Sample records for flowing solar structures

  1. Flow Sources of The Solar Wind Stream Structieres

    NASA Astrophysics Data System (ADS)

    Lotova, N. A.; Obridko, V. N.; Vladimirskii, K. V.

    The large-scale stream structure of the solar wind flow was studied at the main acceler- ation area of 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomy observations of radio wave scattering on near-solar plasmas (large radio telescopes of the P.N.Lebedev Physical Institute were used); mor- phology of the WLC as revealed by the SOHO optical solar corona observations; solar magnetic field strength and configuration computed using the Wilcox Solar Observa- tory data. Experimental data of 1997-1998 years on the position of the transition, tran- sonic region of the solar wind flow were used as a parameter reflecting the intensity of the solar plasmas acceleration process. Correlation studies of these data combined with the magnetic field strength at the solar corona level revealed several types of the solar wind streams differing in the final result, the velocity at large distances from the Sun. Besides of the well-known flows stemming from the polar coronal holes, high-speed streams were observed arising in lateral areas of the streamer structures in contrast to the main body of the streamers, being a known source of the slow solar wind. The slowest streams arise at areas of mixed magnetic field structure compris- ing both open and closed (loop-like) filed lines. In the white-light corona images this shows extensive areas of bright amorphous luminosity.

  2. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    NASA Technical Reports Server (NTRS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  3. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less

  4. Spectral features of solar plasma flows

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Revunov, S. E.

    2014-11-01

    Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.

  5. Solar cycle dependence of the heliospheric shape deduced from a global MHD simulation of the interaction process between a nonuniform time-dependent solar wind and the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Washimi, H.

    1999-06-01

    The global structure of the solar wind/very local interstellar medium interaction is studied from a fully three-dimensional time-dependent magnetohydrodynamic model, in which the solar wind speed increases from 400 to 800 km/s in going from the ecliptic to pole and the heliolatitude of the low-high-speed boundary changes from 30° to 80° in going from the solar minimum to solar maximum. In addition, the interplanetary magnetic field (IMF) changes its polarity at the solar maximum. As a whole, the shapes of the terminal shock (TS) and heliopause (HP) are elongated along the solar polar axis owing to a high solar wind ram pressure over the poles. In the ecliptic plane, the heliospheric structure changes little throughout a solar cycle. The TS in this plane shows a characteristic bullet-shaped structure. In the polar plane, on the other hand, the shape of the TS exhibits many specific structures according to the stage of the solar cycle. These structures include the polygonal configuration of the polar TS seen around the solar minimum, the mesa- and terrace-shaped TSs in the high- and low-speed solar wind regions seen around the ascending phase, and the chimney-shaped TS in the high-speed solar wind region seen around the solar maximum. These structures are formed from different combinations of right-angle shock, oblique shock, and steep oblique shock so as to transport the heliosheath plasma most efficiently toward the heliotail (HT). In the HT, the hot and weakly-magnetized plasma from the high-heliolatitude TS invades as far as the ecliptic plane. A weakly time-dependent recirculation flow in the HT is a manifestation of invading flow. Distributions of magnetic field in the HT, which are a pile-up of the compressed MF over several solar cycles, are modified by the flow from high-heliolatitude.

  6. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  7. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  8. GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, A.; Roth, M.; Timmer, J., E-mail: ariane.schad@kis.uni-freiburg.de

    2013-12-01

    We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solarmore » surface, our results are in good agreement with flow measurements from local helioseismology.« less

  9. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  10. Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Roth, M.

    2008-09-01

    The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.

  11. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  12. Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei

    2018-06-01

    The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.

  13. Near-Earth Solar Wind Flows and Related Geomagnetic Activity During more than Four Solar Cycles (1963-2011)

    NASA Technical Reports Server (NTRS)

    Richardson, Ian G.; Cane, Hilary V.

    2012-01-01

    In past studies, we classified the near-Earth solar wind into three basic flow types based on inspection of solar wind plasma and magnetic field parameters in the OMNI database and additional data (e.g., geomagnetic indices, energetic particle, and cosmic ray observations). These flow types are: (1) High-speed streams associated with coronal holes at the Sun, (2) Slow, interstream solar wind, and (3) Transient flows originating with coronal mass ejections at the Sun, including interplanetary coronal mass ejections and the associated upstream shocks and post-shock regions. The solar wind classification in these previous studies commenced with observations in 1972. In the present study, as well as updating this classification to the end of 2011, we have extended the classification back to 1963, the beginning of near-Earth solar wind observations, thereby encompassing the complete solar cycles 20 to 23 and the ascending phase of cycle 24. We discuss the cycle-to-cycle variations in near-Earth solar wind structures and l1e related geomagnetic activity over more than four solar cycles, updating some of the results of our earlier studies.

  14. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  15. Magnetic Fields and Flows in Open Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Jones, Harrlson P.

    2004-01-01

    Open magnetic structures connect the solar surface to the heliosphere and are thus of great interest in solar-terrestrial physics. This talk is primarily an observational review of what is known about magnetic fields and particularly flows in such regions with special focus on coronal holes and origins of the fast solar wind. First evidence of the connection between these two features was seen in correlations of Skylab data with in situ measurements of the solar wind soon after the discovery of coronal holes, which are now known to emanate from unipolar magnetic regions at the photosphere. Subsequently many observations of have been made, ranging from oscillations in the underlying photosphere and chromosphere, to possible beginnings of the solar wind as observed by Doppler shifts in high chromospheric and transition-region lines, to coronagraphic time-lapse studies of outward-moving blobs of material which perhaps trace elements of solar-wind plasma. Some of the many unresolved and controversial issues regarding details of these observations and their association with the solar wind will be discussed.

  16. Solar related waves in the Venusian atmosphere from the cloud tops to 100 km

    NASA Technical Reports Server (NTRS)

    Elson, L. S.

    1983-01-01

    A quasi-linear diagnostic model using observed solar-related temperatures and a specified solar mean circulation and surface structure to find the solar-related circulation above the clouds of Venus is presented. Despite the greater dependence of model-derived, solar-related circulation on the mean flow than is the case for terrestrial tides, as well as the uncertainty concerning this mean flow, significant conclusions are drawn for the solar-related circulation and thermal structure of Venus. An anomalously large response is found in the polar regions, due to the model's requirement of a process such as dissipation which will act as a major sink for momentum. Dissipation is specified in the model as Rayleigh friction with an unknown free parameter coefficient. In view of this, dissipation is either very efficient by terrestrial standards and accompanied by small solar-related circulation, or similar to that of earth and possessed of a circulation large enough to have an impact on the mean circulation.

  17. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    NASA Astrophysics Data System (ADS)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  18. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Astrophysics Data System (ADS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-09-01

    Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  19. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  20. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Giordano, S.

    2013-02-01

    The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.

  1. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  2. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2010-12-28

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  3. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2012-09-04

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  4. Rack assembly for mounting solar modules

    DOEpatents

    Plaisted, Joshua Reed; West, Brian

    2014-06-10

    A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.

  5. Advanced Undergraduate and Early Graduate Physics Students' Misconception about Solar Wind Flow: Evidence of Students' Difficulties in Distinguishing Paradigms

    ERIC Educational Resources Information Center

    Gross, Nicholas A.; Lopez, Ramon E.

    2009-01-01

    Anecdotal evidence has suggested that advanced undergraduate students confuse the spiral structure of the interplanetary magnetic field with the flow of the solar wind. Though it is a small study, this paper documents this misconception and begins to investigate the underlying issues behind it. We present evidence that the traditional presentation…

  6. Solar steam generation by heat localization.

    PubMed

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-07-21

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  7. Validating a magnetic reconnection model for the magnetopause

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-01-01

    Originating in the Sun's million-degree corona, the solar wind flows at supersonic speeds into interplanetary space, carrying with it the solar magnetic field. As the solar wind reaches Earth's orbit, its interaction with the geomagnetic field forms the magnetosphere, a bubble-like structure within the solar wind flow that shields Earth from direct exposure to the solar wind as well as to the highly energetic charged particles produced during solar storms. Under certain orientations, the magnetic field entrained in the solar wind, known as the interplanetary magnetic field (IMF), merges with the geomagnetic field, transferring mass, momentum, and energy to the magnetosphere. The merging of these two distinct magnetic fields occurs through magnetic reconnection, a fundamental plasma-physical process that converts magnetic energy into kinetic energy and heat.

  8. Flux Transport and the Sun's Global Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    The Sun s global magnetic field is produced and evolved through the emergence of magnetic flux in active regions and its transport across the solar surface by the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective flows of granulation, supergranulation, and giant cell convection. Maps of the global magnetic field serve as the inner boundary condition for space weather. The photospheric magnetic field and its evolution determine the coronal and solar wind structures through which CMEs must propagate and in which solar energetic particles are accelerated and propagate. Producing magnetic maps which best represent the actual field configuration at any instant requires knowing the magnetic field over the observed hemisphere as well as knowing the flows that transport flux. From our Earth-based vantage point we only observe the front-side hemisphere and each pole is observable for only six months of the year at best. Models for the surface magnetic flux transport can be used to provide updates to the magnetic field configuration in those unseen regions. In this presentation I will describe successes and failures of surface flux transport and present new observations on the structure, the solar cycle variability, and the evolution of the flows involved in magnetic flux transport. I find that supergranules play the dominant role due to their strong flow velocities and long lifetimes. Flux is transported by differential rotation and meridional flow only to the extent that the supergranules participate in those two flows.

  9. On the plasma flow inside magnetic tornadoes on the Sun

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Steiner, Oskar

    2014-12-01

    High-resolution observations with the Swedish 1-m Solar Telescope (SST) and the Solar Dynamics Observatory (SDO) reveal rotating magnetic field structures that extend from the solar surface into the chromosphere and the corona. These so-called magnetic tornadoes are primarily detected as rings or spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chromospheric swirls). Detailed numerical simulations show that the observed chromospheric plasma motion is caused by the rotation of magnetic field structures, which again are driven by photospheric vortex flows at their footpoints. Under the right conditions, two vortex flow systems are stacked on top of each other. We refer to the lower vortex, which extends from the low photosphere into the convection zone, as intergranular vortex flow (IVF). Once a magnetic field structure is co-located with an IVF, the rotation is mediated into the upper atmospheric layers and an atmospheric vortex flow (AVF, or magnetic tornado) is generated. In contrast to the recent work by Shelyag et al. (2013, ApJ, 776, L4), we demonstrate that particle trajectories in a simulated magnetic tornado indeed follow spirals and argue that the properties of the trajectories decisively depend on the location in the atmosphere and the strength of the magnetic field.

  10. Remote Sensing of the Solar Wind Density, Speed, and Temperature in the Region between the Sun and Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; Reginald, N. L.

    2017-12-01

    A coronagraph is the tool of choice to understand and observe the structure of the corona from space. The novel coronagraph concept presented her provides a new scientific capability that will allow the measurement of density, temperature, and flow velocity in the solar atmosphere. This instrument will provide the first remote sensing measurement of the global solar wind temperature, density, and flow speed in the regions between 3 and 8 Rsun. It is in this region that the manority of the solar wind acceleration takes place, and where the ion compsition of the solar wind is "frozen in". This is also the region of the corona that links the surface of the Sun to the Parker Solar Probe and to Solar Orbiter. The observations suggested here would dramatically improve our understanding of solar wind formation and evolution in this critical region.

  11. Foreshock and magnetosheath transients, origin and connection to the magnetopause.

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, X.

    2014-12-01

    The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.

  12. Large-scale photospheric motions determined from granule tracking and helioseismology from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.

    2018-04-01

    Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.

  13. Sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R.; Rabin, D.

    1985-01-01

    It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies.

  14. THE PERIOD RATIO FOR STANDING KINK AND SAUSAGE MODES IN SOLAR STRUCTURES WITH SIPHON FLOW. I. MAGNETIZED SLABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Bo; Habbal, Shadia Rifai; Chen Yanjun, E-mail: bbl@sdu.edu.cn

    2013-04-20

    In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} bymore » up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.« less

  15. Intermittency of solar wind on scale 0.01-16 Hz.

    NASA Astrophysics Data System (ADS)

    Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel

    Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.

  16. Creation of current filaments in the solar corona

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Schnack, D. D.; Van Hoven, G.

    1989-01-01

    It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.

  17. Inferences of the deep solar meridional flow

    NASA Astrophysics Data System (ADS)

    Böning, Vincent G. A.

    2017-10-01

    Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measurements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors from earlier studies leads to errors in the inverted flows being underestimated by a factor of about two to four. The inverted meridional flow above about 0.85 solar radii confirms the earlier results from ray theory regarding the general pattern of the flow, especially regarding a shallow return flow at about 0.9 solar radii, with some differences in the magnitude of the flow. Below about 0.85 solar radii, the inversion result depends on the thresholds used in the singular value decomposition. One result is again similar to the original regarding its general single-cell shape. Other results show a multi-cell structure in the southern hemisphere with two or three cells stacked radially. However, both the single-cell and the multi-cell flow profiles are consistent with the measured travel times within the measurement errors. To reach an unambiguous conclusion on the meridional flow below about 0.85 solar radii, the errors in the measured travel times have to be decreased considerably in future studies. For now, I conclude that the existing controversy of recent measurements of the deep meridional flow is relaxed by properly taking the associated errors into account.

  18. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.

    1992-01-01

    The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable, and another one of our goals is to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulation). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.

  19. Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates

    NASA Technical Reports Server (NTRS)

    Deane, Anil E.

    1996-01-01

    Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.

  20. Design and fabrication of brayton cycle solar heat receiver

    NASA Technical Reports Server (NTRS)

    Mendelson, I.

    1971-01-01

    A detail design and fabrication of a solar heat receiver using lithium fluoride as the heat storage material was completed. A gas flow analysis was performed to achieve uniform flow distribution within overall pressure drop limitations. Structural analyses and allowable design criteria were developed for anticipated environments such as launch, pressure containment, and thermal cycling. A complete heat receiver assembly was fabricated almost entirely from the refractory alloy, niobium-1% zirconium.

  1. [Rainfall effects on the sap flow of Hedysarum scoparium.

    PubMed

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  2. On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.

    2012-11-01

    The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.

  3. Meridional flow in the solar convection zone. I. Measurements from gong data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J., E-mail: kholikov@noao.edu

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-timemore » differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.« less

  4. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yang; Veronig, Astrid; Temmer, Manuela

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in themore » photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.« less

  5. Intensification of depolymerization of polyacrylic acid solution using different approaches based on ultrasound and solar irradiation with intensification studies.

    PubMed

    Prajapat, Amrutlal L; Gogate, Parag R

    2016-09-01

    Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US+solar, solar+O3, solar+H2O2, US+H2O2 and US+O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60W)+solar+H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35min whereas operation of solar+H2O2 (0.01%), US (60W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60min respectively. Approach of US (60W)+solar+ozone (400mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35min whereas only ozone (400mg/h flow rate), ozone (400mg/h flow rate)+US (60W) and ozone (400mg/h flow rate)+solar resulted in 69.04%, 98.97% and 98.51% reduction in 60min, 55min and 55min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tomographic Imaging of the Suns Interior

    NASA Technical Reports Server (NTRS)

    Kosovichev, A. G.

    1996-01-01

    A new method is presented of determining the three-dimensional sound-speed structure and flow velocities in the solar convection zone by inversion of the acoustic travel-time data recently obtained by Duvall and coworkers. The initial inversion results reveal large-scale subsurface structures and flows related to the active regions, and are important for understanding the physics of solar activity and large-scale convection. The results provide evidence of a zonal structure below the surface in the low-latitude area of the magnetic activity. Strong converging downflows, up to 1.2 km/s, and a substantial excess of the sound speed are found beneath growing active regions. In a decaying active region, there is evidence for the lower than average sound speed and for upwelling of plasma.

  7. Vortex flows in the solar chromosphere. I. Automatic detection method

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Wedemeyer, S.

    2017-05-01

    Solar "magnetic tornadoes" are produced by rotating magnetic field structures that extend from the upper convection zone and the photosphere to the corona of the Sun. Recent studies show that these kinds of rotating features are an integral part of atmospheric dynamics and occur on a large range of spatial scales. A systematic statistical study of magnetic tornadoes is a necessary next step towards understanding their formation and their role in mass and energy transport in the solar atmosphere. For this purpose, we develop a new automatic detection method for chromospheric swirls, meaning the observable signature of solar tornadoes or, more generally, chromospheric vortex flows and rotating motions. Unlike existing studies that rely on visual inspections, our new method combines a line integral convolution (LIC) imaging technique and a scalar quantity that represents a vortex flow on a two-dimensional plane. We have tested two detection algorithms, based on the enhanced vorticity and vorticity strength quantities, by applying them to three-dimensional numerical simulations of the solar atmosphere with CO5BOLD. We conclude that the vorticity strength method is superior compared to the enhanced vorticity method in all aspects. Applying the method to a numerical simulation of the solar atmosphere reveals very abundant small-scale, short-lived chromospheric vortex flows that have not been found previously by visual inspection.

  8. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    PubMed

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  9. Guided flows in coronal magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  10. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svanda, Michal, E-mail: michal@astronomie.cz; Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-18000 Prague 8

    2013-09-20

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-{omega} filtering procedures-ridge filtering and phase-speed filtering-commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows inmore » the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top {approx}5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules.« less

  11. Solar wind interaction with dusty plasmas produces instabilities and solitary structures

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.

    2017-12-01

    It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.

  12. Solar wind structure out of the ecliptic plane over solar cycles

    NASA Astrophysics Data System (ADS)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  13. Does the Alfvén wave wreck the large-scale magnetic cloud structure?

    NASA Astrophysics Data System (ADS)

    Raghav, Anil N.; Kule, Ankita

    2018-06-01

    Alfvén waves are primal and pervasive in space plasmas and significantly contributes to microscale fluctuations in the solar wind and some heliospheric processes. Here, we demonstrate the first observable distinct feature of Alfvén wave while propagating from magnetic cloud to trailing solar wind. The Walén test is used to confirm their presence in selected regions. The amplitude ratio of inward to outward Alfvén waves is employed to establish their flow direction. The dominant inward flow is observed in magnetic cloud whereas trailing solar wind shows the dominant outward flow of Alfvén waves. The observed reduction in Walén slope and correlation coefficient within magnetic cloud suggest (i) the simultaneous presence of an inward & outward Alfvén waves and/or (ii) a possibility of magnetic reconnection and/or (iii) development of thermal anisotropy and/or (iv) dissipation of Alfvénic fluctuations. The study implies that either the Alfvén waves dissipate in the magnetic cloud or its presence can lead to disruption of the magnetic cloud structure.

  14. Ion-Neutral Coupling in Solar Prominence

    NASA Technical Reports Server (NTRS)

    Gilbert, H.; DeVore, C. R.; Karpen, J.; Kucera, T.; Antiochos, S.; Kawashima, R.

    2011-01-01

    Coupling between ions and neutrals in magnetized plasmas is fundamentally important to many aspects of heliophysics, including our ionosphere, the solar chromosphere, the solar wind interaction with planetary atmospheres, and the interface between the heliosphere and the interstellar medium. Ion-neutral coupling also plays a major role in the physics of solar prominences. By combining theory, modeling, and observations we are working toward a better understanding of the structure and dynamics of partially ionized prominence plasma. Two key questions are addressed in the present work: 1) what physical mechanism(s) sets the cross-field scale of prominence threads? 2) Are ion-neutral interactions responsible for the vertical flows and structure in prominences? We present initial results from a study investigating what role ion-neutral interactions play in prominence dynamics and structure. This research was supported by NASA.

  15. Study of magnetic notions in the solar photosphere and their implications for heating the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1995-01-01

    This progress report covers the first year of NASA Grant NAGw-2545, a study of magnetic structure in the solar photosphere and chromosphere. We have made significant progress in three areas: (1) analysis of vorticity in photospheric convection, which probably affects solar atmospheric heating through the stresses it imposes on photospheric magnetic fields; (2) modelling of the horizontal motions of magnetic footpoints in the solar photosphere using an assumed relation between brightness and vertical motion as well as continuity of flow; and (3) observations and analysis of infrared CO lines formed near the solar temperature minimum, whose structure and dynamics also yield important clues to the nature of heating of the upper atmosphere. Each of these areas are summarized in this report, with copies of those papers prepared or published this year included.

  16. Wind and solar powered turbine

    NASA Technical Reports Server (NTRS)

    Wells, I. D.; Koh, J. L.; Holmes, M. (Inventor)

    1984-01-01

    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover.

  17. Analysis of Wind Forces on Roof-Top Solar Panel

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Kudav, Ganesh

    2011-03-01

    Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).

  18. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  19. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.

    1990-01-01

    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.

  20. The flow of plasma in the solar terrestrial environment

    NASA Technical Reports Server (NTRS)

    Schunk, Robert W.

    1991-01-01

    The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative, manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. These results are highlighted. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable. Another one of our goals is to examine the stability of our predicted flows. Because time-dependent three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.

  1. The global evolution of the primordial solar nebula

    NASA Technical Reports Server (NTRS)

    Ruden, S. P.; Lin, D. N. C.

    1986-01-01

    Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.

  2. SOLAR MERIDIONAL FLOW IN THE SHALLOW INTERIOR DURING THE RISING PHASE OF CYCLE 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junwei; Bogart, R. S.; Kosovichev, A. G.

    2014-07-01

    Solar subsurface zonal- and meridional-flow profiles during the rising phase of solar cycle 24 are studied using the time-distance helioseismology technique. The faster zonal bands in the torsional-oscillation pattern show strong hemispheric asymmetries and temporal variations in both width and speed. The faster band in the northern hemisphere is located closer to the equator than the band in the southern hemisphere and migrates past the equator when the magnetic activity in the southern hemisphere is reaching maximum. The meridional-flow speed decreases substantially with the increase of magnetic activity, and the flow profile shows two zonal structures in each hemisphere. Themore » residual meridional flow, after subtracting a mean meridional-flow profile, converges toward the activity belts and shows faster and slower bands like the torsional-oscillation pattern. More interestingly, the meridional-flow speed above latitude 30° shows an anti-correlation with the poleward-transporting magnetic flux, slower when the following-polarity flux is transported and faster when the leading-polarity flux is transported. It is expected that this phenomenon slows the process of magnetic cancellation and polarity reversal in high-latitude areas.« less

  3. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement “eHeroes” (project n° 284461, www.eheroes.eu).

  4. Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.

  5. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as themore » original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.« less

  6. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  7. Feasibility study of the solar scientific instruments for Spacelab/Orbiter

    NASA Technical Reports Server (NTRS)

    Leritz, J.; Rasser, T.; Stone, E.; Lockhart, B.; Nobles, W.; Parham, J.; Eimers, D.; Peterson, D.; Barnhart, W.; Schrock, S.

    1981-01-01

    The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab.

  8. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  9. High Resolution Observations of Solar Quiescent Prominences with the Hinode Solar Optical Telescope: an Open Challenge to 21st Century Ground-based Solar Telescopes (Invited)

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2009-12-01

    The Solar Optical Telescope (SOT) on the Japanese Hinode satellite is a 0.5-meter diameter Gregorian solar telescope in a 600 km Sun-synchronous orbit. The telescope achieves diffraction-limited imaging with no atmospheric seeing in a wavelength range from 380 nm to 660 nm. Using both the Broadband Filter Imager (BFI) Ca II H-line channel at 389.6 nm and the tunable Narrowband Filter Imager (NFI) H-alpha channel at 656.3 nm we have observed many quiescent solar prominences since the satellite launch in September 2006. The excellent optical quality and low scattering of the SOT telescope combined with the lack of atmospheric scattering and seeing enables us to capture multi-hour diffraction-limited movies of quiescent prominences above the limb that achieve 200 km spatial resolution and 15--30 second temporal resolution. These SOT observations have led to the discovery of new flows in the solar outer atmosphere in the form of buoyant small-scale (2--6 Mm) plumes and large-scale (10--50 Mm) "bubbles" or arches that originate below quiescent prominences and rise with speeds of 10--30 km/sec to heights of 10--30+ Mm above the solar limb. In this talk we review the kinematic properties of these new flows in combination with the long-observed filamentary downflows to show that quisecent prominences are not magnetostatic structures "suspended against gravity" but are rather entirely dynamic structures in which mass is continually drained in the downflows while being resupplied largely by condensation from the coronal cavity above and episodic buoyant flows from below. The Hinode/SOT instrument has definitively shown the value of flying high-resolution visible-light solar telescopes in space by acheiving in its first six months what had been a long-standing goal of ground-based solar prominence research for the past 50 years. However many key quiescent prominence characteristics cannot be measured by the limited instrumentation on the Hinode satellite. Primary among these is vector magnetic field in prominences at high spatial and temporal resolution and the thermodynamic and magnetic characteristics of the new plume and bubble flows. It is hoped that the new generation of adaptive-optics ground-based telescopes such as the 1.6-m NST can make progress in these areas while we await the next solar space telescope missions.

  10. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  11. Magnetic field studies of the solar wind interaction with venus from the galileo flyby.

    PubMed

    Kivelson, M G; Kennel, C F; McPherron, R L; Russell, C T; Southwood, D J; Walker, R J; Hammond, C M; Khurana, K K; Strangeway, R J; Coleman, P J

    1991-09-27

    During the 10 February 1990 flyby of Venus, the Galileo spacecraft skimmed the downstream flank of the planetary bow shock. This provided an opportunity to examine both the global and the local structure of the shock in an interval during which conditions in the solar wind plasma were quite steady. The data show that the cross section of the shock in planes transverse to the flow is smaller in directions aligned with the projection of the interplanetary magnetic field than in directions not so aligned. Ultralow-frequency waves were present in the unshocked solar wind, and their amplitude peaked when the spacecraft was downstream of the foreshock. At large distances down the tail, the Mach number of the flow normal to the shock is low, thus providing the opportunity to study repeated crossings of the collisionless shock in an interesting parameter regime. Some of the shock crossings reveal structure that comes close to the theoretically predicted form of intermediate shocks, whose existence in collisionless plasmas has not been confirmed.

  12. Magnetic field studies of the solar wind interaction with Venus from the Galileo flyby

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Kennel, C. F.; Mcpherron, R. L.; Russell, C. T.; Southwood, D. J.; Walker, R. J.; Hammond, C. M.; Khurana, K. K.; Strangeway, R. J.; Coleman, P. J.

    1991-01-01

    During the February 10, 1990 flyby of Venus, the Galileo spacecraft skimmed the downnstream flank of the planetary bow shock. This provided an opportunity to examine both the global and the local structure of the shock in an interval during which conditions in the solar wind plasma were quite steady. The data show that the cross section of the shock in planes transverse to the flow is smaller in directions aligned with the projection of the interplanetary magnetic field than in directions not so aligned. Ultralow-frequency waves were present in the unshocked solar wind, and their amplitude peaked when the spacecraft was downstream of the foreshock. At large distances down the tail, the Mach number of the flow normal to the shock is low, thus providing the opportunity to study repeated crossings of the collisionless shock in an interesting parameter regime. Some of the shock crossings reveal structure that comes close to the theoretically predicted form of intermediate shocks, whose existence in collisionless plasmas has not been confirmed.

  13. Magnetosheath Propagation Time of Solar Wind Directional Discontinuities

    NASA Astrophysics Data System (ADS)

    Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.

    2018-05-01

    Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.

  14. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  15. Pluto-Charon solar wind interaction dynamics

    NASA Astrophysics Data System (ADS)

    Hale, J. P. M.; Paty, C. S.

    2017-05-01

    This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind as well as with each other. Specifically, it investigates the ionospheric dynamics of a two body system in which either one or both bodies possess an ionosphere. Configurations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on ionospheric and solar wind conditions, Charon could periodically pass into the solar wind flow upstream of Pluto. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere. This modification amounts to a change in the gross structure of the interaction region when Charon possesses an ionosphere but is more localized when Charon lacks an ionosphere. Furthermore, evidence is shown that supports Charon acting to partially shield Pluto from the solar wind when it is upstream of Pluto, resulting in a decrease in ionospheric loss by Pluto.

  16. Statistical analysis of dispersion relations in turbulent solar wind fluctuations using Cluster data

    NASA Astrophysics Data System (ADS)

    Perschke, C.; Narita, Y.

    2012-12-01

    Multi-spacecraft measurements enable us to resolve three-dimensional spatial structures without assuming Taylor's frozen-in-flow hypothesis. This is very useful to study frequency-wave vector diagram in solar wind turbulence through direct determination of three-dimensional wave vectors. The existence and evolution of dispersion relation and its role in fully-developed plasma turbulence have been drawing attention of physicists, in particular, if solar wind turbulence represents kinetic Alfvén or whistler mode as the carrier of spectral energy among different scales through wave-wave interactions. We investigate solar wind intervals of Cluster data for various flow velocities with a high-resolution wave vector analysis method, Multi-point Signal Resonator technique, at the tetrahedral separation about 100 km. Magnetic field data and ion data are used to determine the frequency- wave vector diagrams in the co-moving frame of the solar wind. We find primarily perpendicular wave vectors in solar wind turbulence which justify the earlier discussions about kinetic Alfvén or whistler wave. The frequency- wave vector diagrams confirm (a) wave vector anisotropy and (b) scattering in frequencies.

  17. Pulsed Flows Along a Cusp Structure Observed with SOO/AIA

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara; Demoulin, P.; Mandrini, C. H.; Mays, M. L.; Ofman, L.; Driel-Gesztelyi, L. Van; Viall, N. M.

    2011-01-01

    We present observations of a cusp-shaped structure that formed after a flare and coronal mass ejection on 14 February 2011. Throughout the evolution of the cusp structure, blob features up to a few Mm in size were observed flowing along the legs and stalk of the cusp at projected speeds ranging from 50 to 150 km/sec. Around two dozen blob features, on order of 1 - 3 minutes apart, were tracked in multiple AlA EUV wavelengths. The blobs flowed outward (away from the Sun) along the cusp stalk, and most of the observed speeds were either constant or decelerating. We attempt to reconstruct the 3-D magnetic field of the evolving structure, discuss the possible drivers of the flows (including pulsed reconnect ion and tearing mode instability), and compare the observations to studies of pulsed reconnect ion and blob flows in the solar wind and the Earth's magnetosphere.

  18. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

  19. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  20. Measuring flows in the solar interior: current developments, results, and outstanding problems

    NASA Astrophysics Data System (ADS)

    Schad, Ariane

    2016-10-01

    I will present an overview of the current developments to determine flows in the solar interior and recent results from helioseismology. I will lay special focus on the inference of the deep structure of the meridional flow, which is one of the most challenging problems in helioseismology. In recent times, promising approaches have been developed for solving this problem. The time-distance analysis made large improvements in this after becoming aware of and compensating for a systematic effect in the analysis, the origin of which is not clear yet. In addition to this, a different approach is now available, which directly exploits the distortion of mode eigenfunctions by the meridional flow as well as rotation. These methods have presented us partly surprisingly complex meridional flow patterns, which, however, do not provide a consistent picture of the flow. Resolving this puzzle is part of current research since this has important consequences on our understanding of the solar dynamo. Another interesting discrepancy was found in recent studies between the amplitudes of the large- and small-scale dynamics in the convection zone estimated from helioseismology and those predicted from theoretical models. This raises fundamental questions how the Sun, and in general a star, maintains its heat transport and redistributes its angular momentum that lead, e.g., to the observed differential rotation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Gopal; Karak, Bidya Binay; Choudhuri, Arnab Rai, E-mail: ghazra@physics.iisc.ernet.in

    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation betweenmore » the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.« less

  2. Structure and dynamics of the ionosphere. [Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.; Brace, L. H.

    1982-01-01

    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  3. Measuring the Electron Temperature in the Corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  4. The Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1998-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.

