-06-23

    Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators. Using targeted gene capture methods, we infer phylogenetic relationships among all members of Saltugilia to provide a framework for investigating the genetic control of flower size differences via RNA-Seq de novo assembly. Nuclear concatenation and species tree inference methods provide congruent topologies. The inferred evolutionary trajectory of flower size is from small flowers to larger flowers. We identified 4 to 10,368 transcripts that are differentially expressed during flower development, with many unigenes associated with cell wall modification and components of the auxin and gibberellin pathways. Saltugilia is an excellent model for investigating covarying floral and pollinator evolution. Four candidate genes from model systems (BIG BROTHER, BIG PETAL, GASA, and LONGIFOLIA) show differential expression during development of flowers in Saltugilia, and four other genes (FLOWERING-PROMOTING FACTOR 1, PECTINESTERASE, POLYGALACTURONASE, and SUCROSE SYNTHASE) fit into hypothesized organ size pathways. Together, these gene sets provide a strong foundation for future functional studies to determine their roles in specifying interspecific differences in flower size.

  10. Reproductive isolation between Zaluzianskya species: the influence of volatiles and flower orientation on hawkmoth foraging choices.

    PubMed

    Campbell, Diane R; Jürgens, Andreas; Johnson, Steven D

    2016-04-01

    Floral trait differences between related species may play a key role in reproductive isolation imposed by pollinators. Volatile emissions can influence pollinator choice, but how they act in combination with traits such as flower orientation is rarely studied. We compared flower-opening patterns, morphology, colour, orientation and volatile emissions for two closely related species of Zaluzianskya and their natural hybrids. Hawkmoth pollinators were tested for preference between flowers of the two species, and between flowers with manipulations of volatiles or orientation. Flowers of Z. natalensis and Z. microsiphon open at night and day, respectively, but they overlap during early evening, when hawkmoths showed a strong preference for Z. natalensis. The species have similar flower size and colour, but Z. natalensis emits more floral volatiles in the evening and presents flowers vertically face-up as opposed to horizontally in Z. microsiphon, whereas natural hybrids are intermediate. Adding methyl benzoate and linalool to flowers of Z. microsiphon did not increase hawkmoth attraction, but re-orientation of flowers to face vertically increased attraction when scent cues were present, whereas re-orientation of Z. natalensis flowers to face horizontally decreased attraction. This study highlights the importance of flower orientation in imposing reproductive isolation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  12. Models for forecasting the flowering of Cornicabra olive groves.

    PubMed

    Rojo, Jesús; Pérez-Badia, Rosa

    2015-11-01

    This study examined the impact of weather-related variables on flowering phenology in the Cornicabra olive tree and constructed models based on linear and Poisson regression to forecast the onset and length of the pre-flowering and flowering phenophases. Spain is the world's leading olive oil producer, and the Cornicabra variety is the second largest Spanish variety in terms of surface area. However, there has been little phenological research into this variety. Phenological observations were made over a 5-year period (2009-2013) at four sampling sites in the province of Toledo (central Spain). Results showed that the onset of the pre-flowering phase is governed largely by temperature, which displayed a positive correlation with the temperature in the start of dormancy (November) and a negative correlation during the months prior to budburst (January, February and March). A similar relationship was recorded for the onset of flowering. Other weather-related variables, including solar radiation and rainfall, also influenced the succession of olive flowering phenophases. Linear models proved the most suitable for forecasting the onset and length of the pre-flowering period and the onset of flowering. The onset and length of pre-flowering can be predicted up to 1 or 2 months prior to budburst, whilst the onset of flowering can be forecast up to 3 months beforehand. By contrast, a nonlinear model using Poisson regression was best suited to predict the length of the flowering period.

  13. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid.

    PubMed

    Koshio, Aya; Hasegawa, Tomomi; Okada, Rieko; Takeno, Kiyotoshi

    2015-01-15

    The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. 50 CFR 622.74 - Area closures to protect Gulf corals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) West and East Flower Garden Banks HAPC. The following activities are prohibited year-round in the HAPC... fishing vessels. (1) West Flower Garden Bank. West Flower Garden Bank is bounded by rhumb lines connecting... Flower Garden Bank. East Flower Garden Bank is bounded by rhumb lines connecting, in order, the following...