  5. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  6. Striation and convection in penumbral filaments

    NASA Astrophysics Data System (ADS)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  7. Energetic neutral atom and interstellar flow observations with IBEX: Implications for the global heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A., E-mail: nschwadron@unh.edu; Southwest Research Institute, San Antonio, TX, 78238; McComas, D. J.

    2016-03-25

    Since launch in Oct. 2008, IBEX, with its two energetic neutral atom (ENA) cameras, has provided humankind with the first-ever global images of the complex boundary separating the heliosphere from the local interstellar medium (LISM). IBEX’s energy-resolved all-sky maps, collected every six months, are yielding remarkable new insights into the heliospheres structure as it is shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field (LISMF), and the evolving solar wind. IBEX has also acquired the first images of ENAs backscattered from the surface of the moon as well as global images of the magnetosphericmore » response to solar wind disturbances. IBEX thus addresses all three Heliophysics science objectives set forth in the 2014 Science Plan for NASAs Science Mission Directorate (SMD) as well as the goals in the recent Solar and Space Physics Decadal Survey (NRC 2012). In addition, with the information it provides on the properties of the LISM and the LISMF, IBEX represents a unique bridge between heliophysics and astrophysics, and fills in critical knowledge for understanding the habitability of exoplanetary systems and the future habitability of Earth and the solar system. Because of the few-year time lag due to solar wind and ENA transport, IBEX observed the solar wind/ LISM interaction characteristic of declining phase/solar minimum conditions. In the continuing mission, IBEX captures the response of the interstellar boundaries to the changing structure of the solar wind in its transition toward the “mini” solar maximum and possibly the decline into the next solar minimum. The continuing IBEX mission affords never-to-be-repeated opportunities to coordinate global imaging of the heliospheric boundary with in-situ measurements by the Voyagers as they pass beyond the heliopause and start to directly sample the LISM.« less

  8. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    PubMed

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  9. Preliminary results of fluid dynamic model calculation of convective motion induced by solar heating at the Venus cloud top level.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro

    The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.

  10. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 3: Program manual

    NASA Technical Reports Server (NTRS)

    Huling, K. R.; Boain, R. J.; Wilson, T.; Hong, P. E.; Shults, G. L.

    1974-01-01

    The internal structure of MAPSEP is described. Topics discussed include: macrologic, variable definition, subroutines, and logical flow. Information is given to facilitate modifications to the models and algorithms of MAPSEP.

  11. Modelling of the solar/stellar wind two-jet structure induced by azimuthal stellar magnetic field

    NASA Astrophysics Data System (ADS)

    Golikov, Evgeniy; Belov, Nickolai; Alexashov, Dmitry; Izmodenov, Vladislav

    2016-07-01

    Opher et al. (2015), Drake et al. (2015) have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, i.e. in the subsonic region between the heliospheric termination shock and the heliopause. In this scenario the heliopause has tube-like topology as compared with sheet-like topology in the most models of the global heliosphere (e.g. Izmodenov and Alexashov, 2015). In this paper we explore the two-jet scenario for the simplified astrosphere with the star is at rest with respect to the circumstellar medium and radial magnetic field is neglected as compared with azimuthal component. Our work is further elaboration of Drake et al. (2015) paper. We performed parametric numerical analyses showing how the structure of the flow changes depending on the model parameters. Also, we present three first integrals of the ideal MHD equations for the considered problem and use them to get links between analytical and numerical considerations.

  12. Geometry of solar coronal rays

    NASA Astrophysics Data System (ADS)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field lines, which are similar to the kink propagation along coronal rays. Careful analysis of these events could give us valuable information about the coronal plasma.

  13. The most intense current sheets in the high-speed solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1

  14. Applying the new HIT results to tokamak and solar plasmas

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Sutherland, Derek; Hossack, Aaron; Nelson, Brian; Morgan, Kyle; Chris, Hansen; Benedett, Thomas; Everson, Chris; Penna, James

    2016-10-01

    Understanding sustainment of stable equilibria with helicity injection in HIT-SI has led to a simple picture of several tokamak features. Perturbations cause a viscous-like force on the current that flattens the λ profile, which sustains and stabilizes the equilibrium. An explanation of the mechanism is based on two properties of stable, ideal, two-fluid, magnetized plasma. First, the electron fluid is frozen to magnetic fields and, therefore, current flow is also magnetic field flow. Second, for a stable equilibrium the structure perpendicular to the flux surface resists deformation. Thus toroidal current is from electrons frozen in nested, rotating resilient flux surfaces. Only symmetric flux surfaces allow free differential current flow. Perturbations cause interference of the flux surfaces. Thus, perturbations cause forces that oppose differential electron rotation and forced differential flow produces a symmetrizing force against perturbations and instability. This mechanism can explain the level of field error that spoils tokamak performance and the rate of poloidal flux loss in argon-induced disruptions in DIII-D. This new understanding has led to an explanation of the source of the solar magnetic fields and the power source for the chromosphere, solar wind and corona. Please place in spheromak and FRC section with other HIT posters.

  15. MHD Modeling of the Solar Wind with Turbulence Transport and Heating

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Usmanov, A. V.; Matthaeus, W. H.; Breech, B.

    2009-01-01

    We have developed a magnetohydrodynamic model that describes the global axisymmetric steady-state structure of the solar wind near solar minimum with account for transport of small-scale turbulence associated heating. The Reynolds-averaged mass, momentum, induction, and energy equations for the large-scale solar wind flow are solved simultaneously with the turbulence transport equations in the region from 0.3 to 100 AU. The large-scale equations include subgrid-scale terms due to turbulence and the turbulence (small-scale) equations describe the effects of transport and (phenomenologically) dissipation of the MHD turbulence based on a few statistical parameters (turbulence energy, normalized cross-helicity, and correlation scale). The coupled set of equations is integrated numerically for a source dipole field on the Sun by a time-relaxation method in the corotating frame of reference. We present results on the plasma, magnetic field, and turbulence distributions throughout the heliosphere and on the role of the turbulence in the large-scale structure and temperature distribution in the solar wind.

  16. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  17. Growth and form of planetary seedlings: results from a microgravity aggregation experiment.

    PubMed

    Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H

    2000-09-18

    The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.

  18. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    NASA Astrophysics Data System (ADS)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  19. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  20. CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i

    2010-07-01

    We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less

  1. Nanostructured refractory thin films for solar applications

    NASA Astrophysics Data System (ADS)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  2. Subsurface Zonal and Meridional Flows from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Howe, Rachel; Hill, Frank

    2016-10-01

    We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.

  3. Squeezing of Particle Distributions by Expanding Magnetic Turbulence and Space Weather Variability

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Tooprakai, P.; Seripienlert, A.; Chuychai, P.; Matthaeus, W. H.

    2014-12-01

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes can cause radiation damage to satellites, spacecraft, and astronauts, which motivates examination of the transport of high-energy solar ions to Earth orbit. Ions of low kinetic energy (up to ˜2sim 2 MeV/nucleon) from impulsive solar events exhibit abrupt changes due to filamentation of magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tube-like structures persist to Earth orbit. By employing a corresponding spherical two-component model of Alfv'enic (slab) and 2D magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E≥1Egeq1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity due to the conical shape of the flux structures, which results from the expanding flow of the solar wind. It is difficult to observationally determine what polarity of flux structure the Earth is in at a given time, so this transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction. Partially supported by the Thailand Research Fund, a Postdoctoral Fellowship from the Thailand Center of Excellence in Physics, a Research Fellowship from the Faculty of Science, Mahidol University, the U.S. NSF (AGS-1063439 and SHINE AGS-1156094), NASA (Heliophysics Theory NNX08AI47G & NNX11AJ44G), and the Solar Probe Plus/ISIS project. KEYWORDS: [7807] SPACE PLASMA PHYSICS / Charged particle motion and acceleration, [7863] SPACE PLASMA PHYSICS / Turbulence, [2118] INTERPLANETARY PHYSICS / Energetic particles, solar, [7984] SPACE WEATHER / Space radiation environment

  4. The multiscale nature of magnetic pattern on the solar surface

    NASA Astrophysics Data System (ADS)

    Scardigli, S.; Del Moro, D.; Berrilli, F.

    Multiscale magnetic underdense regions (voids) appear in high resolution magnetograms of quiet solar surface. These regions may be considered a signature of the underlying convective structure. The study of the associated pattern paves the way for the study of turbulent convective scales from granular to global. In order to address the question of magnetic pattern driven by turbulent convection we used a novel automatic void detection method to calculate void distributions. The absence of preferred scales of organization in the calculated distributions supports the multiscale nature of flows on the solar surface and the absence of preferred convective scales.

  5. Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi

    2014-05-01

    The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi-point observations combined with ground-based observations enabled to resolve how the BBFs are braked , diverted, or bounced back at the high-pressure gradient region. The multi-point capabilities in space enabled to study the BBF structure as well as large-scale evolution of BBFs. These processes are also universal processes in space plasmas and are, for example, associated with the reconnection process during the solar flares or leading to auroral phenomena at different planets.

  6. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon carbide monolithic honeycomb, conducted at realistic conditions of incident radiative power per unit mass flow rate in order to validate its operation.

  7. Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, G. G.; Klein, K. G.; TenBarge, J. M.

    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis—that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame—is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft ormore » to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfvén waves is not.« less

  8. Solar cycle modulation of Southern Annular Mode -Energy-momentum analysis-

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.

    2016-12-01

    Climate is affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the Southern Annular Mode (SAM) in late-winter/spring show structural modulation associated with 11-year solar cycle. In fact, SAM-related signal tends to extend from surface to upper stratosphere and persistent longer period in the High Solar (HS) years, whereas it is restricted in the troposphere and not persist in the Low Solar (LS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.

  9. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Bale, S. D.; Decker, R. B.; Howard, R.; Kasper, J. C.; McComas, D. J.; Szabo, A.; Velli, M. M.

    2013-12-01

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this poster, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  10. Hi-C First Results

    NASA Technical Reports Server (NTRS)

    Cirtain, Jonathan

    2013-01-01

    Hi-C obtained the highest spatial and temporal resolution observatoins ever taken in the solar corona. Hi-C reveals dynamics and structure at the limit of its temporal and spatial resolution. Hi-C observed ubiquitous fine-scale flows consistent with the local sound speed.

  11. Anomalously weak solar convection.

    PubMed

    Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R

    2012-07-24

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  12. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  13. Mapping 3D plasma structure in the solar wind with the L1 constellation: joint observations from Wind, ACE, DSCOVR, and SoHO

    NASA Astrophysics Data System (ADS)

    Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.

    2017-12-01

    At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.

  14. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Morgan, Huw; Leonard, Drew

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less

  15. Progress Towards a Time-Dependent Theory of Solar Meridional Flows

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2017-08-01

    Large-scale meridional motions of solar materials play an important role in flux transport dynamo models. Meridional flows transport surface magnetic flux to polar regions of the Sun, where it may later be subducted and conveyed back towards the equatorial region by a deep return flow in the convection zone. The transported flux may thereafter lead to the generation of new toroidal fields, thereby completing the dynamo cycle. More than two decades of observations have revealed that meridional flow speeds vary substantially with time. Further, a complex morphological variability of meridional flow cells is now recognized, with multiple cell structures detected both in latitude and in depth. ‘Countercells’ with reversed flow directions have been detected at various times. Flow speeds are apparently influenced by the proximity of flows to active regions. This complexity represents a considerable challenge to dynamo modeling efforts. Flows morphology and speed changes may be arbitrarily prescribed in models, but physical realism of model outputs may be questionable, and elusive: The models are ‘trying to hit a moving target.’ Considerations such as these led Belucz et al. (2013; Ap. J. 806:169) to call for “time-dependent theories that can tell us theoretically how this circulation may change its amplitude and form in each hemisphere.” Such a theory now exists for planetary atmospheres (Shirley, 2017; Plan. Sp. Sci. 141, 1-16). Proof of concept for the non-tidal orbit-spin coupling hypothesis of Shirley (2017) was obtained through numerical modeling of the atmospheric circulation of Mars (Mischna & Shirley, 2017; Plan. Sp. Sci. 141, 45-72). Much-improved correspondence of numerical modeling outcomes with observations was demonstrated. In this presentation we will briefly review the physical hypothesis and some prior evidence of its possible role in solar dynamo excitation. We show a strong correlation between observed meridional flow speeds of magnetic features in Cycle 23 with the putative dynamical forcing function. We will also briefly discuss the potential for incorporating orbit-spin coupling accelerations within existing numerical solar dynamo models.

  16. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  17. Simulations of Solar Wind Plasma Flow Around a Simple Solar Sail

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Wang, Joseph

    2004-01-01

    In recent years, a number of solar sail missions of various designs and sizes have been proposed (e.g., Geostorm). Of importance to these missions is the interaction between the ambient solar wind plasma environment and the sail. Assuming a typical 1 AU solar wind environment of 400 km/s velocity, 3.5 cu cm density, ion temperature of approx.10 eV, electron temperature of 40 eV, and an ambient magnetic field strength of 10(exp -4) G, a first order estimate of the plasma interaction with square solar sails on the order of the sizes being considered for a Geostorm mission (50 m x 50 m and 75 m x 75 m corresponding to approx.2 and approx.3 times the Debye length in the plasma) is carried out. First, a crude current balance for the sail surface immersed in the plasma environment and in sunlight was used to estimate the surface potential of the model sails. This gave surface potentials of approx.10 V positive relative to the solar wind plasma. A 3-D, Electrostatic Particle-in-Cell (PIC) code was then used to simulate the solar wind flowing around the solar sail. It is assumed in the code that the solar wind protons can be treated as particles while the electrons follow a Boltzmann distribution. Next, the electric field and particle trajectories are solved self-consistently to give the proton flow field, the electrostatic field around the sail, and the plasma density in 3-D. The model sail was found to be surrounded by a plasma sheath within which the potential is positive compared to the ambient plasma and followed by a separate plasma wake which is negative relative to the plasma. This structure departs dramatically from a negatively charged plate such as might be found in the Earth s ionosphere on the night side where both the plate and its negative wake are contiguous. The implications of these findings are discussed as they apply to the proposed Geostorm solar sail mission.

  18. Helioseismology Observations of Solar Cycles and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Guerrero, G.; Pipin, V.

    2017-12-01

    Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.

  19. Time-dependent MHD modeling of the global structure of the heliosphere

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Brackbill, J. U.; Karmesin, S. Roy

    1995-01-01

    We present results from time-dependent modeling of the global structure of the heliosphere with neutral and magnetic field effects included. The magnetic field is assumed parallel to the interstellar flow in this two-dimensional axisymmetric model; the neutrals are treated as a fluid. The effects of interstellar neutrals and the interplanetary magnetic field on the location of the termination shock are studied using the most recent estimate of the interstellar medium parameters, results will be compared to those of Baranov and Zaitsev. The effect of the solar wind - VLISM interaction on the density and velocity of interstellar neutrals within the heliosphere will also be presented and related to observations. The response of the termination shock to the solar cycle variation in the solar wind will be compared to the response found previously using an axisymmetric hydrodynamic model without neutrals.

  20. Heliophysics 2009 Roadmap and Global Change: Possibilities for Improved Understanding of the Connection

    NASA Technical Reports Server (NTRS)

    Spann, Jim

    2010-01-01

    Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.

  1. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  2. The temperature structure, mass, and energy flow in the corona and inner solar wind

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1988-01-01

    Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.

  3. Orbiting observatory SOHO finds source of high-speed "wind" blowing from the Sun

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "The search for the source of the solar wind has been like the hunt for the source of the Nile," said Dr. Don Hassler of the Southwest Research Institute, Boulder, Colorado, lead author of the paper in Science. "For 30 years, scientists have observed high-speed solar wind coming from regions in the solar atmosphere with open magnetic field lines, called coronal holes. However, only recently, with the observations from SOHO, have we been able to measure the detailed structure of this source region". The solar wind comes in two varieties : high-speed and low-speed. The low-speed solar wind moves at "only" 1.5 million kilometres per hour, while the high-speed wind is even faster, moving at speeds as high as 3 million kilometres per hour. As it flows past Earth, the solar wind changes the shape and structure of the Earth's magnetic field. In the past, the solar wind didn't affect us directly, but as we become increasingly dependent on advanced technology, we become more susceptible to its effects. Researchers are learning that variations in the solar wind flow can cause dramatic changes in the shape of the Earth's magnetic field, which can damage satellites and disrupt communications and electrical power systems. The nature and origin of the solar wind is one of the main mysteries ESA's solar observatory SOHO was designed to solve. It has long been thought that the solar wind flows from coronal holes; what is new is the discovery that these outflows are concentrated in specific patches at the edges of the honeycomb-shaped magnetic fields. Just below the surface of the Sun there are large convection cells, and each cell has a magnetic field associated with it. "If one thinks of these cells as paving stones in a patio, then the solar wind is breaking through like grass around the edges, concentrated in the corners where the paving stones meet", said Dr. Helen Mason, University of Cambridge, England, and co-author of the paper to appear in Science. "However, at speeds ranging from 30,000 km/h at the surface to over 3 million km/h, the solar wind "grows" much faster than grass". "Looking at the spot where the solar wind actually appears is extremely important", says co-author Dr. Philippe Lemaire of the Institut d'Astrophysique Spatiale in Orsay, France. The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on SOHO detected the solar wind by observing the ultraviolet spectrum over a large area of the solar north polar region. The SUMER instrument was built under the leadership of Dr. Klaus Wilhelm at the Max-Planck-Institut für Aeronomie in Lindau, Germany, with key contributions from the Institut d'Astrophysique Spatiale in Orsay, France, the NASA Goddard Space Flight Center in Greenbelt, Maryland, and the University of California at Berkeley, with financial support from German, French, US and Swiss national agencies. "Identification of the detailed structure of the source region of the fast solar wind is an important step in solving the solar wind acceleration problem. We can now focus our attention on the plasma conditions and the dynamic processes seen in the corners of the magnetic field structures", says Dr. Wilhelm, also co-author of the Science paper. A spectrum results from the separation of light into its component colours, which correspond to different wavelengths. Blue light has a shorter wavelength and is more energetic than red. A spectrum is similar to what is seen when a prism separates white light into a rainbow of distinct colours. By analysing light this way, astronomers learn a great deal about the object emitting the light, such as its temperature, chemical composition, and motion. The ultraviolet light observed by SUMER is actually invisible to the human eye and cannot penetrate the Earth's atmosphere. The hot gas in the solar wind source region emits light at certain ultraviolet wavelengths. When the hot gas flows towards Earth, as it does in the solar wind, the wavelengths of the ultraviolet light emitted become shorter, a phenomenon called Doppler shift. This is similar to the way an ambulance siren appears to change tone as it speeds by. When the ambulance moves towards us, its sound is compressed to a shorter wavelength, resulting in a higher tone. As it moves away, its sound is stretched to a longer wavelength, resulting in a lower tone. Motion towards us, away from the solar surface, was detected as blueshifts and identified as the beginning of the solar wind. SOHO operates at a special vantage point 1.5 million kilometres out in space, on the sunward side of the Earth. The project is an international collaboration between ESA and NASA. SOHO was launched on an Atlas rocket from Cape Canaveral Air Station, Florida, in December 1995 and is operated from the Goddard Space Flight Center in Greenbelt, Maryland.

  4. On the relation between photospheric flow fields and the magnetic field distribution on the solar surface

    NASA Technical Reports Server (NTRS)

    Simon, George W.; Title, A. M.; Topka, K. P.; Tarbell, T. D.; Shine, R. A.

    1988-01-01

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles ('corks') in the measured flow field congregate at the same locations where the magnetic field is observed.

  5. The solar atmosphere and the structure of active regions

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1974-01-01

    The existence of 'holes' in the corona is reported characterized by abnormally low densities and temperatures. It was found that such coronal holes appear to be the source of high-velocity, enhanced-density streams in the solar wind as observed at the earth's orbit. It was further noted that coronal holes appear to be associated with regions of diverging magnetic fields in the corona. Models were developed to accomplish the objective for the principal energy flows in the transition region and corona.

  6. The dispersion analysis of drift velocity in the study of solar wind flows

    NASA Astrophysics Data System (ADS)

    Olyak, Maryna

    2013-09-01

    In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.

  7. A UNIFIED APPROACH TO THE HELIOSEISMIC INVERSION PROBLEM OF THE SOLAR MERIDIONAL FLOW FROM GLOBAL OSCILLATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, A.; Timmer, J.; Roth, M.

    2011-06-20

    Measurements from tracers and local helioseismology indicate the existence of a meridional flow in the Sun with strength in the order of 15 m s{sup -1} near the solar surface. Different attempts were made to obtain information on the flow profile at depths up to 20 Mm below the solar surface. We propose a method using global helioseismic Doppler measurements with the prospect of inferring the meridional flow profile at greater depths. Our approach is based on the perturbation of the p-mode eigenfunctions of a solar model due to the presence of a flow. The distortion of the oscillation eigenfunctionsmore » is manifested in the mixing of p-modes, which may be measured from global solar oscillation time series. As a new helioseismic measurement quantity, we propose amplitude ratios between oscillations in the Fourier domain. We relate this quantity to the meridional flow and unify the concepts presented here for an inversion procedure to infer the meridional flow from global solar oscillations.« less

  8. Evolution of Photospheric Flow and Magnetic Fields Associated with the 2015 June 22 M6.5 Flare

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Liu, Chang; Deng, Na; Wang, Haimin

    2018-02-01

    The evolution of photospheric flow and magnetic fields before and after flares can provide important information regarding the flare triggering and back-reaction processes. However, such studies on the flow field are rare due to the paucity of high-resolution observations covering the entire flaring period. Here we study the structural evolution of penumbra and shear flows associated with the 2015 June 22 M6.5 flare in NOAA AR 12371, using high-resolution imaging observation in the TiO band taken by the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory, with the aid of the differential affine velocity estimator method for flow tracking. The accompanied photospheric vector magnetic field changes are also analyzed using data from the Helioseismic and Magnetic Imager. As a result, we found, for a penumbral segment in the negative field adjacent to the magnetic polarity inversion line (PIL), an enhancement of penumbral flows (up to an unusually high value of ∼2 km s‑1) and extension of penumbral fibrils after the first peak of the flare hard X-ray emission. We also found an area at the PIL, which is co-spatial with a precursor brightening kernel, that exhibits a gradual increase of shear flow velocity (up to ∼0.9 km s‑1) after the flare. The enhancing penumbral and shear flow regions are also accompanied by an increase of horizontal field and decrease of magnetic inclination angle (measured from the solar surface). These results are discussed in the context of the theory of back-reaction of coronal restructuring on the photosphere as a result of flare energy release.

  9. Interaction of Light with Metallized Ultrathin Silicon Membrane

    NASA Astrophysics Data System (ADS)

    Shome, Krishanu

    Freestanding metallized structures, a few tens of nanometer thick, show promise in creating flow-through sensors, single molecule detectors and novel solar cells. In this thesis we study test structures that are a step towards creating such devices. Finite- difference time-domain simulations have been used to understand and predict the interaction of light with such devices. Porous nanocrystalline silicon membrane is a novel freestanding layer structure that has been used as a platform to fabricate and study sensors and novel slot nanohole devices. Optical mode studies of the sensing structures, together with the method of fabrication inspired the creation of ultrathin freestanding hydrogenated amorphous silicon p-i-n junctions solar cells. All the freestanding structures used in this thesis are just a few tens of nanometers in thicknesses. In the first part of the thesis the sensing properties of the metallized porous nanocrystalline structure are studied. The surprising blueshift associated with the sensing peak is observed experimentally and predicted theoretically with the help of simulations. Polarization dependence of the membranes is predicted and confirmed for angled deposition of metal on the membranes. In the next part, a novel slot structure is fabricated and modeled to study the slot effect in nanohole metal-insulator-metal structures. Atomic layer deposition of alumina is used to conformally deposit alumina within the nanohole to create the slot structure. Simulation models were used to calculate the lowest modal volume of 4x10-5 mum3 for an optimized structure. In the last part of the thesis, freestanding solar cells are fabricated by effectively replacing the porous nanocrystalline silicon layer of the membranes with a hydrogenated amorphous silicon p-i-n junction with metal layers on both sides of the p-i-n junction. The metal layers act both as electrical contacts as well as mirrors for a Fabry Perot cavity resonator. This helps in tuning the absorption profile of the solar cell to target near infrared part of the solar spectrum. A correspondence is found between the simulation absorption results with the experimental spectral response of the solar cells. This helps in designing metallized solar cells with ITO layer to improve absorption and hence the efficiency.

  10. Tomographic Validation of the AWSoM Model of the Inner Corona During Solar Minima

    NASA Astrophysics Data System (ADS)

    Manchester, W.; Vásquez, A. M.; Lloveras, D. G.; Mac Cormack, C.; Nuevo, F.; Lopez-Fuentes, M.; Frazin, R. A.; van der Holst, B.; Landi, E.; Gombosi, T. I.

    2017-12-01

    Continuous improvement of MHD three-dimensional (3D) models of the global solar corona, such as the Alfven Wave Solar Model (AWSoM) of the Space Weather Modeling Framework (SWMF), requires testing their ability to reproduce observational constraints at a global scale. To that end, solar rotational tomography based on EUV image time-series can be used to reconstruct the 3D distribution of the electron density and temperature in the inner solar corona (r < 1.25 Rsun). The tomographic results, combined with a global coronal magnetic model, can further provide constraints on the energy input flux required at the coronal base to maintain stable structures. In this work, tomographic reconstructions are used to validate steady-state 3D MHD simulations of the inner corona using the latest version of the AWSoM model. We perform the study for selected rotations representative of solar minimum conditions, when the global structure of the corona is more axisymmetric. We analyse in particular the ability of the MHD simulation to match the tomographic results across the boundary region between the equatorial streamer belt and the surrounding coronal holes. The region is of particular interest as the plasma flow from that zone is thought to be related to the origin of the slow component of the solar wind.

  11. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  12. Parameterized study of the ionospheric modification associated with sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Crain, D. J.; Sojka, J. J.; Schunk, R. W.; Zhu, L.

    1993-01-01

    The local ionospheric modification that is due to a generalized steady state solar aligned (SA) arc structure is addressed. For a representative set of SA arc parameters which includes both convection and precipitation, emphasis is placed on the modification by SA polar cap arcs upon the F region electron density and the height integrated conductivity. At low fluxes and low characteristic energies, SA polar cap arcs have the most pronounced relative effect at F region altitudes in darkness for winter solar minimum conditions. The absolute enhancement in summer solar minimum and winter solar maximum is equivalent to that of winter solar minimum, but the higher ambient densities make the relative enhancement less. The TEC enhancement associated with an SA arc may be used to indicate the degree of plasma cross flow across the arc.

  13. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  14. Parameter optimization for surface flux transport models

    NASA Astrophysics Data System (ADS)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  15. OBSERVING CASCADES OF SOLAR BULLETS AT HIGH RESOLUTION. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Engvold, O.; Lin, Y.

    High resolution observations from the Swedish 1-m Solar Telescope revealed bright, discrete, blob-like structures (which we refer to as solar bullets) in the Hα 656.28 nm line core that appear to propagate laterally across the solar atmosphere as clusters in active regions (ARs). These small-scale structures appear to be field aligned and many bullets become triggered simultaneously and traverse collectively as a cluster. Here, we conduct a follow-up study on these rapidly evolving structures with coincident observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. With the co-aligned data sets, we reveal (a) an evolving multithermal structure in the bullet clustermore » ranging from chromospheric to at least transition region temperatures, (b) evidence for cascade-like behavior and corresponding bidirectional motions in bullets within the cluster, which indicate that there is a common source of the initial instability leading to bullet formation, and (c) a direct relationship between co-incident bullet velocities observed in Hα and He ii 30.4 nm and an inverse relationship with respect to bullet intensity in these channels. We find evidence supporting that bullets are typically composed of a cooler, higher density core detectable in Hα with a less dense, hotter, and fainter co-moving outer sheath. Bullets unequivocally demonstrate the finely structured nature of the AR corona. We have no clear evidence for bullets being associated with locally heated (or cooled), fast flowing plasma. Fast MHD pulses (such as solitons) could best describe the dynamic properties of bullets whereas the presence of a multithermal structure is new.« less

  16. Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2018-05-01

    We analyze the effect of a sunspot in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the sunspot structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the sunspot center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the sunspot in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the sunspot center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.

  17. Shear-driven dynamo waves at high magnetic Reynolds number.

    PubMed

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  18. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  19. A solar rechargeable flow battery based on photoregeneration of two soluble redox couples.

    PubMed

    Liu, Ping; Cao, Yu-liang; Li, Guo-Ran; Gao, Xue-Ping; Ai, Xin-Ping; Yang, Han-Xi

    2013-05-01

    Storable sunshine, reusable rays: A solar rechargeable redox flow battery is proposed based on the photoregeneration of I(3)(-)/I(-) and [Fe(C(10)H(15))(2)](+)/Fe(C(10)H(15))(2) soluble redox couples, which can be regenerated by flowing from a discharged redox flow battery (RFB) into a dye-sensitized solar cell (DSSC) and then stored in tanks for subsequent RFB applications This technology enables effective solar-to-chemical energy conversion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Accumulation of electric currents driving jetting events in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.

    2013-12-01

    The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.

  1. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  2. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  3. UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.

    2013-06-10

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less

  4. Exploring the Flux Tube Paradigm in Solar-like Convection Zones

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Nelson, Nicholas; Browning, Matthew

    2017-08-01

    In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible calibrations, on the traditional flux tube model as it pertains to the Sun and other spotted stars.

  5. Thermocline Storage Filled with Structured Ceramics. Numerical Consistency of the Developed Numerical Model and First Observations

    NASA Astrophysics Data System (ADS)

    Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin

    2015-07-01

    The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.

  6. Exploring the properties of Solar Prominence Tornados

    NASA Astrophysics Data System (ADS)

    Ahmad, E.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2015-12-01

    Solar prominences consist of relatively cool and dense plasma embedded in the hotter solar corona above the solar limb. They form along magnetic polarity inversion lines, and are magnetically supported against gravity at heights of up to ~100 Mm above the chromosphere. Often, parts of prominences visually resemble Earth-based tornados, with inverted-cone-shaped structures and internal motions suggestive of rotation. These "prominence tornados" clearly possess complex magnetic structure, but it is still not certain whether they actually rotate around a ''rotation'' axis, or instead just appear to do so because of composite internal material motions such as counter-streaming flows or lateral (i.e. transverse to the field) oscillations. Here we study the structure and dynamics of five randomly selected prominences, using extreme ultraviolet (EUV) 171 Å images obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft. All of the prominences resided in non-active-region locations, and displayed what appeared to be tornado-like rotational motions. Our set includes examples oriented both broadside and end-on to our line-of-sight. We created time-distance plots of horizontal slices at several different heights of each prominence, to study the horizontal plasma motions. We observed patterns of oscillations at various heights in each prominence, and we measured parameters of these oscillations. We find the oscillation time periods to range over ~50 - 90 min, with average amplitudes of ~6,000 km, and with average velocities of ~7 kms-1. We found similar values for prominences viewed either broadside or end-on; this observed isotropy of the lateral oscillatory motion suggests that the apparent oscillations result from actual rotational plasma motions and/or lateral oscillations of the magnetic field, rather than to counter-streaming flows. This research was supported by the National Science Foundation under Grant No. AGS-1460767; EA participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program.

  7. Spontaneous Hot Flow Anomalies at Quasi-Parallel Shocks: 2. Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Zhang, H.; Sibeck, D.; Turner, D.

    2013-01-01

    Motivated by recent THEMIS observations, this paper uses 2.5-D electromagnetic hybrid simulations to investigate the formation of Spontaneous Hot Flow Anomalies (SHFA) upstream of quasi-parallel bow shocks during steady solar wind conditions and in the absence of discontinuities. The results show the formation of a large number of structures along and upstream of the quasi-parallel bow shock. Their outer edges exhibit density and magnetic field enhancements, while their cores exhibit drops in density, magnetic field, solar wind velocity and enhancements in ion temperature. Using virtual spacecraft in the simulation, we show that the signatures of these structures in the time series data are very similar to those of SHFAs seen in THEMIS data and conclude that they correspond to SHFAs. Examination of the simulation data shows that SHFAs form as the result of foreshock cavitons interacting with the bow shock. Foreshock cavitons in turn form due to the nonlinear evolution of ULF waves generated by the interaction of the solar wind with the backstreaming ions. Because foreshock cavitons are an inherent part of the shock dissipation process, the formation of SHFAs is also an inherent part of the dissipation process leading to a highly non-uniform plasma in the quasi-parallel magnetosheath including large scale density and magnetic field cavities.

  8. Post-flare loops embedded in a hot coronal fan-like structure

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Farnik, F.; Hudson, H. S.; Hick, P.

    1997-01-01

    Limb events were demonstrated on the sun in which rising post-flare loops were embedded in hot structures looking in soft X-rays like fans of rays, formed during the flare and extending high into the corona. One of these structures is analyzed and it is suggested that these fans of rays represent temporary ministreamers, along which mass flows into interplanetary space. This suggestion is supported by maps of solar wind density constructed from scintillation measurements.

  9. A MODEL OF THE HELIOSPHERE WITH JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M., E-mail: drake@umd.edu, E-mail: swisdak@umd.edu, E-mail: mopher@bu.edu

    2015-08-01

    An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B{sup 2}, in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This samemore » pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models.« less

  10. The statistical properties of vortex flows in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar

    2015-08-01

    Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere

  11. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    NASA Astrophysics Data System (ADS)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  12. A search for the coronal origins of fast solar wind streams during the whole sun month period

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Biesecker, D. A.; Forsyth, R. J.; Galvin, A. B.; Ipavich, F. M.; Gibson, S. E.; Lecinski, A.; Hassler, D. M.; Hoeksema, J. T.; hide

    1997-01-01

    The solar wind streams observed from the Solar and Heliospheric Observatory (SOHO) and Ulysses, WIND spacecraft during the whole solar month are discussed. These solar wind streams, with speeds in excess of 500 km/s, were detected from 10 August to 8 September 1996. The data covering Carrington rotations 1912 and 1913 are presented. The magnetic field azimuthal angle observations at 1 AU from WIND show that all the streams are associated with outward fields near the sun. The stream structure near 320 deg was associated with the central meridian passage of a coronal hole. The Fe XIV ground based observations show a region of low intensity in the zero to 170 deg longitude. The question of whether the streams arise from equatorial features or represent flows coming from higher latitude features is not solved.

  13. Development of a prototype flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1979-01-01

    The radiator is a roll-up flexible panel with the transport fluid manifolds located at the ends of the 27 foot length. A total of fifty Teflon flow tubes are sandwiched between the layers of silver wire mesh and sealed in the Teflon film. The transport fluid flows from an inlet manifold through 25 panel flow tubes to the end of the radiator panel into a manifold which directs the fluid into the other 25 flow tubes on its return to the base of the radiator. Deployment/retraction of the flexible radiator panel is by low pressure inflation tubes (one along each side of the panel) which incorporate a flat spring. The spring supplies the retraction force to wind the radiator panel on a drum when the pressure in the inflation tubes is relieved. Room ambient deployment tests of the radiator panel were conducted to verify the inflation tube spring deployment, and retraction capability. The panel underwent a thermal vacuum, solar spectrum exposure test. After approximately 100 hours of solar exposure, post-test inspection revealed no structural or optical properties degraded.

  14. Actively Learning about the Active Sun: Using JHelioviewer in Undergraduate Astronomy

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.

    2018-06-01

    Solar phenomena of the chromosphere, corona and photosphere are only truly revealed through multi-wavelength and time-dependent study. While one can show slides of models of the solar convection zone, videos of granulation, and magnetogram and UV images, it is now possible to engage students much more fully in learning about dynamic solar phenomena such as the evolution of sunspots and the magentic field. JHelioviewer is professional solar visualization tool developed by an international team as part of the ESA/NASA Helioviewer project (Muller et al., 2017, A&A 606, A10), which allows users to select and overlay movies of solar data from multiple instruments of multiple satellite and ground-based observatories, with complete control over time-sequencing, image overlays, solar coordinate grids, rotational tracking, and export functions. I developed materials using the viewer for my sophomore-level undergraduate solar astronomy course to introduce students to the dynamics of the solar surface and atmosphere. The lab-like projects, suitable for in-class, labs, or home-work assignments, allow students to watch the formation, strengthening, movement, and dissipation of sunspots; to classify spots; to study the magnetic flux tubes connecting spots; to see reconnection; to learn about the solar coordinate systems (Stonyhurst, Carrington, etc.); to see how line emission (H-alpha, C, Fe and He UV lines from SDO, etc.) traces the structure of the atmosphere at different heights and temperatures; to observe the Wilson effect; and to measure motions such as moat flow and photospheric flow by tracking individual elements in magnetograms. In this presentation I share my activities and approach, which can be tailored to suit gen-ed, intermediate, or advanced astrophysics majors. (The author has no connection with the JHelioviewer project or team.)

  15. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less

  16. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  17. Comets as natural laboratories: Interpretations of the structure of the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Yudish; Jones, Geraint H.; Coates, Andrew J.; Owens, Mathew J.

    2015-11-01

    Much has been learnt about the heliosphere’s structure from in situ solar wind spacecraft observations. Their coverage is however limited in time and space. Comets can be considered to be natural laboratories of the inner heliosphere, as their ion tails trace the solar wind flow. Solar wind conditions influence comets’ induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind.I present a novel imaging technique and software to exploit the vast catalogues of amateur and professional images of comet ion tails. My projection technique uses the comet’s orbital plane to sample its ion tail as a proxy for determining multi-latitudinal radial solar wind velocities in each comet’s vicinity. Making full use of many observing stations from astrophotography hobbyists to professional observatories and spacecraft, this approach is applied to several comets observed in recent years. This work thus assesses the validity of analysing comets’ ion tails as complementary sources of information on dynamical heliospheric phenomena and the underlying continuous solar wind.Complementary velocities, measured from folding ion rays and a velocity profile map built from consecutive images, are derived as an alternative means of quantifying the solar wind-cometary ionosphere interaction, including turbulent transient phenomena such as coronal mass ejections. I review the validity of these techniques by comparing near-Earth comets to solar wind MHD models (ENLIL) in the inner heliosphere and extrapolated measurements by ACE to the orbit of comet C/2004 Q2 (Machholz), a near-Earth comet. My radial velocities are mapped back to the solar wind source surface to identify sources of the quiescent solar wind and heliospheric current sheet crossings. Comets were found to be good indicators of solar wind structure, but the quality of results is strongly dependent on the observing geometry.

  18. FLOWS AND WAVES IN BRAIDED SOLAR CORONAL MAGNETIC STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, V.; Datta, A.; Banerjee, D., E-mail: vaibhav@iiap.res.in

    We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by the High-Resolution Coronal Imager (Hi-C). We detect quasi-periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicities (30–60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi-periodic flows with a wide range of velocities, from 13–185 km s{sup −1}, associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. Wemore » also find short period and large amplitude transverse oscillations associated with the braided magnetic region. Such oscillations could be triggered by reconnection or such oscillations may trigger reconnection.« less

  19. Update on the Fire (solar probe) mission study

    NASA Technical Reports Server (NTRS)

    Jones, W. Veron; Forman, Miriam A.

    1995-01-01

    Since mid-1994 the U.S. and Russia have been studying the technical feasibility of a joint solar probe mission as part of the 'Fire and Ice' concept to explore close to the Sun, and Pluto, together. In the current concept of the 'Fire' mission, separate spacecraft built by each country would be launched together, fly by Jupiter to shed orbital angular momentum and achieve a solar polar orbit, and arrive 3.6 years later at 4 and 10 R(sub s). The Fire mission would measure basic parameters of the modes of energy and momentum flow and transfer to the coronal plasma that are not observable remotely. Specifically, measurement of magnetic fields, waves, suprathermal particles, and critical features of the plasma particle composition and distribution function would be made from 4 to 30 R(sub s) where the solar wind is known to be accelerated. In addition, the Fire spacecraft should image coronal structures unambiguously and relate the underlying and flown-through structures to plasma characteristics measured in situ. Each country is developing a backup plan to pursue the solar probe objectives alone if the other side is unable to carry out its mission.

  20. Deep Convection, Magnetism and Solar Supergranulation

    NASA Astrophysics Data System (ADS)

    Lord, J. W.

    We examine the effect of deep convection and magnetic fields on solar supergranulation. While supergranulation was originally identified as a convective flow from relatively great depth below the solar surface, recent work suggests that supergranules may originate near the surface. We use the MURaM code to simulate solar-like surface convection with a realistic photosphere and domain size up to 197 x 197 x 49 Mm3. This yields nearly five orders of magnitude of density contrast between the bottom of the domain and the photosphere which is the most stratified solar-like convection simulations that we are aware of. Magnetic fields were thought to be a passive tracer in the photosphere, but recent work suggests that magnetism could provide a mechanism that enhances the supergranular scale flows at the surface. In particular, the enhanced radiative losses through long lived magnetic network elements may increase the lifetime of photospheric downflows and help organize low wavenumber flows. Since our simulation does not have sufficient resolution to resolve increased cooling by magnetic bright points, we artificially increase the radiative cooling in elements with strong magnetic flux. These simulations increase the cooling by 10% for magnetic field strength greater than 100 G. We find no statistically significant difference in the velocity or magnetic field spectrum by enhancing the radiative cooling. We also find no differences in the time scale of the flows or the length scales of the magnetic energy spectrum. This suggests that the magnetic field is determined by the flows and is largely a passive tracer. We use these simulations to construct a two-component model of the flows: for scales smaller than the driving (integral) scale (which is four times the local density scale height) the flows follow a Kolmogorov (k-5/3) spectrum, while larger scale modes decay with height from their driving depth (i.e. the depth where the wavelength of the mode is equal to the driving (integral) scale). This model reproduces the MURaM results well and suggests that the low wavenumber power in the photosphere imprints from below. In particular, the amplitude of the driving (integral) scale mode at each depth determines how much power imprints on the surface flows. This is validated by MURaM simulations of varying depth that show that increasing depths contribute power at a particular scale (or range of scales) that is always at lower wavenumbers than shallower flows. The mechanism for this imprinting remains unclear but, given the importance of the balances in the continuity equation to determining the spectrum of the flows, we suggest that pressure perturbations in the convective upflows are the imprinting mechanism. By comparing the MURaM simulations to SDO/HMI observations (using the coherent structure tracking code to compute the inferred horizontal velocities on both data sets), we find that the simulations have significant excess power for scales larger than supergranulation. The only way to match observations is by using an artificial energy flux to transport the solar luminosity for all depths greater than 10 Mm below the photosphere (down to the bottom of the domain at 49 Mm depth). While magnetic fields from small-scale dynamo simulations help reduce the rms velocity required to transport the solar luminosity below the surface, this provides only a small reduction in low wavenumber power in the photosphere. The convective energy transport in the Sun is constrained by theoretical models and the solar radiative luminosity. The amplitude or scale of the convective flows that transport the energy, however, are not constrained. The strong low wavenumber flows found in these local simulations are also present in current generation global simulations. While local or global dynamo magnetic fields may help suppress these large-scale flows, the magnetic fields must be substantially stronger throughout the convection domains for these simulations to match observations. The significant decrease in low wavenumber flow amplitude in the artificial energy flux simulation that matches the observed photospheric horizontal velocity spectrum suggests that convection in the Sun transports the solar luminosity with much weaker large-scale flows. This suggests that we do not understand how convective transport works in the Sun for depths greater than 10 Mm below the photosphere.

  1. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, G. K.; Lin, N.; Lee, E.

    2013-07-10

    Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and deviates substantially and (2) the temperature of the plasma increases in the structure. In this Letter, we show that the SW beam can be present throughout the entire upstream event maintaining a nearly constant beam velocity and temperature. The decrease of the velocity is due to the appearance of new particles moving in the opposite direction that act against the SW beam and reduce the mean velocity as computed via moments. The new population, which occupies a larger velocitymore » space, also contributes to the second moment, increasing the temperature. The new particles include the reflected SW beam at the bow shock and another population of lower energies, accelerated nearby at the shock or at the boundary of the nonlinear structures.« less

  2. Computer modeling of inversion layer MOS solar cells and arrays

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1991-01-01

    A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.

  3. Formation, levitation, and stability of prominences in the magnetized solar atmosphere

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Mok, Y.; Van Hoven, G.

    1993-01-01

    The dynamic formation of prominences in the initial magnetothermal equilibrium and their stability to sideward displacements are investigated focusing on the structure of the 2D solar atmosphere in the presence of coronal arcades or loops. A model based on 2D magnetohydrodynamic equations takes into account gravity, compressible flows, heating, radiation, anisotropic thermal conduction, and coupling to a deep chromosphere. It is found that prominences in simple arcades characterized by magnetic field with significant curvature at the apex are unstable to a lateral displacement.

  4. The Effect of Ionic Correlations on Radiative Properties in the Solar Interior and Terrestrial Experiments

    NASA Astrophysics Data System (ADS)

    Krief, Menahem; Kurzweil, Yair; Feigel, Alexander; Gazit, Doron

    2018-04-01

    With the aim of solving the decade-old problem of solar opacity, we report substantial photoabsorption uncertainty due to the effect of ion–ion correlations. By performing detailed opacity calculations of the solar mixture, we find that taking into account the ionic structure changes the Rosseland opacity near the convection zone by ∼10%. We also report a ∼15% difference in the Rosseland opacity for iron, which was recently measured at the Sandia Z facility, where the temperature reached that prevailing in the convection zone boundary while the density was 2.5 times lower. Finally, we propose a method to measure opacities at solar temperatures and densities that have never been reached in the past via laboratory radiation flow experiments, by using plastic foams doped with permilles of dominant photon absorbers in the Sun. The method is advantageous for an experimental study of solar opacities that may lead to a resolution of the solar abundance problem.

  5. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, L.E.

    1980-11-24

    An apparatus and method are disclosed for preventing a solar receiver utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver by a plurality of reflectors which rotate so that they direct solar energy to the receiver as the earth rotates. The apparatus disclosed includes a first storage tank for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank having an inlet through which the coolant can enter. The first and second storage tanks are in fluid communication with each other through the solar receiver. The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank through the solar receiver and into the second storage tank. Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks will be sufficient to maintain the coolant in the receiver below a predetermined upper temperature until the solar reflectors become defocused with respect to the solar receiver due to the earth's rotation.

  6. Understanding The Behavior Of The Sun'S Large Scale Magnetic Field And Its Relation With The Meridional Flow

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal

    2018-02-01

    In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., sunspot number, sunspot area and 10.7 cm radio flux) from various observatory including the sunspot area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.

  7. Changes In the Pickup Ion Cutoff Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Bower, J.; Moebius, E.; Taut, A.; Berger, L.; Drews, C.; Lee, M. A.; Farrugia, C. J.

    2017-12-01

    We present the first systematic analysis to determine pickup ion (PUI) cutoff speed variations,both during compression regions, identified by their structure, and during times of highly variablesolar wind (SW) speed or magnetic field strength. This study is motivated by the attempt toremove or correct these effects on the determination of the longitude of the interstellar neutralgas flow from the flow pattern related variation of the PUI cutoff with ecliptic longitude. At thesame time, this study sheds light on the physical mechanisms that lead to energy transferbetween the SW and the embedded PUI population. Using 2007-2014 STEREO A PLASTICobservations we identify compression regions in the solar wind and analyze the PUI velocitydistribution function (VDF). We developed a routine to identify stream interaction regions andCIRs, by identifying the stream interface and the successive velocity increase in the solar windspeed and density. Characterizing these individual compression events and combining them in asuperposed epoch analysis allows us to analyze the PUI population in similar conditions andfind the local cutoff shift with adequate statistics. The result of this method yields cutoff shifts forcompression regions with large solar wind speed gradients. Additionally, through sorting theentire set of PUI VDFs at high time resolution we obtain a noticeable correlation of the cutoffshift with gradients in the SW speed and interplanetary magnetic field strength. We willdiscuss implications for the understanding of the PUI VDF evolution and the PUI cutoff analysisof the interstellar gas flow.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottommore » of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.« less

  9. Lunar Crater Mini-Wakes: Structure, Variability, and Volatiles

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a regional plasma mini-wake. In the present work kinetic simulations are utilized to investigate how the most prominent structural aspects of a crater mini-wake are modulated during passage of a solar storm. In addition, the simulated particle fluxes are coupled into an equivalent-circuit model of a roving astronaut,. including triboelectric charging due to frictional contact with the lunar regolith, to characterize charging of the astronaut suit during the various stages of the storm. In some cases, triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, the present results suggest that wake structure plays a critical role in modulating the spatial distribution of volatiles at the lunar poles.

  10. Cosmic-ray transport in the heliosphere: A global perspective

    NASA Astrophysics Data System (ADS)

    Florinski, Vladimir

    2013-02-01

    Earth is shielded from the hazardous galactic radiation in the form or cosmic ray ions by the outwardly flow of the solar wind plasma and by the geomagnetic field. Understanding the effects of the global structure of the heliosphere on the transport of energetic charged particles remains an important challenge in space physics. The expanding bubble of the supersonic solar wind cools the populations of GeV ions that penetrate deeply into the interplanetary space. Beyond the solar wind lies the heliosheath that is believed to act as a long-term storage reservoir for the cosmic rays. The heliosheath and its magnetic field topology play an important role in modulating cosmic rays at large heliocentric distances. Understanding this role is crucial for interpreting the the puzzling Voyager spacecraft observations near the edge of the solar system.

  11. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  12. Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.

    PubMed

    Stegmaier, Thomas; Linke, Michael; Planck, Heinrich

    2009-05-13

    Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.

  13. Ion-Neutral Coupling in Solar Prominences

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2011-01-01

    Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.

  14. Simultaneous Analysis of Recurrent Jovian Electron Increases and Galactic Cosmic Ray Decreases

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Dresing, N.; Dunzlaff, P.; Fichtner, H.; Gieseler, J.; Gomez-Herrero, R.; Heber, B.; Klassen, A.; Kleimann, J.; Kopp, A.; Potgieter, M. S.; Scherer, K.; Strauss, D. R.

    2012-12-01

    Since the early 1970's the magnetosphere of Jupiter is known to be a strong source of relativistic electrons. These Jovian electrons are released quasi-continuously from the magnetosphere. Due to Jupiter's favorable orbit, they offer a unique opportunity for studies of the transport of energetic particles in the heliosphere, in which the Jovian magnetosphere acts as a source of "quit time" electron increase. Of central importance for the propagation of Jovian electrons is the solar wind flow and the structure of the embedded heliospheric magnetic field. The solar wind defines the transport environment for the particles as soon as they have left the Jovian magnetosphere. They enter the solar wind flow close to the ecliptic plane and are immediately subject to the processes of spatial diffusion, convection, and adiabatic deceleration in the expanding solar wind plasma. On the time-scale of a solar rotation, especially during the rising and declining phases of the solar cycle the variability is caused mainly by corotating interaction regions. Due to the changing propagation conditions in the intermediate heliosphere, corotating interaction regions, however, can cause recurrent galactic cosmic ray modulation. A detailed analysis of recurrent Jovian electron events and galactic cosmic ray decreases measured by SOHO EPHIN is presented here, clearly showing a change of phase between both phenomena during a year. This phase shift has been analyzed by calculating the correlation coefficient between the galactic component and the Jovian electrons. Furthermore, the data can be ordered such that the 27-day Jovian electron variation vanishes in the sector which does not connect the Earth with Jupiter using observed solar wind speeds.; Electron intensity dependent on the longitudinal angle between SOHO and Jupiter. Jovian electron increases can only be observed in regions, which are magnetically connected to Jupiter via observed solar wind speeds.

  15. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Liu, Zhong

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads,more » tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.« less

  16. Identifying large scale structures at 1 AU using fluctuations and wavelets

    NASA Astrophysics Data System (ADS)

    Niembro, T.; Lara, A.

    2016-12-01

    The solar wind (SW) is inhomogeneous and it is dominated for two types of flows: one quasi-stationary and one related to large scale transients (such as coronal mass ejections and co-rotating interaction regions). The SW inhomogeneities can be study as fluctuations characterized by a wide range of length and time scales. We are interested in the study of the characteristic fluctuations caused by large scale transient events. To do so, we define the vector space F with the normalized moving monthly/annual deviations as the orthogonal basis. Then, we compute the norm in this space of the solar wind parameters (velocity, magnetic field, density and temperature) fluctuations using WIND data from August 1992 to August 2015. This norm gives important information about the presence of a large structure disturbance in the solar wind and by applying a wavelet transform to this norm, we are able to determine, without subjectivity, the duration of the compression regions of these large transient structures and, even more, to identify if the structure corresponds to a single or complex (or merged) event. With this method we have automatically detected most of the events identified and published by other authors.

  17. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed throughmore » the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.« less

  18. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  19. WIND measurements of proton and alpha particle flow and number density

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.

    1995-01-01

    We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.

  20. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  1. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R. H.; Schuessler, M., E-mail: cameron@mps.mpg.d

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that themore » reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.« less

  2. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H Solar Cell Fabrication by Multichamber Deposition in the n-i-p Substrate Configuration

    NASA Astrophysics Data System (ADS)

    Dahal, Lila Raj

    Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.

  3. Heliospheric Imaging of 3D Density Structures During the Multiple Coronal Mass Ejections of Late July to Early August 2010

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Möstl, C.; Jackson, B. V.; Bisi, M. M.; Howard, T. A.; Mulligan, T.; Jensen, E. A.; Jian, L. K.; Davies, J. A.; de Koning, C. A.; Liu, Y.; Temmer, M.; Clover, J. M.; Farrugia, C. J.; Harrison, R. A.; Nitta, N.; Odstrcil, D.; Tappin, S. J.; Yu, H.-S.

    2013-07-01

    It is usually difficult to gain a consistent global understanding of a coronal mass ejection (CME) eruption and its propagation when only near-Sun imagery and the local measurements derived from single-spacecraft observations are available. Three-dimensional (3D) density reconstructions based on heliospheric imaging allow us to "fill in" the temporal and spatial gaps between the near-Sun and in situ data to provide a truly global picture of the propagation and interactions of the CME as it moves through the inner heliosphere. In recent years the heliospheric propagation of dense structures has been observed and measured by the heliospheric imagers of the Solar Mass Ejection Imager (SMEI) and on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. We describe the use of several 3D reconstruction techniques based on these heliospheric imaging data sets to distinguish and track the propagation of multiple CMEs in the inner heliosphere during the very active period of solar activity in late July - early August 2010. We employ 3D reconstruction techniques used at the University of California, San Diego (UCSD) based on a kinematic solar wind model, and also the empirical Tappin-Howard model. We compare our results with those from other studies of this active period, in particular the heliospheric simulations made with the ENLIL model by Odstrcil et al. ( J. Geophys. Res., 2013) and the in situ results from multiple spacecraft provided by Möstl et al. ( Astrophys. J. 758, 10 - 28, 2012). We find that the SMEI results in particular provide an overall context for the multiple-density flows associated with these CMEs. For the first time we are able to intercompare the 3D reconstructed densities with the timing and magnitude of in situ density structures at five spacecraft spread over 150° in ecliptic longitude and from 0.4 to 1 AU in radial distance. We also model the magnetic flux-rope structures at three spacecraft using both force-free and non-force-free modelling, and compare their timing and spatial structure with the reconstructed density flows.

  4. CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longermore » could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.« less

  5. Investigation of isochronal annealing on the optical properties of HWCVD amorphous silicon nitride deposited at low temperatures and low gas flow rates

    NASA Astrophysics Data System (ADS)

    Muller, T. F. G.; Jacobs, S.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Arendse, C. J.

    2015-06-01

    Hydrogenated amorphous silicon nitride (a-SiNx:H) is used as anti-reflection coatings in commercial solar cells. A final firing step in the production of micro-crystalline silicon solar cells allows hydrogen effusion from the a-SiNx:H into the solar cell, and contributes to bulk passivation of the grain boundaries. In this study a-SiNx:H deposited in a hot-wire chemical vapour deposition (HWCVD) chamber with reduced gas flow rates and filament temperature compared to traditional deposition regimes, were annealed isochronally. The UV-visible reflection spectra of the annealed material were subjected to the Bruggeman Effective Medium Approximation (BEMA) treatment, in which a theoretical amorphous semiconductor was combined with particle inclusions due to the structural complexities of the material. The extraction of the optical functions and ensuing Wemple-DeDomenici analysis of the wavelength-dependent refractive index allowed for the correlation of the macroscopic optical properties with the changes in the local atomic bonding configuration, involving silicon, nitrogen and hydrogen.

  6. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  7. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  8. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry.

    PubMed

    Cambié, Dario; Zhao, Fang; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2017-01-19

    The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye-doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deposition of amorphous carbon thin films by aerosol-assisted CVD method

    NASA Astrophysics Data System (ADS)

    Fadzilah, A. N.; Dayana, K.; Rusop, M.

    2018-05-01

    This paper reports on the deposition of amorphous carbon (a-C) by Aerosol-assisted Chemical Vapor Deposition (AACVD) using natural source of camphor oil as the precursor material. 4 samples were deposited at 4 different deposition flow rate from 15 sccm to 20 sccm, with 5 sccm interval for each sample. The analysis includes the electrical, optical and structural analysis of the data. The a-C structure which came from the manipulation of synthesis parameter was characterized by the solar simulator system, UV-VIS-NIR, Raman spectroscope and AFM. The properties of a-C are highly dependent on the deposition techniques and deposition parameters; hence the influences of gas flow rate were studied.

  10. Evolution of the Active Region NOAA 12443 based on magnetic field extrapolations: preliminary results

    NASA Astrophysics Data System (ADS)

    Chicrala, André; Dallaqua, Renato Sergio; Antunes Vieira, Luis Eduardo; Dal Lago, Alisson; Rodríguez Gómez, Jenny Marcela; Palacios, Judith; Coelho Stekel, Tardelli Ronan; Rezende Costa, Joaquim Eduardo; da Silva Rockenbach, Marlos

    2017-10-01

    The behavior of Active Regions (ARs) is directly related to the occurrence of some remarkable phenomena in the Sun such as solar flares or coronal mass ejections (CME). In this sense, changes in the magnetic field of the region can be used to uncover other relevant features like the evolution of the ARs magnetic structure and the plasma flow related to it. In this work we describe the evolution of the magnetic structure of the active region AR NOAA12443 observed from 2015/10/30 to 2015/11/10, which may be associated with several X-ray flares of classes C and M. The analysis is based on observations of the solar surface and atmosphere provided by HMI and AIA instruments on board of the SDO spacecraft. In order to investigate the magnetic energy buildup and release of the ARs, we shall employ potential and linear force free extrapolations based on the solar surface magnetic field distribution and the photospheric velocity fields.

  11. Mass and energy flows between the Solar chromosphere, transition region, and corona

    NASA Astrophysics Data System (ADS)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  12. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    PubMed

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  13. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

    PubMed Central

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-01-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber–based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m−2). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices. PMID:27152335

  14. The development and test of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Walker, A. B. C., Jr.; Morgan, J. S.; Huber, M. C. E.; Tondello, G.

    1992-01-01

    The objectives were to address currently unanswered fundamental questions concerning the fine scale structure of the chromosphere, transition region, and corona. The unique characteristics of the spectroheliometer was used in combination with plasma diagnostic techniques to study the temperature, density, and velocity structures of specific features in the solar outer atmosphere. A unified understanding was sought of the interplay between the time dependent geometry of the magnetic field structure and the associated flows of mass and energy, the key to which lies in the smallest spatial scales that are unobservable with current EUV instruments. Toroidal diffraction gratings were fabricated and tested by a new technique using an elastically deformable substrate. The toroidal diffraction gratings was procured and tested to be used for the evaluation of the Multi-Anode Microchannel Array (MAMA) detector systems for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and UV Coronagraph Spectrometer (UVCS) instruments on the SOHO mission.

  15. Magnetic loops, downflows, and convection in the solar corona

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1978-01-01

    Optical and extreme-ultraviolet observations of solar loop structures show that flows of cool plasma from condensations near the loop apex are a common property of loops associated with radiations whose maximum temperature is greater than approximately 7000 K and less than approximately 3,000,000 K. It is suggested that the mass balance of these structures indicates reconnection by means of plasma motion across field lines under rather general circumstances (not only after flares). It is shown that the cool material has lower gas pressure than the surrounding coronal medium. The density structure of the bright extreme ultraviolet loops suggests that downflows of cool gas result from isobaric condensation of plasma that is either out of thermal equilibrium with the local energy deposition rate into the corona, or is thermally unstable. The evidence is thought to indicate that magnetic fields act to induce a pattern of forced convection.

  16. UNDERSTANDING SOLAR TORSIONAL OSCILLATIONS FROM GLOBAL DYNAMO MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Smolarkiewicz, P. K.; Pino, E. M. de Gouveia Dal

    2016-09-01

    The phenomenon of solar “torsional oscillations” (TO) represents migratory zonal flows associated with the solar cycle. These flows are observed on the solar surface and, according to helioseismology, extend through the convection zone. We study the origin of the TO using results from a global MHD simulation of the solar interior that reproduces several of the observed characteristics of the mean-flows and magnetic fields. Our results indicate that the magnetic tension (MT) in the tachocline region is a key factor for the periodic changes in the angular momentum transport that causes the TO. The torque induced by the MT atmore » the base of the convection zone is positive at the poles and negative at the equator. A rising MT torque at higher latitudes causes the poles to speed up, whereas a declining negative MT torque at the lower latitudes causes the equator to slow-down. These changes in the zonal flows propagate through the convection zone up to the surface. Additionally, our results suggest that it is the magnetic field at the tachocline that modulates the amplitude of the surface meridional flow rather than the opposite as assumed by flux-transport dynamo models of the solar cycle.« less

  17. Flow-enhanced solution printing of all-polymer solar cells

    DOE PAGES

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  18. Flow-enhanced solution printing of all-polymer solar cells

    PubMed Central

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528

  19. The Redox Flow System for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  20. Spacelab Lyman Alpha-White Light Coronagraph Program

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.