  15. Flowers, Beautiful Flowers

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2005

    2005-01-01

    In the lesson described, the middle school students had been studying the artist Georgia O'Keeffe and the history of her work. Students enhanced their flower portraits by adding a matching border and connecting the lesson to other subject areas. Students dissected a flower and drew a small diagram of the flower and labeled the parts. This is an…

  16. 50 CFR 622.74 - Area closures to protect Gulf corals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) West and East Flower Garden Banks HAPC. The following activities are prohibited year-round in the HAPC... fishing vessels. (1) West Flower Garden Bank. West Flower Garden Bank is bounded by rhumb lines connecting... Flower Garden Bank. East Flower Garden Bank is bounded by rhumb lines connecting, in order, the following...

  17. A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence

    USDA-ARS?s Scientific Manuscript database

    Flower senescence is mediated in part by changes of plant hormones, such as ethylene, cytokinin and abscisic acid (ABA). Ethylene is known to control flower senescence in many species, especially ethylene sensitive flowers, like petunia, carnation and rose. During flower senescence in petunia and ot...

  18. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    USDA-ARS?s Scientific Manuscript database

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  19. Record-Breaking Early Flowering in the Eastern United States

    PubMed Central

    Ellwood, Elizabeth R.; Temple, Stanley A.; Primack, Richard B.; Davis, Charles C.

    2013-01-01

    Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change. PMID:23342001

  20. The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Milne, Georgina; Rands, Sean A.; Vignolini, Silvia; Martin, Cathie; Glover, Beverley J.

    2013-03-01

    Patterns of pigmentation overlying the petal vasculature are common in flowering plants and have been postulated to play a role in pollinator attraction. Previous studies report that such venation patterning is significantly more attractive to bee foragers in the field than ivory or white flowers without veins. To dissect the ways in which venation patterning of pigment can influence bumblebee behaviour, we investigated the response of flower-naïve individuals of Bombus terrestris to veined, ivory and red near-isogenic lines of Antirrhinum majus. We find that red venation shifts flower colour slightly, although the ivory background is the dominant colour. Bees were readily able to discriminate between ivory and veined flowers under differential conditioning but showed no innate preference when presented with a free choice of rewarding ivory and veined flowers. In contrast, both ivory and veined flowers were selected significantly more often than were red flowers. We conclude that advantages conferred by venation patterning might stem from bees learning of their use as nectar guides, rather than from any innate preference for striped flowers.

  1. Transcriptomic Analysis of Flower Blooming in Jasminum sambac through De Novo RNA Sequencing.

    PubMed

    Li, Yong-Hua; Zhang, Wei; Li, Yong

    2015-06-10

    Flower blooming is a critical and complicated plant developmental process in flowering plants. However, insufficient information is available about the complex network that regulates flower blooming in Jasminum sambac. In this study, we used the RNA-Seq platform to analyze the molecular regulation of flower blooming in J. sambac by comparing the transcript profiles at two flower developmental stages: budding and blooming. A total of 4577 differentially-expressed genes (DEGs) were identified between the two floral stages. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DEGs in the "oxidation-reduction process", "extracellular region", "steroid biosynthesis", "glycosphingolipid biosynthesis", "plant hormone signal transduction" and "pentose and glucuronate interconversions" might be associated with flower development. A total of 103 and 92 unigenes exhibited sequence similarities to the known flower development and floral scent genes from other plants. Among these unigenes, five flower development and 19 floral scent unigenes exhibited at least four-fold differences in expression between the two stages. Our results provide abundant genetic resources for studying the flower blooming mechanisms and molecular breeding of J. sambac.

  2. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  3. [Functional saponins in tea flower (flower buds of Camellia sinensis): gastroprotective and hypoglycemic effects of floratheasaponins and qualitative and quantitative analysis using HPLC].

    PubMed

    Yoshikawa, Masayuki; Wang, Tao; Sugimoto, Sachiko; Nakamura, Seikou; Nagatomo, Akifumi; Matsuda, Hisashi; Harima, Shoichi

    2008-01-01

    As a part of our characterization studies on the bioactive saponin constituents of tea flowers (Camellia sinensis, flower buds), the methanolic extract and 1-butanol-soluble portion (the saponin fraction) from the flower buds were found to exhibit potent inhibitory effects on ethanol- and indomethacin-induced gastric mucosal lesions in rats and on serum glucose elevation in sucrose-loaded rats. Among the constituents of the 1-butanol-soluble portion, floratheasaponins A, B, and C showed gastroprotective and hypoglycemic activities. Furthermore, we have developed qualitative and quantitative methods using HPLC for the principle saponins, floratheasaponins A-F, in tea flowers, which were previously found to show antiallergic and antiobesity effects. Using those methods, the saponin composition of Indian tea flowers were found to be similar to those of Chinese (Anhui) but not of Japanese tea flowers. On the other hand, it was found that the floratheasaponin contents in tea flowers varied markedly during the blooming period, and they were abundant at half-bloom. Additionally, the contents of caffeine in the tea flowers were examined using HPLC.