    1986-01-01

    The Spacelab Lyman Alpha Coronagraph (SLAC) of the Smithsonian Astrophysical Observatory (SAO) and the White Light Coronagraph (WLC) to be provided by the High Altitude Observatory (HAO) are two separate coronagraphs which would be operated in a joint fashion during Spacelab missions to be flown by the Space Shuttle. The two instruments would be used to perform joint observations of solar coronal structures from 1.2 to 8.0 solar radii from sun-center in vacuum ultraviolet and visible radiations. Temperatures, densities, and flow velocities throughout the solar wing acceleration region of the inner solar corona were measured. The Phase I Definition activity resulted in the successful definition and preliminary design of the experiment/instrumentation subsystem and associated software, ground support equipment and interfaces to the extended required to accurately estimate the scope of the investigation and prepare an Investigational Development Plan; the performance of the necessary functional, operations, and safety analyses necessary to complete the Experiment Requirements document.

  1. WebGL-enabled 3D visualization of a Solar Flare Simulation

    NASA Astrophysics Data System (ADS)

    Chen, A.; Cheung, C. M. M.; Chintzoglou, G.

    2016-12-01

    The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.

  2. Computational techniques for solar wind flows past terrestrial planets: Theory and computer programs

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Trudinger, B. C.; Spreiter, J. R.

    1977-01-01

    The interaction of the solar wind with terrestrial planets can be predicted using a computer program based on a single fluid, steady, dissipationless, magnetohydrodynamic model to calculate the axisymmetric, supersonic, super-Alfvenic solar wind flow past both magnetic and nonmagnetic planets. The actual calculations are implemented by an assemblage of computer codes organized into one program. These include finite difference codes which determine the gas-dynamic solution, together with a variety of special purpose output codes for determining and automatically plotting both flow field and magnetic field results. Comparisons are made with previous results, and results are presented for a number of solar wind flows. The computational programs developed are documented and are presented in a general user's manual which is included.

  3. Solar receiver protection means and method for loss of coolant flow

    DOEpatents

    Glasgow, Lyle E.

    1983-01-01

    An apparatus and method for preventing a solar receiver (12) utilizing a flowing coolant liquid for removing heat energy therefrom from overheating after a loss of coolant flow. Solar energy is directed to the solar receiver (12) by a plurality of reflectors (16) which rotate so that they direct solar energy to the receiver (12) as the earth rotates. The apparatus disclosed includes a first storage tank (30) for containing a first predetermined volume of the coolant and a first predetermined volume of gas at a first predetermined pressure. The first storage tank (30) includes an inlet and outlet through which the coolant can enter and exit. The apparatus also includes a second storage tank (34) for containing a second predetermined volume of the coolant and a second predetermined volume of the gas at a second predetermined pressure, the second storage tank (34) having an inlet through which the coolant can enter. The first and second storage tanks (30) and (34) are in fluid communication with each other through the solar receiver (12). The first and second predetermined coolant volumes, the first and second gas volumes, and the first and second predetermined pressures are chosen so that a predetermined volume of the coolant liquid at a predetermined rate profile will flow from the first storage tank (30) through the solar receiver (12) and into the second storage tank (34). Thus, in the event of a power failure so that coolant flow ceases and the solar reflectors (16) stop rotating, a flow rate maintained by the pressure differential between the first and second storage tanks (30) and (34) will be sufficient to maintain the coolant in the receiver (12) below a predetermined upper temperature until the solar reflectors (16) become defocused with respect to the solar receiver (12) due to the earth's rotation.

  4. The effects of opening areas on solar chimney performance

    NASA Astrophysics Data System (ADS)

    Ling, L. S.; Rahman, M. M.; Chu, C. M.; Misaran, M. S. bin; Tamiri, F. M.

    2017-07-01

    To enhance natural ventilation at day time, solar chimney is one of the suitable options for topical country like Malaysia. Solar chimney creates air flow due to stack effect caused by temperature difference between ambient and inside wall. In the solar chimney, solar energy is harvested by the inner wall that cause temperature rise compare to ambient. Therefore, the efficiency of the solar chimney depends on the availability of solar energy as well as the solar intensity. In addition, it is very hard to get good ventilation at night time by using a solar chimney. To overcome this problem one of the suitable valid option is to integrate solar chimney with turbine ventilator. A new type of solar chimney is designed and fluid flow analyzed with the computational fluid dynamics (CFD) software. The aim of CFD and theoretical study are to investigate the effect of opening areas on modified solar chimney performance. The inlet and outlet area of solar chimney are varied from 0.0224m2 to 0.6m2 and 0.1m2 to 0.14m2 respectively based on the changes of inclination angle and gap between inner and outer wall. In the CFD study the constant heat flux is considered as 500W/m2. CFD result shows that there is no significant relation between opening areas and the air flow rate through solar chimney but the ratio between inlet and outlet is significant on flow performance. If the area ratio between inlet and outlet are equal to two or larger, the performance of the solar chimney is better than the solar chimney with ratio lesser than two. The solar chimney performance does not effect if the area ratio between inlet and outlet varies from 1 to 2. This result will be useful for design and verification of actual solar chimney performance.

  5. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Technical Reports Server (NTRS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; hide

    2015-01-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.

  6. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.

    2016-12-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii (RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions

  7. ­­MMS Observations of a Hot Flow Anomaly in the Magnetosheath

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Le, G.; Sibeck, D. G.

    2017-12-01

    Hot flow anomalies (HFAs) are events observed near planetary bow shocks that are characterized by greatly heated solar wind plasmas and substantial flow deflection. HFAs are universal phenomena that have been observed near the bow shock of Earth, Venus, Mars, and Saturn. The dynamic pressure inside HFAs is lower than the ambient solar wind due to the density depletion and flow deflection. The passage of HFAs will therefore result in local negative pressure impulses, which lead to a local sunward expansion of the magnetopause. NASA's MMS mission produce unprecedented high resolution data, which enable the observations of HFA structures in great details. We report MMS observations of an HFA in the post-noon magnetosheath which lasted 25 minutes. Sunward and dawnward plasma flow was observed in the core of the HFA, which is in the opposite direction of the plasma flow in the ambient magnetosheath. The plasma density in the HFA was about one order of magnitude lower than that in the ambient magnetosheath. Two magnetopause crossings were observed inside the HFA. Boundary normal analysis shows the normal direction of the magnetopause was along the GSE Y direction, indicating a strongly deformed magnetopause. The first in, first out crossing sequence of the magnetopause by multiple spacecraft also indicates that the two magnetopause crossings were due to a bulged-out magnetopause rather than the back and forth motion of the magnetopause.

  8. Generation of disturbances in the atmosphere during the passage of the solar terminator through it

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somsikov, V.M.; Trotskii, B.V.

    1975-01-01

    The formation of atmospheric disturbances in the presence of flow through the terminator is investigated. It is shown that the formation of a periodic structure in the direction perpendicular to the plane of the terminator is possible. The magnitude of a disturbance at E-layer heights can reach several percent.

  9. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank; Gerish, Harold; Davis, William; Hissam, D. Andy

    1998-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorption cavity for a fully-functioning, ground test unit of a solar thermal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (less than 2500 C) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  10. First Lunar Wake Passage of ARTEMIS: Discrimination of Wake Effects and Solar Wind Fluctuations by 3D Hybrid Simulations

    NASA Technical Reports Server (NTRS)

    Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K. H.; Auster, H. U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; hide

    2011-01-01

    The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.

  11. Solar wind flow past Venus - Theory and comparisons

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1980-01-01

    Advanced computational procedures are applied to an improved model of solar wind flow past Venus to calculate the locations of the ionopause and bow wave and the properties of the flowing ionosheath plasma in the intervening region. The theoretical method is based on a single-fluid, steady, dissipationless, magneto-hydrodynamic continuum model and is appropriate for the calculation of axisymmetric supersonic, super-Alfvenic solar wind flow past a nonmagnetic planet possessing a sufficiently dense ionosphere to stand off the flowing plasma above the subsolar point and elsewhere. Determination of time histories of plasma and magnetic field properties along an arbitrary spacecraft trajectory and provision for an arbitrary oncoming direction of the interplanetary solar wind have been incorporated in the model. An outline is provided of the underlying theory and computational procedures, and sample comparisons of the results are presented with observations from the Pioneer Venus orbiter.

  12. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  13. Quasi-steady solar wind dynamics

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1983-01-01

    Progress in understanding the large scale dynamics of quasisteady, corotating solar wind structure was reviewed. The nature of the solar wind at large heliocentric distances preliminary calculations from a 2-D MHD model are used to demonstrate theoretical expectations of corotating structure out to 30 AU. It is found that the forward and reverse shocks from adjacent CIR's begin to interact at about 10 AU, producing new shock pairs flanking secondary CIR's. These sawtooth secondary CIR's interact again at about 20 AU and survive as visible entities to 30 AU. The model predicts the velocity jumps at the leading edge of the secondary CIR's at 30 AU should be very small but there should still be sizable variations in the thermodynamic and magnetic parameters. The driving dynamic mechanism in the distant solar wind is the relaxation of pressure gradients. The second topic is the influence of weak, nonimpulsive time dependence in quasisteady dynamics. It is suggested that modest large scale variations in the coronal flow speed on periods of several hours to a day may be responsible for many of the remaining discrepancies between theory and observation. Effects offer a ready explanation for the apparent rounding of stream fronts between 0.3 and 1.0 AU discovered by Helios.

  14. Magnetic field and electric current structure in the chromosphere

    NASA Technical Reports Server (NTRS)

    Dravins, D.

    1974-01-01

    The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.

  15. Electron Pitch-Angle Distribution in Pressure Balance Structures Measured by Ulysses/SWOOPS

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Six, N. Frank (Technical Monitor)

    2002-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. From previous studies, PBSs are believed to be remnants of coronal plumes. Yamauchi et al [2002] investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. They found that PBSs contain structures like current sheets or plasmoids, and suggested that PBSs are associated with network activity such as magnetic reconnection in the photosphere at the base of polar plumes. We have investigated energetic electron data from Ulysses/SWOOPS to see whether bi-directional electron flow exists and we have found evidence supporting the earlier conclusions. We find that 45 ot of 53 PBSs show local bi-directional or isotopic electron flux or flux associated with current-sheet structure. Only five events show the pitch-angle distribution expected for Alfvenic fluctuations. We conclude that PBSs do contain magnetic structures such as current sheets or plasmoids that are expected as a result of network activity at the base of polar plumes.

  16. On build-up of magnetic energy in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Steinolfson, R. S.; Wu, S. T.

    1976-01-01

    The dynamic response of the solar atmosphere is examined with the use of self-consistent numerical solutions to the complete set of nonlinear two-dimensional hydromagnetic equations. Of particular interest are the magnetic-energy buildup and the velocity field established by emerging flux at the base of an existing magnetic loop structure in a stationary atmosphere. For a plasma with a relatively low beta (0.03), the magnetic-energy buildup is approximately twice that of the kinetic energy, while the buildup in magnetic energy first exceeds but is eventually overtaken by the kinetic energy for a plasma with an intermediate beta (3). The increased magnetic flux causes the plasma to flow upward near the loop center and downward near the loop edges for the low-beta plasma. The plasma eventually flows downward throughout the lower portion of the loop carrying the magnetic field with it for the intermediate beta plasma. It is hypothesized that this latter case, and possibly the other case as well, may provide a reasonable simulation of the disappearance of prominences by flowing down into the chromosphere (a form of disparition brusque).

  17. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  18. Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, D. D.

    1994-01-01

    Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.

  19. Dynamic properties of small-scale solar wind plasma fluctuations.

    PubMed

    Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F

    2015-05-13

    The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. On the Relation between Photospheric Flow Fields and the Magnetic Field Distribution on the Solar Surface

    DTIC Science & Technology

    1988-04-15

    granules typically last 10-15 minutes. measure- the divergence of the flow field, and (d) the SOUP flow field muerts must be made in a time short...the magnetograms and ary. If so, the random-walk diffusion of magnetic field dii- AV . I, I68 PHOTOSPIIERIC FLOW FIELDS ON SOLAR SURFACE 967 0011 cussd

  1. Convection flow structure in the central polar cap

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.

    2017-12-01

    A previous study of spatially averaged flow velocity in the central polar cap [Bristow et al., 2015] observed under steady IMF conditions found that it was extremely rare for the average to exceed 850 m/s (less than 0.2 % of the time). Anecdotally, however it is not uncommon to observe line-of-sight velocities in excess of 100 m/s in the McMurdo radar field of view directly over the magnetic pole. This discrepancy motivated this study, which examines the conditions under which high-velocity flows are observed at latitudes greater than 80° magnetic latitude. It was found that highly structured flows are common in the central polar cap, which leads to the flow within regions to have significant deviation from the average. In addition, the high-speed flow regions are usually directed away from the earth-sun line. No specific set of driving conditions was identified to be associated with high-speed flows. The study did conclude that 1)Polar cap velocities are generally highly structured. 2)Flow patterns typically illustrate narrow channels, vortical flow regions, and propagating features. 3) Persistent waves are a regular occurrence. 3)Features are observed to propagate from day side to night side, and from night side to day side.. 4)Convection often exhibits significant difference between the two hemispheres. And 5)About 10% of the time the velocity somewhere in the cap exceeds 1 Km/s The presentation will conclude with a discussion of the physical reasons for the flow structure. Bristow, W. A., E. Amata, J. Spaleta, and M. F. Marcucci (2015), Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021199.

  2. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  3. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different morphology formation in comparison to that of the pristine (as-received) P3HT. As a result, single P3HT crystals with high surface energy chain folds were analyzed and determined. Previous reported results of infinite melting enthalpy of extended chain P3HT crystals are much higher than the result discovered in this study. The findings in this study revealed that the infinite melting enthalpy of chain-folded P3HT crystals is considerably decreased due to the presence of this P3HT chain-folded surface energy. In this study, the kinetics and mechanism of P3HT crystallization under shear-flow was thoroughly investigated as well. A homogeneous nucleation of P3HT was observed that allows one dimensional fibril crystal growth. The micrometer long P3HT crystals are formed and limited by the contact time between the P3HT molecules. Furthermore, it was found that phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles inhibit the crystallization of P3HT under shear. However, the shear-flow leads to nanophase agglomeration of PCBM and creates percolation of P3HT fibril crystal networks and the PCBM phase separated domains that apparently present better pathways for transporting electrons and holes. Interestingly, the structured liquid was simply applied onto substrates with a paintbrush resulting in similar device performance to those made with current techniques in which the morphology is commonly formed during application or post-processing steps. These detailed findings are given and discussed in the thesis.

  4. Design, construction, and testing of the direct absorption receiver panel research experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.

    1990-01-01

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly.more » The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.« less

  5. The Distribution of Solar Wind Speeds During Solar Minimum: Calibration for Numerical Solar Wind Modeling Constraints on the Source of the Slow Solar Wind (Postprint)

    DTIC Science & Technology

    2012-03-05

    subsonic corona below the critical point, resulting in an increased scale height and mass flux, while keeping the kinetic energy of the flow fairly...Approved for public release; distribution is unlimited. tubes with small expansion factors the heating occurs in the supersonic corona, where the energy ...goes into the kinetic energy of the solar wind, increasing the flow speed [Leer and Holzer, 1980; Pneuman, 1980]. Using this model and a sim- plified

  6. Quiescent Prominence Structure and Dynamics: a new View From the Hinode/SOT

    NASA Astrophysics Data System (ADS)

    Berger, T.; Okamoto, J.; Slater, G.; Magara, T.; Tarbell, T.; Tsuneta, S.; Hurlburt, N.

    2008-05-01

    To date the Hinode/Solar Optical Telescope (SOT) has produced over a dozen sub-arcsecond, multi-hour movies of quiescent solar prominences in both the Ca II 396.8~nm H-line and the H-alpha 656.3~nm line. These datasets have revealed new details of the structure and dynamics of quiescent prominences including a new form of mass transport in the form of buoyant plume upflows from the chromosphere. We review the SOT prominence datasets to show that quiescent prominences appear in two major morphological categories: "vertically" and "horizontally" structured. The vertically structured prominences all show ubiquitous downflows in 400--700~km wide "streams" with velocities of approximately 10~km~s-1. Most of the vertically structured prominences also show episodic upflows in the form of dark turbulent plumes with typical velocities of 20~km~s-1. Large-scale oscillations are frequently seen in vertical prominences with periods on the order of 10 min and upward propagation speeds of approximately 10~km~s-1. In addition, "bubble" events in which large voids 10--30~Mm across inflate and then burst are seen in some of the vertical prominences. In contrast, the horizontally structured quiescent prominences exhibit only limited flows along the horizontal filaments. We speculate on the origin of the distinction between the vertically and horizontally structured prominences, taking into account viewing angle and the underlying photospheric magnetic flux density. We also discuss the nature of the mysterious dark plumes and bubble expansions and their implications for prominence mass balance in light of recent models of prominence magnetic structure that find vertical flows along some field lines.

  7. An comprehensive time-distance measurement of deep meridional flow and its temporal variation

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-10-01

    We report our latest results on the Sun's deep solar meridional-flow measurements by time-distance helioseismology technique using 6 years of SDO/HMI Doppler-velocity data. Determination of the meridional flow by time-distance helioseismology depends on a precise measurement of the flow-induced travel-time shifts of acoustic waves traveling in the solar interior. To resolve the weak travel-time-shift signals due to deep meridional flow, we need a high signal-to-noise ratio and a robust removal of the center-to-limb (CtoL) effect, which dominates the travel-time shifts. Here we perform an ultimately comprehensive measurement that tracks acoustic waves between any two points on solar surface. The travel-time shifts are composed of CtoL effect, which is a function of disk-centric distances, and contribution from the flow component parallel to wave traveling direction, which is a function of latitude and orientation. Assuming these two effects are independent, we can derive the CtoL effect and meridional-flow contributions by solving a set of linear equations in a least-square sense. We show the solved CtoL effect and the inversion results for the solar meridional flow, and analyze the annual variation of meridional flow from May 2010 to Apr 2016.

  8. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  9. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area.more » The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.« less

  10. Solids-based concentrated solar power receiver

    DOEpatents

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Yan; Hou, Guo-Fu; Zhang, Xiao-Dan; Wei, Chang-Chun; Li, Gui-Jun; Zhang, De-Kun; Chen, Xin-Liang; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying; Geng, Xin-Hua

    2009-08-01

    This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-high-frequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of ~ 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J-V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 Å/s (1 Å = 0.1 nm).

  12. Espisodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brain, D A; Baker, A H; Briggs, J

    2009-06-02

    We present an analysis of magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft that reveals isolated magnetic structures filled with Martian atmospheric plasma located downstream from strong crustal magnetic fields with respect to the flowing solar wind. The structures are characterized by magnetic field enhancements and rotations characteristic of magnetic flux ropes, and characteristic ionospheric electron energy distributions with angular distributions distinct from surrounding regions. These observations indicate that significant amounts of atmosphere are intermittently being carried away from Mars by a bulk removal process: the top portions of crustal field loops are stretched throughmore » interaction with the solar wind and detach via magnetic reconnection. This process occurs frequently and may account for as much as 10% of the total present-day ion escape from Mars.« less

  13. Revisiting the Solar Oblateness: Is Relevant Astrophysics Possible?

    NASA Astrophysics Data System (ADS)

    Rozelot, J. P.; Fazel, Z.

    2013-10-01

    The measurement of solar oblateness has a rich history extending well back into the past. Until recently, its estimate has been actively disputed, as has its temporal dependence. Recent accurate observations of the solar shape gave cause for doubt, and so far only balloon flights or satellite experiments, such as those onboard SDO, seem to achieve the required sensitivity to measure the expected small deviations from sphericity. A shrinking or an expanding shape is ultimately linked to solar activity (likely not homologously with its change), as gravitational or magnetic fields, which are existing mechanisms for storing energy during a solar cycle, lead to distinct perturbations in the equilibrium solar-structure and changes in the diameter. It follows that a sensitive determination of the solar radius fluctuations might give information about the origin of the solar cycle. In periods of higher activity, the outer photospheric shape seems to become aspheric under the influence of higher-order multipole moments of the Sun, resulting both from the centrifugal force and the core rotation. An accurate determination of the shape of the Sun is thus one of the ways that we have now for peering into its interior, learning empirically about flows and motions there that would otherwise only be guessed at from theoretical considerations, developing more precise inferences, and ultimately building possible alternative gravitational theories.

  14. Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; SaintCyr, O. C.

    2003-01-01

    The solar magnetic field is constantly generated beneath the surface of the Sun by the solar dynamo. To balance this flux generation, there is constant dissipation of magnetic flux at and above the solar surface. The largest phenomenon associated with this dissipation is the Coronal Mass Ejection (CME). The Solar and Heliospheric Observatory (SOHO) has provided remarkable views of the corona and CMEs, and served to highlight how these large interplanetary disturbances can have terrestrial consequences. STEREO is the next logical step to study the physics of CME origin, propagation, and terrestrial effects. Two spacecraft with identical instrument complements will be launched on a single launch vehicle in November 2007. One spacecraft will drift ahead and the second behind the Earth at a separation rate of 22 degrees per year. Observation from these two vantage points will for the first time allow the observation of the three-dimensional structure of CMEs and the coronal structures where they originate. Each STEREO spacecraft carries a complement of 10 instruments, which include (for the first time) an extensive set of both remote sensing and in-situ instruments. The remote sensing suite is capable of imaging CMEs from the solar surface out to beyond Earth's orbit (1 AU), and in-situ instruments are able to measure distribution functions for electrons, protons, and ions over a broad energy range, from the normal thermal solar wind plasma to the most energetic solar particles. It is anticipated that these studies will ultimately lead to an increased understanding of the CME process and provide unique observations of the flow of energy from the corona to the near-Earth environment. An international research program, the International Heliophysical Year (IHY) will provide a framework for interpreting STEREO data in the context of global processes in the Sun-Earth system.

  15. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  16. A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar

    This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.

  17. Coupling of the magnetic field and gas flows inferred from the net circular polarization in a sunspot penumbra

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi

    2015-04-01

    We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.

  18. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  19. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  20. The vorticity of Solar photospheric flows on the scale of granulation

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-12-01

    We employ time sequences of images observed with a G-band filter (λ4305Å) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central meridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in intergranular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current helicity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.

  1. Kinematic solar dynamo models with a deep meridional flow

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.

    2004-05-01

    We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.

  2. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  3. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  4. Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets

    NASA Astrophysics Data System (ADS)

    Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.

    2017-10-01

    We present a joint experimental and numerical study of the flow structure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.

  5. Electron Temperatures and Flow Speeds of the Low Solar Corona: MACS Results from the Total Solar Eclipse of 29 March 2006 in Libya

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.; Davila, Joseph M.; SaintCyr, O.; Rabin, Douglas M.; Guhathakurta, Madhulika; Hassler, Donald M.; Gashut, Hadi

    2011-01-01

    An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10 +/- 0.05) MK, (0.70 +/- 0.08) MK, and (0.98 +/- 0.12) MK, at 1.1 Solar Radius from Sun center in the solar north, east and west, respectively, and (0.93 +/- 0.12) MK, at 1.2 Solar Radius from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103 +/- 92) km/s, (0 + 10) km/s, (0+10) km/s, and (0+10) km/s. Since the observations were taken only at 1.1 Solar Radius and 1.2 Solar Radius from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 Solar Radius from Sun center is larger at the north (polar region) than the east and west (equatorial region).

  6. Mass-loading of the solar wind at 67P/Churyumov-Gerasimenko. Observations and modelling

    NASA Astrophysics Data System (ADS)

    Behar, E.; Lindkvist, J.; Nilsson, H.; Holmström, M.; Stenberg-Wieser, G.; Ramstad, R.; Götz, C.

    2016-11-01

    Context. The first long-term in-situ observation of the plasma environment in the vicinity of a comet, as provided by the European Rosetta spacecraft. Aims: Here we offer characterisation of the solar wind flow near 67P/Churyumov-Gerasimenko (67P) and its long term evolution during low nucleus activity. We also aim to quantify and interpret the deflection and deceleration of the flow expected from ionization of neutral cometary particles within the undisturbed solar wind. Methods: We have analysed in situ ion and magnetic field data and combined this with hybrid modeling of the interaction between the solar wind and the comet atmosphere. Results: The solar wind deflection is increasing with decreasing heliocentric distances, and exhibits very little deceleration. This is seen both in observations and in modeled solar wind protons. According to our model, energy and momentum are transferred from the solar wind to the coma in a single region, centered on the nucleus, with a size in the order of 1000 km. This interaction affects, over larger scales, the downstream modeled solar wind flow. The energy gained by the cometary ions is a small fraction of the energy available in the solar wind. Conclusions: The deflection of the solar wind is the strongest and clearest signature of the mass-loading for a small, low-activity comet, whereas there is little deceleration of the solar wind.

  7. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  8. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  9. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    PubMed

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  10. Advancements in solar stills for enhanced flow rate

    NASA Astrophysics Data System (ADS)

    Mishra, Sourav; Dubey, Maneesh; Raghuwanshi, Jitendra; Sharma, Vipin

    2018-05-01

    All over the world there is a scarcity of water and it is difficult to access potable water. Due to this most of the people are affected by diseases that are caused due to drinking of polluted water. There are technologies through which we can purify polluted water but the only problem is these technologies uses electrical energy. Since solar energy is abundant in nature therefore we can use solar as an energy source in solar stills for water distillation. Solar stills can be used in village areas where there is no electricity. It is simple and also economic in construction. This article addresses advancement in solar distillation and usage of nanofluids for enhancement in flow rate.

  11. The Physics of Energy

    NASA Astrophysics Data System (ADS)

    Jaffe, Robert L.; Taylor, Washington

    2018-01-01

    Part I. Basic Energy Physics and Uses: 1. Introduction; 2. Mechanical energy; 3. Electromagnetic energy; 4. Waves and light; 5. Thermodynamics I: heat and thermal energy; 6. Heat transfer; 7. Introduction to quantum physics; 8. Thermodynamics II: entropy and temperature; 9. Energy in matter; 10. Thermal energy conversion; 11. Internal combustion engines; 12. Phase-change energy conversion; 13. Thermal power and heat extraction cycles; Part II. Energy Sources: 14. The forces of nature; 15. Quantum phenomena in energy systems; 16. An overview of nuclear power; 17. Structure, properties and decays of nuclei; 18. Nuclear energy processes: fission and fusion; 19. Nuclear fission reactors and nuclear fusion experiments; 20. Ionizing radiation; 21. Energy in the universe; 22. Solar energy: solar production and radiation; 23. Solar energy: solar radiation on Earth; 24. Solar thermal energy; 25. Photovoltaic solar cells; 26. Biological energy; 27. Ocean energy flow; 28. Wind: a highly variable resource; 29. Fluids – the basics; 30. Wind turbines; 31. Energy from moving water: hydro, wave, tidal, and marine current power; 32. Geothermal energy; 33. Fossil fuels; Part III. Energy System Issues and Externalities: 34. Energy and climate; 35. Earth's climate: past, present, and future; 36. Energy efficiency, conservation, and changing energy sources; 37. Energy storage; 38. Electricity generation and transmission.

  12. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  13. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  14. Parker Solar Probe (PSP): The Dawn of a New Age… 60 Years in the Making

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2017-12-01

    Next summer the launch window opens July 31, 2018 for the Parker Solar Probe (PSP) mission. This mission will repeatedly fly within 9 solar radii of the Sun's surface and directly measure the particles and fields in the innermost reaches of our heliosphere for the first time. With this historic mission, humanity will be able to achieve the key scientific objectives of 1) tracing the flow of energy that heats and accelerates the solar corona and solar wind, 2) determining the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and 3) exploring the mechanisms that accelerate and transport energetic particles near the Sun. Next year also marks the 60th anniversary of the 1958 report from the Physics of Particles and Fields in Space Committee of the National Research Council's Space Studies Board, chaired by John Simpson and James Van Allen, which first called for sending a spacecraft to measure the particles and fields environment near the Sun. This talk briefly reviews the history, examines how we got to the current PSP mission, and describes some of the science drivers and the promise of what the PSP mission is about to accomplish.

  15. Comparison of magnetic helicity close to the sun and in magnetic clouds

    NASA Astrophysics Data System (ADS)

    Rust, D.

    Magnetic helicity is present in the solar atmosphere - as inferred from vector magnetograph measurements, solar filaments, S-shaped coronal structures known as sigmoids, and sunspot whorls. I will survey the possible solar sources of this magnetic helicity. Included are fieldline footpoint motions, effects of Coriolis forces, effects of convection, shear associated with differential rotation, and, of course, the internal dynamo. Besides the survey of possible local mechanisms for helicity generation, I will consider the global view of the flow of helicity from the sun into interplanetary space. The principal agents by which the sun sheds helicity are coronal mass ejections (CMEs). They are often associated with interplanetary magnetic clouds (MCs), whose fields are regularly probed with sensitive spacecraft magnetometers. MCs yield more direct measurements of helicity. They show that each MC carries helicity away from the sun. A major issue in solar-heliospheric research is whether the amount of helicity that MCs carry away in a solar cycle can be accounted for by the helicity generation mechanisms proposed so far. The NASA Solar and Heliospheric Physics Program supports this work under grants NAG5- 7921 and NAG 5-11584.

  16. κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai

    2015-03-16

    The interaction between the solar wind and the interstellar medium represents a collision between two plasma flows, resulting in a heliosphere with an extended tail. While the solar wind is mostly ionized material from the corona, the interstellar medium is only partially ionized. The ion and neutral populations are coupled through charge-exchange collisions that operate on length scales of tens to hundreds of astronomical units. About half the interstellar hydrogen flows into the heliosphere where it may charge-exchange with solar wind protons. This process gives rise to a nonthermal proton, known as a pickup ion, which joins the plasma. Inmore » this paper we investigate the effects of approximating the total ion distribution of the subsonic solar wind as a generalized Lorentzian, or κ distribution, using an MHD neutral code. We illustrate the effect different values of the κ parameter have on both the structure of the heliosphere and the energetic neutral atom flux at 1 AU. We find that using a κ distribution in our simulations yields levels of energetic neutral atom flux that are within a factor of about 2 or 3 over the IBEX-Hi range of energies from 0.5 to 6 keV. In conclusion, while the presence of a suprathermal tail in the proton distribution leads to the production of high-energy neutrals, the sharp decline in the charge-exchange cross section around 10 keV mitigates the enhanced transfer of energy from the ions to the neutrals that might otherwise be expected.« less

  17. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie

    2018-01-01

    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  18. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  19. Performance investigation and comparison of different turbulator shapes in solar water heating collector system

    NASA Astrophysics Data System (ADS)

    Khargotra, Rohit; Dhingra, Sunil; Chauhan, Ranchan; Singh, Tej

    2018-05-01

    The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. In the present paper, the performance of different turbulator shapes in solar water heating collector system has been studied experimentally and comparison on the output performance has been carried out. Effects of insertion of coil-spring turbulator on heat transfer rate, mass flow rate, heat gain by the fluid etc. is studied by disturbing the flow inside the absorber tubes in a solar flat plate collector. The coil-spring used as a turbulator is placed inside the absorber tube which creates a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance to about 70% over the plain water heater under same operating conditions. The coil-spring used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared with the available results. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones.

  20. Development of a computational model for predicting solar wind flows past nonmagnetic terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1983-01-01

    A computational model for the determination of the detailed plasma and magnetic field properties of the global interaction of the solar wind with nonmagnetic terrestrial planetary obstacles is described. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super-Alfvenic solar wind flow past terrestrial ionospheres.

  1. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  2. Galactic cosmic-ray mediation of a spherical solar wind flow. 1: The steady state cold gas hydrodynamical approximation

    NASA Technical Reports Server (NTRS)

    Le Roux, J. A.; Ptuskin, V. S.

    1995-01-01

    Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.

  3. Numerical and Analytical Investigation of the Energy and Momentum Exchange Between the Shocked Solar Wind and Topside Ionosphere for Non-Magnetic Planets and Moons

    NASA Astrophysics Data System (ADS)

    Dobe, Z.; Shapiro, V. D.; Quest, K.; Szego, K.; Huba, J.

    1998-11-01

    Previously[1], we proposed a model of the planetary ions pick-up by the shocked solar wind flow developing in the mantle-turbulent boundary region surrounding the ionospheres of non-magnetic planets-Mars and Venus. In the present paper we are modifying this model taking into account the flow of the planetary elections immediately pick-up by E x B forces of the shocked solar wind. It is shown that flow of the cold planetary electrons drives a strong hydrodynamical instability of the electrostatic whistlers efficiently coupling planetary ions with the flow of the solar wind. The linear stage of the instability is investigated both analytically and numerically, and results are found to be in a good agreement. Nonlunear stage of the instability is investigated with the modified numerical hybrid code[2], and demonstrates both effects of acceleration and heating of the planetary ions by the solar wind. Field aligned electron acceleration is also investigated in a test particle approximation using wave power spectrum obtained in a self-consistent numerical simulation.

  4. 3D Observations techniques for the solar corona

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Papadopoulo, T.; Fermin, I.; Bijaoui, A.; Stereo/Secchi 3D Team; et al.

    In this talk, we will present a review of the different 3D techniques concerning observations of the solar corona made by EUV imageur (such as SOHO/EIT and STEREO/SECCHI) and by coronagraphs (SOHO/LASCO and STEREO/SECCHI). Tomographic reconstructions need magnetic extrapolation to constraint the model (classical triangle mash reconstruction, or more evoluated pixon method). For 3D reconstruction the other approach is stereovision. Stereoscopic techniques are built in a specific way to take into account the optical thin medium of the solar corona, which makes most of the classical stereo method not directly applicable. To improve such method we need to take into account how to describe an image by computer vision : an image is not only a set of intensities but its descriptions/representations in term of sub-objects is needed for the structures extractions and matching. We will describe optical flow methods to follow the structures, and decomposition in sub-areas depending of the solar cycle. After recalling results obtained with geometric loops reconstructions and their consequences for twist measurement and helicity evaluation, we will describe how we can mix pixel and conceptual recontruction for stereovision. We could then include epipolar geometry and Multiscale Vision Model (MVM) to enhance the reconstruction. These concepts are under development for STEREO/SECCHI.

  5. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging.

    PubMed

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-05-04

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon-chemical-electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l(-1). Our work may guide future designs for highly efficient solar rechargeable devices.

  6. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.

    2013-09-10

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics.more » After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.« less

  7. The Discharging of Roving Objects in the Lunar Polar Regions

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Farrell, W. M.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Stubbs, T. B.

    2012-01-01

    In 2007, the National Academy of Sciences identified the lunar polar regions as special environments: very cold locations where resources can be trapped and accumulated. These accumulated resources not only provide a natural reservoir for human explorers, but their very presence may provide a history of lunar impact events and possibly an indication of ongoing surface reactive chemistry. The recent LCROSS impacts confirm that polar crater floors are rich in material including approx 5%wt of water. An integral part of the special lunar polar environment is the solar wind plasma. Solar wind protons and electrons propagate outward from the Sun, and at the Moon's position have a nominal density of 5 el/cubic cm, flow speed of 400 km/sec, and temperature of 10 eV (approx. equal 116000K). At the sub-solar point, the flow of this plasma is effectively vertically incident at the surface. However, at the poles and along the lunar terminator region, the flow is effectively horizontal over the surface. As recently described, in these regions, local topography has a significant effect on the solar wind flow. Specifically, as the solar wind passes over topographic features like polar mountains and craters, the plasma flow is obstructed and creates a distinct plasma void in the downstream region behind the obstacle. An ion sonic wake structure forms behind the obstacle, not unlike that which forms behind a space shuttle. In the downstream region where flow is obstructed, the faster moving solar wind electrons move into the void region ahead of the more massive ions, thereby creating an ambipolar electric field pointing into the void region. This electric field then deflects ion trajectories into the void region by acting as a vertical inward force that draws ions to the surface. This solar wind 'orographic' effect is somewhat analogous to that occurring with terrestrial mountains. However, in the solar wind, the ambipolar E-field operating in the collision less plasma replaces the gradient in pressure that would act in a collisional neutral gas. Human systems (roving astronauts or robotic systems created by humans) may be required to gain access to the crater floor to collect resources such as water and other cold-trapped material. However, these human systems are also exposed to the above-described harsh thermal and electrical environments in the region. Thus, the objective of this work is to determine the nature of charging and discharging for a roving object in the cold, plasma-starved lunar polar regions. To accomplish this objective, we first define the electrical charging environment within polar craters. We then describe the subsequent charging of a moving object near and within such craters. We apply a model of an astronaut moving in periodic steps/cadence over a surface regolith. In fact the astronaut can be considered an analog for any kind of moving human system. An astronaut stepping over the surface accumulates charge via contact electrification (tribocharging) v.lith the lunar regolith. We present a model of this tribo-charge build-up. Given the environmental plasma in the region, we determine herein the dissipation time for the astronaut to bleed off its excess charge into the surrounding plasma.

  8. Remote sensing of reconnection via ARTEMIS dual-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Kiehas, Stefan; Angelopoulos, Vassilis; Runov, Andrei; Li, Shan-Shan

    2013-04-01

    Each month the two ARTEMIS probes spend about four days in the Earth's magnetotail near lunar orbit. Due to the near-equatorial orbit, the probes spend a considerable time near and inside the plasma sheet. This allows us to investigate large-scale effects of reconnection, such as flux ropes and high-speed flows, utilizing dual-probe observations on a regular basis. On August 31, 2012 around 03:00 UT, the ARTEMIS probes were separated by only 350 km in X_GSW and 0.6 (1) RE in Y_GSW (Z_GSW), where GSW denotes the Geocentric Solar Wind coordinate system, which x-axis is antiparallel to the solar wind flow direction. The two probes observe several TCRs and flux ropes. The inter-spacecraft separation allows us to determine the size of these structures to be not more than 6 RE in z. Counterstreaming beams observed by both probes indicate the simultaneous activity of two X-lines, earthward and tailward of the probes, respectively.

  9. Vacuum Plasma Spray (VPS) Forming of Solar Thermal Propulsion Components Using Refractory Metals

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Hissam, David A.; Gerrish, Harold P.; Davis, William M.

    1999-01-01

    The Thermal Spray Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using Vacuum Plasma Spray (VPS) to form structural components from a tungsten/rhenium alloy. The components were assembled into an absorber cavity for a fully-functioning, ground test unit of a solar then-nal propulsion engine. The VPS process deposits refractory metal onto a graphite mandrel of the desired shape. The mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the deposit. Tungsten and tungsten/25% rhenium were used in the development and production of several absorber cavity components. These materials were selected for their high temperature (greater than 25000 C [greater than 4530 F]) strength. Each absorber cavity comprises 3 coaxial shells with two, double-helical flow passages through which the propellant gas flows. This paper describes the processing techniques, design considerations, and process development associated with forming these engine components.

  10. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    NASA Astrophysics Data System (ADS)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  11. Preparation and Optoelectronic Characteristics of ZnO/CuO-Cu2O Complex Inverse Heterostructure with GaP Buffer for Solar Cell Applications

    PubMed Central

    Hsu, Chih-Hung; Chen, Lung-Chien; Lin, Yi-Feng

    2013-01-01

    This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC) inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu) layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas. PMID:28788341

  12. A 400-kWe high-efficiency steam turbine for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. M.

    1982-01-01

    An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.

  13. Solar Wind Speed Structure in the Inner Corona at 3-12 Ro

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1995-01-01

    Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.

  14. Solar and Interplanetary Sources of Major Geomagnetic Storms (Dst less than or equal to -100 nT) During 1996 - 2005

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Richardson, I.; Webb, D. F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.; Nitta, N.; Poomvises, W.; Thompson, B. J.; Wu, C.-C.; hide

    2007-01-01

    We present the results of an investigation of the sequence of events from the Sun to the Earth that ultimately led to the 88 major geomagnetic storms (defined by minimum Dst less than or equal to -100 nT) that occurred during 1996 - 2005. The results are achieved through cooperative efforts that originated at the Living with a Star (LWS) Coordinated Data- Analysis Workshop (CDAW) held at George Mason University in March 2005. Based on careful examination of the complete array of solar and in-situ solar wind observations, we have identified and characterized, for each major geomagnetic storm, the overall solar-interplanetary (solar-IP) source type, the time, velocity and angular width of the source coronal mass ejection (CME), the type and heliographic location of the solar source region, the structure of the transient solar wind flow with the storm-driving component specified, the arrival time of shock/disturbance, and the start and ending times of the corresponding IP CME (ICME). The storm-driving component, which possesses a prolonged and enhanced southward magnetic field (B(sub s)) may be an ICME, the sheath of shocked plasma (SH) upstream of an ICME, a corotating interaction region (CIR), or a combination of these structures. We classify the Solar-IP sources into three broad types: (1) S-type, in which the storm is associated with a single ICME and a single CME at the Sun; (2) M-type, in which the storm is associated with a complex solar wind flow produced by multiple interacting ICMEs arising from multiple halo CMEs launched from the Sun in a short period; (3) C-type, in which the storm is associated with a CIR formed at the leading edge of a high speed stream originating from a solar coronal hole (CH). For the 88 major storms, the S-type, M-type and C-type events number 53 (60%): 24 (27%) and 11 (13%), respectively. For the 85 events for which the surface source regions could be investigated, 54 (63%) of the storms originated in solar active regions, 10 (12%) in quiet Sun regions associated with quiescent filaments or filament channels, and 11 (13%) were associated with coronal holes. Remarkably, 10 (12%) CME-driven events showed no sign of eruptive features on the surface (e.g., no flare, no coronal dimming, and no loop arcade, etc), even though all the available solar observation in a suitable time period were carefully examined. Thus, while it is generally true that a major geomagnetic storm is more likely to be driven by a front-side fast halo CME associated with a major flare, our study indicates a broad distribution of source properties. The implications of the results for space weather forecasting are briefly discussed.

  15. SUB-SURFACE MERIDIONAL FLOW, VORTICITY, AND THE LIFETIME OF SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, R. A.; Ambastha, A., E-mail: ramajor@prl.res.i, E-mail: ambastha@prl.res.i

    Solar sub-surface fluid topology provides an indirect approach to examine the internal characteristics of active regions (ARs). Earlier studies have revealed the prevalence of strong flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The sample of these ARs is taken from the Carrington rotations 1980-2052 covering the period 2001 August-2007 January. The gradients showed an interesting hemisphericmore » trend of negative (positive) signs in the northern (southern) hemisphere, i.e., directed toward the equator. We have discovered three sheared layers in the depth range of 0-10 Mm, providing evidence of complex flow structures in several ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlated with the remaining lifetime of ARs. This new finding may be employed as a tool for predicting the life expectancy of an AR.« less

  16. The Interior Structure, Dynamics, and Heliospheric Impact of Reconnection-Driven Solar Coronal Hole Jets

    NASA Astrophysics Data System (ADS)

    Roberts, Merrill Alan

    From bright loop structures and polar plumes to solar flares and coronal mass ejections (CMEs), our Sun has shown itself to be a highly dynamic star over a multitude of spatial and temporal scales. In fact, as the resolutions of our observations have improved, it has become clear that even coronal holes, the Sun's so called dark and quiet regions, are full of activity. Coronal hole (CH) jets are one example of this activity, a solar transient that occurs ubiquitously in coronal hole regions and which may contribute significant mass and energy to the corona and the solar wind. CH jets have been shown to share many properties with their larger and more energetic cousins, flares and CMEs, thereby providing an opportunity to understand these more complex and infrequent solar features. CH jets may also provide a source for microstreams and torsional Alfven waves found in the solar wind and interplanetary medium, as well as insight into basic processes for driving the fast solar wind and heating the corona. The purpose of this work is to deepen our understanding of CH jets by examining state-of-the-art fully 3D MHD simulations of CH jet eruptions. First, we investigate the internal structure and turbulent flows inside a model CH jet through an analysis of the simulation described by Karpen et al. (2017). An analysis of the radial variability within the simulated jet is performed, as well as a multi-scale turbulence analysis. We confirm the occurrence of multi-scale MHD turbulence within the model jet, and show that the resulting jet wake can be divided into three radially stratified regions based on its internal structure. Second, the 3D model space is extended to 60 solar radii and simulated encounters of the soon-to-be-launched Parker Solar Probe (PSP, Fox et al., 2016) mission with our model jet are produced and analyzed in order to identify signatures that may be seen in the eventual PSP observations. Our results suggest that PSP should encounter CH jets in situ, and that each of the three jet regions found have unique, identifiable signatures that could be detected by PSP. These findings suggest that CH jets are internally complex, with multi-scale, radially stratified internal structure which evolves as the jet progresses through the heliosphere. PSP will have a unique opportunity to observe this newly predicted and previously unobserved fine structure when it descends into the corona in the 2020s, and our results will serve to interpret the PSP data, as well as provide a means to test the validity of our model by comparison with them.

  17. Calculation of solar wind flows about terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1982-01-01

    A computational model was developed for the determination of the plasma and magnetic field properties of the global interaction of the solar wind with terrestrial planetary magneto/ionospheres. The theoretical method is based on an established single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of supersonic, super Alfvenic solar wind flow past terrestrial planets. A summary is provided of the important research results.

  18. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  19. Solar heat collection with suspended metal roofing and whole house ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maynard, T.

    1996-10-01

    A south pitched roof is employed for solar collection directly onto a roofing with chocolate brown color. The roofing is structural and is suspended over plywood decking so as to create an air space which receives input from the coolest and lowest basement air of the house interior. Air heated beneath the metal roofing is returned to a basement storage wall. Full length plenum cavities are formed into the ordinary rafter truss framing--at the knee wall and collar tie spaces. Preliminary testing of BTU gain at known air flows is acquired with a microprocessor system continuously collecting input and outputmore » temperatures at the roof collector into disk data files.« less

  20. Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia

    2016-07-01

    This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.

  1. The cost of energy from utility-owned solar electric systems. A required revenue methodology for ERDA/EPRI evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This methodology calculates the electric energy busbar cost from a utility-owned solar electric system. This approach is applicable to both publicly- and privately-owned utilities. Busbar cost represents the minimum price per unit of energy consistent with producing system-resultant revenues equal to the sum of system-resultant costs. This equality is expressed in present value terms, where the discount rate used reflects the rate of return required on invested capital. Major input variables describe the output capabilities and capital cost of the energy system, the cash flows required for system operation amd maintenance, and the financial structure and tax environment of the utility.

  2. GEOMETRY AND CHARACTERISTICS OF THE HELIOSHEATH REVEALED IN THE FIRST FIVE YEARS OF INTERSTELLAR BOUNDARY EXPLORER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Schwadron, N. A.

    2016-07-20

    We investigate and interpret the geometry and characteristics of the inner heliosheath (IHS) plasma and their impact on the heliotail structure as observed in energetic neutral atom (ENA) maps acquired during the first 5 yr of Interstellar Boundary Explorer ( IBEX ) observations. In particular, IBEX observations of the heliotail reveal distinct, localized emission features (lobes) that provide a rich set of information about the properties and evolution of the heliosheath plasma downstream of the termination shock (TS). We analyze the geometry of the heliotail lobes and find that the plane intersecting the port and starboard heliotail lobe centers ismore » ∼6° from the solar equatorial plane, and the plane intersecting the north and south heliotail lobe centers is ∼90° from the solar equatorial plane, both indicating strong correlation with the fast–slow solar wind asymmetry, and thus reflecting the structure of the IHS flow around the Sun. We also analyze the key parameters and processes that form and shape the port and starboard lobes, which are distinctly different from the north and south lobes. By comparing IBEX ENA observations with results from a simplistic flow model of the heliosphere and a multicomponent description for pickup ions (PUIs) in the IHS, we find that the port and starboard lobe formation is driven by a thin IHS, large nose–tail asymmetry of the distance to the TS (and consequently, a large nose–tail asymmetry of the relative abundance of PUIs at the TS) and the energy-dependent removal of PUIs by charge exchange in the IHS.« less

  3. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  4. A discussion of plausible solar irradiance variations, 1700-1992

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1993-01-01

    From satellite observations the solar total irradiance is known to vary. Sunspot blocking, facular emission, and network emission are three identified causes for the variations. In this paper we examine several different solar indices measured over the past century that are potential proxy measures for the Sun's irradiance. These indices are (1) the equatorial solar rotation rate, (2) the sunspot structure, the decay rate of individual sunspots, and the number of sunspots without umbrae, and (3) the length and decay rate of the sunspot cycle. Each index can be used to develop a model for the Sun's total irradiance as seen at the Earth. Three solar indices allow the irradiance to be modeled back to the mid-1700s. The indices are (1) the length of the solar cycle, (2) the normalized decay rate of the solar cycle, and (3) the mean level of solar activity. All the indices are well correlated, and one possible explanation for their nearly simultaneous variations is changes in the Sun's convective energy transport. Although changes in the Sun's convective energy transport are outside the realm of normal stellar structure theory (e.g., mixing length theory), one can imagine variations arising from even the simplest view of sunspots as vertical tubes of magnetic flux, which would serve as rigid pillas affecting the energy flow patterns by ensuring larger-scale eddies. A composite solar irradiance model, based upon these proxies, is compared to the northern hemisphere temperature depatures for 1700-1992. Approximately 71% of the decadal variance in the last century can be modeled with these solar indices, although this analysis does not include anthropogenic or other variations which would affect the results. Over the entire three centuries, approx. 50% of the variance is modeled. Both this analysis and previous similar analyses have correlations of model solar irradiances and measured Earth surface temperatures that are significant at better than the 95% confidence level. To understand our present climate variations, we must place the anthropogenic variations in the context of natural variability from solar, volcanic, oceanic, and other sources.

  5. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.

  6. Structure and sources of solar wind in the growing phase of 24th solar cycle

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  7. Direct Solar Charging of an Organic–Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode

    PubMed Central

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza

    2016-01-01

    Abstract The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone‐2,7‐disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide‐hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron–hole recombination. PMID:27151516

  8. UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions

    NASA Astrophysics Data System (ADS)

    Woo, R.; Habbal, S. R.

    2005-05-01

    The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.

  9. Solar Probe Plus: A mission to touch the sun

    NASA Astrophysics Data System (ADS)

    Kinnison, J.; Lockwood, M. K.; Fox, N.; Conde, R.; Driesman, A.

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) determine the structure and dynamics of the magnetic fields at the sources of the fast and slow solar wind, 2) trace the flow of energy that heats the corona and accelerates the solar wind. and 3) determine what mechanisms accelerate and transport energetic particles. In this paper, we present the Solar Probe Plus mission along with a brief comparison with some previous concepts for such a mission, and discuss the trade studies that led to the SPP implementation. We present a summary of the challenges associated with operation in the solar encounter environment and discuss the technology development and engineering trade studies to compose a mission that will not only survive this environment, but will provide the data needed to answer the science questions that have remained unanswered to date.

  10. Transport velocity transformation - A convenient method for performance analysis of multilayer solar cell structure

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    It is noted that in the case of low-level injection, space-charge quasi-neutrality, and spatially constant material parameters (including an electrostatic field), the individual layer can be treated analytically and the basic solar cell performance parameters can be evaluated from three equations. The first equation represents the transformation of the transport velocity across the layer from the other layer boundary. The second establishes the light-generated current output from the layer interface, under the influence of the transport velocities and minority-carrier density at both layer boundaries and of bulk recombination. The third equation describes the flow of these carriers across other layers. The power of the approach is considered to lie in its facility for analysis of the solar cell's performance layer by layer, giving a clear picture of the individual layer's influence on cell efficiency.

  11. Plasmoids everywhere: ideal tearing, the transition to fast reconnection, and solar activity.

    NASA Astrophysics Data System (ADS)

    Velli, M. C. M.; Pucci, F.; Tenerani, A.; Shi, C.; Del Sarto, D.; Rappazzo, A. F.

    2017-12-01

    We discuss the role of generalized ``ideal" tearing (IT) as a possible trigger mechanism for magnetic reconnection to understand energetic phenomena in the solar atmosphere. We begin with a pedagogical introduction to the IT concept, how it stems from the classical analysis of the tearing instability, what is meant by plasmoids, and the connections of IT to the plasmoid instability and Sweet Parker current sheets. We then proceed to analyze how the IT concept extends to equilibria with flows, small scale kinetic effects, different current structures and different magnetic field topology configurations. Finally we discuss the relationship of reconnection triggering to nonlinear cascades and turbulent evolution, and how different situations may arise depending on scale, boundary conditions, and time-history, from coronal heating via nanoflares, to solar flares and coronal mass ejections. Issues of local topology, dimensionality, anisotropy will also be discussed.

  12. Characterizing Interplanetary Structures of Long-Lasting Ionospheric Storm Events

    NASA Astrophysics Data System (ADS)

    Tandoi, C.; Dong, Y.; Ngwira, C. M.; Damas, M. C.

    2015-12-01

    Geomagnetic storms can result in periods of heightened TEC (Total Electron Content) in Earth's ionosphere. These periods of change in TEC (dTEC) can have adverse impacts on a technological society, such as scintillation of radio signals used by communication and navigation satellites. However, it is unknown which exact properties of a given storm cause dTEC. We are comparing different solar wind properties that result in a significant long-lasting dTEC to see if there are any patterns that remain constant in these storms. These properties, among others, include the interplanetary magnetic field By and Bz components, the proton density, and the flow speed. As a preliminary investigation, we have studied 15 solar storms. Preliminary results will be presented. In the future, we hope to increase our sample size and analyze over 80 different solar storms, which result in significant dTEC.

  13. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  14. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  15. Two Scenarios for the Eruption of Magnetic Flux Ropes in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Filippov, B. P.; Den, O. E.

    2018-05-01

    Eruptions of material from lower to upper layers of the solar atmosphere can be divided into two classes. The first class of eruptions maintain their (usually loop-like) shapes as they increase in size (eruptive prominences), or display a sudden expansion of fairly shapeless clumps of plasma in all directions (flare sprays). The second class refers to narrow, collimated flows of plasma on various scales (spicules, surges, jets). It is obvious that the magnetic configurations in which these phenomena develop differ: for the first class they form closed structures that confine the plasma, and in the second class open structures directing flows of plasma in a particular direction, as a rule, upward. At the same time, the mechanisms initiating eruptions of both classes could be similar, or even practically identical. This mechanism could be instability of twisted magnetic tubes (flux ropes), leading to different consequences under different conditions. It is shown that the results of eruptive instability are determined by the ratio of the scales of the magnetic flux rope and the confining coronal field, and also by the configuration of the ambient magnetic field in the corona. Observations of both types of eruptions are analyzed, the conditions for their develoment are examined, and phenomenological models are proposed.

  16. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  17. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene; Wagner, William J. (Technical Monitor)

    2003-01-01

    This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.

  18. Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -

    NASA Astrophysics Data System (ADS)

    Shibasaki, Kiyoto

    2017-04-01

    Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.

  19. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  1. Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Su, Yingna; Qu, Zhongquan; Deng, Linhua; Jibben, Patricia R.; Yang, Zihao; Zhang, Jingwen; Samanta, Tanmoy; He, Jiansen; Wang, Linghua; Zhu, Yingjie; Zhong, Yue; Liang, Yu

    2018-03-01

    We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 Å using a telescope of Peking University and in the green line Fe XIV 5303 Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences, during the total solar eclipse on 2017 August 21. A series of magnetic field models is constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 au. Linear polarization of the Fe XIII 10747 Å line calculated from this model shows a “lagomorphic” signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 Å and Fe X 6374 Å.

  2. Reversing Flows and Heat Spike: Caused by Solar g-Modes?

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.

    2003-01-01

    The Quasi Biennial Oscillation in the Earth s upper atmosphere has an analog deep inside the Sun. As on Earth, the flow is east or west, it is at low latitude, and it reverses direction in a roughly periodic manner. The period in the solar case is 1.3 years. It was detected using solar oscillations similar to the way earthquakes are used to study the Earth's interior. But its cause was not known. We showed that global oscillations (g-modes) can supply enough angular momentum to drive zonal flows with the observed reversal period. This required a calculation of wave dissipation rates inside each flow and in the turbulent layer that separates any two flows of opposite sign. Heat that this process leaves behind causes a thermal spike inside the Sun at the same depth. This may explain an anomaly in observed sound speed that has had no sure explanation.

  3. The Redox flow system for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Odonnell, P.; Gahn, R. F.

    1976-01-01

    A new method of storage was applied to a solar photovoltaic system. The storage method is a redox flow system which utilizes the oxidation-reduction capability of two soluble electrochemical redox couples for its storage capacity. The particular variant described separates the charging and discharging function of the system such that the electrochemical couples are simultaneously charged and discharged in separate parts of the system. The solar array had 12 solar cells; wired in order to give a range of voltages and currents. The system stored the solar energy so that a load could be run continually day and night. The main advantages of the redox system are that it can accept a charge in the low voltage range and produce a relatively constant output regardless of solar activity.

  4. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  5. Observational study on the fine structure and dynamics of a solar jet. II. Energy release process revealed by spectral analysis

    NASA Astrophysics Data System (ADS)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-01-01

    We report on a solar jet phenomenon associated with the C5.4 class flare on 2014 November 11. The data of the jet was provided by the Solar Dynamics Observatory, the X-Ray Telescope (XRT) aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss all the processes of the observed phenomena, including energy storage, event trigger, and energy release. In this paper, we focus on the energy release process of the observed jet, and mainly describe our spectral analysis on the Hα data of DST to investigate the internal structure of the Hα jet and its temporal evolution. This analysis reveals that in the physical quantity distributions of the Hα jet, such as line-of-sight velocity and optical thickness, there is a significant gradient in the direction crossing the jet. We interpret this internal structure as the consequence of the migration of the energy release site, based on the idea of ubiquitous reconnection. Moreover, by measuring the horizontal flow of the fine structures in the jet, we succeeded in deriving the three-dimensional velocity field and the line-of-sight acceleration field of the Hα jet. The analysis result indicates that part of the ejecta in the Hα jet experienced additional acceleration after it had been ejected from the lower atmosphere. This secondary acceleration was found to occur in the vicinity of the intersection between the trajectories of the Hα jet and the X-ray jet observed by Hinode/XRT. We propose that a fundamental cause of this phenomenon is magnetic reconnection involving the plasmoid in the observed jet.

  6. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging

    PubMed Central

    Liao, Shichao; Zong, Xu; Seger, Brian; Pedersen, Thomas; Yao, Tingting; Ding, Chunmei; Shi, Jingying; Chen, Jian; Li, Can

    2016-01-01

    Solar rechargeable flow cells (SRFCs) provide an attractive approach for in situ capture and storage of intermittent solar energy via photoelectrochemical regeneration of discharged redox species for electricity generation. However, overall SFRC performance is restricted by inefficient photoelectrochemical reactions. Here we report an efficient SRFC based on a dual-silicon photoelectrochemical cell and a quinone/bromine redox flow battery for in situ solar energy conversion and storage. Using narrow bandgap silicon for efficient photon collection and fast redox couples for rapid interface charge injection, our device shows an optimal solar-to-chemical conversion efficiency of ∼5.9% and an overall photon–chemical–electricity energy conversion efficiency of ∼3.2%, which, to our knowledge, outperforms previously reported SRFCs. The proposed SRFC can be self-photocharged to 0.8 V and delivers a discharge capacity of 730 mAh l−1. Our work may guide future designs for highly efficient solar rechargeable devices. PMID:27142885

  7. Systematic measurements of ion-proton differential streaming in the solar wind.

    PubMed

    Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G

    2011-04-15

    The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).

  8. Acceleration and Transport of Particles in Collisionless Plasmas: Wakes due to the Interaction with Moving Bodies

    NASA Astrophysics Data System (ADS)

    Ponomarjov, Maxim G.

    2001-06-01

    A method is developed that allows the numerical and analytical description of the effects of ambient magnetic field on the time-dependent 3D structures of space plasma flows due to bodies in motion through a plasma. Some of these effects have been observed in space and ionosphere as stratified, flute and yacht sail like structures of plasma disturbances, jets, wakes and clouds. The method can be used for the simulations of Solar Wind flow taking into account the magnetic field effects and the interactions with the Interstellar Medium. These problems are of practical interest in fluid mechanics, space sciences, astrophysics, in turbulence theory. They also have some fundamental interest in their own right, as they enable one to concentrate on the effects of the ambient electric and magnetic fields.

  9. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    PubMed

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    PubMed

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob

    2010-01-01

    The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.

  12. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.

    2010-01-01

    The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.

  13. Axisymmetric Self-Consistent Model of the Solar Wind Interaction with the Lism: Basic Results and Possible Ways of Development

    NASA Astrophysics Data System (ADS)

    Baranov, V. B.; Malama, Yu. G.

    1996-10-01

    We analyze the main results of the axisymmetric self-consistent model of the solar wind (SW) and supersonic local interstellar medium (LISM) interaction proposed by Baranov and Malama (1993, hereafter BM93, 1995) for an interstellar flow assumed to be composed of protons, electrons and hydrogen atoms. Here, in addition to the resonant charge exchange we also take into account the photoionization and the ionization by electron impact. The characteristics of the plasma in the interface region and inside the heliosphere depend strongly on the ionization degree of the LISM. The distribution function of the H atoms which penetrate the solar system from the LISM is non-Maxwellian, which implies that a pure hydrodynamic description of their motion is not appropriate. The H atom number density is a non-monotonic function of the heliocentric distance and the existence of a “hydrogen wall” in the vicinity of the heliopause is important for the interpretation of solar Lyman-alpha scattering experiments. The influence of the interface plasma structure on the interstellar oxygen penetration into the solar system is also illustrated. Possible ways of development of the model are analyzed.