  4. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    PubMed

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  5. CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum.

    PubMed

    Borovsky, Yelena; Sharma, Vinod K; Verbakel, Henk; Paran, Ilan

    2015-06-01

    The APETALA2 transcription factor homolog CaAP2 is a candidate gene for a flowering repressor in pepper, as revealed by induced-mutation phenotype, and a candidate underlying a major QTL controlling natural variation in flowering time. To decipher the genetic control of transition to flowering in pepper (Capsicum spp.) and determine the extent of gene function conservation compared to model species, we isolated and characterized several ethyl methanesulfonate (EMS)-induced mutants that vary in their flowering time compared to the wild type. In the present study, we report on the isolation of an early-flowering mutant that flowers after four leaves on the primary stem compared to nine leaves in the wild-type 'Maor'. By genetic mapping and sequencing of putative candidate genes linked to the mutant phenotype, we identified a member of the APETALA2 (AP2) transcription factor family, CaAP2, which was disrupted in the early-flowering mutant. CaAP2 is a likely ortholog of AP2 that functions as a repressor of flowering in Arabidopsis. To test whether CaAP2 has an effect on controlling natural variation in the transition to flowering in pepper, we performed QTL mapping for flowering time in a cross between early and late-flowering C. annuum accessions. We identified a major QTL in a region of chromosome 2 in which CaAP2 was the most significant marker, explaining 52 % of the phenotypic variation of the trait. Sequence comparison of the CaAP2 open reading frames in the two parents used for QTL mapping did not reveal significant variation. In contrast, significant differences in expression level of CaAP2 were detected between near-isogenic lines that differ for the flowering time QTL, supporting the putative function of CaAP2 as a major repressor of flowering in pepper.

  6. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-05-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Insect-Flower Interaction Network Structure Is Resilient to a Temporary Pulse of Floral Resources from Invasive Rhododendron ponticum

    PubMed Central

    Tiedeken, Erin Jo; Stout, Jane C.

    2015-01-01

    Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community. PMID:25764085

  8. Three Types of Flower Structures in a Divergent-Wrench Fault Zone

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Liu, Chi-yang

    2017-12-01

    Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.

  9. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  10. Volatiles Emitted at Different Flowering Stages of Jasminum sambac and Expression of Genes Related to α-Farnesene Biosynthesis.

    PubMed

    Yu, Ying; Lyu, Shiheng; Chen, Dan; Lin, Yi; Chen, Jianjun; Chen, Guixin; Ye, Naixing

    2017-03-29

    Fresh jasmine flowers have been used to make jasmine teas in China, but there has been no complete information about volatile organic compound emissions in relation to flower developmental stages and no science-based knowledge about which floral stage should be used for the infusion. This study monitored volatile organic compounds emitted from living flowers of Jasminum sambac (L.) Ait. 'Bifoliatum' at five developmental stages and also from excised flowers. Among the compounds identified, α-farnesene, linalool, and benzyl acetate were most abundant. Since α-farnesene is synthesized through the Mevalonate pathway, four genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), farnesyl pyrophosphate synthase, and terpene synthase were isolated. Their expression patterns in living flowers at the five stages and in excised flowers coincided with the emission patterns of α-farnesene. Application of lovastatin, a HMGR inhibitor, significantly reduced the expression of the genes and greatly decreased the emission of α-farnesene. The sweet scent was diminished from lovastatin-treated flowers as well. These results indicate that α-farnesene is an important compound emitted from jasmine flowers, and its emission patterns suggest that flowers at the opening stage or flower buds 8 h after excision should be used for the infusion of tea leaves.

  11. Genomic Approach to Study Floral Development Genes in Rosa sp.

    PubMed Central

    Chauvet, Aurélie; Maene, Marion; Pécrix, Yann; Yang, Shu-Hua; Jeauffre, Julien; Thouroude, Tatiana; Boltz, Véronique; Martin-Magniette, Marie-Laure; Janczarski, Stéphane; Legeai, Fabrice; Renou, Jean-Pierre; Vergne, Philippe; Le Bris, Manuel; Foucher, Fabrice; Bendahmane, Mohammed

    2011-01-01

    Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower. PMID:22194838

  12. Bumblebees can discriminate between scent-marks deposited by conspecifics

    PubMed Central

    Pearce, Richard F.; Giuggioli, Luca; Rands, Sean A.