  14. Analysis of Supergranule Sizes and Velocities Using Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) and Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Dopplergrams

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean; Beck, John G.; Lee, Shannon

    2013-01-01

    Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/ Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.

  15. A thermosphere-ionosphere-mesosphere-electrodynamic general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Ridley, E. C.

    1994-01-01

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.

  16. EVOLUTION OF NEAR-SURFACE FLOWS INFERRED FROM HIGH-RESOLUTION RING-DIAGRAM ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogart, Richard S.; Baldner, Charles S.; Basu, Sarbani

    2015-07-10

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ∼15° (180 Mm) or more in order to provide reasonable mode sets for inversions. Helioseismic and Magnetic Imager (HMI) data analysis also provides a set of ring fit parameters on a scale three timesmore » smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from a local helioseismic analysis of regions over different parts of the observable disk, and not all of them are well understood. In this study we characterize those systematic effects with higher spatial resolution so that they may be accounted for more effectively in mapping the temporal and spatial evolution of the flows. Leaving open the question of the mean structure of the global meridional circulation and the differential rotation, we describe the near-surface flow anomalies in time and latitude corresponding to the torsional oscillation pattern in differential rotation and analogous patterns in the meridional cell structure as observed by the Solar Dynamics Observatory/HMI.« less

  17. SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlep, T.; Zhao, J.; Kosovichev, A. G.

    2013-01-10

    The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of themore » meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12 Degree-Sign and 42 Degree-Sign corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone.« less

  18. The Solar Dynamics Observatory: Your On-Orbit Eye on the Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.

  19. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    NASA Astrophysics Data System (ADS)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  20. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    NASA Astrophysics Data System (ADS)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  1. Experimental investigation of a small solar chimney in the south of Algeria

    NASA Astrophysics Data System (ADS)

    Hadj, Achouri El; Noureddine, Settou; Mabrouk, Drid Momamed; Belkhir, Negrou; Soumia, Rahmouni

    2018-05-01

    The solar chimney power plant (SCPP) is an economical device for the production of solar electricity. Among the parameters influencing the efficiency of the solar chimney are the dimensions, namely: Height and diameter of the chimney and diameter and height of the collector. In order to give our contribution we have established a prototype of a solar chimney which allows us to take a real vision on the influence of the geometrical parameters on the air flow under the collector and next the production efficiency of the solar chimney in the south of Algeria. In this study, we take different values of the height and diameter of the tower and of the height of the collector entrance. The results obtained show the remarkable influence of the geometrical parameters on the flow velocity afterwards on the energy produced.

  2. New Ideas About Granulation Based on Data from the Solar Optical Universal Polarimeter Instrument on Spacelab 2 and Magnetic Data from Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Tarbell, T. D.; Topka, K. P.; Shine, R. A.; Simon, G. W.; Zirin, H.; SOUP Team

    The SOUP flow fields have been compared with carefully aligned magnetograms taken at the BBSO before, during, and after the SOUP images. The magnetic field is observed to exist in locations where either the flow is convergent or on the boundaries of the outflow from a flow cell center. Streamlines calculated from the flow field agree very well with the observed motions of the magnetic field in the BBSO magnetogram movies.

  3. Contractors Meeting on Combustion Rocket Propulsion Diagnostics of Reacting Flow Held in Monrovia, California on 13-17 June 1988

    DTIC Science & Technology

    1988-06-13

    iern and Aerospace ~imrn University Park, PA 16802 The direct absorption of cncz-trated solar radiation in a flowing gas has potential utility in a...nmber of I ajplicatiau. 7e present research is concerned with evaluating the feasibility of direct absorpticin for solar therml pvcpIlsin. The primary...hallene in solar propulsion lies in firding a caibdate working fluid that can absorb a significant fraction of the irnoing enrgy in a reasonable length

  4. A novel technique to measure intensity fluctuations in EUV images and to detect coronal sound waves nearby active regions

    NASA Astrophysics Data System (ADS)

    Stenborg, G.; Marsch, E.; Vourlidas, A.; Howard, R.; Baldwin, K.

    2011-02-01

    Context. In the past years, evidence for the existence of outward-moving (Doppler blue-shifted) plasma and slow-mode magneto-acoustic propagating waves in various magnetic field structures (loops in particular) in the solar corona has been found in ultraviolet images and spectra. Yet their origin and possible connection to and importance for the mass and energy supply to the corona and solar wind is still unclear. There has been increasing interest in this problem thanks to the high-resolution observations available from the extreme ultraviolet (EUV) imagers on the Solar TErrestrial RElationships Observatory (STEREO) and the EUV spectrometer on the Hinode mission. Aims: Flows and waves exist in the corona, and their signatures appear in EUV imaging observations but are extremely difficult to analyse quantitatively because of their weak intensity. Hence, such information is currently available mostly from spectroscopic observations that are restricted in their spatial and temporal coverage. To understand the nature and origin of these fluctuations, imaging observations are essential. Here, we present measurements of the speed of intensity fluctuations observed along apparently open field lines with the Extreme UltraViolet Imagers (EUVI) onboard the STEREO mission. One aim of our paper is to demonstrate that we can make reliable kinematic measurements from these EUV images, thereby complementing and extending the spectroscopic measurements and opening up the full corona for such an analysis. Another aim is to examine the assumptions that lead to flow versus wave interpretation for these fluctuations. Methods: We have developed a novel image-processing method by fusing well established techniques for the kinematic analysis of coronal mass ejections (CME) with standard wavelet analysis. The power of our method lies with its ability to recover weak intensity fluctuations along individual magnetic structures at any orientation , anywhere within the full solar disk , and using standard synoptic observing sequences (cadence <3 min) without the need for special observation plans. Results: Using information from both EUVI imagers, we obtained wave phase speeds with values on the order of 60-90 km s-1, compatible with those obtained by other previous measurements. Moreover, we studied the periodicity of the observed fluctuations and established a predominance of a 16-min period, and other periods that seem to be multiples of an underlying 8-min period. Conclusions: The validation of our analysis technique opens up new possibilities for the study of coronal flows and waves, by extending it to the full disk and to a larger number of coronal structures than has been possible previously. It opens up a new scientific capability for the EUV observations from the recently launched Solar Dynamics Observatory. Here we clearly establish the ubiquitous existence of sound waves which continuously propagate along apparently open magnetic field lines. Movies 1 and 2 (Figs. 12 and 13) are only available in electronic form at http://www.aanda.org

  5. A kinetic study of solar wind electrons in the transition region from collision dominated to collisionless flow

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Leer, E.

    1995-01-01

    We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.

  6. Solar forcing of the stream flow of a continental scale South American river.

    PubMed

    Mauas, Pablo J D; Flamenco, Eduardo; Buccino, Andrea P

    2008-10-17

    Solar forcing on climate has been reported in several studies although the evidence so far remains inconclusive. Here, we analyze the stream flow of one of the largest rivers in the world, the Paraná in southeastern South America. For the last century, we find a strong correlation with the sunspot number, in multidecadal time scales, and with larger solar activity corresponding to larger stream flow. The correlation coefficient is r=0.78, significant to a 99% level. In shorter time scales we find a strong correlation with El Niño. These results are a step toward flood prediction, which might have great social and economic impacts.

  7. Open and partially closed models of the solar wind interaction with outer planet magnetospheres: the case of Saturn

    NASA Astrophysics Data System (ADS)

    Belenkaya, Elena S.; Cowley, Stanley W. H.; Alexeev, Igor I.; Kalegaev, Vladimir V.; Pensionerov, Ivan A.; Blokhina, Marina S.; Parunakian, David A.

    2017-12-01

    A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF) does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the poleward edge of the auroral oval.

  8. [Solar phase effect on elasticity of the brachial artery and blood flow in humans].

    PubMed

    Mel'nikov, V N; Komliagina, T G; Rechkina, S Iu; Krivoshchekov, S G

    2010-01-01

    Single and double examinations of normal males and females in the course of 11-year solar cycle with the use of oscillovasometry and occlusive plethysmography established a direct correlation between the effective diastolic radius of the brachial artery and solar activity characteristics on the day of examination, i.e. number of solar spots and intensity of radiation with the 10.7 cm wavelength. Other blood flow parameters demonstrated opposite correlations with the factors in males and females. As solar activity increased, females displayed linear decrements of arterial elasticity and regional peripheral resistance and growth of the volumetric blood flow velocity equally at rest and at the peak of post-occlusion reactive hyperemia. In males, the correlations had the reversed sign. Besides, males were noted to reduce venous reserve and venous outflow from antebrachial muscles proportionally to the increase of Wolf number. It is inferred that elevated solar activity may be responsible for impairment of the feeling of well-being of people with reduced cardiovascular reserve, particularly in space tight or at high altitudes in the absence of or under weak protection of the geomagnetic field and ozone layer.

  9. Cluster finds giant gas vortices at the edge of Earth's magnetic bubble

    NASA Astrophysics Data System (ADS)

    2004-08-01

    12 August 2004 ESA’s quartet of space-weather watchers, Cluster, has discovered vortices of ejected solar material high above the Earth. The superheated gases trapped in these structures are probably tunnelling their way into the Earth’s magnetic ‘bubble’, the magnetosphere. This discovery possibly solves a 17-year-mystery of how the magnetosphere is constantly topped up with electrified gases when it should be acting as a barrier. hi-res Size hi-res: 1446 Kb Credits: H. Hasegawa (Dartmouth College) Three-dimensional cut-away view of Earth's magnetosphere This figure shows a three-dimensional cut-away view of Earth' s magnetosphere. The curly features sketched on the boundary layer are the Kelvin-Helmholtz vortices discovered by Cluster. They originate where two adjacent flows travel with different speed. In this case, one of the flows is the heated gas inside the boundary layer of the magnetosphere, the other the solar wind just outside it. The arrows show the direction of the magnetic field, in red that associated with the solar wind and in green the one inside Earth’s magnetosphere. The white dashed arrow shows the trajectory followed by Cluster. High resolution version (JPG format) 1446 Kb High resolution version (TIFF format) 15 365 Kb hi-res Size hi-res: 22 Kb Credits: H. Hasegawa (Dartmouth College) Electrified gas varies across the vortices along Cluster’s trajectory This computer simulation shows how the density of the electrified gas is expected to vary across the vortices along Cluster’s trajectory (white dashed line). The density is lower inside the boundary layer (blue region) and higher outside, in the region dominated by the solar wind (shown in red). The density variations measured by the instruments on board Cluster match those predicted by this model. Low resolution version (JPG format) 22 Kb High resolution version (TIFF format) 3438 Kb The Earth’s magnetic field is our planet’s first line of defence against the bombardment of the solar wind. The solar wind itself is launched from the Sun and carries the Sun’s magnetic field throughout the Solar System. Sometimes this magnetic field is aligned with Earth’s and sometimes it points in the opposite direction. When the two fields point in opposite directions, scientists understand how ‘doors’ in Earth’s field can open. This phenomenon, called ‘magnetic reconnection’, allows the solar wind to flow in and collect in the reservoir known as the boundary layer. On the contrary, when the fields are aligned they should present an impenetrable barrier to the flow. However, spacecraft measurements of the boundary layer, dating back to 1987, present a puzzle because they clearly show that the boundary layer is fuller when the fields are aligned than when they are not. So how is the solar wind getting in? Thanks to the data from the four formation-flying spacecraft of ESA’s Cluster mission, scientists have made a breakthrough. On 20 November 2001, the Cluster flotilla was heading around from behind Earth and had just arrived at the dusk side of the planet, where the solar wind slides past Earth’s magnetosphere. There it began to encounter gigantic vortices of gas at the magnetopause, the outer ‘edge’ of the magnetosphere. “These vortices were really huge structures, about six Earth radii across,” says Hiroshi Hasegawa, Dartmouth College, New Hampshire who has been analysing the data with help from an international team of colleagues. Their results place the size of the vortices at almost 40 000 kilometres each, and this is the first time such structures have been detected. These vortices are known as products of Kelvin-Helmholtz instabilities (KHI). They can occur when two adjacent flows are travelling with different speeds, so one is slipping past the other. Good examples of such instabilities are the waves whipped up by the wind slipping across the surface of the ocean. Although KHI-waves had been observed before, this is the first time that vortices are actually detected. When a KHI-wave rolls up into a vortex, it becomes known as a ‘Kelvin Cat’s eye’. The data collected by Cluster have shown density variations of the electrified gas, right at the magnetopause, precisely like those expected when travelling through a ‘Kelvin Cat’s eye’. Scientists had postulated that, if these structures were to form at the magnetopause, they might be able to pull large quantities of the solar wind inside the boundary layer as they collapse. Once the solar wind particles are carried into the inner part of the magnetosphere, they can be excited strongly, allowing them to smash into Earth’s atmosphere and give rise to the aurorae. Cluster’s discovery strengthens this scenario but does not show the precise mechanism by which the gas is transported into Earth’s magnetic bubble. Thus, scientists still do not know whether this is the only process to fill up the boundary layer when the magnetic fields are aligned. For those measurements, Hasegawa says, scientists will have to wait for a future generation of magnetospheric satellites. Notes for editors The results of this investigation have appeared in today’s issue of the scientific journal Nature, in a paper entitled ‘Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices’, by H. Hasegawa, M. Fujimoto, T.D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto and R. TanDokoro. More about magnetic reconnection Solar wind particles follow ‘magnetic field lines’, rather like beads on a wire. The ‘doors’ that open in Earth’s magnetosphere during oppositely aligned magnetic configurations are caused by a phenomenon called ‘magnetic reconnection‘. During this process, Earth’s field lines spontaneously break and join themselves to the Sun’s, allowing the solar wind to pass freely into Earth’s magnetosphere. Magnetic reconnections are not possible in the aligned case, however, hence the need for a different mechanism to inject the particles into Earth’s magnetosphere. More about Cluster Cluster is a mission of international co-operation between ESA and NASA. It involves four spacecraft, launched on two Russian rockets during the summer of 2000. They are now flying in formation around Earth, relaying the most detailed ever information about how the solar wind affects our planet in 3D. The solar wind is the perpetual stream of subatomic particles given out by the Sun and it can damage communications satellites and power stations on Earth. The Cluster mission is expected to continue until at least 2005. The ongoing archiving of the Cluster data (or Cluster Active Archive) is part of the International Living with a Star programme (ILWS), in which space agencies worldwide get together to investigate how variations in the Sun affect the environment of Earth and the other planets. In particular, ILWS concentrate on those aspects of the Sun-Earth system that may affect mankind and society. ILWS is a collaborative initiative between Europe, the United States, Russia, Japan and Canada.

  10. Interactions of Twisted Ω-loops in a Model Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Jouve, L.; Brun, A. S.; Aulanier, G.

    2018-04-01

    This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.

  11. Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi

    2004-01-01

    Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  12. Differential Velocity Between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, S. T.; Steinberg, J. T.; Sakurai, T.

    2003-01-01

    Pressure balance structures (PBSs) are a common high plasma beta feature in high latitude, high speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high latitude, high speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high speed, high latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  13. Solar converter system with thermal overload protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, J.M.; Thornbury, T.R.

    1979-10-02

    A solar energy conversion system comprises: (a) a solar converter in which liquid absorbs solar radiation, the liquid being solar energy absorptive; (b) first means to circulate said liquid for flow through the converter; and (c) means to effect removal of liquid from the converter in response to an undesirable operation condition in said system. 12 claims.

  14. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  15. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  16. Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Kar, Debjit

    2017-12-01

    A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.

  17. Effects of meridional flow variations on solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov

    2014-09-10

    The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less

  18. Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.

    2017-08-01

    Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.

  19. Structure of the Iconic Vega Debris Disk

    NASA Astrophysics Data System (ADS)

    Su, Kate

    2015-10-01

    Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.

  20. Documenting Chemical Assimilation in a Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.

  1. Dynamics of the solar wind and its interaction with bodies in the solar system

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.

    1971-01-01

    A discussion of the solar wind and its interaction with bodies of the solar system is presented. An overall unified account of the role of shock waves in the heating of the solar corona, the transmission of solar disturbances to the solar system, the flow fields of planets and natural satellites, and biological effects are provided. An analysis of magnetometer data from Explorer 33 and Vela 3A satellites to identify characteristics of solar wind shock waves is included.

  2. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  3. Low-Latitude Solar Wind During the Fall 1998 SOHO-Ulysses Quadrature

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Suess, Steven T.; Biesecker, D.; Esser, R.; Gloeckler, G.; Zurbuchen, T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Fall 1998 SOlar-Heliospheric Observatory (SOHO) - Ulysses quadrature occurred when Ulysses was at 5.2 AU, 17.4 deg South of the equator, and off the West line of the Sun. SOHO coronal observations, at heliocentric distances of a few solar radii, showed that the line through the solar center and Ulysses crossed, over the first days of observations, a dark, weakly emitting area and through the northern edge of a streamer complex during the second half of the quadrature campaign. Ulysses in situ observations showed this transition to correspond to a decrease from higher speed wind typical of coronal hole flow to low speed wind. Physical parameters (density, temperature, flow speed) of the low latitude coronal plasma sampled over the campaign are determined using constraints from what is the same plasma measured later in situ and simulating the intensities of the Hydrogen Lyman-alpha and OVI 1032 and 1037 Angstrom lines, measured by the Ultra Violet Coronagraph Spectrometer (UVCS) on SOHO. The densities, temperatures and outflow speed are compared with the same characteristic flow parameters for high-latitude fast wind streams and typical slow solar wind.

  4. Obtaining Electron Temperatures and Flow Speeds from Thomson Scattered Coronal Emission Observed during the 29 March 2006 Total Solar Eclipse in Libya

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Geginald, Nelson L.; Gashut, Hadi; Guhathakurta, Madhulika; Hassler, Donald M.

    2008-01-01

    An experiment to measure the electron temperature and flow speed in the solar corona by observing the visible K-coronal spectrum was conducted during the total solar eclipse on 29 March 2006 in Libya. New corona1 models accounting for the effect of electron temperature and flow on the resulting K-corona spectrum were used to interpret the observations. Results show electron temperatures of 1.10 +/- 0.05, 0.98 +/- 0.12, and 0.70 +/- 0.08 MK, at l.l{\\it R)$-{\\odot)$ in the solar north, east and west, respectively, and 0.93 +/- 0.12 MK, at 1.2 R(sub sun) in the solar east. The corresponding outflow speeds obtained from the spectral fit are 103 +/- 92, 0 + 10, 0 + 10, and 0 + 10 km/s. Since the observations are taken only at 1.1 and 1.2 R(sub sun) these velocities , consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working.

  5. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).

  6. On the causal structure between CO2 and global temperature

    PubMed Central

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  7. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  8. Designing a sun-pointing Faraday cup for solar probe plus

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Daigneau, P. S.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B. A.; Bookbinder, J.; Korreck, K. E.; Cirtain, J. W.; Effinger, M. E.; Halekas, J. S.; Larson, D. E.; Lazarus, A. J.; Stevens, M. L.; Taylor, E. R.; Wright, K. H., Jr.

    2013-06-01

    The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfvénic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measure the bulk solar wind conditions in the inner heliosphere. SWEAP consists of the Solar Probe Cup (SPC), a sun-pointing Faraday Cup, and the Solar Probe ANalyzers (SPAN), a set of 3 electrostatic analyzers that will reside in the penumbra of SPP's thermal protection system and measure solar wind ions and electrons. SPP is scheduled to launch in 2018 into an equatorial solar orbit where a sequence of Venus gravity assists will gradually lower its closest solar approach to within 9.5 solar radii (RS) of the center of the Sun. The photon flux at 9.5 RS is more than 500 times greater than at 1 AU and therefore presents a design challenge for SPC, which will point directly at the Sun. SPC is derived from the Faraday cup instruments successfully flown on spacecraft from the beginning of the space age, but updated with high temperature materials to operate through the solar encounters. Current work includes both instrument design and the development of a testing approach capable of demonstrating adequate performance in encounter conditions. This paper will briefly discuss the suite as a whole, and then focus on the design and capabilities of SPC. We will also present the planned calibration and characterization of the instrument and the testing required to demonstrate the technological readiness of the design.

  9. Supergranulation and multiscale flows in the solar photosphere. Global observations vs. a theory of anisotropic turbulent convection

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Roudier, T.; Schekochihin, A. A.; Rieutord, M.

    2017-03-01

    The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting waves or instabilities operate.

  10. Expanding and Contracting Coronal Loops as Evidence of Vortex Flows Induced by Solar Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Zuccarello, F. P.; Aulanier, G.

    Eruptive solar flares were predicted to generate large-scale vortex flows at both sides of the erupting magnetic flux rope. This process is analogous to a well-known hydrodynamic process creating vortex rings. The vortices lead to advection of closed coronal loops located at the peripheries of the flaring active region. Outward flows are expected in the upper part and returning flows in the lower part of the vortex. Here, we examine two eruptive solar flares, the X1.1-class flare SOL2012-03-05T03:20 and the C3.5-class SOL2013-06-19T07:29. In both flares, we find that the coronal loops observed by the Atmospheric Imaging Assembly in its 171more » Å, 193 Å, or 211 Å passbands show coexistence of expanding and contracting motions, in accordance with the model prediction. In the X-class flare, multiple expanding and contracting loops coexist for more than 35 minutes, while in the C-class flare, an expanding loop in 193 Å appears to be close by and cotemporal with an apparently imploding loop arcade seen in 171 Å. Later, the 193 Å loop also switches to contraction. These observations are naturally explained by vortex flows present in a model of eruptive solar flares.« less

  11. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    NASA Astrophysics Data System (ADS)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  12. KSC-98pc458

    NASA Image and Video Library

    1998-04-06

    KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999

  13. KSC-98pc456

    NASA Image and Video Library

    1998-04-06

    KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999

  14. KSC-98pc459

    NASA Image and Video Library

    1998-04-06

    KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999

  15. KSC-98pc457

    NASA Image and Video Library

    1998-04-06

    KENNEDY SPACE CENTER, FLA. -- The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999

  16. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of themore » observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.« less

  17. Flow tube used to cool solar-pumped laser

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  18. Pickup Ions in the Plasma Environments of Mars, Comets, and Enceladus

    NASA Astrophysics Data System (ADS)

    Cravens, T.; Rahmati, A.; Sakai, S.; Madanian, H.; Larson, D. E.; Lillis, R. J.; Halekas, J. S.; Goldstein, R.; Burch, J. L.; Clark, G. B.; Jakosky, B. M.

    2015-12-01

    Ions created within a flowing plasma by ionization of neutrals respond to the electric and magnetic fields associated with the flow becoming what are called pick-up ions (PUI). PUI play an important role in many solar system plasma environments and affect the energy and momentum balance of the plasma flow. PUI have been observed during several recent space missions and PUI data will be compared and interpreted using models. Pick-up oxygen ions were observed in the solar wind upstream of Mars by the Solar Energetic Particle (SEP) and Solar Wind Ion Analyzer (SWIA) instruments on NASA's MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft. The pick-up oxygen ions are created when atoms in the hot corona are ionized by solar radiation and charge exchange with solar wind protons. The ion fluxes measured by SEP can constrain the oxygen escape rate from Mars. PUI were also been detected at distances of 10 - 100 km from the nucleus of comet 67P/Churyumov- Gerasimenko (67P/CG) by plasma instruments (IES and ICA) onboard the Rosetta Orbiter when the comet was at 3 AU. The newly-born cometary ions are accelerated by the solar wind motional electric field but remain un-magnetized, as suggested by pre-encounter models (Rubin et al., 2014). The inner magnetosphere of Saturn and the water plume of the icy satellite Enceladus provide a third example of PUI. H2O+ ions created by ionization of neutral water producing ions that are picked-up by the co-rotating magnetospheric plasma flow. These ions then undergo a complex interaction with the plume gas including collisions that convert most H2O+ ions to H3O+, as measured by the Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft.

  19. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1991-01-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere.

  20. Two-axis movable concentrating solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  1. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com; Lerche, I., E-mail: lercheian@yahoo.com

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are ofmore » use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].« less

  2. Highly tunable electronic properties in plasma-synthesized B-doped microcrystalline-to-amorphous silicon nanostructure for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Ong, J. G. D.; Guo, Y.; Bazaka, K.; Levchenko, I.; Xu, S.

    2017-10-01

    Highly controllable electronic properties (carrier mobility and conductivity) were obtained in the sophisticatedly devised, structure-controlled, boron-doped microcrystalline silicon structure. Variation of plasma parameters enabled fabrication of films with the structure ranging from a highly crystalline (89.8%) to semi-amorphous (45.4%) phase. Application of the innovative process based on custom-designed, optimized, remote inductively coupled plasma implied all advantages of the plasma-driven technique and simultaneously avoided plasma-intrinsic disadvantages associated with ion bombardment and overheating. The high degree of SiH4, H2 and B2H6 precursor dissociation ensured very high boron incorporation into the structure, thus causing intense carrier scattering. Moreover, the microcrystalline-to-amorphous phase transition triggered by the heavy incorporation of the boron dopant with increasing B2H6 flow was revealed, thus demonstrating a very high level of the structural control intrinsic to the process. Control over the electronic properties through variation of impurity incorporation enabled tailoring the carrier concentrations over two orders of magnitude (1018-1020 cm-3). These results could contribute to boosting the properties of solar cells by paving the way to a cheap and efficient industry-oriented technique, guaranteeing a new application niche for this new generation of nanomaterials.

  3. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  4. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less

  5. Solar heating and cooling demonstration project at Radian Corporation, Austin, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and cooling system located at the Radian Corporation, Austin, Texas, is discussed. A technical description of the solar system is presented. The costs of the major components and the cost of installing the system are described. Flow diagrams and photographs of the solar system are provided.

  6. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Carr, Adrianne E.; Greer, Chris

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  7. Researcher and Mechanic with Solar Collector in Solar Simulator Cell

    NASA Image and Video Library

    1976-08-21

    Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.

  8. Influence of solar variability on the occurrence of central European weather types from 1763 to 2009

    NASA Astrophysics Data System (ADS)

    Schwander, Mikhaël; Rohrer, Marco; Brönnimann, Stefan; Malik, Abdul

    2017-09-01

    The impact of solar variability on weather and climate in central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of central Europe. We employ a novel, daily weather type classification over the period 1763-2009 and investigate the occurrence frequency of weather types under low, moderate, and high solar activity level. Results show a tendency towards fewer days with westerly and west-southwesterly flow over central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. For the 1958-2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over central Europe with colder (warmer) conditions under low (high) solar activity.

  9. A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D. C., E-mail: dbraun@cora.nwra.com

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists formore » several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.« less

  10. Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kaushik, Sonia; Kaushik, Subhash Chandra

    2016-07-01

    Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.

  11. Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.

    2010-01-01

    Time-distance helioseismology is a method of ambient noise imaging using the solar oscillations. The basic realization that led to time-distance helioseismology was that the temporal cross correlation of the signals at two 'surface' (or photospheric) locations should show a feature at the time lag corresponding to the subsurface travel time between the locations. The temporal cross correlation, as a function of the location separation, is the Fourier transform of the spatio-temporal power spectrum of the solar oscillations, a commonly used function in helioseismology. It is therefore likely the characteristic ridge structure of the correlation function had been seen before without appreciation of its significance. Travel times are measured from the cross correlations. The times are sensitive to a number of important subsurface solar phenomena. These include sound speed variations, flows, and magnetic fields. There has been much interesting progress in the 17 years since the first paper on this subject (Duvall et al., Nature, 1993, 362, 430-432). This progress will be reviewed in this paper.

  12. Behavior of Photocarriers in the Light-Induced Metastable State in the p-n Heterojunction of a Cu(In,Ga)Se2 Solar Cell with CBD-ZnS Buffer Layer.

    PubMed

    Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck

    2016-08-31

    We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.

  13. The Solar Wind Ion Analyzer for MAVEN

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.

    2015-12-01

    The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

  14. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  15. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo.

    PubMed

    Dawson, Terence J; Maloney, Shane K

    2017-04-01

    Not all of the solar radiation that impinges on a mammalian coat is absorbed and converted into thermal energy at the coat surface. Some is reflected back to the environment, while another portion is reflected further into the coat where it is absorbed and manifested as heat at differing levels. Substantial insulation in a coat limits the thermal impact at the skin of solar radiation, irrespective where in the coat it is absorbed. In coats with low insulation, the zone where solar radiation is absorbed may govern the consequent heat load on the skin (HL-SR). Thin summer furs of four species of kangaroo from differing climatic zones were used to determine how variation in insulation and in coat spectral and structural characteristics influence the HL-SR. Coat depth, structure, and solar reflectance varied between body regions, as well as between species. The modulation of solar radiation and resultant heat flows in these coats were measured at low (1 m s -1 ) and high (6 m s -1 ) wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum similar to solar radiation was used as a proxy for the sun. We established that coat insulation was largely determined by coat depth at natural fur lie, despite large variations in fibre density, fibre diameter, and fur mass. Higher wind speed decreased coat insulation, but depth still determined the overall level. A multiple regression analysis that included coat depth (insulation), fibre diameter, fibre density, and solar reflectance was used to determine the best predictors of HL-SR. Only depth and reflectance had significant impacts and both factors had negative weights, so, as either insulation or reflectance increased, HL-SR declined, the larger impact coming from coat reflectance. This reverses the pattern observed in deep coats where insulation dominates over effects of reflectance. Across all coats, as insulation declined, reflectance increased. An increase in reflectance in the thinnest coats was not the sole reason for the limited rise in HL-SR. Higher reflectance should increase the depth of penetrance of solar radiation, thus increasing HL-SR. But in M. antilopinus and Macropus rufus, which had the highest of coat reflectances, penetrance was relatively shallow. This effect appears due to high fibre density (M. rufus) and major modifications in the fibre structure (M. antilopinus). The differing adaptations likely relate to the habitats of these species, desert in the case of M. rufus and monsoon tropical woodland with M. antilopinus.

  16. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  17. Observations of Reconnection Flows in a Flare on the Solar Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flaremore » SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.« less

  18. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)

    2001-01-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  19. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  20. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    NASA Astrophysics Data System (ADS)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora glomerata and associated epiphytes). Initial findings suggest that aquatic primary production varies spatially and temporally in response to natural processes occurring at varying spatial scales and that flow regulation per se has only a minor effect on primary production. All of these physical drivers combined are likely to structure the abundance, distribution, and interaction of aquatic biota found in this ecosystem.

  1. A Steady Flow Model for the Differential Emission Measure in the Solar Quiet Region

    NASA Astrophysics Data System (ADS)

    Bong, S.; Chae, J.; Yun, H.; Lee, J.