    2017-01-01

    Bumblebees secrete a substance from their tarsi wherever they land, which can be detected by conspecifics. These secretions are referred to as scent-marks, which bumblebees are able to use as social cues. Although it has been found that bumblebees can detect and associate scent-marks with rewarding or unrewarding flowers, their ability at discriminating between scent-marks from bumblebees of differing relatedness is unknown. We performed three separate experiments with bumblebees (Bombus terrestris), where they were repeatedly exposed to rewarding and unrewarding artificial flowers simultaneously. Each flower type carried scent-marks from conspecifics of differing relatedness or were unmarked. We found that bumblebees are able to distinguish between 1. Unmarked flowers and flowers that they themselves had scent-marked, 2. Flowers scent-marked by themselves and flowers scent-marked by others in their nest (nestmates), and 3. Flowers scent-marked by their nestmates and flowers scent-marked by non-nestmates. The bumblebees found it more difficult to discriminate between each of the flower types when both flower types were scent-marked. Our findings show that bumblebees have the ability to discriminate between scent-marks of conspecifics, which are potentially very similar in their chemical composition, and they can use this ability to improve their foraging success. PMID:28266572

  13. The evolution of ovule number and flower size in wind-pollinated plants.

    PubMed

    Friedman, Jannice; Barrett, Spencer C H

    2011-02-01

    In angiosperms, ovules are "packaged" within individual flowers, and an optimal strategy should occur depending on pollination and resource conditions. In animal-pollinated species, wide variation in ovule number per flower occurs, and this contrasts with wind-pollinated plants, where most species possess uniovulate flowers. This pattern is usually explained as an adaptive response to low pollen receipt in wind-pollinated species. Here, we develop a phenotypic model for the evolution of ovule number per flower that incorporates the aerodynamics of pollen capture and a fixed resource pool for provisioning of flowers, ovules, and seeds. Our results challenge the prevailing explanation for the association between uniovulate flowers and wind pollination. We demonstrate that when flowers are small and inexpensive, as they are in wind-pollinated species, ovule number should be minimized and lower than the average number of pollen tubes per style, even under stochastic pollination and fertilization regimes. The model predicts that plants benefit from producing many small inexpensive flowers, even though some flowers capture too few pollen grains to fertilize their ovules. Wind-pollinated plants with numerous flowers distributed throughout the inflorescence, each with a single ovule or a few ovules, sample more of the airstream, and this should maximize pollen capture and seed production.

  14. Plastic breeding system response to day length in the California wildflower Mimulus douglasii.

    PubMed

    Barnett, Laryssa L; Troth, Ashley; Willis, John H

    2018-04-25

    Angiosperms have evolved multiple breeding systems that allow reproductive success under varied conditions. Striking among these are cleistogamous breeding systems, where individuals can produce alternative flower types specialized for distinct mating strategies. Cleistogamy is thought to be environmentally-dependent, but little is known about environmental triggers. If production of alternate flowers is environmentally induced, populations may evolve locally adapted responses. Mimulus douglasii, exhibits a cleistogamous breeding system, and ranges across temperature and day-length gradients, providing an ideal system to investigate environmental parameters that control cleistogamy. We compared flowering responses across Mimulus douglasii population accessions that produce distinct outcrossing and self-pollinating flower morphs. Under controlled conditions, we determined time to flower, and number and type of flowers produced under different temperatures and day lengths. Temperature and day length both affect onset of flowering. Long days shift flower type from predominantly chasmogamous to cleistogamous. The strength of the response to day length varies across accessions whether temperature varies or is held constant. Cleistogamy is an environmentally sensitive polyphenism in Mimulus douglasii, allowing transition from one mating strategy to another. Longer days induce flowering and production of cleistogamous flowers. Shorter days induce chasmogamous flowers. Population origin has a small effect on response to environmental cues. © 2018 Botanical Society of America.

  15. Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2012-01-01

    Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes. PMID:22915579

  16. Observations of Chemical Composition in Frost Flower Growth Process and Their Implication in Aerosol Production and Bromine Activation Chemistry

    NASA Astrophysics Data System (ADS)

    Alvarez-Aviles, L.; Simpson, W. R.; Douglas, T. A.; Sturm, M.; Perovich, D. K.