    2001-05-01

    With high quality UV spectroscopy from the SoHO spacecraft, the physical structure of the solar Transition Region (TR) is of renewed interest. We have investigated the thermodynamic structure of the TR using a one dimensional magnetic tube model constrained to Raymond & Doyle's Differential Emission Measure (DEM) in the average quiet sun. We have included the effect of the expansion of magnetic flux tube and a heating which is required in addition to conductive heat, convective energy and radiative cooling. From the resulting heating and flux tube geometry, we also investigated upflows probable in the transition region. To reproduce the Doppler shift of UV lines measured using SoHO/SUMER (Chae, Yun, & Poland 1998), flux tube needs to expand rapidly above T=105 K at a rate of radius increase up to (7.4x 10-2 km-1)~ r4.1 where r4.1 is the radius at log T = 4.1. To balance the energy, an energy supply by more than (9.3x 104 erg cm-2 s-1)~π r4.12 is required at the region between 1.3x 104 K and 2.5x 104 K regardless of filling factor, suggesting a local heating in the chromosphere. As for upflows, in subsonic flow cases, a model with the same additional energy loss as in a downflow is probable. Also, supersonic flows could be easily made and, in this case, supersonic upflows could carry extra energy to corona without increasing DEM, showing the possibility that upflows play a role in corona heating. This work was supported by the Basic Science Research Institute Program, Ministry of Education (BSRI-98-5408) and by the BK21 Project of the Korean Government.

  2. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X-ray contours indicating that the central galaxy may have a residual velocity with respect to the center of the group potential. There is also a linear X-ray feature with an extent of approximately 30 kpc with one end coincident with NGC 5044. The X-ray emission from this feature is softer than the ambient gas. We interpret this feature as a 'cooling wake' formed by the accreting gas as it is gravitationally focused into the wake of NGC 5044. One of the most surprising results of our PSPC observation is the discovery of a nearly homogeneous cooling flow. Prior results concerning the mass accretion profile in cooling flows indicate that dot-M varies as r. This relation implies that significant mass deposition occurs at large radii which generates an inhomogeneous flow. The mass accretion rate in the NGC 5044 group is essentially a constant beyond 40 kpc (well within the cooling radius). Significant mass deposition (a declining dot-M) does not commence until the gas accretes to within 40 kpc of the group center where the radiative cooling time is approximately equals 10(exp 9) year. Th is radius also corresponds to the temperature maximum, the break in gas density profile, and the onset of structure in the X-ray image. A Hubble constant of H(sub 0) = 50 km/sec/Mpc is used throughout the paper.

  3. Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard

    2005-01-01

    NASA Grant NAG5-12781 is a study on the "Nature and Variability of Coronal Streamers and their Relationship to the Slow Speed Wind." The two main goals of this study are to identify: 1) Where in the streamer structure does the solar wind originate, and 2) What coronal conditions are responsible for the variability of the slow speed wind. To answer the first question, we examined the mostly closed magnetic field regions in streamer cores to search for evidence of outflow. Preliminary results from the OVI Doppler dimming ratios indicates that most of the flow originates from the edges of coronal streamers but this idea should be confirmed by a comparison of the coronal plasma properties with in situ solar wind data. To answer the second question, the work performed thus far suggests that solar minimum streamers have larger perpendicular velocity distributions than do solar maximum streamers. If it can be shown that solar minimum streamers also produce higher solar wind speeds then this would suggest that streamers and coronal holes have similar solar wind acceleration mechanisms. The key to both questions lie in the analysis of the in situ solar wind data sets. This work was not able to be completed during the period of performance and therefore the grant was formally extended for an additional year at no cost to NASA. We hope to have final results and a publication by the end of the calendar year 2004. The SAO personnel involved in the research are Leonard Strachan (PI), Mari Paz Miralles, Alexander Panasyuk, and a Southern University student Michael Baham.

  4. SIMULATING THE IN SITU CONDENSATION PROCESS OF SOLAR PROMINENCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, C.; Keppens, R.; Antolin, P.

    2014-09-10

    Prominences in the solar corona are a hundredfold cooler and denser than their surroundings, with a total mass of 10{sup 13} up to 10{sup 15} g. Here, we report on the first comprehensive simulations of three-dimensional, thermally and gravitationally stratified magnetic flux ropes where in situ condensation to a prominence occurs due to radiative losses. After a gradual thermodynamic adjustment, we witness a phase where runaway cooling occurs while counter-streaming shearing flows drain off mass along helical field lines. After this drainage, a prominence-like condensation resides in concave upward field regions, and this prominence retains its overall characteristics for moremore » than two hours. While condensing, the prominence establishes a prominence-corona transition region where magnetic field-aligned thermal conduction is operative during the runaway cooling. The prominence structure represents a force-balanced state in a helical flux rope. The simulated condensation demonstrates a right-bearing barb, as a remnant of the drainage. Synthetic images at extreme ultraviolet wavelengths follow the onset of the condensation, and confirm the appearance of horns and a three-part structure for the stable prominence state, as often seen in erupting prominences. This naturally explains recent Solar Dynamics Observatory views with the Atmospheric Imaging Assembly on prominences in coronal cavities demonstrating horns.« less

  5. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2009-12-22

    Superhydrophobic surfaces with high contact angle and low contact angle hysteresis exhibit a self-cleaning effect and low drag for fluid flow. The lotus (Nelumbo nucifera) leaf is one of the examples found in nature for superhydrophobic surfaces. For the development of superhydrophobic surfaces, which is important for various applications such as glass windows, solar panels, and microchannels, materials and fabrication methods need to be explored to provide mechanically durable surfaces. It is necessary to perform durability studies on these surfaces. Carbon nanotube (CNT), composite structures which would lead to superhydrophobicity, self-cleaning, and low-drag, were prepared using a spray method. As a benchmark, structured surfaces with lotus wax were also prepared to compare with the durability of CNT composite structures. To compare the durability of the various fabricated surfaces, waterfall/jet tests were conducted to determine the loss of superhydrophobicity by changing the flow time and pressure conditions. Wear and friction studies were also performed using an atomic force microscope (AFM) and a ball-on-flat tribometer. The changes in the morphology of the structured surfaces were examined by AFM and optical imaging. We find that superhydrophobic CNT composite structures showed good mechanical durability, superior to the structured surfaces with lotus wax, and may be suitable for real world applications.

  6. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, John; Greer, Chris; O'Connor, Ben L.

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  7. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting formore » the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.« less

  8. Characteristics of evacuated tubular solar thermal collector as input energy for cooling system at Universitas Indonesia

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Nasruddin, Aisyah, Nyayu; Sholahudin

    2017-03-01

    This paper discussed the use of solar thermal collector as an input energy for cooling system. The experimental investigation was undertaken to characterize solar collectors that have been integrated with an absorption chiller. About 62 modules of solar collectors connected in series and parallel are placed on the roof top of MRC building. Thermistors were used to measure the fluid temperature at inlet, inside and outlet of each collector, inside the water tank and ambient temperature. Water flow that circulated from the storage was measured by flow meter, while solar radiation was measured by a pyranometer that was mounted parallel to the collector. Experimental data for a data set was collected in March 2016, during the day time hours of 08:00 - 17:00. This data set was used to calculate solar collector efficiency. The results showed that in the maximum solar radiation, the outlet temperature that can be reached is about 78°C, the utilized energy is about 70 kW and solar collector has an efficiency of 64%. While in the minimum solar radiation, the outlet temperature that can be reached is about 53°C, the utilized energy is about 28 kW and solar collector has an efficiency of 43%.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, H.; Bemporad, G.A.

    The advanced solar pond (ASP) is characterized by having two thermal layers. The homogeneous thermal layer is adjacent to the pond bottom. On top of this layer a stratified thermal layer is located. One of the major advantages of the solar pond (SP) stems from its capability to store large quantities of thermal energy. In cases of excessive needs for thermal energy, the flow of the thermal layers may be subject to turbulent flow conditions. In this paper the effect of such conditions on transport phenomena in the ASP is analyzed. The analysis indicates that whereas the homogeneous thermal layermore » flows turbulently, the stratified thermal layer may be subject to laminar flow.« less

  10. Numerical simulation of thermally induced near-surface flows over Martian terrain

    NASA Technical Reports Server (NTRS)

    Parish, T. R.; Howard, A. D.

    1993-01-01

    Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.

  11. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    PubMed

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  12. North west area of Tuscany, Italy : Are the solar maximum and solar minima a particular period for increased frequency of floods and local geological destabilization ?

    NASA Astrophysics Data System (ADS)

    Casati, Michele; Straser, Valentino; Feron, Alessandro

    2017-04-01

    The purpose of this study is to verify a possible relationship between solar activity transitions (minimum and maximum), seismic activity and atmospheric circulation in a particular area. The hypothesis has already been advanced by other authors and is found in studies, for example: [Sytinsky A.D.,1980,1987,1997][Mazzarella,Palumbo, 1989][Odintsov, et al, 2006][Khachikyan, Inchin, Lozbin, 2012][Czymzik,Markus, 2013][Nedeljko,Vujović,2014]. The geographical area studied is approximately 8x13 km sq. and includes villages such as Fivizzano and Equi Terme, in north-west Tuscany, Italy, on the Lunigiana/Garfagnana border. The North Apuan Fault Zone" (NAFZ) is found in the area of study and major historical earthquakes have occurred in this area [Di Naccio Deborah, et al., 2013]. In this research, we compared the local seismicity with heavy rainfall (in quantity) that occurred in a short time frame in this area (measured by the daily rain gauge accumulations). These events occurred during the numerous floods from 2009 to 2013 (the transition between the solar cycle SC23 and SC24 solar and the rise of solar cycle SC24). The data was provided by the hydrological sector of the Tuscan Region Hydrological Service (SIR) and the LaMMA consortium. In this study we hypothesize, a slow and continuous destabilizing action on local geological structures, due to the multiple and violent atmospheric disturbances (V-shaped, flash floods, squall-line, etc..). Destabilization that led to an earthquake of magnitude Mw 5.36, which occurred on 21 June 2013. Comparing the SIDC count of sunspots with: a) the historical local seismic events catalogue with magnitude M4.5 + (CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes), b) the recent earthquakes of magnitude M 2.5+, which occurred from 1984 (ISIDe working group (2016) version 1.0), and c) the historical reconstructed maximum annual flows of the Serchio river from 1750, the daily maximum annual flows of the Magra river since 1939 (Data provided by Serchio River Authority and Aauthority and Magra Interregional River Authority), we observe that floods and/or local seismic events occur more frequently when there are solar maximum and solar minima.

  13. Differential rotation in solar-like stars from global simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, G.; Kosovichev, A. G.; Smolarkiewicz, P. K.

    2013-12-20

    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridionalmore » cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.« less

  14. Solar wind energy transfer through the magnetopause of an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Roederer, J. G.

    1982-01-01

    An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.

  15. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  16. Augmented Visual Experience of Simulated Solar Phenomena

    NASA Astrophysics Data System (ADS)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  17. The First Year of Solar-Wind Data From the GENESIS Mission

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Barraclough, B. L.; Steinberg, J. T.; Reisenfeld, D. B.; Neugebauer, M.; Burnett, D. S.

    2002-12-01

    The GENESIS mission was launched in August, 2001, and has been in an L1 halo orbit for over a year. The primary purpose of the mission is to collect solar-wind samples that will be returned to Earth in 2004 for high-precision isotopic and elemental analyses. GENESIS uses conventional ion and electron spectrometers to record solar-wind conditions during collection, and to make real-time determinations of the solar-wind regimes to facilitate collection of separate samples of interstream (IS), coronal hole (CH), and coronal mass ejection (CME) flows. Of particular interest is the use of a bi-directional electron (BDE) index to determine the presence of CMEs. And although GENESIS lacks a magnetometer, the field vector, with sign ambiguity, is determined by the electron direction, and matches other spacecraft magnetometer data well. GENESIS in-situ data and on-board regime determinations are available on the web. The data from Fall, 2001 were characterized by numerous CME regimes (comprising 32% of the time in the 4th quarter, based on the on-board algorithm), with little CH flow (only 2%). A strong CH flow was observed every solar rotation from mid-January through late May. June was quiet, nearly all IS flow. The first and second quarters of 2002 were approximately 28% CME flow, with CH flow dropping from 18% to 6%. The discovery of unexpectedly noticeable BDE signals during CH flows at 1 AU (Steinberg et al., 2002) caused us early on to modify our regime selection algorithm to accommodate these. The on-board algorithm intentionally errs on the side of overestimating CME flows in order to keep the CH sample more pure. Comparisons have been made of various compositional parameters determined by Genesis (Barraclough et al., this meeting) and by ACE SWICS (Reisenfeld et al., this meeting) for times corresponding to the Genesis collection periods for each of the three regimes. The Genesis L1 halo orbit is ~0.8 x 0.25 million km radius, somewhat larger than the ~0.3 x 0.2 and ~0.7 x 0.2 million km orbits of ACE and SOHO, respectively, presenting excellent opportunities for multi-spacecraft observations at L1.

  18. ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary magnetic structures

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Tranquille, C.; Wenzel, K.-P.; Smith, E. J.

    1987-01-01

    The paper represents the results of a comprehensive survey of low-energy proton bidirectional anisotropies and associated transient magnetic structures as observed in the 35-1600 keV energy range on ISEE-3 during the last solar maximum. The majority of observed bidirectional flow (BDF) events (more than 70 percent) are associated with isolated magnetic structures which are postulated to be an interplanetary manifestation of coronal mass ejection (CME) events. The observed BDF events can be qualitatively grouped into five classes depending on the field signature of the related magnetic structure and the association (or lack of association) with an interplanetary shock. Concerning the topology of the CME-related magnetic structures, the observations are interpreted as being consistent with a detached bubble, comprising closed loops or tightly wound helices.

  19. Steady-state heat transfer in transversely heated porous media with application to focused solar energy collectors

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1976-01-01

    A fluid flowing in a porous medium heated transversely to the fluid flow is considered. This configuration is applicable to a focused solar energy collector for use in an electric power generating system. A fluidized bed can be regarded as a porous medium with special properties. The solutions presented are valid for describing the effectiveness of such a fluidized bed for collecting concentrated solar energy to heat the working fluid of a heat engine. Results indicate the advantage of high thermal conductivity in the transverse direction and high operating temperature of the porous medium.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajaguru, S. P.; Antia, H. M., E-mail: rajaguru@iiap.res.in

    We present and discuss results from time–distance helioseismic measurements of meridional circulation (MC) in the solar convection zone using 4 yr of Doppler velocity observations by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using a built-in mass conservation constraint in terms of the stream function, we invert helioseismic travel times to infer the MC in the solar convection zone. We find that the return flow that closes the MC is possibly beneath the depth of 0.77 R{sub ⊙}. We discuss the significance of this result in relation to other helioseismic inferences published recently and possible reasons for the differences inmore » the results. Our results show clearly the pitfalls involved in the measurements of material flows in the deep solar interior given the current limits on the signal-to-noise ratio and our limited understanding of systematics in the data. We also discuss the implications of our results for the dynamics of solar interior and popular solar dynamo models.« less

  1. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  2. Magnetoacoustic Waves and the Kelvin-Helmholtz Instability in a Steady Asymmetric Slab. I: The Effects of Varying Density Ratios

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2018-06-01

    Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.

  3. A Laboratory Study of Slope Flows Dynamics

    NASA Astrophysics Data System (ADS)

    Capriati, Andrea; Cenedese, Antonio; Monti, Paolo

    2003-11-01

    Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.

  4. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE PAGES

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    2018-04-05

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  5. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  6. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.

  7. Modeling of the solar cycle modulated interstellar He, Ne, and O pick-up ion flux along the Earth orbit

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Sokol, J. M.; Kubiak, M. A.; Moebius, E.

    2015-12-01

    Interstellar pick-up ions (PUIs) are used to study in-situ the interstellar flow through the heliosphere. The locations of the peaks of the downwind focusing cone and the upwind crescent as observed in the PUI flux have been used as signatures for the flow direction of neutral interstellar (ISN) gas into the heliosphere. We study the modulation of interstellar He, Ne, and O PUI along the Earth orbit over almost the entire solar activity cycle from 2002 to 2013. We present the expected density of ISN atoms and the resulting PUI fluxes with their modulation due to varying ionization over the solar cycle. Considering the important role of the finite injection speed of ISN atoms and of adiabatic PUI cooling, we show that Ne and O always form an upwind crescent in the PUI flux, but that the crescent formation for He PUIs strongly depends on the integration boundaries for the PUI distribution. Because the crescent has been observed for all three species, we find that the classical model of PUI evolution by Vasyliunas & Siscoe (1976) may not be sufficient to reproduce the upwind structure of He PUIs. We also find that ecliptic longitude of the PUI peak in the focusing cone is a good proxy for the inflow direction of ISN He and Ne during solar minimum, but not for ISN O, which exhibits a systematic shift in the model. On the other hand, the peak location derived from the crescent may not be a good proxy to determine the inflow longitude because it is highly modulated by short-time (few months) variations in the ionization losses. These lead to a corrugated crescent structure and may shift the fitted position of the crescent peak used to determine the inflow direction by up to 10°, with the strongest effects for the species that are heavily affected by ionization, i.e., O and Ne. These findings are in a qualitative agreement with results of in-situ PUI measurements, which showed that the location of PUI maximum varies.

  8. A computer vision approach for solar radiation nowcasting using MSG images

    NASA Astrophysics Data System (ADS)

    Álvarez, L.; Castaño Moraga, C. A.; Martín, J.

    2010-09-01

    Cloud structures and haze are the two main atmospheric phenomena that reduce the performance of solar power plants, since they absorb solar energy reaching terrestrial surface. Thus, accurate forecasting of solar radiation is a challenging research area that involves both a precise localization of cloud structures and haze, as well as the attenuation introduced by these artifacts. Our work presents a novel approach for nowcasting services based on image processing techniques applied to MSG satellite images provided by the EUMETSAT Rapid Scan Service (RSS) service. These data are an interesting source of information for our purposes since every 5 minutes we obtain actual information of the atmospheric state in nearly real time. However, a workaround must be given in order to forecast solar radiation. To that end, we synthetically forecast MSG images forecasts from past images applying computer vision techniques adapted to fluid flows in order to evolve atmospheric state. First, we classify cloud structures on two different layers, corresponding to top and bottom clouds, which includes haze. This two-level classification responds to the dominant climate conditions found in our region of interest, the Canary Islands archipelago, regulated by the Gulf Stream and Trade Winds. Vertical structure of Trade Winds consists of two layers, the bottom one, which is fresh and humid, and the top one, which is warm and dry. Between these two layers a thermal inversion appears that does not allow bottom clouds to go up and naturally divides clouds in these two layers. Top clouds can be directly obtained from satellite images by means of a segmentation algorithm on histogram heights. However, bottom clouds are usually overlapped by the former, so an inpainting algorithm is used to recover overlapped areas of bottom clouds. For each layer, cloud motion is estimated through a correlation based optic flow algorithm that provides a vector field that describes the displacement field in each layer between two consecutive images in a sequence. Since RSS service from EUMETSAT provides images every 5 minutes (Δt), the cloud motion vector field between images at time t0 and (t0 - Δt) is quite similar to that between (t0 - Δt) and (t0 - 2Δt). Under this assumption, we infer the motion vector field for the next image in order to build a synthetic version of the image at time (t0 + Δt). The computation of this future motion vector field takes into account terrain orography in order to produce more realistic forecasts. In this sense, we are currently working on the integration of information from NWP outputs in order to introduce other atmospheric phenomena. Applying this algorithm several times we are able to produce short-term forecasts up to 6 hours with encouraging performance. To validate our results, we use both, comparison of synthetically generated images with the corresponding images at a given time, and direct solar radiation measurement with the set of meteorological stations located at several points of the canarian archipelago.

  9. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  10. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  11. REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Panchenko, Vladislav Ya

    1986-07-01

    CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717

  12. Guidebook for solar process-heat applications

    NASA Astrophysics Data System (ADS)

    Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.

    1981-01-01

    The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.

  13. Flow direction variations of low energy ions as measured by the ion electron sensor (IES) flying on board of Rosetta

    NASA Astrophysics Data System (ADS)

    Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom

    2015-04-01

    The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (<50-100 eV) component is well separated from the higher energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions: one close to the anti-solar direction, and one perpendicular to it. The occurrence and variations of these directions are still under investigation. A possible cause of the acceleration of low energy ions along the solar wind might be that electrons produced by the ionization of neutrals are immediately picked up by the solar wind generating a polarization electric field that accelerates the ions. This effect is similar to the generation of ionospheric holes at Venus [Hartle and Grebowsky, Adv. Space Res., 4, 1995]. The acceleration perpendicular to the solar wind might be due to the v x B electric field. The variations of the low energy flow direction is analyzed in detail in the presentation.

  14. Ion flow at comet Halley

    NASA Technical Reports Server (NTRS)

    Johnstone, A.; Coates, A.; Kellock, S.; Wilken, B.; Jockers, K.

    1986-01-01

    The three-dimensional positive ion analyzer aboard the Giotto spacecraft has been used to study the interaction between protons and alpha-particles in the solar wind and positive ions from comet Halley. Although the first impression of the overall structure is that the plasma flow evolves smoothly as the nucleus is approached, three sharp transitions of relatively small amplitude can be identified on both the inbound and outbound legs of the trajectory. The outermost one, at about one million km from the nucleus, appears to be a multiple crossing of a weak bow shock. The innermost one, at 80,000 km, is the boundary where the flowing plasma becomes depleted. On a microscopic scale, the turbulence created by the interaction between the two ion populations extends to a distance of several million km from the nucleus. At Giotto's closest approach to the nucleus, the plasma produced around the spacecraft by dust and gas impacts was much more energetic than had been expected.

  15. Airflow Assists Solar Receiver

    NASA Technical Reports Server (NTRS)

    Revere, W. R.; Laumann, E. A.

    1984-01-01

    Heat loss by convection reduced. Simplified solar receiver concept involves inwardly directed flow of cooling air and "air door" to reduce loss by convection. Receiver is constructed from inexpensive materials.

  16. Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Jia, X.; Achilleos, N.; Sergis, N.; Gurnett, D. A.; Kurth, W. S.

    2017-09-01

    The interaction between the solar wind and a magnetosphere is central to the dynamics of a planetary system. Here we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3-D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel 20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-β magnetosheath and, in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.

  17. Low-latitude zonal and vertical ion drifts seen by DE 2

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.

    1989-01-01

    Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.

  18. Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = -12 Re

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Erkaev, N. V.; Torbert, R. B.; Biernat, H. K.; Gratton, F. T.; Szabo, A.; Kucharek, H.; Matsui, H.; Lin, R. P.; Ogilvie, K. W.; Lepping, R. P.; Smith, C. W.

    2010-08-01

    While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15°) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X ˜ -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, “ground” conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v ˜ 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability.

  19. Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Windobservations across the dawnside magnetosheath at X = -12 Re

    NASA Astrophysics Data System (ADS)

    Farrugia, Charles

    While there are many approximations describing the flow of the solar wind past the mag-netosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) in-terplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in an magnetohydrodynamic (MHD) approach (Spreiter and Rizzi, 1974). In this work we examine a case of nearly-opposed (to within 15 deg) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X -13 Re) geomagnetic tail and subsequently made a 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spre-iter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely causeis a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer.

  20. Solar-Cycle Variation of Subsurface-Flow Divergence: A Proxy of Magnetic Activity?

    NASA Astrophysics Data System (ADS)

    Komm, R.; Howe, R.; Hill, F.

    2017-09-01

    We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.

  1. Direct evidence for magnetic reconnection in the solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Skoug, R. M.; McComas, D. J.; Smith, C. W.

    2005-01-01

    We have obtained direct evidence for local magnetic reconnection in the solar wind using solar wind plasma and magnetic field data obtained by the Advanced Composition Explorer (ACE). The prime evidence consists of accelerated ion flow observed within magnetic field reversal regions in the solar wind. Here we report such observations obtained in the interior of an interplanetary coronal mass ejection (ICME) or at the interface between two ICMEs on 23 November 1997 at a time when the magnetic field was stronger than usual. The observed plasma acceleration was consistent with the Walen relationship, which relates changes in flow velocity to density-weighted changes in the magnetic field vector. Pairs of proton beams having comparable densities and counterstreaming relative to one another along the magnetic field at a speed of ˜1.4VA, where VA was the local Alfven speed, were observed near the center of the accelerated flow event. We infer from the observations that quasi-stationary reconnection occurred sunward of the spacecraft and that the accelerated flow occurred within a Petschek-type reconnection exhaust region bounded by Alfven waves and having a cross section width of ˜4 × 105 km as it swept over ACE. The counterstreaming ion beams resulted from solar wind plasma entering the exhaust region from opposite directions along the reconnected magnetic field lines. We have identified a limited number (five) of other accelerated flow events in the ACE data that are remarkably similar to the 23 November 1997 event. All such events identified occurred at thin current sheets associated with moderate to large changes in magnetic field orientation (98°-162°) in plasmas characterized by low proton beta (0.01-0.15) and high Alfven speed (51-204 km/s). They also were all associated with ICMEs.

  2. The preservation of ancient solar wind particles buried beneath lunar basalt flows as determined through heat transfer modeling

    NASA Astrophysics Data System (ADS)

    Rumpf, M. E.; Fagents, S. A.; Crawford, I. A.; Joy, K. H.

    2009-12-01

    The ever-changing environment on the Earth’s surface has erased any record of the early solar system. However, the antiquity of lunar surface combined with its negligible atmosphere and magnetosphere would have created conditions favorable for the preservation of ancient solar wind particles, galactic cosmic ray particles, and material that originated on other bodies in the inner solar system. Ancient particles emplaced in the regolith and subsequently buried beneath mare lava flows may have been preserved from subsequent bombardment provided the volatiles survived heat introduced by the lava flow. Discovery and extraction of such particles will aid in the advancement of several current solar system exploration goals, including studying the record of solar wind gases and investigating ancient atmospheric compositions on Earth and other inner planets. It has been shown that different volatile species will be released from the regolith when heated to specific temperature ranges between 573 and 973 K. We have developed a finite-volume numerical model that simulates heat transfer between a mare lava flow and the underlying regolith, to predict the preservation potential of ancient particles within layered deposits in the lunar maria. Results show that a 1 m thick basalt flow initially at 1500 K will heat an underlying regolith deposit to release implanted volatile species buried to a depth of 3.7 to 28 cm beneath the regolith surface; pristine samples would be preserved beneath these depths. At the estimated regolith formation rate of ~5 mm/Ma during the peak of mare volcanism (~3.6-3.8 Ga), an exposure time exceeding 7.4 to 56 Ma would be required prior to burial by the ensuing lava flow. Heating depths and required regolith formation times scale in direct proportion to the thickness of the overlying flow. Emplacement of multiple flow units over several hundred Ma would create intercalated stacks of lavas and regolith units, which could be radiometrically dated to provide a time series of the variability in intensity and composition of the solar wind. Suitable locations include Oceanus Procellarum, which contains numerous lava units ranging in age from 3.5-1.2 Ga. Extraction of implanted volatiles of a range of ages would require drilling through perhaps tens of meters of flow units and intervening paleoregoliths, which in turn indicates the need for tens to hundreds of km surface mobility and the provision for adequate sample collection and return. Detection of suitable paleoregolith deposits would be aided by tools such as ground penetrating radar. Although it may be argued that long-range robotic rover and sample return missions could tackle this objective, we propose that the complexity of the task is most readily addressed by a sortie-class human expedition to key sites in the lunar maria.

  3. Steady hydromagnetic flows in open magnetic fields. I - A class of analytic solutions. [for stellar winds

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Tsinganos, K.

    1986-01-01

    In the case of an establishment of theoretical models of the hydromagnetic solar wind, the inclusion of the effects of the magnetic field in the solar wind makes it extremely dificult to solve the mathematical problem. This paper has the objective to present a set of particular analytic solutions. The general formulation of Tsinganos (1982) is used to identify a class of analytic solutions to the equations of steady hydromagnetic flows in spherical coordinates. Flow in an open magnetic field are studied, taking into account the problem in dimensionless form, the special case of radial flows with alpha = 0, general radial flows, illustrative examples for flows in which alpha is not equal to 0, a parametric study of nonradial flows in which alpha is not equal to zero, variations in the parameter nu, and variations in the initial speed eta.

  4. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up.

    PubMed

    Zhao, Fang; Cambié, Dario; Janse, Jeroen; Wieland, Eric W; Kuijpers, Koen P L; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2018-01-02

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer-Lambert-Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels.

  5. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    NASA Astrophysics Data System (ADS)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  6. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up

    PubMed Central

    2017-01-01

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer–Lambert–Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels. PMID:29333350

  7. Estimates of Ionospheric Transport and Ion Loss at Mars

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.

    2017-10-01

    Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.

  8. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  9. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  10. Anomalous flow deflection at earth's low-Alfvén-Mach-Number bow shock.

    PubMed

    Nishino, Masaki N; Fujimoto, Masaki; Phan, Tai-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M; Rastätter, Lutz

    2008-08-08

    Earth's magnetosphere is an obstacle to the supersonic solar wind and the bow shock is formed in the front side of it. In ordinary hydrodynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the Earth-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low-density solar wind in which duskward flow was observed in the dawnside magnetosheath. A Rankine-Hugoniot test shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional magnetohydrodynamics (MHD) simulation of the situation confirming this interpretation and earlier simulations is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle.

  11. Meridional Flow in Solar Cycle 24: The Impact on the Polar Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Upton, Lisa; Hathaway, David; Kosak, Katie

    2012-01-01

    Axisymmetric flows, Differential Rotation and Meridional Flow (MF), were measured by tracking the motion of magnetic elements on the surface of the Sun using data obtained by the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. HMI provides the highest resolution full ]disk magnetograms available to date. This dramatically reduces the noise in axisymmetric flows, particularly at high latitudes (i.e. near the poles). The MF was found to vary greatly from one Carrington Rotation to the next. Furthermore, a distinct north ]south difference was found in the MF at high latitudes: Flow in the South was persistently weaker than flow in the North. Conclusions will be drawn concerning the MF variability, north ]south differences, and the impact on the polar magnetic field strengths and the timing of their reversals.

  12. Solar Dynamo Driven by Periodic Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.

  13. Emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong

    2016-10-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) sunspot reveals a predominant down flow inside the sunspots and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the sunspot, which could be considered as moat flows.

  14. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.

  15. Projects in a Solar Energy Course.

    ERIC Educational Resources Information Center

    Lindsay, Richard H.

    1983-01-01

    Describes student projects on applications of solar energy optics to home design. Project criterion (requiring sketches and detailed calculations of time rate of energy flow/production) is that half the heat for the heating season be taken from the solar resource; calculations must be based on meteorological data for a specific location. (JM)

  16. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  17. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  18. On-sun testing of an advanced falling particle receiver system

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Siegel, Nathan; Jeter, Sheldon; Golob, Matthew; Abdel-Khalik, Said I.; Nguyen, Clayton; Al-Ansary, Hany

    2016-05-01

    A 1 MWth high-temperature falling particle receiver was constructed and tested at the National Solar Thermal Test Facility at Sandia National Laboratories. The continuously recirculating system included a particle elevator, top and bottom hoppers, and a cavity receiver that comprised a staggered array of porous chevron-shaped mesh structures that slowed the particle flow through the concentrated solar flux. Initial tests were performed with a peak irradiance of ~300 kW/m2 and a particle mass flow rate of 3.3 kg/s. Peak particle temperatures reached over 700 °C near the center of the receiver, but the particle temperature increase near the sides was lower due to a non-uniform irradiance distribution. At a particle inlet temperature of ~440 °C, the particle temperature increase was 27 °C per meter of drop length, and the thermal efficiency was ~60% for an average irradiance of 110 kW/m2. At an average irradiance of 211 kW/m2, the particle temperature increase was 57.1 °C per meter of drop length, and the thermal efficiency was ~65%. Tests with higher irradiances are being performed and are expected to yield greater particle temperature increases and efficiencies.

  19. Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Overview and spectral characteristics

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1993-01-01

    Large-amplitude electromagnetic plasma waves are one of the dominant features of the solar wind-comet interaction. Wave characteristics strongly depend on parameters such as the solar wind flow and Alfven velocities and the angle between flow and interplanetary magnetic field as well as the production rate. With respect to the latter the flyby of the spacecraft Giotto at comet P/Griff-Skjellerup provides a unique possibility to study such waves in further detail. Pickup ion-related wave signatures have been observed up to a distance of 600,000 km from the nucleus. Peak spectral power in the spacecraft frame of reference occurs at frequencies mainly somewhat below the water group ion gyrofrequency. From this the waves are determined to be mainly left-hand polarized waves, causing one-sided pitch angle diffusion outbound. The wave activity strongly increases close to the comet; upstream it exhibits a quadratic dependence on the water group pickup ion free energy. Furthermore, a phenomenological study of the wave characteristics provides a unique description of the fine-structure of the interaction region. Indications of steepened magnetosonic waves have been found in the outbound magnetosheath region.

  20. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  1. The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1976-01-01

    Data obtained by OGO 5 are used to confirm IMP 6 observations of an inverse dependence of the helium-to-hydrogen temperature ratio in the solar wind on the ratio of solar-wind expansion time to the Coulomb-collision equipartition time. The analysis is then extended to determine the relation of the difference between the hydrogen and helium bulk velocities (the differential flow vector) with the ratio between the solar-wind expansion time and the time required for Coulomb collisions to slow down a beam of ions passing through a plasma. It is found that the magnitude of the differential flow vector varies inversely with the time ratio when the latter is small and approaches zero when it is large. These results are shown to suggest a model of continuous preferential heating and acceleration of helium (or cooling and deceleration of hydrogen), which is cancelled or limited by Coulomb collisions by the time the plasma has reached 1 AU. Since the average dependence of the differential flow vector on the time ratio cannot explain all the systematic variations of the vector observed in corotating high-velocity streams, it is concluded that additional helium acceleration probably occurs on the leading edge of such streams.

  2. The Colorado Solar Wind Experiment

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin; Han, Jia; Horanyi, Mihaly; Ulibarri, Zach; Wang, Xu; Yeo, Lihsia

    2016-10-01

    The Colorado Solar Wind Experiment (CSWE) is a new device developed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust (IMPACT) at the University of Colorado. This large ion source is for studies of the interaction of solar wind plasma with planetary surfaces and cosmic dust, and for the investigation of plasma wake physics. With a plasma beam diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 1 mA/cm2, a large cross-section Kaufman Ion Source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. Chamber pressure can be reduced to 3e-5 Torr under operating conditions to suppress ion-neutral collisions and create a uniform ion velocity distribution. Diagnostic instruments such as a double Langmuir probe and an ion energy analyzer are mounted on a two-dimensional translation stage that allow the beam to be characterized throughout the chamber. Early experiments include the measurement of dust grain charging from the interaction with flowing plasma, and measurements of the plasma sheath created by the interaction of the flowing plasma impinging on a surface with a dipole magnetic field. This poster will describe the facility and the scientific results obtained to date.

  3. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.

    PubMed

    Kuang, Ping; Eyderman, Sergey; Hsieh, Mei-Li; Post, Anthony; John, Sajeev; Lin, Shawn-Yu

    2016-06-28

    In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

  4. Temperature and density anti-correlations in solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Klein, L. W.

    1990-01-01

    Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.

  5. REVIEWS OF TOPICAL PROBLEMS: The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism

    NASA Astrophysics Data System (ADS)

    Zeldovich, Ya B.; Ruzmaĭkin, A. A.

    1987-06-01

    The magnetism of most celestial bodies, i.e., planets, stars, and galaxies, is of hydromagnetic origin. The turbulent hydromagnetic dynamo is the principal mechanism whereby the magnetic field is amplified and maintained, and the theory of this phenomenon has advanced significantly in recent years. This review discusses applications of the theory of the turbulent dynamo to real objects, taking the Sun, the Earth, and the Galaxy as examples. Most of the discussion is concentrated on the large-scale magnetic field averaged over turbulent fluctuations. The average field is amplified and maintained by the average helicity of turbulent motion and large-scale shear flows such as differential rotation. The dynamo theory explains striking phenomena such as geomagnetic field reversal, the solar cycle, and the ring and bisymmetric structure of spiral galaxies.

  6. Solar Thermochemical Fuel Production via a Novel Low Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process (University of Florida)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, David W.

    The UF Solar Fuels team has developed a modular reactor at the 10kW scale for the thermochemical conversion of H2O and CO2 to H2 and CO, respectively, using concentrated solar energy to drive high-temperature redox reactions. Various materials, including ferrites, doped and mixed metal ferrites, and ceria, were investigated and reported on. Ceria was chosen as the reactive material, with thermogravimetric and bench-scale analysis concurring with literature review and pointing towards reasonable kinetics and stability at temperatures on the order of 1500 °C. A combined radiation, conduction, and species reaction/mass transport model was developed, utilizing Monte Carlo ray tracing, Latticemore » Boltzmann, and random walk particle tracking for the respective components to direct development and optimization of the reactor. With experimental data used for reaction rates, the model showed a path to efficiencies >20%, which could be market competitive with current PV-hydrolysis hydrogen generation systems. Economic analysis of a larger-scale plant (100kW modular system with cost performed at 500 modules) has been performed, assuming 0.5% and 10% internal rate of return. Without compression costs, H2 production cost using this is technology at $12/kg H2 and $17/kg H2 for realized efficiencies of 20% and 15%, respectively. An interaction of ceria and alumina, with the formation of CeAlO3 occurring at ~1700 °C, had been reported in the literature, but the UF Solar Fuels team observed and reported on it at a large scale, confirming its presence as an engineering consideration when working ceria and alumina at extreme temperatures. CeAlO3 could be being produced at lower temperatures due to the oxidation and reducing environments or due to local hotspots in the reactor. A solar thermogravimeter was developed, to take advantage of the high heating rates available at the UF Solar Simulator Facility to allow investigation of species evolution and material stability in extreme heating rate scenarios. A novel flash-boiling centrifugal-separation steam generator was developed to provide inexpensive, identical steam flows to modular systems, using water-metering and generating the steam for each flow in separate chambers. Several novel methods of reactant material preparation were developed, including: • Sacrificial Pore Formation - Uses a component, such as graphite, designed to be carried away in gaseous form at some point in the preparation process to aid in the formation of pathways and porosity for the enhancement of fluid flow and radiative heat transport at elevated temperatures. • Particle stacking and sintering – Using material that has been pre-sintered (at the temperatures expected for reaction) and mechanically broken apart. The particles are then separated by size to allow the process to be repeated several times with a given particle size range. The resulting stacked and sintered structure maintains micro- to millimeter size pore structure for fluid transport at temperatures that previously demonstrated some contraction or collapse of the reactive material due to porosity reduction due to sintering. In addition, novel seals utilizing graphite and boron nitride particle filler as an internally compressed seal were developed. These seals allow sealing of a ceramic Efficiencies of >4% solar-to-fuel were demonstrated, which at the time of demonstration was the highest yet reported. Hydrogen and CO production rates targets that averaged ~3 cc/gram of reactive material were achieved.« less

  7. An Empirical Orthogonal Function Reanalysis of the Northern Polar External and Induced Magnetic Field During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.

    2018-01-01

    We apply the method of data-interpolating empirical orthogonal functions (EOFs) to ground-based magnetic vector data from the SuperMAG archive to produce a series of month length reanalyses of the surface external and induced magnetic field (SEIMF) in 110,000 km2 equal-area bins over the entire northern polar region at 5 min cadence over solar cycle 23, from 1997.0 to 2009.0. Each EOF reanalysis also decomposes the measured SEIMF variation into a hierarchy of spatiotemporal patterns which are ordered by their contribution to the monthly magnetic field variance. We find that the leading EOF patterns can each be (subjectively) interpreted as well-known SEIMF systems or their equivalent current systems. The relationship of the equivalent currents to the true current flow is not investigated. We track the leading SEIMF or equivalent current systems of similar type by intermonthly spatial correlation and apply graph theory to (objectively) group their appearance and relative importance throughout a solar cycle, revealing seasonal and solar cycle variation. In this way, we identify the spatiotemporal patterns that maximally contribute to SEIMF variability over a solar cycle. We propose this combination of EOF and graph theory as a powerful method for objectively defining and investigating the structure and variability of the SEIMF or their equivalent ionospheric currents for use in both geomagnetism and space weather applications. It is demonstrated here on solar cycle 23 but is extendable to any epoch with sufficient data coverage.

  8. EVIDENCE FOR ROTATIONAL MOTIONS IN THE FEET OF A QUIESCENT SOLAR PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco Suarez, D.; Asensio Ramos, A.; Trujillo Bueno, J., E-mail: dorozco@iac.es

    2012-12-20

    We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the He I 1083.0 nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent hedgerow prominence. The data show opposite Doppler shifts, {+-}6 km s{sup -1}, at the edges of the prominence feet. We argue that these shifts maymore » be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the Solar Dynamics Observatory provided us with clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with velocities of about 10-15 km s{sup -1}. Finally, the shapes of the observed intensity profiles suggest the presence of, at least, two components at some locations at the edges of the prominence feet. One of them is typically Doppler shifted (up to {approx}20 km s{sup -1}) with respect to the other, thus suggesting the existence of supersonic counter-streaming flows along the line of sight.« less

  9. Long-term Trends in Interplanetary Magnetic Field Strength and Solar Wind Structure during the 20th Century

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cliver, E. W.; Cane, H. V.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Lockwood et al have recently reported an approximately 40% increase in the radial component of the interplanetary magnetic field (IMF) at Earth between 1964 and 1996. We argue that this increase does not constitute a secular trend but is largely the consequence of lower than average fields during solar cycle 20 (1964-1976) in comparison with surrounding cycles. For times after 1976 the average IMF strength has actually decreased slightly. Examination of the cosmic ray intensity, an indirect measure of the IMF strength, over the last five solar cycles (19-23) also indicates that cycle averages of the IMF strength have been relatively constant since approximately 1954. We also consider the origin of the well-documented increase in the geomagnetic alphaalpha index that occurred primarily during the first half of the twentieth century. We surmise that the coronal mass ejection (CME) rate for recent solar cycles was approximately twice as high as that for solar cycles 100 years ago. However, this change in the CME rate and the accompanying increase in 27-day recurrent storm activity reported by others are unable to account completely for the increase in alphaalpha. Rather, the CMEs and recurrent high-speed streams at the beginning of the twentieth century must have been embedded in a background of slow solar wind that was less geoeffective (having, for example, lower IMF strength and/or flow speed) than its modern counterpart.

  10. Renewable Energy System Feasibility Study

    DTIC Science & Technology

    1982-08-01

    SOLAR KINETICS, INC. TECHNICAL DATA 1.. SHORT FOCAL LENGTH The true test of parabolic trough collector efficiency is not the instantaneous efficiency...capabilities of concentrating solar collectors . Also, use of a solar thermal energy system to regenerate the desiccant beds of the IAD would satisfy...air flow rate is approximately 2?0 scfm or 16.2 lbm/min through the desiccant bed undergoing regeneration. Solar thermal energy collectors are

  11. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systemsmore » are properly specified and installed with respect to the continuing structural integrity of the building.« less

  12. Performance and operational analysis of a liquid desiccant open-flow solar collector

    NASA Astrophysics Data System (ADS)

    Grodzka, P. G.; Rico, S. S.

    1982-10-01

    Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.

  13. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    NASA Astrophysics Data System (ADS)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  14. Coronal Loops: Observations and Modeling of Confined Plasma.

    PubMed

    Reale, Fabio

    Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops) are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  15. Water-Rock Differentiation of Icy Bodies by Darcy law, Stokes law, and Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2016-10-01

    The early Solar system produced a variety of bodies with different properties. Among the small bodies, objects that contain notable amounts of water ice are of particular interest. Water-rock separation on such worlds is probable and has been confirmed in some cases. We couple accretion and water-rock separation in a numerical model. The model is applicable to Ceres, icy satellites, and Kuiper belt objects, and is suited to assess the thermal metamorphism of the interior and the present-day internal structures. The relative amount of ice determines the differentiation regime according to porous flow or Stokes flow. Porous flow considers differentiation in a rock matrix with a small degree of ice melting and is typically modelled either with the Darcy law or two-phase flow. We find that for small icy bodies two-phase flow differs from the Darcy law. Velocities derived from two-phase flow are at least one order of magnitude smaller than Darcy velocities. The latter do not account for the matrix resistance against the deformation and overestimate the separation velocity. In the Stokes regime that should be used for large ice fractions, differentiation is at least four orders of magnitude faster than porous flow with the parameters used here.

  16. Formation of Heliospheric Arcs of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Higginson, A. K.; Antiochos, S. K.; Devore, C. R.; Wyper, P. F.; Zurbuchen, T. H.

    2017-01-01

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.

  17. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  18. Formation of Heliospheric Arcs of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.

    A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchangemore » reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.« less

  19. Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate

    PubMed Central

    Yadav, Anil Singh; Bhagoria, J. L.

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752

  20. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate.

    PubMed

    Yadav, Anil Singh; Bhagoria, J L

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  1. Transient galactic cosmic ray modulation during solar cycle 24: A comparative study of two prominent Forbush decrease events

    NASA Astrophysics Data System (ADS)

    Lingling, Zhao; Huai, Zhang; Hongqing, He

    2016-04-01

    Forbush decrease (FD) events are of great interest for transient galactic cosmic ray modulation study. In this study, we perform statistical analysis of two prominent Forbush events during cycle 24, occurred on 8 March 2012 (Event 1) and 22 June 2015 (Event 2), respectively, utilizing the measurements from the worldwide neutron monitor (NM) network. Despite of their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Event 2 over the studied energy range. Additionally, while the evolution of the energy spectra during the two FD event exhibit similar variation pattern, the spectrum of Event 2 is very harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated ICME structure of IP/Sheath/MC sequence with large radial extend and limited longitudinal extent (narrow and thick), probably merged from multiple shocks and transient flows. Conversely, Event 2 is accompanied by a relatively simple interplanetary disturbance of IP/Sheath/Ejecta sequence with small radial extend and wide longitudinal departure (wide and thin), possibly evolved from an over expanded CME. Such comparative study may help to clarify the occurrence mechanisms of Forbush events related to different types solar wind structures and provide valuable insight into the transient GCR modulation, especially during the unusual solar cycle 24.

  2. The Telemachus mission: dynamics of the polar sun and heliosphere

    NASA Astrophysics Data System (ADS)

    Roelof, E.

    Telemachus in Greek mythology was the faithful son of Ulysses. The Telemachus mission is envisioned as the next logical step in the exploration of the polar regions of the Sun and heliosphere so excitingly initiated by the ESA/NASA Ulysses mission. Telemachus is a polar solar-heliospheric mission described in the current NASA Sun-Earth Connections Roadmap (2003-2028) that has successfully undergone two Team X studies by NASA/JPL. The pioneering observations from Ulysses transformed our perception of the structure and dynamics of these polar regions through which flow the solar wind, magnetic fields and energetic particles that eventually populate most of the volume of the heliosphere. Ulysses carried only fields and particles detectors. Telemachus, in addition to modern versions of such essential in situ instruments, will carry imagers that will give solar astronomers a new viewpoint on coronal mass ejections and solar flares, as well as their first purely polar views of the photospheric magnetic field, thereby providing new helioseismology to probe the interior of the Sun. Unlike the RTG-powered Ulysses, the power for Telemachus will come simply from solar panels. Gravity assist encounters with Venus and Earth (twice) will yield ˜5 years of continuous in-ecliptic cruise science between 0.7 AU and 3.3 AU that will powerfully complement other contemporary solar-heliospheric missions. The Jupiter gravity assist, followed by a perihelion burn ˜8 years after launch, will place Telemachus in a permanent ˜0.2 AU by 2.5 AU heliographic polar orbit (inclination >80 deg) whose period will be 1.5 years. Telemachus will then pass over the solar poles at ˜0.4 AU (compared to 1.4 AU for Ulysses) and spend ˜2 weeks above 60 deg on each polar pass (alternating perihelions between east and west limbs as viewed from Earth). In 14 polar passes during a 10.5 year solar cycle, Telemachus would accumulate over half a year of polar science data. During the remainder of the time, it would be charting the dynamics of all latitudes of the transition region that imposes the structure upon the solar wind, magnetic field, and energetic particle populations that determines the configuration and evolution of the outer heliosphere and its boundary with the local interstellar medium.

  3. A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Iizima, M.

    2006-05-01

    Velocity distribution of the solar wind electrons injected into the lunar wake boundary is re-examined by using a simple model structure of inward electric field. The electrons that were flowing along the magnetic field lines undergo pitch angle scattering due to the electric field component perpendicular to the magnetic field. The electrons obtain perpendicular speeds twice as much as the drift speed. On the basis of the GEOTAIL observations of the whistler mode waves and strahl electrons, the intensity of the electric field and the thickness of the wake structure are estimated to be 28-40 mVm-1 and less than 20 km, respectively.

  4. Computational extended magneto-hydrodynamical study of shock structure generated by flows past an obstacle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xuan, E-mail: xzhao@cylance.com; Seyler, C. E., E-mail: ces7@cornell.edu

    2015-07-15

    The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio ofmore » thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.« less

  5. Design requirements, challenges, and solutions for high-temperature falling particle receivers

    NASA Astrophysics Data System (ADS)

    Christian, Joshua; Ho, Clifford

    2016-05-01

    Falling particle receivers (FPR) utilize small particles as a heat collecting medium within a cavity receiver structure. Previous analysis for FPR systems include computational fluid dynamics (CFD), analytical evaluations, and experiments to determine the feasibility and achievability of this CSP technology. Sandia National Laboratories has fabricated and tested a 1 MWth FPR that consists of a cavity receiver, top hopper, bottom hopper, support structure, particle elevator, flux target, and instrumentation. Design requirements and inherent challenges were addressed to enable continuous operation of flowing particles under high-flux conditions and particle temperatures over 700 °C. Challenges include being able to withstand extremely high temperatures (up to 1200°C on the walls of the cavity), maintaining particle flow and conveyance, measuring temperatures and mass flow rates, filtering out debris, protecting components from direct flux spillage, and measuring irradiance in the cavity. Each of the major components of the system is separated into design requirements, associated challenges and corresponding solutions. The intent is to provide industry and researchers with lessons learned to avoid pitfalls and technical problems encountered during the development of Sandia's prototype particle receiver system at the National Solar Thermal Test Facility (NSTTF).

  6. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    PubMed

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  8. Effects of flows on viscous and resistive MHD stability

    NASA Technical Reports Server (NTRS)

    Einaudi, Giorgio

    1986-01-01

    In many solar applications the viscosity appears to be more important than resistivity. In order to discuss the instabilities in solar conditions, an idealized configuration is considered in which the plasma is flowing in the z-direction along the magnetic field B sub 0 with a velocity V sub 0. As far as the velocity is concerned two different velocity profiles, with different hydrodynmaic stability properties are discussed. The results are summarized.

  9. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  10. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vesselmore » connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.« less

  11. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    PubMed Central

    Johnson, Jay R.; Wing, Simon

    2017-01-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194

  12. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie; Murray, Christopher; Kikkawa, James

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less

  13. Mini-filament Eruption as the Initiation of a Jet along Coronal Loops

    NASA Astrophysics Data System (ADS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-10-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  14. Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation.

    PubMed

    Lou, Jinwei; Liu, Yang; Wang, Zhongyong; Zhao, Dengwu; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil; Zhang, Wang; Zhang, Di; Tao, Peng; Shang, Wen; Deng, Tao

    2016-06-15

    Reusing polluted water through various decontamination techniques has appeared as one of the most practical approaches to address the global shortage of clean water. Rather than relying on single decontamination mechanism, herein we report the preparation and utilization of paper-based composites for multifunctional solar-driven clean water generation that is inspired by the multiple water purification approaches in biological systems. The reduced graphene oxide (rGO) sheets within such composites can efficiently remove organic contaminants through physical adsorption mechanism. Under solar irradiation, the floating rGO composites can instantly generate localized heating, which not only can directly generate clean water through distillation mechanism but also significantly enhance adsorption removal performance with the assistance of upward vapor flow. Such porous-structured paper-based composites allow for facile incorporation of photocatalysts to regenerate clean water out of contaminated water with combined adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms. Within a homemade all-in-one water treatment device, the practical applicability of the composites for multifunctional clean water generation has been demonstrated.

  15. Applications of Fluorogens with Rotor Structures in Solar Cells.

    PubMed

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  16. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  17. Design Approaches for Enhancing Photovoltaic Performance of Silicon Solar Cells Sensitized by Proximal Nanocrystalline Quantum Dots

    NASA Astrophysics Data System (ADS)

    Shafiq, Natis

    Energy transfer (ET) based sensitization of silicon (Si) using proximal nanocrystal quantum dots (NQDs) has been studied extensively in recent years as a means to develop thin and flexible Si based solar cells. The driving force for this research activity is a reduction in materials cost. To date, the main method for determining the role of ET in sensitizing Si has been optical spectroscopic studies. The quantitative contribution from two modes of ET (namely, nonradiative and radiative) has been reported using time-resolved photoluminescence (TRPL) spectroscopy coupled with extensive theoretical modelling. Thus, optical techniques have established the potential for utilizing ET based sensitization of Si as a feasible way to develop novel NQD-Si hybrid solar cells. However, the ultimate measure of the efficiency of ET-based mechanisms is the generation of electron-hole pairs by the impinging photons. It is therefore important to perform electrical measurements. However, only a couple of studies have attempted electrical quantification of ET modes. A few studies have focused on photocurrent measurements, without considering industrially relevant photovoltaic (PV) systems. Therefore, there is a need to develop a systematic approach for the electrical quantification of ET-generated charges and to help engineer new PV architectures optimized for harnessing the full advantages of ET mechanisms. Within this context, the work presented in this dissertation aims to develop an experimental testing protocol that can be applied to different PV structures for quantifying ET contributions from electrical measurements. We fabricated bulk Si solar cells (SCs) as a test structure and utilized CdSe/ZnS NQDs for ET based sensitization. The NQD-bulk Si hybrid devices showed ˜30% PV enhancement after NQD deposition. We measured external quantum efficiency (EQE) of these devices to quantify ET-generated charges. Reflectance measurements were also performed to decouple contributions of intrinsic optical effects (i.e., anti-reflection) from NQD mediated ET processes. Our analysis indicates that the contribution of ET-generated charges cannot be detected by EQE measurements. Instead, changes in the optical properties (i.e., anti-reflection property) due to the NQD layer are found to be the primary source of the photocurrent enhancement. Based on this finding, we propose to minimize bulk Si absorption by using an ultrathin (˜300 nm) Si PV architecture which should enable measurements of ET-generated charges. We describe an optimized process flow for fabricating such ultrathin Si devices. The devices fabricated by this method behave like photo-detectors and show enhanced sensitivity under 1 Sun AM1.5G illumination. The geometry and process flow of these devices make it possible to incorporate NQDs for sensitization. Overall, this dissertation provides a protocol for the quantification of ET-generated charges and documents an optimized process flow for the development of an ultrathin Si solar cells.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, P.; Fang, C.; Chen, P. F.

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At themore » source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.« less

  19. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  20. Plasma Brightenings in a Failed Solar Filament Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the coronamore » to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.« less

  1. Application of advanced computational procedures for modeling solar-wind interactions with Venus: Theory and computer code

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Klenke, D.; Trudinger, B. C.; Spreiter, J. R.

    1980-01-01

    Computational procedures are developed and applied to the prediction of solar wind interaction with nonmagnetic terrestrial planet atmospheres, with particular emphasis to Venus. The theoretical method is based on a single fluid, steady, dissipationless, magnetohydrodynamic continuum model, and is appropriate for the calculation of axisymmetric, supersonic, super-Alfvenic solar wind flow past terrestrial planets. The procedures, which consist of finite difference codes to determine the gasdynamic properties and a variety of special purpose codes to determine the frozen magnetic field, streamlines, contours, plots, etc. of the flow, are organized into one computational program. Theoretical results based upon these procedures are reported for a wide variety of solar wind conditions and ionopause obstacle shapes. Plasma and magnetic field comparisons in the ionosheath are also provided with actual spacecraft data obtained by the Pioneer Venus Orbiter.

  2. A Babcock-Leighton Solar Dynamo Model with Multi-cellular Meridional Circulation in Advection- and Diffusion-dominated Regimes

    NASA Astrophysics Data System (ADS)

    Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese

    2015-06-01

    Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  3. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less

  4. Venus and Mars Obstacles in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.

    2000-10-01

    Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.

  5. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  6. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s-1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ171 Å band with flow speeds of up to 2.5 km s-1. The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions: Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ''6 pixel-1. Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. A movie associated to Fig. 6 is available at http://https://www.aanda.org

  7. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  8. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  9. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

    PubMed

    Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo

    2017-09-20

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO 2 and reforming of CH 4 using concentrated radiation as the source of process heat. The 2 kW th solar reactor prototype utilizes a cavity receiver enclosing a vertical Al 2 O 3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH 4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO 2-δ ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H 2 :CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH 4 reformed.

  10. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor

    PubMed Central

    2017-01-01

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2−δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed. PMID:28966440

  11. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Hill, Michael A.; Haering, Edward A.

    2017-01-01

    The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.

  12. Are current sheets the boundary of fluxtubes in the solar wind? -- A study from multiple spacecraft observation

    NASA Astrophysics Data System (ADS)

    Li, G.; Arnold, L.; Miao, B.; Yan, Y.

    2011-12-01

    G. Li (1,2), L. Arnold (1), B. Miao (3) and Y. Yan (4) (1) Department of Physics, University of Alabama in Huntsville Huntsville, AL, 35899 (2) CSPAR, University of Alabama in Huntsville Huntsville, AL, 35899 (3) School of Earth and Space Sciences, University of Science and Technology of CHINA, Hefei, China (4) Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Science, Beijing 100012, China Current sheets is a common structure in the solar wind and is a significant source of solar wind MHD turbulence intermittency. The origin of these structure is presently unknown. Non-linear interactions of the solar wind MHD turbulence can spontaneously generate these structures. On the other hand, there are proposals that these structures may represent relic structures having solar origins. Using a technique developed in [1], we examine current sheets in the solar wind from multiple spacecraft. We identify the "single-peak" and "double-peak" events in the solar wind and discuss possible scenarios for these events and its implication of the origin of the current sheets. [1] Li, G., "Identify current-sheet-like structures in the solar wind", ApJL 672, L65, 2008.

  13. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-08-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that, rather than being superficial surface motion, the belts extend down to a depth of at least 20 thousand kilometres below the Sun's surface. "In one way, the Sun's zonal belts behave more like the colourful banding found on Jupiter than the region of tradewinds on the Earth," said Stanford's Dr. Craig DeForest. "Somewhat like stripes on a barber pole, they start in the mid-latitudes and gradually move toward the equator during the eleven year solar cycle. They also appear to have a relationship to sunspot formation as sunspots tend to form at the edges of these zones". "We speculate that the differences in speed of the plasma at the edge of these bands may be connected with the generation of the solar magnetic cycle; which, in turn, generates periodic increases in solar activity, but we'll need more observations to see if this is correct," said DeForest. Finally, the solar physicists have determined that the entire outer layer of the Sun, to a depth of at least 25 thousand kilometres, is slowly but steadily flowing from the equator to the poles. The polar flow rate is relatively slow, about 80 km per hour, compared to its rotation speed, about 6.000 km/h; however, this is fast enough to transport an object from the equator to the pole in a bit more than a year. "Oddly enough, the polar flow moves in the opposite direction from that of the sunspots and the zonal belts, which are moving from higher to lower latitudes," said DeForest. Evidence for polar flow had previously been observed at the Sun's surface, but scientists did not know how deep the motion extended. With a volume equal to about four percent of the total Sun, this feature probably has an important impact on the Sun's activity, argue Stanford researchers Scherrer, with Dr. Thomas L. Duvall Jr., Dr. Richard S. Bogart, and graduate student Peter M. Giles. For the last year, the SOHO spacecraft has been aiming its battery of 12 scientific instruments at the Sun from a position 1.5 million kilometres sunward from the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  14. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-07-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that, rather than being superficial surface motion, the belts extend down to a depth of at least 20 thousand kilometres below the Sun's surface. "In one way, the Sun's zonal belts behave more like the colourful banding found on Jupiter than the region of tradewinds on the Earth," said Stanford's Dr. Craig DeForest. "Somewhat like stripes on a barber pole, they start in the mid-latitudes and gradually move toward the equator during the eleven year solar cycle. They also appear to have a relationship to sunspot formation as sunspots tend to form at the edges of these zones". "We speculate that the differences in speed of the plasma at the edge of these bands may be connected with the generation of the solar magnetic cycle; which, in turn, generates periodic increases in solar activity, but we'll need more observations to see if this is correct," said DeForest. Finally, the solar physicists have determined that the entire outer layer of the Sun, to a depth of at least 25 thousand kilometres, is slowly but steadily flowing from the equator to the poles. The polar flow rate is relatively slow, about 80 km per hour, compared to its rotation speed, about 6.000 km/h; however, this is fast enough to transport an object from the equator to the pole in a bit more than a year. "Oddly enough, the polar flow moves in the opposite direction from that of the sunspots and the zonal belts, which are moving from higher to lower latitudes," said DeForest. Evidence for polar flow had previously been observed at the Sun's surface, but scientists did not know how deep the motion extended. With a volume equal to about four percent of the total Sun, this feature probably has an important impact on the Sun's activity, argue Stanford researchers Scherrer, with Dr. Thomas L. Duvall Jr., Dr. Richard S. Bogart, and graduate student Peter M. Giles. For the last year, the SOHO spacecraft has been aiming its battery of 12 scientific instruments at the Sun from a position 1.5 million kilometres sunward from the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  15. Tornado model for a magnetised plasma

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.

    2018-05-01

    A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.

  16. Thermal Remote Sensing and the Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.

    2000-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale.

  17. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  18. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  19. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  20. Quasi-exospheric heat flux of solar-wind electrons

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Schultz, M.

    1975-01-01

    Density, bulk-velocity, and heat-flow moments are calculated for truncated Maxwellian distributions representing the cool and hot populations of solar-wind electrons, as realized at the base of a hypothetical exosphere. The electrostatic potential is thus calculated by requiring charge quasi-neutrality and the absence of electrical current. Plasma-kinetic coupling of the cool-electron and proton bulk velocities leads to an increase in the electrostatic potential and a decrease in the heat-flow moment.

Top