    2006-12-01

    Frost flowers are believed to be responsible for most of the salt aerosol and possibly the bromine in the gas phase during springtime in Polar Regions. Frost flowers are vapor deposited ice crystals that form on new forming sea ice and wick brine from the sea-ice surface resulting in high salinities. We propose a conceptual model of frost flower growth and chemical fractionation using chemical analysis to support this model. We also consider how the chemical composition of frost flowers can tell us about the role of frost flowers in bromine activation and aerosol production. Our conceptual model is centered in two important events that occur when sea ice grows and the ice surface temperature gets colder. Brine on the sea-ice surface is drawn up the frost flower by capillary forces, therefore the high salinity values found. Secondarily salt hydrates begin to precipitate at certain temperatures. These precipitation reactions modify the chemical composition of the frost flowers and residual brine, and are the main topic of this research. We found variability and generally depletion of sulfate as compared to sea-water composition in most of the mature frost flowers. This result is in agreement with the literature, which proposes the depletion in sulfate occurs because mirabilite (Na2SO4 · 10H2O) precipitates before the brine is wicked. The observation of some slightly sulfate-enhanced samples in addition to depleted samples indicates that the brine/frost flower environment is the location where mirabilite precipitation and separation from residual brine occurs. Frost flowers bromide enhancement factors are all, within analytical limits, identical to sea water, although nearby snow is depleted in bromide. Because of the high salt concentrations in frost flowers, significant bromine activation could occur from frost flowers without being detected by this measurement. However, if all bromide activation occurred on frost flowers, and frost flowers are not depleted in bromide, no snow would be found that was depleted in bromide. Therefore, the observation of snow that is depleted in bromide shows there must be some activation of bromide subsequent to frost flowers formation.

  17. Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?

    PubMed

    Dart, Sara; Eckert, Christopher G

    2015-02-01

    Evolutionary transitions from outcrossing to self-fertilization are thought to occur because selfing provides reproductive assurance when pollinators or mates are scarce, but they could also occur via selection to reduce floral vulnerability to herbivores. This study investigated geographic covariation between floral morphology, fruit set, pollen limitation and florivory across the geographic range of Camissoniopsis cheiranthifolia, a Pacific coastal dune endemic that varies strikingly in flower size and mating system. Fruit set was quantified in 75 populations, and in 41 of these floral herbivory by larvae of a specialized moth (Mompha sp.) that consumes anthers in developing buds was also quantified. Experimental pollen supplementation was performed to quantify pollen limitation in three large-flowered, outcrossing and two small-flowered, selfing populations. These parameters were also compared between large- and small-flowered phenotypes within three mixed populations. Fruit set was much lower in large-flowered populations, and also much lower among large- than small-flowered plants within populations. Pollen supplementation increased per flower seed production in large-flowered but not small-flowered populations, but fruit set was not pollen limited. Hence inadequate pollination cannot account for the low fruit set of large-flowered plants. Floral herbivory was much more frequent in large-flowered populations and correlated negatively with fruit set. However, florivores did not preferentially attack large-flowered plants in three large-flowered populations or in two of three mixed populations. Selfing alleviated pollen limitation of seeds per fruit, but florivory better explains the marked variation in fruit set. Although florivory was more frequent in large-flowered populations, large-flowered individuals were not generally more vulnerable within populations. Rather than a causative selective factor, reduced florivory in small-flowered, selfing populations is probably an ecological consequence of mating system differentiation, with potentially significant effects on population demography and biotic interactions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Model of white oak flower survival and maturation

    Treesearch

    David R. Larsen; Robert A. Cecich

    1997-01-01

    A stochastic model of oak flower dynamics is presented that integrates a number of factors which appear to affect the oak pistillate flower development process. The factors are modeled such that the distribution of the predicted flower populations could have come from the same distribution as the observed flower populations. Factors included in the model are; the range...

  19. Radical Scavenging Activity From Ethanolic Extract Of Malvaceae Family’s Flowers

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Rahmadanny, N.; Prihapsara, F.

    2018-04-01

    Sea hibiscus flower (Hibiscus tiliaceus L.), shoe flower (Hibiscus rosa-sinensis L.), and turk’s cap flower (Malvaviscus arboreus Cav.) are a plant that belongs to the same family, Malvaceae. There are expected contain of anthocyanins as active compound. Several studied shows that some flowers could protect human body from free radical danger exposure. This study has been done to examine ethanolic extract from malvaceae family’s which has potency as radical scavenger. Antiradical activity assay was determined by DPPH method with IC50 value as parameter. Based on the study the malvaceae family’s flower was contain of tannins, polyphenols, saponin, and anthocyanine. The radical scavenging activity respectively from the lowest to the higest activity are vitamin c (4,05 ppm ± 0,094), Turk’s cap flower (6,80 ppm ± 0,22), shoe flower (14,62 ppm ± 0,104) and sea hibiscus flower (38,8 ppm ± 0,086). The three of the extract was having strong antioxidant activity.

  20. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

Top